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Abstract 

Climate change’s negative impact on forest communities around the globe is already 

visible and is expected to increase further in the near future. This is in part due to the rapid 

environmental changes against the lower rates of adaptation and migration capacity of tree 

populations. Understanding the complex relationship between climate and tree species is 

essential to establishing efficient management strategies, such as assisted migration, to cope 

with the inevitable changes. In this thesis, we focused on three commercially important traits, 

height, diameter at breast height, and wood density, of an Austrian European larch population 

that was planted across 21 sites. Based on the concept that trees within the same population of 

origin will react differently to the environment, the aim was to analyze its intra-population 

genetic variability and genotype by environment interaction (GxE) and to infer which 

environmental variables are likely influencing it. Two different types of methodologies were 

used in this thesis, the first one, which we developed, combines the response function 

methodology and tree breeding approach, while the second one is based on a complex factor 

analytic modeling that is mostly used in crop science but that is also newly used in tree species. 

According to our results, both methods were successful in detecting the studied genotypes' 

response variability and GxE. Furthermore, we were able to determine which environmental 

variables are likely to influence each trait. Within our studied range, height seems to be affected 

by temperature, altitude, and precipitation seasonality. Diameter at breast height seems to be 

affected by the mean diurnal range and wood density, though mildly, seems to be affected by 

altitude. In our opinion, both methodologies can be applied to describe the intra-population 

genetic variability and were able to identify key environmental variables affecting specific 

commercially important traits. We believe that this knowledge can be used to select well-

performing genotypes that are adapted to specific conditions, and hence be used in tree 

breeding and conservation programs (e.g., for assisted migration) focused on helping trees to 

cope and adapt to changing environmental conditions.  
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1 Introduction 

This chapter presents a brief introduction to the dissertation thesis. First, the background 

and context of the study are discussed. Then, the research problem is described, followed by 

the research aims and objectives. Afterward, the significance of the research and its limitations 

are argued. Finally, the general organization of the dissertation will be indicated.  

Anthropogenic climate change is a well-recognized phenomenon within the scientific 

community and the larger public. Notably, it encompasses shifts in temperatures, globally 

toward higher ends with a probable increase of 2◦C before the 21st century, and an increasing 

incidence and intensity of extreme events such as extreme temperatures, drought spells, and 

forest fires (Angélil et al., 2017; Finkel and Katz, 2018; Klein Tank and Können, 2003; 

Masson-Delmotte et al., 2021). In this context of rapid shifts in environmental conditions, 

forest ecosystems are faced with unprecedented risks as the tree natural migration rates are 

expected to be insufficient to match the predicted speed of environmental change(Sally N. 

Aitken et al., 2008; Davis and Shaw, 2001; Gugger and Sugita, 2010), which would lead to 

adaptational lags and weakened forest states.  

Within this context, the main aim of this thesis was to analyze the climatic adaptation of 

European larch, one of the major European commercial and ecological forest tree species. The 

core of the analyses is based on growth and wood density data from a set of half-sib individuals. 

These individuals originate from the same population and are planted across multiple stands. 

Using two types of multi-environmental trial (MET) analyses, the main objectives of this study 

were to understand the intra-population genetic variability and the GxE interaction across the 

different plantation sites of the studied population and to identify potential key environmental 

variables influencing the studied traits.  

In forestry, traditional breeding programs aim at favorable productive traits with the 

primary objective to maximize economic gain. However, due to the forecasted changes in 

climate, it is now crucial to further our understanding of tree species' adaptation to climate, so 

that new forest management methods (such as assisted migration), aiming at mitigating the 
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detrimental consequences of climate change, can be implemented. Here, the two methodologies 

used were able to capture the intra-population genetic variability across the studied sites and 

infer key variables influencing growth and wood density. Hence, we believe that it is a 

necessary step for promoting the mitigation process. Additionally, it seems that these 

methodologies are both valid methods to be utilized for forest management purposes.   

Regarding the structure of the dissertation, the next chapter (Chapter Two) details the 

aims and objectives of the study. This is followed by the literature review (Chapter Three), 

which dives into the details of the study’s background and context. Afterward, there are the 

Material and methods, Results, and Discussion chapters (Chapters Four, Five, and Six) that are 

axed on the two main approaches used in this work. Finally, the last chapter (Chapter Seven) 

will be the Conclusion of the thesis.    
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2 Aims and objectives  

This research aims to investigate European larch’s adaptation to its environment at the 

genotypic level as a means to facilitate gene resource management in the context of climate 

change. More specifically, the main objectives can be described as follows: 

(1) to analyze the intra-population genetic diversity of a European larch population at the 

individual genotypic level; 

(2) to evaluate the dynamics of the GxE interaction across several planting sites, 

(3) to estimate and contrast the influence of altitude and climatic variables on the overall 

population and the specific genotypes, 
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3 Literature review 

3.1 Climate change 

More than a century ago, the Swedish physicist Svante Arrhenius wondered about the 

influence of the atmospheric concentration of carbon dioxide, originating from the burning of 

fossil fuel associated with the rapid industrialization process, on the temperatures. He then built 

a model that predicted that doubling the concentration of atmospheric carbon dioxide (CO2) 

would result in an average augmentation of 5ºC of the Earth's surface temperatures (Arrhenius, 

1896). However, he predicted that it would take the human race about 1000 years. Since the 

mid-50th, global warming induced by an anthropogenic increase of greenhouse gases has been 

under further consideration (Keeling et al., 1976; Manabe and Wetherald, 1967; Petit et al., 

1999). The first sound recording of the constant increase in (CO2) is the Keeling curve (Keeling 

et al., 1976). Additionally, records such as the Vostok ice core drilling indicate a clear 

correlation between temperatures over the last 420 k years and the atmospheric concentration 

of carbon dioxide (Petit et al., 1999). Moreover, the ice cores also revealed that the present 

concentration of (CO2) is at its highest value in the last 420 k years. In their pioneer paper, 

Manabe and Wetherald (1967) presented a relatively sound modeling of the potential future 

climate. The model forecasted a 2°C increase in the temperature for the doubling of 

atmospheric CO2 content.  

Since then, many studies have been performed regarding the present and future predicted 

changes in the climate. In addition to the increase in global temperature, several other changes 

have been observed and forecasted regarding the increase in extreme events such as floods or 

droughts. Nowadays, climate change, and its anthropogenic origin, is a widely accepted 

phenomenon among the scientific community and the general public (Angélil et al., 2017; 

Finkel and Katz, 2018; Masson-Delmotte et al., 2021). 
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From 1946 to 1999, cold extremes dropped, warm extremes rose, and variations in 

extremes widened after 1975 (Alexander et al., 2006; Finkel and Katz, 2018; Frich et al., 2002; 

Klein Tank and Können, 2003). Additionally, precipitation levels have increased at the global 

scale (Angélil et al., 2017). However, no real spatial coherence was identified (Alexander et 

al., 2006; Allan and Soden, 2008; Klein Tank and Können, 2003). An amplification of 

precipitation extremes has been recorded in many places with very wet days (Alexander et al., 

2006; Frich et al., 2002; Giorgi et al., 2019; Klein Tank and Können, 2003). These temperature 

and rainfall trends are expected to continue in the future (Allan and Soden, 2008; Beniston et 

al., 2007; Easterling et al., 2000; Frei et al., 2006; Giorgi et al., 2019). Concerning Europe, an 

increase in extreme precipitations is predicted north of 45° while no changes or even a decrease 

in rainfall is predicted in the southern parts (Beniston et al., 2007; Frei et al., 2006). Since the 

1970s, an increase in aridity in Southern Europe and Asia, East Asia, and East Africa has been 

observed (Dai et al., 2018). The rising of temperatures results in the increment of the 

atmospheric moisture demands. This process, alongside events like El Nino and anomalous 

tropical sea surface temperature, is likely to be at least partly responsible for the increased 

aridity. Aridity and droughts are expected to further increase during the 21st century (Dai et 

al., 2018). Another study highlights that while global warming itself may not be responsible 

for drought events, the rising temperature would cause quicker and more intense droughts 

(Trenberth et al., 2014). In Europe, according to multi-model experiments, the probability of 

mega-heatwaves during the summer will be multiplied by 5 to 10 in the next 40 years 

(Barriopedro et al., 2011). Wildfires have also increased in some parts and there is evidence 

that it is connected to an increase in temperature (Mansoor et al., 2022; Westerling et al., 2006). 

 

3.2 Influence of climate change on forest ecosystems 

Climate change, with the increase in mean temperature and occurrence of extreme events, 

is already affecting the Earth's ecosystems and is expected to continue further (Walther et al., 

2002). For 2050, climate warming scenarios are predicting that 15 to 37% of the species 
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sampled in many taxa will be committed to extinction (Román-Palacios and Wiens, 2020; 

Thomas et al., 2004). Climate change is considered to be one of the most important biodiversity 

drivers of change at present and will most likely become the most important one in the future. 

This driver of change affects the ecosystems alongside other anthropogenic factors such as land 

use, nitrogen deposition, pollution, invasive species, and over-exploitation of the lands and 

megafauna (Jandl et al., 2019; Sala et al., 2000).  Many complicated interactions can occur 

among those drivers, amplifying or diminishing their influences. Moreover, the changes 

occurring at the ecosystem level can also generate positive or negative feedback. For example, 

an increase in temperature alongside carbon and nitrogen fertilization is expected to boost 

forest productivity (Carrasco et al., 2022; Kapeller et al., 2012), increasing carbon storage and 

leading to a reduction of carbon dioxide in the atmosphere (negative feedback) (Reichstein et 

al., 2013). On the contrary, an increase in forest surface would reduce the global albedo leading 

to an increase in temperature (positive feedback) (Bonan, 2008; Hyvonen et al., 2007; Lashof 

et al., 1997; Melillo et al., 2002). 

Considering water restriction, many studies have documented its negative effect on 

forests (Allen et al., 2015; Anderegg et al., 2015; Mansoor et al., 2022; Martínez-Vilalta and 

Piñol, 2002; Rebetez and Dobbertin, 2004); Allen et al. (2010) reviewed existing literature on 

climate-induced mortality and found worldwide records on the negative effect of drought on 

tree survival. The effect of water restriction can be direct, but also indirect by for example 

boosting invasive insect and pathogens outbreaks (Anderegg et al., 2015; Rouault et al., 2006) 

and increasing wildfires occurrence (Mansoor et al., 2022; Westerling et al., 2006). In the 

future, climate change is expected to increase the severity and frequency of these tree mortality 

events (Allen et al., 2015; Halofsky et al., 2020). Additionally, trees weakened by drought 

events are experiencing a “legacy effect” with a reduction in growth and a slow recovery for 

up to four years after the event (Anderegg et al., 2015). A longer recovery time will affect 

carbon storage and, hence, carbon-climate feedback (Frank et al., 2015).  
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3.3 Response of forest ecosystems 

The geographic distribution of species across the Earth's surface depends on several 

parameters. One key parameter is the species' evolutionary history, which includes its place of 

origin and subsequent expansion patterns. Another critical parameter is biotic interaction, 

encompassing competition, predation, and symbiosis among species. Moreover, the range of a 

species is significantly influenced by abiotic factors. These include edaphic factors, such as 

soil condition and geography, societal factors like land use and water availability, as well as 

climatic factors. As previously discussed, climate change is altering temperature and 

precipitation patterns globally. Given these changes, it's reasonable to anticipate shifts in the 

geographic ranges of various species. 

Confronted with changes in climatic conditions, tree species can respond in different 

ways. They can either persist, adapt, or migrate to maintain and promote their fitness and 

competitive abilities (Sally N Aitken et al., 2008; Bussotti et al., 2015a; Sáenz-Romero et al., 

2021). 

3.3.1 Persistence 

Tree population can persist the shifts in climatic conditions via phenotypic plasticity and 

acclimatization (Bussotti et al., 2015b; Fréjaville et al., 2019). That includes, for example, 

changes in the root/shoot ratio with changes in temperature or watering. Higher temperatures 

can induce a lower allocation of biomass to the roots while reduced watering can induce the 

opposite response (Matías et al., 2016). Another example would be the reduction of leaf area 

and growth to accommodate higher temperatures and lower precipitation levels (Sáenz-Romero 

et al., 2021). 

3.3.2 Adaptation 

Tree populations can adapt to the new conditions through natural selection that promotes 

the frequency of favorable alleles associated with adaptive traits. Many traits, such as height 
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and bud burst, are likely controlled by a large number of genes, each of them having a small 

effect (Sally N. Aitken et al., 2008). Moreover, it appears that many genes are not significantly 

affected by gametic phase disequilibrium in natural populations, indicating a high degree of 

independent inheritance  (Brown et al., 2004; Heuertz et al., 2006; Neale and Savolainen, 

2004).  Studies have shown that traits controlled by many highly polymorphic polygenes are 

more likely to present phenotypic differences under selection pressure than individual loci 

(Aitken and Bemmels, 2016). Genetic polymorphism is initially forged by the stochastic 

process of mutation, which is typically slow and steady. However, population allelic diversity 

is largely governed by more immediate processes, such as gene flow—which can increase 

diversity—and genetic drift—which can reduce it. Large, interconnected populations tend to 

boast high genetic diversity. Yet, if these populations experience different selection pressures, 

high gene flow can hamper the local selection process (Garcia-Ramos and Kirkpatrick, 1997). 

Lynch and Lande (1993) propose that species can adapt consistently in an evolving 

environment if the rate of change remains below a certain threshold. Determining this threshold 

depends on various factors, such as effective population size, genetic diversity, strength of 

selection, environmental stochasticity, and fecundity rate. When the rate of environmental 

change surpasses this threshold, populations may experience an adaptational lag, which can 

ultimately lead to extinction (Lynch and Lande, 1993).  

3.3.3 Migration 

In addition to persistence and adaptation, which involve phenotypical and genetic 

changes within the population, trees can also migrate to another location where the conditions 

will be more suitable for their current level of adaptation. As sessile organisms, trees can only 

migrate during their seed stage. Various species-specific vectors, such as wind, water, or 

animals, aid the dispersal of these seeds from the parent tree.  

What facilitates observable directional migration in tree species is the seeds' limited 

viability in unsuitable locations. As climatic conditions shift directionally, tree populations 

tend to move correspondingly, leaving behind areas where conditions become inhospitable. 
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This pattern, often referred to as 'range shifting,' is typically marked by population growth at 

the leading edge and decline or extirpation at the trailing edge (Hampe and Petit, 2005; Matyas, 

2010). This migration process has been well-documented in studies of post-glacial 

recolonization. 

One of the major interests of studying tree migration under previous climatic changes is 

to analyze the tree migration rates. These rates facilitate the forecast of tree survival abilities 

under shifting environments. Pioneers palynology and genetic studies regarding the last 

transition between the glacial and interglacial periods have estimated that tree species survived 

the glacial period in Europe within three southern refugia, namely in the Iberian, Italian, and 

Balkan peninsulas (Bennett et al., 1991; Demesure et al., 1996; Dumolin-Lapègue et al., 1997). 

Based on these results, postglacial tree migration rates in Europe were evaluated up to 

1000m/y. In contradiction, the empirical migration rates are found to be much smaller, under 

100m/y. The divergence between these two rates is also known as the Reid’s paradox of rapid 

plant migration (Clark et al., 1998). This mismatch was explained by the occurrence of long-

distance dispersal events. Such events can lead to the establishment of small founder 

populations genetically supported via pollen gene flow. Later on, additional studies have 

highlighted the possibility that some populations, called cryptic refugia, survived the cold 

period further north, in Central Europe (Sally N. Aitken et al., 2008; Svenning et al., 2008; 

Tzedakis et al., 2013; Willis and Van Andel, 2004). In this case, migration rate estimates are 

considerably decreased. Nowadays, studies worldwide indicate that these rates range 

somewhere between 10 and 200 m/y (Sally N. Aitken et al., 2008; Gugger and Sugita, 2010; 

McLachlan and Clark, 2004). 

 Unfortunately, considering these revised rates coupled with few long-distance dispersal 

events, it is unlikely that tree populations will cope with anthropogenic climate change. The 

forecasted changes in temperature only would require migration rates somewhere between 

1000m/y and 5000m/y (Davis and Shaw, 2001; Malcolm et al., 2002). Moreover, these results 

do not include the additional negative impact of extreme events or anthropogenic forest 

fragmentation (Resco De Dios et al., 2007). 
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3.4 Assisted migration 

In the coming years, tree populations may face migration delay and adaptational lag in 

response to climate change. Assisted migration is being considered as a possible line of 

management to mitigate the negative impacts on forests (Palik et al., 2022). Assisted migration 

is the artificial transfer of forest reproductive material (i.e. seeds or seedlings) from one 

location to another.  

On the one hand, from the historical perspective, this process was not recommended 

because it could lead to maladaptation (Campbell, 1979). This means that seeds performing 

very well in one environment might present a low fitness in another because they would be 

adapted to the first environment but not the second one. Additionally, the insertion of forest 

reproductive material at one location will alter local populations via gene flow (McKay et al., 

2005). 

On the other hand, maladaptation is a problem that the forest population will almost 

certainly face because of climate change (Bower and Aitken, 2008; Sáenz-Romero et al., 2021; 

St Clair and Howe, 2007). Furthermore, local sources of forest reproductive material might not 

always be the best. For example, populations that faced events such as founder effects or 

bottlenecks could be a poor seed source.  

Finally, our understanding of the relationship between biotic/abiotic factors and tree organisms 

is continuously expanding. For several decades, studies have been conducted to analyze the 

intricate relationship between tree populations and climatic variables. These experiments focus 

primarily on the identification of the most productive sources of forest reproductive material 

per climatic region (Hamann et al., 2011). Nowadays, the data are also used for a deeper 

understanding of these relationships; as will be discussed in the next sections.  

Considering the factors outlined above, it becomes compelling to explore strategies 

beyond conventional approaches. Assisted migration could serve as a valuable method for 

safeguarding species that are particularly vulnerable to the anticipated changes  (Bucharova, 

2017; Sáenz-Romero et al., 2021).  
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3.5 Forest genetics and forest tree breeding 

3.5.1 Forest genetics 

Forest genetics is a multifaceted field that encompasses various branches of genetic 

study, including Mendelian genetics, quantitative genetics, and population genetics ((Burley et 

al., 2004)). At its core, Mendelian genetics in forestry revolves around Mendel's laws of 

heredity: the law of segregation and the law of independent assortment. These principles deal 

with the relationships between progeny and parents, the segregation of descendant generations, 

individual gene action, and the linkage of genes. Interestingly, Mendelism in forestry was 

rediscovered at the dawn of the 20th century (Bernardo, 2020; Hallauer, 2007). However, a 

significant revelation was that Mendel's laws do not extend to quantitative traits, marking a 

complex divergence in the understanding of genetic behavior within forest tree species. This 

blend of genetic concepts forms the foundation of forest genetics, a field that continues to 

unveil intricate details of hereditary patterns in forest trees.  

In the paper titled “The correlation between relatives on the supposition of Mendelian 

inheritance” (Fisher, 1919), the author emits the hypothesis that quantitative traits are 

controlled by genes following the Mendelian law, but that continuous trait variation was due 

to many genes. From there the concept of quantitative genetics emerged. A significant feature 

was then established by Fisher regarding the variance of quantitative traits. This variance can 

be in its simplistic form separated into two components: 

- the additive variance, that corresponds to the average effect of the respective alleles 

of a gene; 

- and the environmental variance. 

Population genetics deals with the changes in the genetic composition of populations 

across successive generations. These changes are due to the four following evolutionary 

processes: gene flow (migration), mutation, natural selection, and genetic drift. In the context 

of forestry, the insights provided by population genetics are invaluable. Population genetics 
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provides essential information used in tree breeding, offers perspectives on both historical and 

anticipated genetic shifts, and guides comprehensive forest management strategies (Burley et 

al., 2004). 

Forest genetics is a specialized field of research concentrating on the genetic composition 

of trees, the factors that influence genetic variation, the heredity of particular traits, genetic 

conservation, and tree improvement strategies. Typically, tree populations exhibit high degrees 

of genetic diversity, originating from large population sizes, local adaptation, and neutral 

processes such as genetic drift and mutations (Isabel et al., 2020). Within the field of forest 

genetics, traits can be divided into two primary categories: 

- Qualitative Traits: These traits show discrete variations and are usually controlled 

by one or very few genes. Most qualitative traits are minimally affected by the 

environment, making them simply-inherited and relatively straightforward to 

comprehend and manipulate. An example of a qualitative trait is the color of a 

flower's petals. 

- Quantitative Traits: Unlike qualitative traits, quantitative traits exhibit continuous 

variation and are typically governed by a substantial number of genes. These traits 

tend to be highly influenced by environmental factors, rendering them more 

complex to analyze and manipulate. In the context of forestry, it is significant to 

note that the most economically valuable traits, such as tree height, diameter at 

breast height, survival, etc., are quantitative in nature. 

Through its detailed examination of these genetic attributes and underlying processes, 

forest genetics plays a critical role in understanding and managing the vast and intricate genetic 

landscape of forest ecosystems.  

Historically, tree improvement was the central focus of forest genetics and tree breeding, 

largely driven by the prospect of economic gain (Wheeler et al., 2015). However, a paradigm 

shift began to unfold in the 1980s, giving rise to an equally vital concept: the conservation and 

restoration of genetic diversity. This new focus emerged in response to the dual threats posed 

by a changing climate and the escalating intensity and occurrence of pests and disease 
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outbreaks (Sáenz-Romero et al., 2021; Wheeler et al., 2015). While economic considerations 

remain important, the broader understanding of forest genetics now recognizes the essential 

balance between improving economically valuable traits and preserving the genetic diversity 

that underpins forest resilience and sustainability. 

3.5.2 Forestry breeding 

Boosting productivity in forestry has long been a primary goal within the forest industry. 

Tracing back to the 13th century, silviculture emerged as the specialized branch of forestry 

dedicated to managing the growth, composition, and quality of forests to fulfill human needs. 

Within the realm of silviculture, tree breeding plays a crucial role, focusing on the manipulation 

of the genetic composition of tree populations. 

Since the mid-20th century, large-scale tree breeding activities have been developed to 

identify superior individuals within tree populations (Alan, 2020; Ruotsalainen, 2014; White 

et al., 2007; Zobel and Talbert, 1984). This process involves meticulous testing of the selected 

individuals through the evaluation of their offspring in breeding trials. Individuals are 

considered superior not only based on their productivity levels but also on favorable 

characteristics such as height, straightness, pest resistance, and more. 

This multidimensional approach to tree breeding underscores the complex interplay 

between genetics and environmental factors. It reflects the forest industry's evolving 

understanding of how to harness genetic potential to meet both economic goals and broader 

ecological considerations.  

Tree breeding is not without challenges, they can be summarized as follows (El-Kassaby 

and Klapste, 2016): 

- the need for large experimental plots because of the mature trees’ sizes; 

- requires testing over a wide range of environments (climate, soil composition, slope 

steepness, etc.) because trees are highly influenced by their environments; 
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- experiments have to be conducted over long periods because trees need time to reach 

sexual maturity and also because some economically important traits can only be 

measured after years of growth (e.g., wood quality); 

- some experiments may be damaged by pests, diseases, and extreme events (e.g., 

floods, droughts, strong wings, etc.). 

3.5.3 Heritability 

As previously discussed, an organism's phenotype (observable traits) is distinct from its 

genotype (genetic makeup). Both the genotype and environmental factors contribute to the 

phenotype, a relationship mathematically expressed by the equation: 

𝜎𝑃
2 = 𝜎𝐺

2 + 𝜎𝐸
2

           (1.) 

where 𝜎𝑃
2 represents the phenotypic variance, 𝜎𝐺

2 is the genetic variance, and 𝜎𝐸
2 is the 

environmental variance. The total genetic variance can be further broken down into: 

𝜎𝐺
2 = 𝜎𝐴

2 + 𝜎𝐷
2 + 𝜎𝐼

2
          (2.) 

where 𝜎𝐴
2 corresponds to the additive genetic variance (where both alleles in a locus contribute 

equally to a trait), 𝜎𝐷
2 correspond to the dominance genetic effect (interactions between alleles 

at a given locus), and 𝜎𝐼
2 corresponds to the epistatic genetic effects (interactions among alleles 

from different loci). 
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In the context of forest tree breeding, heritability is the essential concept. It is defined as 

the ratio of genetic variance to the phenotypic variance It's a valuable measure to predict the 

potential gain from breeding.  There are two types of heritability (Visscher et al., 2008): 

-  the broad-sense heritability 𝐻2, which refers to the ratio of the total genetic variance 

(additive, dominance, and epistatic) to the phenotypic variance: 

𝐻2 =  
𝜎𝐺

2

𝜎𝑃
2             (3.) 

- and the narrow-sense heritability ℎ2 (Hill and Mulder, 2010), which refers to the ratio 

of the additive genetic variance to the phenotypic variance:  

ℎ2 =  
𝜎𝑎

2

𝜎𝑃
2            (4.) 

3.5.4 Genotype by Environment interaction 

In reality, the phenotypic variation is more intricate than simply the sum of the genetic 

and environmental variances (Albecker et al., 2022; Ørsted et al., 2018). Another vital concept 

in forestry breeding genetics is the GxE interaction. This interaction highlights two main 

challenges. First, it emphasizes that phenotypic expression varies among genotypes across 

different environments, leading to a change in rank that makes it problematic to infer the 

ranking of a set of genotypes in multiple environments based on a single site. Second, GxE 

also involves the problematic issue of changes in variance across multiple environments, 

adding another layer of complexity. Such variations underscore why GxE interaction must be 

carefully assessed, often employing MET mixed models (Malosetti et al., 2013). Consequently, 

to accurately evaluate and select forest reproductive material, it is essential to conduct multi-

site experiments that cover the range of planned planting environments, fully accounting for 

the multifaceted nature of GxE interaction. 
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3.5.5 Environmental variance and experimental layouts in forest tree breeding 

As previously discussed, phenotypic variance is not solely a product of genetic factors 

but is also heavily influenced by environmental variance. Within a plantation trial, 

environmental conditions can vary significantly across different locations, affecting factors 

such as sun exposure, soil composition, terrain steepness, drainage level, and more. When 

evaluating populations from different origins (known as provenances) or specific genotypes 

(such as full-sib or half-sib families), their physical placement across the trial site can greatly 

influence the assessment of their respective performances. Given this complexity, it becomes 

vital to consider and account for spatial site variation in the analysis (Leites et al., 2012a; 

Rehfeldt et al., 2018). One approach is to standardize the response variable values within the 

site, essentially leveling the playing field for comparative analysis. However, this method has 

faced criticism within the scientific community, particularly for its potential to erase essential 

distinctions among response functions (O’Neill et al., 2007). An alternative and often 

complementary strategy involves meticulously organizing the test site according to a specific 

design. This design-oriented approach aims to minimize the confounding effects of spatial 

variability, thereby allowing more precise and unbiased estimation of the genotypes' 

performance. Together, these considerations underscore the intricate interplay between genetic 

and environmental factors in forestry genetics. They highlight the need for carefully crafted 

methodologies that acknowledge and address the spatial variations within a trial site, ensuring 

that the conclusions drawn are robust, accurate, and reflective of the true genetic potential of 

the populations under study. 

Various design methodologies have been employed to structure test sites for forest 

genetic experiments, each with its unique characteristics and applications. A commonly 

observed approach is the randomized complete block design with n replicates. In this model, 

the test site is segmented into blocks, with each block containing a representative of every 

provenance or genotype. These are then planted in random positions within the block. 

However, when the study involves a large number of groups, it may become impractical 

to include every group within each block. In such instances, an incomplete block design might 
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be implemented. Another variation includes incomplete Latin square designs. These 

incomplete designs, while useful, can sometimes lead to imbalances, with certain groups being 

underrepresented (Wang et al., 2010). 

When the experiment involves the study of more than one factor, a split-plot design might 

be employed to capture the interactions and complexities of multiple variables. It's worth noting 

that, in the majority of these experimental designs, the stands usually require no intervention 

after being set up. However, there might be situations where tree density reduction is performed 

after several years to manage specific conditions (Chakraborty et al., 2018). 

These multifaceted design approaches reflect the nuanced requirements of forest genetic 

studies. They ensure a thorough and balanced representation of various genetic groups and 

accommodate different experimental needs, all while recognizing the potential challenges and 

mitigating them through thoughtful planning and execution.  

At the block level, the number of trees per sample can vary, and so can the spacing 

between the adjacent trees. In some studies, we can find only one tree representing each group 

while others can follow a n x n pattern (McLane et al., 2011; Wu and Ying, 2004). Provenances 

can be represented with up to 50 trees per plot (Foff et al., 2014). Some studies have a 

homogenized type of design across all the test sites(McLane et al., 2011; Wu and Ying, 2004) 

and some do not (O’Neill et al., 2014; Persson, 1998). Different experimental designs can lead 

to additional variation among test sites. 

Several researchers have delved into the analysis of variation at the test site level within 

the field of forest genetics. For instance, Kapeller et al. (2017) employed a mixture-model 

analysis to visualize the density distribution of tree heights, distinguishing between small and 

tall trees. Through this analysis, they discovered a greater degree of variation within warm and 

dry sites compared to the cold and moist sites. However, an intriguing inconsistency arose 

when the authors calculated the coefficient of variation for each site. These results contradicted 

the findings from the mixture-model analysis, highlighting a complex interplay between 

different statistical methods and real-world observations. Additionally, the study found that 

trees tend to be taller in warmer sites compared to colder ones, a conclusion that aligns with 
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the findings of other research in the field (Leites et al., 2012b). This corroborative evidence 

adds to the body of knowledge supporting the role of temperature as a key factor in influencing 

tree growth and height. 

3.6 Linear regression 

Linear regressions are a popular type of model in all fields of study. One of the reasons 

is that it is easy to fit and interpret. Additionally, linear regressions have been widely used 

(Alberto et al., 2013; Carrasco et al., 2022; Gunderson et al., 2010; Román-Palacios and Wiens, 

2020; Vitasse et al., 2009), hence it is a well-studied and well-validated method.  

In linear regression models, distinctions are made between various types of variables, 

each playing a specific role. The response variable, which must be continuous, is the outcome 

or dependent variable we are trying to predict or explain. Meanwhile, explanatory/predictor 

variables, which may be either continuous or categorical, are used to interpret or anticipate 

variations in the response variable. These explanatory variables can be further categorized 

based on their influence on the response variable: 

- Variables with Fixed Effects: These are variables assumed to exert a consistent 

influence on the response variable. The term "fixed" refers to the fact that the 

effect of these variables is constant for all individuals or groups within the 

population under study. Essentially, variables with fixed effects are those where 

the specific levels or categories are of primary interest, and their effect on the 

response variable is unchanging. 

- Variables with Random Effects: In contrast, variables with random effects are 

those assumed to have a varying influence on the response variable across 

different individuals or groups. These variables are used when the interest lies in 

understanding the underlying population rather than the specific levels of the 

variable themselves. The "random" nature of these variables allows for the 

accommodation of variations that might not be captured by the variables with 

fixed effects. 
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A model that incorporates both variables with fixed effects and variables with random 

effects is known as a mixed linear model. By employing this comprehensive approach, 

researchers can analyze complex relationships with greater flexibility, particularly when 

dealing with hierarchical or multi-level data (Borenstein et al., 2010; Hunter and Schmidt, 

2000; White et al., 2007). Linear regression is based on a linear relationship between the 

explanatory and response variables. The basic linear equation is as follows: 

𝑌 = 𝛽0 + 𝛽1𝑋              (5.) 

where: 

- 𝑌 is the response variable; 

- 𝛽0 is the intercept; 

- 𝛽1 is the slope; 

- and 𝑋 is the explanatory variable with a fixed effect.  

Based on this model, one can estimate both 𝛽1 and 𝛽0 that are the least-square estimates and 

they are typically referred to as coefficients. Then, using these two components and the values 

of the explanatory variable, it is possible to model (predict) the response variable.  

The equation for a basic mixed linear model, that also includes a random term can be 

written as follows: 

𝑌 = 𝛽0 + 𝛽1𝑋 +  γ             (6.) 

where γ is the random effect variance.  

In theory, the variability of the response variable can be entirely explained by the 

explanatory variables, in that case, the above models are complete. However, in practice, when 

fitting a linear or a mixed linear model, the selected explanatory variables cannot explain the 

whole variability. Indeed, the effect of the environment includes many different factors that 
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cannot all be included in the model. Additionally, when sampling phenotypes, a certain level 

of measurement error is to be expected. Furthermore, the predictors’ values can also include 

errors in measurement or estimation. For these reasons, the proper way to describe the 

relationship between response and explanatory variables is to add a random error term to the 

equation such as: 

𝑌 = 𝛽0 + 𝛽1𝑋 +  𝜀             (7.) 

where 𝜀 is the residual error term.  

With linear regression models, there are two ways to calculate the parameters. The first 

one is the Ordinary Least Square method (OLS) which is considered to be a deterministic 

method. This method minimizes the sum of squares of the differences between the observed 

and estimated values. It does not take into account the residual structure. When the error 

structure can be reliably characterized, it is possible to use the Maximum Likelihood 

Estimation method (MLE) which can be used for both linear model and mixed linear model. It 

aims at maximizing the probability (likelihood, thus referred to as the “maximum likelihood”) 

of obtaining the observed values with the model parameters. In other words, this method 

estimates the parameters that make the observed data the most likely (i.e., provide the best fit). 

MLE provides estimates of the fixed and random effects simultaneously assuming an identical 

likelihood function, however, this method often provides biased variance estimates of random 

effects. In linear regression, fixed effect coefficients are called Best Linear Unbiased Estimates 

(BLUEs) (Luo, 2017).  

In the context of mixed linear models, the estimation of model parameters often employs 

the Restricted Maximum Likelihood (REML) method. Unlike the Maximum Likelihood 

Estimation (MLE), which simultaneously estimates both fixed and random effects, REML 

takes a sequential approach. First, it estimates the variances associated with variables with 

random effects. Following that, it uses these variance estimates to derive the coefficients for 

variables with fixed effects. 
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The REML method offers several advantages. Primarily, it provides unbiased estimates 

for random variances, making it a preferred choice when the main focus of the analysis is on 

variance components. In comparison, MLE is commonly used when the objective is to compare 

models with different fixed effects, as REML's specific calculation process makes it unsuitable 

for comparing models with varying site effects. Furthermore, REML tends to be more robust 

against violations of model assumptions than MLE, adding to its appeal in certain situations. 

Within the framework of mixed linear regression, the estimates for random variance 

components derived from the REML method are known as Best Linear Unbiased Predictions 

(BLUPs) (Quaas et al., 1984). 

3.6.1 Assumptions of the linear models 

The linear regression models are based on five key assumptions that must be met (Poole 

and O’Farrell, 1971): 

- random sample, where the observations have to be independent of one another;  

- independence between the explanatory variables; 

- homoscedasticity, where the model residuals have to be constant; 

- normal distribution of residuals; 

- a linear relationship between the explanatory and response variables; 

Additionally, several other factors are necessary to make valid inferences: 

- the sample has to be representative of the population; 

- when making predictions, it is better to stay within the studied range, extrapolating 

is not recommended (Masana and Baranyi, 2000).  

3.6.2 Model evaluation and model comparison 

When developing a model, it is possible to use any type of predictor for a response 

variable. However, many of them would not be relevant, so we have to choose which ones are 

the most suitable. First, one has to use logic and select variables that are likely to be influencing 
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the response (e.g., temperature to explain tree growth). Second, it is possible to evaluate how 

well the model fits the data. Finally, when considering several models, there are several 

statistical ways to compare them.  

3.6.2.1 Model evaluation  

There are two common ways to evaluate the goodness of fit of a model. The first one 

involves the analysis of residual diagnostic plots (Butler et al., 2017). It is possible to obtain 

the residuals’ histogram to verify that they follow, to a certain extent, a normal distribution. It 

is also possible to plot a normal Q-Q plot that can also be used to assess the normality of the 

residuals. When the residuals are aligned on the diagonal line, it means that they follow a 

normal distribution. Then there is the plot fitting the residuals against the fitted values, which 

is used to assess the homogeneity of variances between observed and predicted values. There 

is homogeneity when the residuals form a uniform horizontal band. Finally, there is the plot 

fitting the residuals against the unit number (each measurement) that is similar to the residuals 

against fitted values plot, but the residuals are ordered by unit (their ID number) instead of by 

the predictor’s values. The residual plots can also be used to determine the potential presence 

of outliers that could be removed from the analysis.  

The second one is to use both the coefficient of determination 𝑅2 and the p values of the 

model. The 𝑅2 determines the proportion of variance of the response variable that is explained 

by the explanatory variable (Kapeller et al., 2017; Ørsted et al., 2018). The higher the 𝑅2, the 

better the model seems to fit the data. The model’s p values help to determine if the 

relationships observed in the tested sample also exist at the larger population level. For each 

predictor, the null hypothesis, which states that there is no relationship between the predictor 

and the response variables, is tested. If the obtained p value is inferior to the assumed 

significance level (e.g., 0.05 or 0.001), it indicates that there is sufficient evidence to reject the 

null hypothesis and vice-versa.  
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3.6.2.2 Model comparison 

One common way to select a model is to choose the one that minimizes the squared 

difference between the observed values and the estimated values (Malosetti et al., 2013). This 

is called the least square method. Another way is to use the 𝑅2. Generally, a higher 𝑅2 indicates 

a better model. Other ways, when comparing nested models (when one model is an extension 

of the other; full versus reduced models), are the F-test, likelihood ratio test, Akaike 

information criterion (AIC), and lastly the Bayesian information criterion (BIC) (Chakraborty 

et al., 2018; Joyce and Rehfeldt, 2017; Lu and Zhang, 2010; Oliveira et al., 2020; Sáenz-

Romero et al., 2017). The F-test is a hypothesis test with a null hypothesis stating that the full 

model does not explain the variance in response variable better than the reduced model. The 

log-likelihood ratio test is based on the ratio of probabilities to obtain the observed data 

between the full and the reduced model. AIC and BIC are based on the log-likelihood of the 

model and the number of explanatory parameters. As the log-likelihood is always higher when 

incorporating new parameters, both AIC and BIC are attributing penalties for each additional 

explanatory variable. Higher values are indicative of better models.  

3.7 Multi-environmental trials analyses 

In a regular historical context, tree populations are typically adapted to their environment. 

This means that within the same tree species, populations are displaying different levels of 

local adaptation (e.g., to frost, drought, soil type, etc.) across its geographical range.  Hence, 

for optimal top phenotype selection in tree breeding, it is necessary to perform MET analyses 

to test provenances and genotypes in a set of trials covering the environmental range for which 

the seeds are intended. Additionally, the notion of “locally adapted” infers that one population 

performing best in one area can be outperformed in other parts of the species’ climatic range 

which is a form of GxE interaction (Matyas, 1996).  

However, the “local is the best” statement is not always true (Rehfeldt et al., 2018; 

Schmidtling, 1994; Wang et al., 2006a) for reasons such as the population history, adaptational 
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lag, and interaction between interspecific competition and local adaptation to climate (Leites 

et al., 2012b; Matyas, 1996). In several occurrences, a population originating from another area 

can outperform the local population (Matyas, 1994). This population can originate from a 

similar climate and is better adapted, or it is a population that generally performs better, than 

the local one.  

These provenance trials can also be used to analyze the effect of climate change on tree 

populations (Matyas, 1994; Rehfeldt et al., 2001; Wang et al., 2006b). Indeed, a provenance 

that is tested within different climatic conditions, if its local climatic conditions were to change 

towards similar ones, can hint at what would be its performance. Unfortunately, since 

provenance trials were not specifically designed for this type of analysis, scientists are facing 

a major issue. It lies in the fact that breeding trials are usually established to identify top 

populations or genotypes for afforestation projects within the species range. Hence, a limited 

amount of tests are conducted at the boundaries of the species range, and close to none are 

established further. This leads to model inaccuracies when studying the effect of conditions 

situated outside of the species’ ranges (Wang et al., 2006b). There are two other issues regularly 

faced by foresters and scientists when studying provenance trials. The first one is the 

occurrence of poor testing designs, and the second one is the lack of systematic and regular 

sampling. Both of these issues lead to the need for more complex analyses and larger results 

uncertainties.  

Nowadays, several studies have been done using mature tree provenance data trials; and 

those are the experiments I will focus on within this literature. However, the same analyses can 

be performed on seedlings' provenance trials which were specifically designed within the 

climate change framework. In these trials, the designs allow simpler and more efficient 

analyses.  However, trees have long life spans and these trials are still at a seedling/young trees 

stage which may not reveal their long-term performance (Frank et al., 2017a; Matías et al., 

2016; Robakowski et al., 2005).  

Besides the MET analyses, it is also possible to use empirical observations of natural 

stands over the whole species range to predict the impact of climate change. In this type of 
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study, we identify the differences in performances between populations and correlate them to 

the climatic conditions (Vitasse et al., 2009). However, with this method, we assume that “local 

is the best” because each population is tested only once, in their natural environment. Hence, 

it is not possible to know if they would perform better somewhere else or if they would be 

outperformed in their natural environment by other populations.  

Furthermore, in some areas, there are already tangible records of the effect of climate 

change such as an increase in drought events  (Dai, 2011; Dai et al., 2018; Walther et al., 2002). 

Examining the direct consequences of climate change enables us to forecast, within certain 

boundaries, how individual populations and entire species may be affected.  

When studying the impact of climate change on tree species and identifying suitable seed 

sources for new afforestation projects, it is possible to use this information to redefine seed 

delineation patterns and breeding zones based on future climate scenarios and not on current 

zone or country borders. Adjusting seed delineation patterns and breeding zones may help 

mitigate the predicted harmful impact of climate change on forests (Matyas, 1994; Wang et al., 

2006a). Furthermore, reviewing seed delineation patterns could also result in a productivity 

boost in some areas (Rweyongeza et al., 2007).   

3.7.1 Studied traits 

The focus of this literature review, as previously mentioned, is mostly on European 

mature tree data from tree breeding provenance trials. While not the most suitable material, for 

reasons mentioned in the previous section, studying the impact of climate change is a recent 

field of study and many years are necessary to establish and evaluate suitable experiments 

specially designed for MET analyses. During the 20th century, many provenance trials have 

been implemented in Eurasia and North America for several economically valuable tree species 

(e.g., Picea abies – Norway spruce, Fagus sylvatica – European beech, Larix decidua – 

European larch, etc.). 
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The purpose of provenance testing is to select populations and genotypes that are 

performing well across a specific range of environmental conditions. Accordingly, we want to 

study traits that are genetically regulated. Height is the most common trait studied (Gömöry et 

al., 2012; Kapeller et al., 2012; O’Neill et al., 2007; Rehfeldt et al., 2001; Schueler et al., 2013; 

Thomson and Parker, 2008; Wu and Ying, 2004). While it is only heritable around 20 to 30%, 

it is the most heritable growth-related trait for many tree species (Wang et al., 2010). Height is 

representative of the overall tree productivity as well as competitive ability, and it has been 

established that it has a reliable response to selection (Kapeller et al., 2012; Wu and Ying, 

2004). Other commonly studied traits are survival (Rehfeldt et al., 2001; Sáenz-Romero et al., 

2017; Schueler et al., 2013), diameter at breast height (Foff et al., 2014; Rehfeldt et al., 2001; 

Thomson and Parker, 2008), tree ring data (McLane et al., 2011; Suvanto et al., 2016), basal 

area per hectare (Chakraborty et al., 2018), photosynthetic capacity, time of bud set, and more. 

3.7.2 Climatic variables 

Climatic variables are found to be relatively well correlated with the variation in growth 

and phenological traits, indicating a certain adaptive pressure. Interestingly, traits can be 

independently affected by climate and thus show different patterns of adaptation within the 

same provenance (Matyas, 1996).  

When selecting climatic variables, it is usually best to obtain yearly averages over periods 

that are representative of the length of the studied trials. The climatic data can be obtained from 

different sources. One of these sources is to use weather station records. In this instance, the 

data can be extracted from the closest station (Rehfeldt et al., 2002) or from many stations 

situated around the test and provenance sites (Hasenauer et al., 1999). Using only one or 

relatively distant stations can be problematic in regions with steep climatic gradients. For 

example, in mountainous areas, the climate is changing quickly along the altitudinal gradient 

and several kilometers can easily make a considerable difference.  

Climatic data can also be extracted from climatic models. One such model is the 

WorldClim, which has a 30 arc-second (app. 1km) spatial resolution all over the global land 
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areas (Hijmans et al., 2005). Another model is the ClimateBC which covers most of North 

America with a 150 arcsec resolution (approximately 5km) covering a period from 1961 to 

1990 (Wang et al., 2006a). Additionally, when estimating the potential impact of climate 

change, researchers are using predictive climate models, that are often developed for different 

periods (e.g., 2020s, 2050s, and 2080s) and different potential scenarios. EURO-CODEX is a 

European (approximately 12.5km) climate change model (Jacob et al., 2014). Due to the 

climatic uncertainties of the future, predictive models tend to have a lower resolution. As for 

the weather stations, coarse resolutions of climatic models also lead to issues linked with steep 

environmental gradients. Interestingly, some models are considering this issue. For example, 

the ClimateBC was developed with a point value in the middle of each tile of the grid with a 

scale-free gradient between points to avoid large steps between tiles (Wang et al., 2006a).  

Several climatic data are used in the literature, with temperature variables often having 

the greatest correlations with the response variables (Matyas, 1996). Commonly found 

temperature-related variables are included, such as the mean annual temperature, the mean 

temperature of the coldest or warmest month, the sum of degree- days superior to 5°C, and the 

sum of degree days inferior to 0°C (Leites et al., 2012b; Rweyongeza et al., 2007; Schueler et 

al., 2013). Even though they often show milder correlations (Kapeller et al., 2017), 

precipitation variables are also found to be significantly correlated with growth traits. A 

common precipitation variable used is the mean annual precipitation. In the literature, we also 

find studies using variables combining temperature and precipitation components, such as the 

annual heat moisture index (Chakraborty et al., 2015; Kapeller et al., 2012; Wang et al., 2006b). 

Furthermore, geographic factors associated with the climate, such as latitude, longitude, or 

altitude, are also often found in the literature (Kapeller et al., 2017; Matyas, 1996). There is a 

large number of potential variables that can be used in the MET analyses; in some cases, only 

one variable is selected, while in other cases, several can be used (O’Neill et al., 2014). When 

selecting more than one variable, it is important to test the correlation among them. Indeed, 

collinear variables used in the same model cannot independently predict the value of the 

response variable. This signifies that part of the variance in the response variable can be 
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explained by both variables, consequently, it may result in a reduction of their statistical 

significance. When two variables are collinear, it is preferable to remove one of them. For 

example, temperature or precipitation variables are often highly collinear among themselves 

and will often yield similar results and explain the same variation (Matyas, 1996). There are 

several ways to reduce the number of variables to obtain a set of relatively independent ones. 

One way is to use a stepwise multiple regression procedure, which fits a set of regression 

models that will automatically eliminate variables based on prespecified criteria (Schmidtling, 

1994; Wang et al., 2010). One of the criteria is the significance level required for the variable 

to be entered into the model, and the second one is the required significance level for the 

variable to remain in the model. Wang et al. (2010), for example, have set these values to 0.01 

and 0.005 respectively. Another way to avoid confounded variables is to use principal 

component analyses (PCA) that allow the integration of several variable effects (Kapeller et 

al., 2012; Matyas, 1994; Rweyongeza et al., 2007). When using a PCA with temperature and 

precipitation variables, the first component, which explains the most variability in the data, is 

usually composed of temperature variables while the second one is often composed of 

precipitation/drought variables. An example from Kapeller et al. (2017) is presented in Fig. 

3.1. Interestingly, we can see that altitude is negatively correlated with the other temperature-

related variables. This makes sense as an increase in altitude levels usually translates into lower 

temperatures. 

In some studies, authors have used the principal components’ values as ecological 

distance (Matyas, 1994). In this case, they calculated the differences between sites’ values and 

used them as ecological values. In this situation, the greater the difference between the values 

of two sites, the greater the ecological value, and the greater the difference between 

environments. The ecological distance represents a measure of the difference between two 

locations (i.e., the origin of the provenance or the test site), and it can also be calculated 

differently. Gömöry et al. (2012), for example, have used altitude levels as ecological value.  
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Fig. 3. 1 Results of a PCA using a set of 14 climatic parameters. In this plot, the 

temperature-related factors are colored in red, and the precipitation-related ones are colored 

in blue (Kapeller et al., 2017).  

3.7.3 Other environmental variables 

To study the impact of climate change, it is logical to focus on climatic variables. 

However, as was mentioned previously, tree population adaptation to the environment also 

includes adaptation to other abiotic factors (e.g., soil composition, steepness, sun exposure, 

etc.) and biotic factors (e.g., specific symbiosis with microorganisms or insects)(McLane et al., 

2011; O’Neill et al., 2014; Sáenz-Romero et al., 2021). Taking into account these factors when 

modeling tree adaptation to climate is advantageous for at least two reasons. First, adding other 

types of environmental variables than temperature and precipitation-related ones in the model 

will likely increase its overall accuracy as well as the estimation and significance accuracy of 

all the predictors. Second, when considering moving populations outside of their current 

climatic adaptational range, we are considering moving them to several other new conditions 

(e.g., soil type). Furthermore, other factors such as windfall or pest damage will likely influence 

the analyses’ results (Sáenz-Romero et al., 2021). Hence, considering all the available 

environmental factors in MET analysis is advisable.  
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3.7.4 Fixed and random effects in MET 

In tree breeding, the linear MET models usually include the site effect (environmental 

effect) as a fixed effect. The site effect can be included in the model either as a categorical 

variable, with each site having its own effect, or as a continuous explanatory variable (e.g., 

mean annual temperature, ecological distance, etc.) (Foff et al., 2014; Poupon et al., 2021; 

Rehfeldt et al., 2018; Wang et al., 2010). Assuming the simple linear equation mentioned 

earlier (Equation (5.)), the model will provide BLUEs of the fixed site effects. When we use 

each site as a different category, the model output will give a site mean for each site (Cullis et 

al., 2014; Poupon et al., 2023). Then, it is possible to estimate the response variable in site 𝑠 as 

the sum of the intercept, also called the overall mean, and the mean of site 𝑠. When we use a 

continuous variable as a site effect, the model will provide the estimate as a single component. 

In this case, it will estimate the value of the response variable for a specific value of the 

explanatory variable; thus it is possible to sum the overall mean with the component value 

multiplied by the explanatory variable value. When using explanatory variables, it is not 

possible to encompass the whole site variability, however, the results are more easily 

interpretable and it is possible to predict performances on different sites.  

In tree breeding, MET mixed linear regression models can have several components 

included as random. They notably include the population or genotype effect. When studying a 

set of genotypes (e.g., full-sib or half-sib families), it is possible to incorporate the pedigree 

information into the model. Additionally, I mentioned that one way to take into account the 

spatial variation within a breeding trial is to organize it according to a specific design (e.g., 

blocks). In this case, the information is entered into the model as a random effect as well. 

Finally, the GxE, which refers to the variation in performance ranking across trials, is also 

included as a random effect.  
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3.8 Response function 

The development and analysis of response functions is a recent field of study connected 

with the increasing interest in understanding and mitigating the impact of climate change on 

forests (Rehfeldt et al., 2018; Sáenz-Romero et al., 2021; Suvanto et al., 2016). This 

methodology uses provenance trials population data. The Response Function (RF) approach 

technically includes response functions and transfer functions analyses. In both analyses, there 

is a heritable trait (e.g., height, diameter at breast height, or photosynthesis level) plotted and 

statistically analyzed as a function of an independent climatic variable (e.g., mean annual 

temperature or annual heat-moisture index) using linear regression fitting. However, the first 

one analyses the performance of several provenances at one planting site while the second one 

analyses the performance of one provenance at different planting sites. More recently, both 

functions have been combined into Universal Response Functions (URF) that take into account 

both the environmental effects, with the planting site climate, and the genetic effects, with the 

seed source climate (Chakraborty et al., 2018; O’neill et al., 2008; Wang et al., 2010). The URF 

model enables the visualization of climatic limits of seed transfer for populations since it allows 

the estimation of a trait response for any seed source at any location under specific climates. 

There are several variants used in the elaboration of RF. First, several kinds of data, traits, 

and climatic variables are available and can be used. Second, several types of mathematical 

functions can be used for the modeling, depending on which best fits the data. Two kinds of 

functions are often used in RF studies. In certain instances, authors have chosen to employ a 

linear function, as detailed in works by Schmidling et al. (1994), Matyas (1984), Kapeller 

(2016), and Frank (2018). Alternatively, there are cases where either quadratic or Gaussian 

functions, both of which exhibit a parabolic shape, may be selected (Gömöry et al., 2012; 

Kapeller et al., 2012; Sáenz-Romero et al., 2017). Furthermore, in some situations, it can be 

beneficial to manipulate the data, such as through age correction or data transformation, before 

engaging in RF analysis. Lastly, there exists a variety of analyses that can be conducted in 

conjunction with RFs to enhance the overall comprehension of the data. The linear function’s 

shape is quite different from the two other functions listed above, but this can be explained as 
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follows: if we were to imagine an example where we have a provenance’s growth data available 

from sites covering the whole studied species range, then when looking the trait response, we 

will observe a parabolic response (Schmidtling, 1994). Indeed, one population usually has a 

climate for which it grows best, and deviations from this climate, in both directions, will 

translate into a decrease in productivity. However, if we only plot test sites with a smaller 

environmental range, the observable response might only represent one side of the parabola, 

and this will be best represented by a linear fitting. It is possible to test the different functions 

to determine which one fits the data best (Kapeller et al., 2012). When evaluating the goodness 

of fit, the authors usually refer to the 𝑅2 and to the p value of the curve’s fitting.  

3.8.1 Quadratic function  

A quadratic function, which refers to a polynomial function of degree two, is a type of 

linear regression. The model equation can be written as: 

𝑦 =  𝛽0 + 𝛽1𝑋 +  𝛽2𝑋2 + ε         (8.) 

where: 

- 𝑦 is the response variable; 

- 𝛽0 is the intercept; 

- 𝛽1 and 𝛽1 are the model’s coefficients; 

- 𝑋 is the predictor variable; 

- and ε is the residual error.  

In a study by Gömöry et al., (2012), the authors used a Norway spruce provenance test, 

that included five test sites and fifteen provenances and that was situated along a strong 

altitudinal gradient. In this provenance trial, several traits (e.g., height, survival, diameter at 

breast height, and tree volume) were measured, and height was measured at five different ages 

between 10 and 45 years. The authors used quadratic modeling to fit each trait (and each age) 
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with several explanatory variables (e.g., temperature, precipitations, growing degree days, etc.) 

used as the eco-distance.  

In Table 3.1, we can visualize the optimums’ average transfer rates (based on the 

polynomial curves’ peaks) for the spruce provenances; it indicates that, generally, the transfer 

of populations to lower and warmer altitudes and with less precipitation levels would increase 

productivity.  The use of several measurement ages for height led to interesting results. Indeed, 

it seems as if the growth was influenced differently by the tested environmental variables 

depending on the measurement age. Generally, the differences between the optimum conditions 

and the provenances conditions seem to decrease from age 10 to 38 to then increase again. 

Another interesting result is that, for both survival and diameter at breast height, none of the 

quadratic regression models were significant. 

Table 3. 1 This table reports the RF’s average results of all provenances where the 

optimal transfer rate values of the explanatory variables are indicated for each trait (and each 

age). The values in bold represent the significant quadratic fittings (Gömöry et al., 2012).       

 

Additionally, in their study, the authors found that, at the provenance level, the results 

indicate that provenances from the driest sites would benefit from more precipitation while the 

opposite trend is observed for populations originating from the wettest sites. 
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3.8.2 Gaussian function 

The Gaussian regression fitting is using the following equation:   

𝑦 = 𝑎𝑒
−(𝑋−𝑏)2

2𝑐2              (9.) 

where: 

- 𝑦 is the response variable; 

- 𝑋 is the predictor variable;  

- and 𝑎, 𝑏, and 𝑐 are the model parameters.  

When utilizing the Gaussian function for the development of RFs, the parameters can be 

interpreted in an ecologically meaningful way (Kapeller et al., 2012). Indeed, the parameter 𝑎 

corresponds to the maximum value of the response variable (i.e., response variable value at the 

top of the parabola), the parameter 𝑏 corresponds to the predictor’s value for which the 

response variable is at its maximum (i.e., predictor’s value at the top of the parabola), and 

parameter 𝑐 corresponds to the standard deviation of the Gaussian distribution and can be 

interpreted as an index of the climate sensitivity (the higher the value, the wider the curve, the 

lower the climate sensitivity).  

In the study by Kapeller et al. (2012), the authors used measurements at the age of 15 of 

379 provenances planted across 29 test sites. They developed Gaussian response functions for 

each test site using the annual heat moisture index as the explanatory variable. Their results 

demonstrated that growth performance is affected by both the region of origin (genetic 

adaptation) and/or the planting site's climatic conditions (environmental effect). This was also 

highlighted by Schueler and Kapeller (2010). The results indicate a rise in productivity in 

conjunction with an increase in the heat moisture index, as demonstrated by two standard 

provenances in Fig. 3.2. However, it appears that beyond a heat moisture index of 

approximately 30, the response variable reaches a plateau. At this point, further increases in 

the heat moisture index do not correspond to any additional growth in tree height.  
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Fig. 3. 2 Annual heat moisture index response functions of two standard provenances 

(ST1 = Schneegattern; ST2 = Murau) of Norway spruce using the 90 % percentile. The 

vertical lines are indicating mean and maximal annual heat moisture index values for Norway 

spruce in Austria, for both the present and the forecasted future climate (Kapeller et al., 

2012). 

The authors also used the results from the response functions to analyze how the 

predicted climate change is expected to affect Norway spruce in Austria. They predicted that, 

up to 2080, an increase of productivity is expected by up to 45% and could increase by 11% 

more by optimizing seed source management. Another interesting result from their study is 

that, while survival rates varied significantly among planting sites, they found no significant 

differences based on the populations’ origins. 

Another study, performed based on the same provenance trials, investigated the instar-

specific genetic variation of Norway spruce in response to climate (Schueler et al., 2013). 

Gaussian response functions were also fitted with heights as a function of the annual heat 

moisture index. The authors found that the climate at the planting site and the region of origin 

strongly affected the height at the age of 15 with correlation coefficients ranging between 0.61 

and 0.69. In Fig. 3.3, we can see that the variability among provenance clusters is increasing 

with an increase in the predictor variable. The author expects that this trend will continue to 

increase further in the future.  
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Fig. 3. 3 Annual heat moisture index response functions of provenance clusters for 

Norway spruce using the 90 % percentile. The area in grey denotes values of the annual heat 

moisture index that are beyond the current maximal limits (Schueler et al., 2013). 

Based on these results, they determined the two clusters that are expected to perform the 

best in future conditions based on the forecasted changes in the annual heat moisture index. In 

the study, they also focused on analyzing the location of the genetic conservation units based 

on the forecasted best-performing provenance clusters. They found that they are relatively rare 

in the regions from which these clusters originate. Additionally, they found that the most 

genetically diverse populations were not always represented by a high number of conservation 

units. This indicates that more genetic conservation units could be established with regard to 

climate change. 
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3.8.3 Linear function  

Several studies utilized the linear RF of the form:    

𝑦 = 𝛽0 + 𝛽1𝑋             (10.) 

where: 

- 𝑦 is the response variable; 

- 𝛽0 is the intercept; 

- 𝛽1 is the slope; 

- and 𝑋 is the fixed effect variable. 

In an early RF study (Mátyás, 1994), the authors plotted both types of RFs: response functions 

and transfer functions. They used data from three Jack pine provenances planted in seven 

different sites and measured at the age of 15. They were able to fit both the RFs of the three 

provenances in each site and the transfer functions of the three provenances across the seven 

sites. They used polynomial fitting for the former, with three reference points, and linear fitting 

for the latter with seven reference points. As we can see in Fig. 3.4, they used both types of 

function to develop a three-dimensional model that can be considered as an early attempt at 

modeling a URF that was later on sophisticated (Chakraborty et al., 2016). The results are 

interesting, however, when considering the polynomial fitting, the use of only three 

provenances is most likely associated with high model uncertainties. In the literature, 

researchers rarely use less than six reference points (sites or provenances) when developing RF 

to increase the modeling accuracy (Frank et al., 2017b; Gömöry et al., 2012; Kapeller et al., 

2017; Kramer et al., 2017). Additionally, in the presented study, the authors did not indicate 

any goodness of fit information (e.g., 𝑅2 or curve fitting p value), hence the results need to be 

interpreted cautiously.  
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Fig. 3. 4  Three-dimensional model of three Jack pine provenances planted across 

seven sites (Matyas, 1994). 

Another study by Schmidtling et al. (1994) focused on Loblolly pine and used data from 

14 provenances tested over 10 sites spread across Florida and Georgia (USA). The provenance 

trial ranges across a large part of the species distributional range and was measured at the age 

of 20. Transfer functions, using both linear and quadratic regression, were fitted in three 

selected sites: in the southern, middle, and northern parts of the study’s range. The 𝑅2 of the 

regressions, ranging from 0.30 to 0.75, are indicative of moderately to good model fittings. In 

the southern site, they used linear regression, as it was best fitting the data, and the results 

indicated a continuous increase in growth performance with an increase in the minimum 

temperature of the provenance (Fig. 3.5). The central and Northern planting sites were best 

represented by quadratic regression models. Interestingly, when testing provenances in cooler 

sites, the trend is inversing and the provenances originating from colder regions start to perform 

better than provenances originating from warmer regions. This result supports the concept that 

tree populations are locally adapted and that temperature is a major factor influencing tree 

adaptation. 
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Fig. 3. 5 Response functions for three Loblolly pine testing sites. The average 

provenances’ height is plotted against the provenances’ yearly average minimum temperature 

(full triangles) (Schmidtling, 1994). 

3.8.4 Anchor points 

Since the provenance trials were not established to study the effect of climate change, we 

often lack provenances and test sites originating and situated at the species’ distributional 

range. Therefore, in those cases, the fitting of a response function cannot provide reliable 

results for these regions. One way to cope with this problem is described by Rehfeldt et al. 

(2001). Their study was based on 125 Pinus cordata provenances tested disparately across 60 

sites. In their study, the authors first plotted the provenances that were tested across the broadest 

range of climatic conditions. Then, they calculated the breadth of the parabolas using the two 

values of x for which y equaled zero. From these results, they used the widest breadth as a 

reference to force the other response functions, of the less widely represented provenances, to 

not exceed this breadth length (Rehfeldt et al., 2001). In Fig. 3.6, we can observe an example 

where the original response function is represented by a dashed line, and the constrained 

response function is represented by a solid line. 
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Fig. 3. 6 Pinus cordata response functions fitting height as a function of the mean 

annual temperature of the testing sites. The dashed line represents the unconstrained response 

function and the solid line represents the adjusted one (Rehfeldt et al., 2001). 

Another way to deal with the issue of the limited available studied environmental range 

is described by Wang et al. (2006b). In this study, for the provenances that were not tested in 

the coldest environments, they estimated what would be their responses using transfer 

functions. Five of these transfer functions were elaborated for the five coldest testing sites, with 

the provenances heights plotted against their regions of origin’ mean annual temperature. Then, 

for provenances that were not tested in the coldest sites, they used the five transfer functions’ 

predicted heights based on their origin mean annual temperature as anchor points.  

3.9 Factor analytic 

As already mentioned, mixed-linear models are often used in forest tree breeding to 

analyze MET and select superior populations or genotypes. Generally, mixed models tend to 

increase in complexity when adding more components such as the number of test sites, number 

of predictor variables, number of traits (bivariate models), and site designs (e.g., blocks). 

Indeed, the more components, the more means and variances to calculate. Additionally, model 
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complexity will vary depending on the objectives of the model. For example, do we want to 

obtain the GxE information? Do we want to obtain GxE correlations between each pair of sites? 

How do we want to model the residual structure? Do we want to include the pedigree 

information? Complex models with a large number of variance components to estimates will 

often have convergency and computational issues. Additionally, models dealing with 

unbalanced datasets will be more difficult to fit.  

One way to overcome the computational and convergency issues when studying the GxE 

interaction is to use the factor analytic (FA) variance structure. This structure has been widely 

used in plant breeding, and more recently in tree breeding (Oliveira et al., 2020; Smith et al., 

2001b). It has been found to provide a flexible way to describe the GxE in a parsimonious 

manner that calculates less than a full rank variance structure (smaller number of parameters 

than an unstructured structure) (Kelly et al., 2007; Smith et al., 2001b; Smith and Cullis, 2018; 

Zhang et al., 2020). Additionally, it allows the incorporation of pedigree information and the 

specification of the test site designs (Smith and Cullis, 2018). Also, this model structure can 

properly accommodate unbalanced, missing, or incomplete data (Burgueño et al., 2011, 2008). 

Furthermore, compared to other model types (e.g., unstructured), the FA model has been found 

to provide estimates with higher accuracy in the presence of a substantial GxE, and hence it 

improves the selection of top genotypes under these circumstances (Kelly et al., 2007).  

Simply explained, FA modeling is a type of statistical method that describes the 

variability among one or several observed variables (e.g., height, wood density, etc.) using a 

small set of factors. The number of factors has to be specified in the model, and with a higher 

number, more variance components will be estimated. In a MET analysis, we will obtain a 

variance-covariance matrix that includes a specific variance component for each site, and a 

factor loading for each site associated with each factor. The factor loadings correspond to the 

correlations between the sites and the factors and the factors are representative of unknown 

underlying variables. Using this information, several graphical tools can be used to visualize 

the GxE (Cullis et al., 2010; Oliveira et al., 2020; Smith and Cullis, 2018).  



58 

 

For example, it is possible to compute the correlation matrix between sites that can be 

visualized using heatmaps. Cullis et al. (2014) used an FA of order 3 to analyze the diameter 

at breast height of 77 Pinus radiata breeding trials. Their model accounted for 86% of the 

variability in their data, indicating a good model fit. The average overall additive genetic 

correlation was estimated at 0.54, which indicates a relatively high GxE between sites. In 

addition, the authors assembled a heatmap, that is presented in Fig. 3.7, displaying all the 

additive genetic pairwise correlations between sites. The pairwise correlations are greatly 

variable, i.e., the values range from 0 (no correlation between these sites) to 1 (no differences 

between these sites). 

 

Fig. 3. 7 Heatmap representing the pairwise additive genetic correlations for 77 Pinus 

radiata breeding trials in New Zealand. The tiles in red are indicative of a low GxE and the 

tiles in green are indicative of a high GxE (Cullis et al., 2014). 
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Another graphical tool that can be used to visualize the GxE in the data is the latent 

regression plot (Thompson et al., 2003) where a factor loading is plotted against a predicted 

response variable (e.g., site means, genotypic breeding values per site). However, before 

plotting factor loadings, it is appropriate to first rotate their loadings to maximize the 

percentage of genetic variation that is explained by the first-factor loading, then by the second-

factor loading, and so on (Cullis et al., 2010). One popular way to do it is to use the Varimax 

function (Kaiser, 1958). When analyzing the latent regression plots, a fitted horizontal line 

indicates that the response variable remains constant along the environments clustered in the 

plotted factor. However, if the fitted line is inclined, it indicates that the response variable is 

influenced by the environmental effects clustered in this factor. Furthermore, when analyzing 

a set of genotypes, it is possible to compare their latent regression plots. Indeed, when the 

regression lines all follow a similar inclination, it indicates a low GxE, and when their 

inclinations are variable, it indicates a higher GxE (Cullis et al., 2014; Oliveira et al., 2020). In 

their study of the Pinus radiata breeding trails mentioned in the previous paragraph, Cullis et 

al. (2014) used latent regression plots to analyze the response of several genotypes along the 

three factors.  

Fig. 3.8 presents their results along the first-factor loading that explains the largest part 

of the variability in the data (59.1%). There, we can see that the diameter at breast height of 

these genotypes is mostly positively influenced by higher values of the first-factor loading.   
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Fig. 3. 8 Predicted breeding values for 12 Pinus radiata genotypes plotted against the 

first-factor loading of the FA model of order 3 fitted by Cullis et al. (2014). 

Another method has been developed to investigate which environmental variable may be 

clustered in each factor loading (Oliveira et al., 2020), and hence which environmental 

variables are likely to be influencing genotypic performance across environments and GxE. In 

their study on sorghum biomass, they used an FA structure of the third order to analyze the 

GxE for 55 genotypes across 29 trials. Additionally, the authors have selected a set of 

environmental variables from the National Aeronautics and Space Administration Prediction 

of Worldwide Energy Resource (NASA POWER) database. To analyze which variable might 

be clustered in each factor, they used these variables to calculate Pearson correlation 

coefficients with each factor loading. They obtained interesting results with several climatic 

variables being moderately but significantly correlated with each factor loading (Table 3.2). 

Then, they were able to infer, based on the correlations between the genotypes’ breeding values 

and the factor loadings (latent regression plots) and the correlations between the factor loadings 

and environmental variables, how the studied environmental variables may be influencing 

sorghum biomass in 55 genotypes.  
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Table 3. 2 Pearson correlation coefficients between 9 environmental variables 

(covariate) and 3 factor loadings (factors 1,2, and 3) based on a sorghum provenances trials 

FA model (Oliveira et al., 2020). The values in bold correspond to the significant correlations 

(significance level not given). 

Covariate Factor 1 Factor 2  Factor 3 

Precipitation 0.362 0.094 -0.009 

Maximum temperature 0.083 0.044 -0.012 

Minimum temperature 0.353 -0.391 0.199 

Average temperature 0.252 -0.193 0.102 

Solar radiation 0.024 0.305 -0.107 

Crop's growth cycle 0.130 0.069 -0.221 

Humidity 0.175 -0.279 0.076 

Wind speed  -0.390 0.250 0.051 

Altitude -0.237 0.454 -0.254 

 

3.10 European larch 

In this dissertation thesis, we are focusing on European larch (Larix decidua) and its 

adaptation to climate. This species is endemic to Central Europe and is characterized by a 

fragmented distribution (Foff et al., 2014; Saulnier et al., 2019). Native to the Alps and the 

Carpathian mountains, the species naturally occurs in the Alps, Carpathian, Sudetes, as well as 

Polish lowlands (Danek and Danek, 2022; Lstiburek et al., 2020). European larch is one of the 

most common tree species in the subalpine regions, along with Norway spruce and Swiss stone 

pine, at altitudes situated from 1500 to 2000 m asl. However, the species can be found from 

foothills to mountainous areas with altitudes ranging from 450 to 2300 m asl (George et al., 

2017; Obojes et al., 2022). Compared to its historical range, European larch’s distributional 

range has considerably expanded due to forest management practices (Zeidler et al., 2022). 

This species largely grows in pure forest stands, however, it can also occur in mixed forests 

with Norway spruce, Swiss stone pine, and silver fir (Saulnier et al., 2019). 

European larch is a fast-growing and shade-intolerant species, that needs light during all 

its developmental stages, with a pioneering strategy that predisposes it to colonize disturbed 

soils (e.g., due to landslides, avalanches, grazing, etc.) and form open forests (Lstiburek et al., 
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2020; Obojes et al., 2022). European larch is an economically important species due to its fast-

growing ability combined with its superior wood quality such as wood density, strength, and 

water resistance. Its wood has been used to build houses, furniture, water-resistant objects such 

as outdoor objects or shipbuilding, and high-quality paper. Under the right environmental 

conditions, its average annual increment rate can reach up to 10 m3 ha−1 (Zeidler et al., 2022), 

and it is considered to be the seventh-largest forest production volume, in comparison with the 

other European tree species (Danek and Danek, 2022). For these reasons, European larch has 

been widely used for afforestation projects outside of its natural range.  

Regarding its adaptation to climate, this species has been described as having a relatively 

robust response to climatic stressors such as frost and drought (George et al., 2017; Obojes et 

al., 2022; Vacek et al., 2022). However, several studies have found that European larch is 

substantially negatively affected by low water availability, high temperatures, and droughts 

(Danek and Danek, 2022; Obojes et al., 2022; Swidrak et al., 2013). Nevertheless, larch has 

been identified as positively associated with increasing temperatures, particularly spring 

months temperatures (Danek and Chuchro, 2019; Danek and Danek, 2022; Foff et al., 2014; 

Izworska et al., 2022). Additionally, larch was found to be generally negatively affected by 

increasing precipitation levels (Foff et al., 2014), even though several studies indicated 

different responses depending on the studied months, with for example the positive influence 

of increased precipitation levels in November and July, and the negative influence in 

September (Izworska et al., 2022; Swidrak et al., 2013). This is supported by studies indicating 

that growth seems to be negatively influenced by higher altitudes (Li et al., 2003). Finally, 

another interesting finding is that larch has displayed an increasing climatic sensitivity with 

aging (Carrer and Urbinati, 2004).  

From a genetic perspective, European larch has shown high geographic genetic variation 

(Belletti et al., 1997; Matras and Paques, 2010; Nardin et al., 2015), which is one of the factors 

leading to the fact that provenance research on the influence of climate has begun from the 

firsts larch provenances experiments (the elaboration of the first international experiment took 

place in 1944) (Foff et al., 2014). This variation can be explained by the fragmented nature of 
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the species distribution and its survival of the last glacial period in at least 6 glacial refugia that 

led to strong genetic differentiation via local adaptation and genetic drift (Wagner et al., 2015). 

This high genetic variation among provenances suggests high prospects in terms of mitigating 

the impact of climate change via selection and assisted migration. However, currently, most of 

the species' gene resource management effort remains focused on gene conservation and seed 

provision (Pâques, 2013).  
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4 Material and Methods 

4.1 Material 

The phenotypic and pedigree data used in both studies originate from Lstibůrek et al. 

(2020). All the statistical analyses were performed in R (R Core Team, 2020). 

4.1.1 Seed orchard 

The European larch trees used in both studies originated from the Hamet clonal seed 

orchard, listed as “Lä P3 (4.2/sm-tm)” in the Austrian national list of seed orchards. The 

orchard is situated in the North-East of Austria, close to Klausen-Leopoldsdorf in the Vienna 

woods (48° 3' 36'' N, 15° 34' 12'' E), at an elevation of 520 m.a.s.l. It spans an area of 3.15 ha. 

It was established in 1954 using 1,666 vegetative propagules (grafts) originating from 42 

phenotypically superior trees (genotypes, denoted as clones) selected based on their level of 

straightness (Schueler, 2011). Those trees were selected from a local European larch 

provenance in the Austrian provenance region “4.2, North border of the Alps – East part” (Fig. 

4.1).  

Open-pollination among the clones in the orchard provides valuable seeds that have been 

heavily harvested since the end of the 1960s (Geburek, 2021); the seeds are mainly used in 

lower altitude levels, and it is considered one of the most valuable European larch seed 

provenances for the northern Alpine foreland’s mountainous area. However, due to its partially 

advanced age, its productivity is currently decreasing. From its establishment, the Austrian 

seed orchard program for larch aims to secure seed supply with little genetic testing. Hence, 

progeny tests and controlled pollinations were not performed.  
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Fig. 4. 1 Map of the Austrian regions of provenance (Salzmann et al., 2023) 

4.1.2 Test sites  

For their study, Lstibůrek et al. (2020) identified 21 typical forest stands, established 

using seeds originating from the above-mentioned seed orchard (Fig. 4.2). The stands were 

selected based on several criteria: 

- a minimum of 200 trees per stand, 

- stands composed mostly or exclusively of European larch,  

- a low level of environmental variation within each stand, 

- and similar site structure across all stands. 

The selected Austrian forest’s stands are geographically spread over an area of approximately 

110 km by 170 km. The sites’ altitudes ranged from 280 m to 760 m a.s.l., and the ages, at the 

time of the sampling, varied from 25 to 37 years (Table 4.1).   
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Fig. 4. 2 Map of the 21 reforestation sites (blue circles) retrieved from Poupon et al. 

(2021). 
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Table 4. 1 Basic descriptive parameters of the 21 forest stands. Site is listing the names 

of the sites, Nb is the number of sampled trees per site, Lat and Lon are the latitudes and 

longitudes of the test sites, Alt is the altitude recorded at the time of the sampling, and Age is 

the age of the stands at the time of the sampling. 

Site Nb Lat Lon Alt Age 

A 209 48.62 16.48 324 27 

B1 208 48.28 16.19 345 35 

B2 200 48.28 16.20 360 25 

B3 204 48.10 15.99 474 35 

B4 202 48.08 16.00 473 30 

B5 201 48.10 15.97 473 30 

B6 201 48.10 15.96 439 25 

B7 201 48.09 15.98 470 37 

B9 198 48.08 16.06 474 25 

B11 201 48.07 15.92 617 32 

B12 201 48.07 15.95 580 27 

B13 210 48.10 15.96 532 30 

B16 205 47.95 15.99 724 30 

B18 200 48.08 15.93 760 35 

B20 200 48.07 15.95 614 25 

T1 218 48.22 14.20 279 25 

T2 195 48.22 14.20 284 25 

W3 170 48.30 14.22 450 27 

W4 204 48.30 14.23 420 33 

H2 208 48.06 16.19 350 30 

N 231 47.62 16.52 330 28 
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4.1.3 Phenotypic data collection  

The phenotypic data collection on the 21 sites was performed by the BFW institute 

(Bundesforschungszentrum für Wald - Vienna). They sampled a total of 4 267 trees for the 

three following traits:  

- height, in cm, using a hypsometer, 

- diameter at breast height, in cm, using a caliber,  

- and wood density (PP), in mm, using a 6J Forest Pilodyn (Cown, 1978), via the pilodyn 

penetration method. A higher PP corresponds to a lower density and vice-versa. They 

used a standard pin, measuring 2.5 mm in diameter at a height of 1.3 m. They did not 

remove the bark to avoid damage to the trees. They took two samples per tree and then 

averaged the value (more details are given by Škorpík et al., 2018). 

4.1.4 Genetic data collection 

In addition to the phenotypic data, the authors also genotyped a subset of the above-

mentioned measured trees. First, both a random and a top-phenotypic subset of offspring 

individuals across all stands were selected based on the methodology described by El-kassaby 

and Lstibůrek (2009); Lstibůrek et al. (2012); and Lstibůrek et al. (2015). The number of 

individuals selected was based on meeting three crucial criteria: 

- obtaining a genetic response to selection comparable to traditional recurrent selection 

that uses structured control crosses (White et al., 2007). 

- to be able to reconstruct a pedigree with sufficient accuracy (Kalinowski et al., 2007; 

Marshall et al., 1998). 

- achieve the necessary effective population size for genetic diversity in the authors’ 

target for a seed production population.  

Additionally, the authors considered the pollen contamination from external sources when 

deciding on the sample size (Lstibůrek et al., 2012). The authors genotyped a total of 1 252 

individuals across the 21 sites.  
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Then, they proceeded to the DNA extraction. They first collected tissue samples of the 

trees using a 15 mm hole punch. In doing so, they obtained cambium cells (unspecialized 

meristem cells situated between the bark and the wood) that they dried and then stored in silica 

gel. Afterward, they extracted the DNA following a modified version of the CTAB protocol, 

as described by Lefort and Douglas (1999). They used approximately 100 mg of frozen tissue 

that was previously ground using a Mixer Mill MM20. Finally, using three microsatellite 

multiplexes, they fingerprinted the extracted DNA. The microsatellites used are denominated 

as follow: Ld30, bcLK189, bcLK228, bcLK263, Ld56, Ld31, Ld50, bcLK211, bcLK253, 

Ld58, Ld42, Ld101, and 4 Ld45. These microsatellite multicomplexes were designed by 

Wagner et al. (2012).  

4.1.5 Pedigree reconstruction 

The authors used the Cervus likelihood-based method to reconstruct the pedigree 

(Marshall et al., 1998). The parameters that were used for the pedigree reconstruction were as 

follows: 

- unknown sexes of the offspring,  

- no assumption regarding the maternal contributions,  

- LOD score, which corresponds to the overall likelihood ratio’s natural logarithm, 

- and Delta, which corresponds to the difference in LOD scores between the two 

candidate parents that were the most likely. 

These parameters reflected the possibility of genotyping errors and the fact that, due to pollen 

contamination, the parental population was incomplete.  
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Then, to evaluate the robustness of the parentage assignment, they performed an initial 

set of simulations of the parentage analysis for 10 000 offspring based on the 53 candidate 

parents’ genotypes. They used six parameter scenarios that included: 

- six different possibilities for proportions of the parental population, ranging from 0.5 

to 1,  

- and two different maximal error rates for the genotyping, either 0.01 or 0.1. 

Additionally, the following parameters remained constant: 

- a minimum of six typed loci,  

- a monoecious species (individuals having both male and female reproductive organs) 

with a polygamous mating (female mating with several pollen donors and pollen donor 

mating with several females),  

- a possibility of selfing (self-pollination), 

- a 99% confidence regarding the parental assignment. 

The authors kept the family assignments consistent across all six scenarios as the final pedigree.  

4.1.6 Climatic data 

The two studies described below were based on the same climatic dataset. It was 

extracted from the WorldClim database (Hijmans et al., 2005). This dataset has a spatial 

resolution of 1 km2 and covers a 50 years’ period, from 1950 to 2000. It consists of: 

- altitudes 

- an average of the minimum temperatures for each month, 

- an average of the mean temperatures for each month, 

- an average of the maximum temperatures for each month, 

- a set of 19 biological indicators described in detail in Table 4.2. 
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Table 4. 2 Description of the 19 biological relevant indicators from the WorldClim 

dataset (Hijmans et al., 2005). 

 Description 

Biol1  Annual mean temperature 

Biol2 Mean diurnal range (mean of monthly (max temp - min temp)) 

Biol3 Isothermality (bio2/bio7) (* 100) 

Biol4 Temperature seasonality (standard deviation *100) 

Biol5 Max temperature of the warmest month 

Biol6 Min temperature of the coldest month 

Biol7 Temperature annual range (bio5 - bio6) 

Biol8 The mean temperature of the wettest quarter 

Biol9 The mean temperature of the driest quarter 

Biol10 The mean temperature of the warmest quarter 

Biol11 The mean temperature of the coldest quarter 

Biol12 Annual precipitation 

Biol13 Precipitation of the wettest month 

Biol14 Precipitation of the driest month 

Biol15 Precipitation seasonality (coefficient of variation) 

Biol16 Precipitation of the wettest quarter 

Biol17 Precipitation of the driest quarter 

Biol18 Precipitation of the warmest quarter 

Biol19 Precipitation of the coldest quarter 

 

4.2 Method - Response function 

In this study, we aimed to combine the traditional response function methodology 

(Chakraborty et al., 2015; Mátyás, 1994; McLane et al., 2011; Wang et al., 2006b) with genetic 

information (i.e., pedigree) into a new methodology. This methodology aims to support the 

selection of optimum seeds for re-forestation or afforestation projects, especially under climate 

change. This new methodology enables the selection of specific parental trees for defined 

climatic conditions. This is different from the conventional implementation of the RF 

methodology, where the selection is based on the population level (Poupon et al., 2021).  
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4.2.1 Environmental data selection 

From the climatic variables presented in section 4.1.6 and the site’s altitude, we needed 

to select one or more variables to fit our subsequent model. To that effect, we decided to use 

the Random Forest algorithm, as it can give a highly accurate determination of the importance 

of many explanatory variables (on a studied dataset). This algorithm is based on building many 

decision trees, created based on random subsets of explanatory variables and data, which results 

are then averaged. Simply put, a decision tree for variable selection will, at each node, separate 

the data in two based on the high or low importance of an explanatory variable. Eventually, we 

can obtain the importance of each variable on the data. However, a decision tree can have poor 

accuracy, for example, in the case of complex datasets (e.g., complex variable interactions). 

Hence, the use of the Random Forests algorithm is more appropriate. There are two types of 

measures of the importance of each variable: 

-  the “mean decrease accuracy”, which corresponds to the accuracy lost when excluding 

one variable. A higher value indicates a better explanatory variable. 

- The “mean decrease impurity” (or gini importance), which corresponds to the average 

gain in purity (a pure node split data 100% to 0%) by the splits of a given variable.  

As the importance/ranking of the variables had some variation when re-running the model, we 

ran it ten times and selected the most recurring variables.  

After this preliminary selection, we calculated pair-wise correlations between the 

selected variables. For the highly collinear variables (> 0.85), preliminary response function 

models (see description in section 4.2.3) were used to choose the most important one.  

4.2.2 Genetic evaluation 

Using the pedigree information (see section 4.1.5) combined with the height and PP 

measurements (see section 4.1.3), we used a bivariate mixed linear model, to obtain estimations 

of the traits' narrow sense heritability estimates as well as the individual additive genetic 

breeding values.  
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First, our data included forest stands with different ages (between 25 and 37 years old). 

Provided that age highly influences height, we transformed the height data into the mean annual 

increment data (MAI-H) to obtain comparable results across sites. No correlation between age 

and PP was found, so no transformation was performed for the wood density data. Then, we 

performed a bivariate analysis using the mixed linear genetic animal model within the ASReml-

R package (Butler et al., 2017). We used the protocol described by Henderson (1984). The 

model equation is as follows: (Henderson, 1984) 

𝒚 = 𝑿𝒃 + 𝒁𝒂 + 𝒆           (11.) 

where: 

- y  is the vector of the bivariate phenotypic observation; 

- b is the fixed effect (site and trait means) with respective incidence matrix X; 

- Z  is the genetic additive relationship matrix; 

- 𝒂  is the random vector of additive genetic values (BV) that is described as 𝒂 ∼

 𝑁(0, 𝜎𝑎
2); 

- e  is the random vector of the residual effect that is described as 𝒆 ∼  𝑁(0, 𝜎𝑒
2). 

The covariance matrix of the random additive genetic effects assumed the heterogeneous 

covariance structure described as:  

𝜎𝑎
2 =  [

𝜎𝑎1
2 𝜎𝑎1𝑎2

𝜎𝑎1𝑎2
𝜎𝑎2

2 ]  ⊗ 𝐀         (12.) 

where: 

- A  is the average numerator relationship matrix; 

- 𝜎𝑎1𝑎2
 is the additive genetic covariance between the two traits (1 and 2); 

- and ⊗ is the Kronecker product operator.  
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To model the effect of the random residual error, we assumed the unstructured covariance 

matrix described as: 

𝜎𝑒
2 =  [

𝜎𝑒1
2 𝜎𝑒1𝑒2

𝜎𝑒1𝑒2
𝜎𝑒2

2 ]  ⊗ 𝐈          (13.) 

where the residual covariance between traits 1 and 2 is defined as 𝜎𝑒1𝑒2
. Here, we assumed 

independence of the random effects (zero off-diagonal elements).  

A comparison was performed between a reduced bivariate model (without the genetic 

information) and the bivariate model described above using the Akaike Information Criterion, 

Bayesian Information Criterion (BIC), and restricted maximum likelihood ratio test. 

Additionally, the narrow-sense heritability estimates for both traits were estimated using the 

following equation: 

ℎ2 = 𝜎 a
2 / (𝜎 a

2 + 𝜎 e
2)          (14.) 

where:  

- ℎ2 is the heritability; 

- σ a
2  is the additive genetic variance; 

- and 𝜎 e
2 is the error variance. 

Furthermore, the pairwise differences between sites were calculated using the coefficients of 

the fixed effect of sites from the model output.  

4.2.3 Response function 

To model the subsequent response functions, we first removed the half-sib families that 

were not sufficiently represented (present at less than six sites). This was done to increase 

family representation and to provide sufficient data for the modeling. A similar number of test 
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sites were selected by several other studies (Foff et al., 2014; Kapeller et al., 2017; Suvanto et 

al., 2016). Afterward, we determined the predicted phenotypic performance (pMAI-H) at each 

site for each individual and the trait MAI-H. This was calculated by summing the overall mean, 

the site effect, and the individual additive genetic breeding values obtained from the bivariate 

model. 

Using the pMAI-H values, we then developed both population- and individual-level 

response functions (RF). The objectives were to observe how MAI-H varied for the population 

across a climatic gradient and to observe the genetic variation within this population. First, to 

select the model, we tested the three main models used in previous studies (Leites et al., 2012b; 

O’Neill et al., 2014, 2007; Sáenz-Romero et al., 2017; Wang et al., 2006b): linear, quadratic, 

and Gaussian. The results indicate that the linear model wasn’t a suitable fit, while the other 

two were more appropriate. The quadratic and Gaussian models showed almost identical curve 

shapes and Akaike Information Criteria. The quadratic model was selected for the subsequent 

analyses. The equation for this model is: 

𝑣𝑗𝑘 = 𝛽0 + 𝛽1𝑐𝑗 + 𝛽2𝑐𝑗
2

            (15.) 

where: 

- 𝑣 is the estimated response variable at the site j for parent k; 

- and 𝛽0, 𝛽1, and 𝛽2 are the regression coefficients at site j; 

- and c is the associated climatic variable. 

4.3 Method - Factor analytic 

In this study, we investigated the response of European larch to its environment to 

facilitate gene resource management, especially in the context of environmental changes (e.g., 

different planting sites, climate change, etc.). More specifically, we wanted to (1) study the 

GxE for the three sampled traits (see section 4.1.3) by fitting a multi-environmental FA model; 
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(2) evaluate the impact of the environment by correlating the models’ estimated loadings 

against pre-selected environmental variables; and finally (3) analyze the GxE dynamics of 

specific genotypes. 

4.3.1 Environmental data selection 

To study the GxE within the European larch dataset described in section 4.1.3 and make 

inferences on the influence of environmental variables; we first needed to select a set of 

environmental variables. As mentioned in section 4.1.6, the climatic data were extracted from 

The WorldClim dataset, and together with the altitudes and ages of the sampled forest stands, 

they formed the basis of the selection process. This process was based on a series of Principle 

Component Analyses (PCA) aiming at reducing the number of variables in each round. As the 

variables were not on the same scale, we used PCAs on correlation matrices (rather than on 

covariance matrices) for their standardization. For each analysis, we plotted the associated 

biplot. When two or more variables demonstrated redundancy, appearing overlapping on the 

biplot, we selected only one for the subsequent PCA analysis. This process was repeated until 

we were left with a set of non-redundant variables. The approach to choosing between the 

redundant variables is ultimately subjective and we decided to keep the ones with the broader 

meaning. For example, if both specific monthly temperatures and the mean annual temperature 

overlap, we would choose the yearly mean temperature.   

4.3.2 Statistical analyses 

This study used the three sampled traits from the European larch dataset described in 

section 4.1.3: height, diameter at breast height, and wood density. Because of the multi-ages 

sites described in section 4.2.2, we transformed height and diameter at breast height into mean 

annual increments (MAI-H and MAI-DBH, respectively). We also used the pedigree described 

in section 4.1.5. 
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We analyzed each site separately before proceeding to the multiple-site mixed linear 

models. A single-site model was considered for each trait: 

𝒚 = 𝟏𝒏𝜇 + 𝒁a + 𝒆          (16.) 

where: 

-  y is the response variable (n × 1 vector); 

-  n is the number of observations; 

-  µ is the overall mean; 

- a is the vector (m × 1) of the random additive genetic effects of m genotypes, where 

𝒂  ~ 𝑁(0, 𝜎 a
2 𝑨), and 𝜎 a

2 is the additive genetic variance; 

- 𝒆 is the vector (n × 1) of the random residual effects, where 𝒆 ~ 𝑁(0, 𝜎 e
2 𝑰𝒏), and 𝜎 e

2 is 

the error variance; 

- 𝒁 is the genotype effects’ incidence matrix; 

- 𝟏𝒏 is the vector of ones; 

- 𝑨 is the (m × m) pedigree-based relationship matrix; 

- and 𝑰𝒏 is the number of observations matrix. 

For each site, diagnostic plots were analyzed to assess the data quality and remove several 

outliers from the subsequent analyses. Narrow-sense heritability estimates were also calculated 

and used to evaluate each site’s data. The heritability estimates were calculated as : 

ℎ2 = 𝜎 a
2 / (𝜎 a

2 + 𝜎 e
2)          (17.) 

where:  

- ℎ2 is the heritability; 

- σ a
2  is the additive genetic variance; 

- and 𝜎 e
2 is the error variance. 
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The same two equations were also used on the whole dataset. 

To model the MET, we used the FA structure for each trait. Details on this type of 

modeling can be found in section 3.9. Simply put, it is a statistical method that describes the 

variability among one or several observed variables using a small set of factors. These factors 

are proxies for many explanatory variables that cannot be included directly in the analysis (e.g., 

due to computational issues). The model is as follows: 

𝒚 = 𝟏𝒏∗𝜇 + 𝑿𝒔 + 𝒁a.s + 𝒆             (18.) 

where: 

- 𝒚 is the vector (n* × 1) of the response variable across s environments; 

- n*  is the total number of individuals;  

- µ  is the overall mean; 

- 𝒔  is the vector (s × 1) of the fixed effects of sites; 

- a.s  is the vector (ms × 1) of the random additive genetic effects (breeding values) of 

the genotypes m nested within the environments s, and is described as a.s ~ 𝑁(0, 𝐺 ⊗

 𝑨); 

- 𝒆 is the vector (n* × 1) of the residual effects, and is described as 𝒆 ~ 𝑁(0, 𝜎 e
2 𝑰𝒏∗), 

with the error variance 𝜎 e
2;  

- G is the (s × s) variance-covariance matrix for the genotypic effect nested within the 

environments (see details below); 

- A  is the matrix (m × m) of the relationship matrix that is pedigree-based; 

- ⊗ is the Kronecker product. 

- X  is the incidence matrix for the environmental effects; 

- 𝑰𝒏 is the matrix of the number of observations; 

- and 𝟏𝒏 is the vector of ones. 
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The percentage of the genetic variance that is explained by each model, from factors 1 to 

4, was calculated as: 

𝑣̅ = 100 × 𝑡( 𝜦𝜦𝜯)/𝑡(𝜦𝜦𝜯 +  𝝍)           (19.) 

where: 

- 𝑣̅ is the overall percentage of the genetic variance; 

- 𝜦 is the matrix (s × k) of factor loadings {𝜆s𝑘}; 

- 𝜆s𝑘 correspond to the factor loading k (𝑘 = 1,2, 3, or 4); 

- and 𝝍 is the (s × s) diagonal matrix, with a specific variance for each environment 

s. 

The variance-covariance matrix G was modeled as a factor analytic of order k (FAk) 

following the structure: 

𝑮 = (𝜦𝜦T+ 𝝍)          (20.) 

where: 

- 𝜦 is the matrix (s × k) of factor loadings {𝜆s𝑘}; 

- 𝜆s𝑘 corresponds to the factor loading k (𝑘 = 1,2, 3, or 4); 

- and 𝝍 is the (s × s) diagonal matrix, with a specific variance for each environment 

s. 

For each trait, we tested the significance of the models using likelihood ratio tests (each 

k +1 model was tested against the model of order k). Additionally, we considered the 

percentage of the variance explained by each model, the Akaike information criteria, and the 

log-likelihood for the final model selection. 

For the selected models, the site-to-site additive genetic correlations for the selected 

models were calculated to assess the possible presence of GxE (Oliveira et al., 2020). If the 
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sites are highly correlated, it suggests a low GxE interaction. Conversely, lower correlations 

between sites are indicative of a higher GxE interaction. These correlations between pairs of 

sites were calculated using the G matrices obtained from the FA models as: 

𝜌𝑠𝑠′  = 𝐶𝑂𝑉𝑠𝑠′√𝜎 s
2𝜎 s′

2          (21.) 

where: 

- 𝜌𝑠𝑠′ is the genetic correlation for each pair of sites; 

- 𝐶𝑂𝑉𝑠𝑠′ is the genetic covariance between pairs of sites s and s’; 

- and 𝜎 s
2 and 𝜎 s′

2  are the genetic variances for the trials s and s’, respectively. 

Additionally, the average narrow-sense heritability estimate of each trait was calculated as: 

ℎ2̅̅ ̅ = 𝜎 a
2̅̅̅̅  / (𝜎 a

2̅̅̅̅ + 𝜎 e
2)         (22.) 

where:  

- ℎ2̅̅ ̅ is the average heritability; 

- 𝜎 a
2̅̅̅̅   is the average additive genetic variance; 

- and 𝜎 e
2 is the error variance. 
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Then, to correct for the G×E, the overall unbiased ℎ2 was calculated using the following 

expression: 

ℎ𝑢
2 =  ℎ2̅̅ ̅  ×  𝜌𝑎̅̅ ̅             (23.) 

where: 

- 𝒉𝒖
𝟐  is the overall unbiased narrow-sense heritability; 

- 𝒉𝟐̅̅̅̅  is the average heritability; 

- and 𝝆𝒂̅̅̅̅  is the mean site-to-site additive genetic correlation. 

Afterward, the relationship between the genotypic expression and the environmental 

conditions represented by the factor loadings was investigated for each trait. First, the loadings 

were rotated, as described by Cullis et al. (2010), using the Varimax function (Kaiser, 1958). 

The purpose was to maximize the percentage of genetic variation accounted for by the first 

loading and then the second loading. Then, latent regression plots were built (Cullis et al., 2014; 

Thompson et al., 2003), both at the provenance and the genotypic levels. At the provenance 

level, the rotated loadings were plotted against the predicted site means and at the genotypic 

level against the individual breeding values.   

Finally, as presented by Oliveira et al. (2020), we calculated the Pearson correlation 

coefficients (and associated significance levels) between the selected environmental variables 

and the rotated loadings. These coefficients were used to identify which variable may be 

responsible for the variation of the genotypic performance.   
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5 Results 

In this section, a detailed examination of the results will be presented, adhering to the 

same organizational framework employed in the methodology section. The initial segment 

involves a review of the response function study's results. Here, a novel methodology was both 

developed and tested, aiming at quantifying the intra-population additive genetic variance and 

aligning specific genotypes with certain climatic variables (Poupon et al., 2021). This method 

resulted from a fusion of the response function approach with traditional tree breeding 

methodologies. 

The subsequent segment offers an overview of the findings from the application of FA 

modeling. The purpose was to comprehend the GxE interaction within the examined 

population, pinpoint the major environmental variables influencing the growth and wood 

density of European larch, and visualize the effects of these environmental variables (Poupon 

et al., 2023). 

5.1 Results - Response function 

In this section, we will first go through the results concerning the environmental variables 

selection. Then, we will review the bivariate model output and the random additive variance 

within the studied population. Afterward, we will focus on our findings from the response 

functions at the population and individual levels.  

5.1.1 Environmental data selection 

The occurrence of the most important variables over the 10 random forest models can be 

seen in Table 5.1. Based on these results, the seven most frequent variables were selected for 

further analyses: 

- altitude,  

- minimum temperature of January, 
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- minimum temperature of December,  

- mean temperature of the coldest month (MTMC), 

- mean temperature of December,  

- maximum temperature of January and December, 

- and maximum temperature of December. 

These variables are explaining 93.9% of the variability in our dataset. However, the pairwise 

correlations between the variables indicated high levels of collinearity (> 0.85). Hence only 

one variable was selected based on the occurrence score and preliminary response functions: 

MTCM. This variable, using the random forest algorithm, explains 69.4% of the variability in 

the dataset.  

Table 5. 1 Frequency occurrence Freq of the 68 tested environmental variables EV 

after running 10 random forest models. The occurrence of both the mean decreases in 

accuracy MDA and the mean decrease in impurity MDI of all models are recorded. The seven 

most recurrent variables are indicated in bold. 

EV MDA MDI Freq 

Alt 10 8 18 

Biol4 3 2 5 

Biol9 1 0 1 

Biol12 1 2 3 

Prec5 1 0 1 

Tmax1 5 1 6 

Tmax2 4 0 4 

Tmax6 1 2 3 

Tmax11 1 0 1 

Tmax12 6 9 15 

Tmean1 9 10 19 

Tmean5 0 2 2 

Tmean9 2 3 5 

Tmean12 6 8 14 

Tmin1 8 9 17 

Tmin5 0 1 1 

Tmin9 2 3 5 

Tmin12 4 4 8 
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5.1.2 Genetic evaluation 

In Table 5.2, we compare the full and the reduced bivariate models. They indicate that 

the former, which includes the pedigree information, is significantly improved over the latter. 

More specifically, the Akaike Information Criterion and the Bayesian Information Criterion 

are both smaller for the full model, and the restricted maximum likelihood ratio test indicates 

a significant improvement (P < 0.001).   

Table 5. 2 Statistics of the bivariate genetic animal model B1 versus the reduced model 

B2, with the Akaike Information Criterion AIC, the Bayesian Information Criterion BIC, and 

the p value P of the restricted maximum likelihood ratio test. 

Model AIC BIC P 

B0 8111 8128  

B1 7946 7981 < 0.001 

 

In Table 5.3, we present the summary of variable components from the full bivariate 

model. A negligible (0.09) and most likely not significant (z ratio < 2) additive genetic 

correlation was found between the traits. The heritability estimates were 0.27 (SE = 0.07) for 

MAI-H and 0.30 (SE = 0.07) for PP. The pairwise differences between sites are reported in 

Table S1, 87% of them were significant (P < 0.05).  

Table 5. 3 Bivariate genetic animal model variance components VC values, standard 

errors SE, and z ratios. COVa is the additive genetic correlation between the traits, Va is the 

additive genetic variance for both MAI-H and PP, COVe is the residual correlation between 

the traits, and Ve is the residual variance of both MAI-H and PP. 

VC Value SE z ratio 

  COVa 0.090 0.199 0.453 

  Va MAI-H 11.880 3.425 3.469 

  Va PP 0.698 0.195 3.576 

  COVe 0.312 0.054 5.773 

  Ve MAI-H 32.370 2.515 12.870 

  Ve PP 1.660 0.138 12.011 
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The parental breeding values for MAI-H are visible in Table 5.4 and Fig. 5.1. They 

illustrate the extent of the additive genetic variation that is present within the set of parental 

trees (31 parents). We can see that the breeding values range from -5.0 (parent L11) to 6.4 cm 

(parent S7;). This means that a given offspring of parent L11 has the potential to grow an 

average of 2.5cm less than the offspring of parent S21, and 5.7 cm less than the offspring of 

parent S7 (expressed per year). Additionally, each breeding value is associated with its 

respective confidence interval. Here, the confidence intervals are quite homogenous among 

parents and they can be interpreted as follows: Parent S21 has a confidence interval of 1.2cm, 

which indicates a possible range of the breeding value from -1.2 to +1.2 cm under assumed 

significance level alpha = 0.05. 

 

Fig. 5. 1 Plot of the estimated parental breeding values (blue dots), ranked from the 

smallest to the highest, with their associated confidence interval (blue dashes). 
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Table 5. 4 List of the estimated parental breeding values BV and their associated 

standard errors SE.  

Parent BV SE 

L11 -5.0 1.6 

S19 -4.8 1.8 

S11 -4.1 1.5 

L8 -3.7 1.4 

S16 -3.5 1.5 

S10 -2.7 1.9 

S5 -2.7 1.7 

L10 -2.6 1.5 

L16 -2.1 1.7 

S18 -1.7 1.6 

S12 -1.6 1.8 

S15 -1.2 1.3 

L15 -0.4 1.5 

L6 -0.3 1.6 

L13 0.0 1.6 

S21 0.0 1.2 

S9 0.4 1.5 

L1 0.5 1.3 

L7 1.2 1.7 

S25 1.2 1.6 

L3 1.5 1.7 

S24 1.8 1.4 

L2 2.1 1.7 

S1 2.1 1.6 

L5 2.2 1.5 

S2 2.6 1.6 

L17a 2.6 1.7 

L17 4.4 1.2 

S6 4.7 1.3 

S23 5.1 1.8 

S7 6.4 1.7 

 

5.1.3 Response function 

In Fig. 5.2, we present the quadratic response function at the population level, with an 

adjusted 𝑅2 of 0.32 and a significant p value (p < 0.001). The curve’s 95% confidence interval 

is represented by the gray band, we can see that on the extremities of the curve, the interval is 
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wider. The pMAI-H culminates at around 65 cm per year for an associated MTMC of -2.2°C. 

In the figure, each boxplot describes the pMAI-H distribution of the studied offspring (the 

black dots represent extreme values). Site B16, in the lower-left corner, is associated with the 

lowest pMAI-H values and is represented by the lowest MTCM of the studied sites. The site 

W3, on the other hand, displays the highest pMAI-H values. While some variation is visible, 

all the sites have similar distributions. However, we can notice that several sites with the same 

MTCM are showing contrasting ranges of pMAI-H. 

 

 

Fig. 5. 2 Response function at the population level. The boxplots are illustrating the 

distribution of the pMAI-H in each site. The black dots are outliers. The 𝑅𝑎𝑑𝑗
2  is the adjusted 

coefficient of determination. The blue line is the fitted quadratic function and the gray area 

represents its 95% confidence interval. 
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In Table 5.5 we have details regarding the quadratic fitting at the individual level. In the 

second column, we can see the number of individuals representing each parent (per half-sib 

family). This number is varying from 35 to 120 individuals. While there is an uneven 

representation of the families, we can see in Fig. 5.3 that the mean of the adjusted correlation 

coefficients does not depend on the half-sib families’ sizes. Nonetheless, the variability of these 

coefficients is higher for smaller half-sib families.  

 

 

Fig. 5. 3 Number of individuals Nb in each half-sib family as a function of the adjusted 

correlation coefficients 𝑅𝑎𝑑𝑗
2  of each response function.  

In the third column, we provide the adjusted correlation coefficients for each quadratic 

individual response function. The values are ranging from 0.06 to 0.64 with a median value of 

0.27. Finally, in the last column, we can see that all the curves’ p values are significant, with p 

< 0.05, except for the genotype L2 with the p value of 0.09. 
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Table 5. 5 Summary statistics of the individual response functions. Par is representing 

the studied genotypes, Nb is the number of individuals per half-sib family, the 𝑅𝑎𝑑𝑗
2  is the 

adjusted coefficient of determinations of each curve, and P is the associated p value, with 

significance levels as follows: * = <0.05, ** = < 0.01, ***= < 0.001 

Par Nb 𝑹𝒂𝒅𝒋
𝟐  P 

L1 107 0.26 *** 

L10 71 0.31 *** 

L11 54 0.51 *** 

L13 53 0.21 *** 

L15 66 0.11 ** 

L16 42 0.22 ** 

L17 119 0.13 *** 

L17a 43 0.10 * 

L2 47 0.06 0.09 

L3 45 0.56 *** 

L5 70 0.33 *** 

L6 58 0.11 * 

L7 46 0.23 *** 

L8 75 0.47 *** 

S1 54 0.24 *** 

S10  35 0.33 *** 

S11 64 0.28 *** 

S12 39 0.20 ** 

S15 104 0.34 *** 

S16 70 0.09 * 

S18 58 0.32 *** 

S19  39 0.64 *** 

S2 59 0.29 *** 

S21 120 0.31 *** 

S23 37 0.42 *** 

S24 80 0.48 *** 

S25 54 0.45 *** 

S5 45 0.32 *** 

S6 100 0.22 *** 

S7 44 0.10 * 

S9 68 0.15 *** 

 

A set of nine individual response functions is shown in Fig. 5.4 We notice that the 

different half-sib families have different types of curves across the studied range of MTCM. 

Additionally, we can see that their confidence intervals are fanning out at the extremities as for 
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the response function at the population level. Furthermore, the confidence intervals are wider 

at the genotypic level in comparison to the population level.   

Fig. 5. 4 Set of nine individual response functions. The blue lines are representing the 

fitted quadratic functions and their respective gray band are representing their 95% 

confidence intervals. 𝑅𝑎𝑑𝑗
2  is the adjusted coefficient of determination of each curve. 

The entire collection of quadratic response functions at the individual level is illustrated 

in Fig. 5.5, providing a comprehensive overview of the pMAI-H variability both within and 

among each half-sib family. As previously noted, various types of curves can be observed. For 
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example, by examining S23, we notice that this genotype achieves the highest peak among all 

others. However, its dominance is apparent only within a limited range of MTCM; outside this 

range, its performance lags behind other families. In contrast, genotype S7 may not reach the 

same heights as S23, but it surpasses the majority of the studied genotypes across the observed 

range of MTCM, exhibiting a rounder curve. 

When examining all the curves collectively (Fig. 5.5), it becomes evident that the apexes 

are distributed between 62 (genotypes L2/S11) and 70 cm (genotype S23) per year. This pattern 

is mirrored in the differences in maximum pMAI-H, where we find a spectrum of optimums 

across the MTCM gradient. The coldest optimum is identified at a temperature of -2.4°C for 

genotype S23, while the warmest aligns with a temperature of -1.6°C for genotype S12.  

 

Fig. 5. 5 Response functions at the individual level are plotted together. On the right 

side, there is the legend for each half-sib family. 
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5.2 Results - Factor analytic 

5.2.1 Environmental data selection 

Based on the final PCA, we pre-selected 10 environmental variables out of the 68 

environmental variables and the stands’ ages (Age): 

- the annual average of the monthly precipitations (AvPrec); 

- the annual average of the mean monthly temperatures (AvTmean); 

- the mean temperature of February (Tmean2); 

- the minimum temperature of February (Tmin2); 

- the mean diurnal range (Biol2); 

- the isothermality (Biol3); 

- The annual range of the temperatures (Biol7); 

- the precipitation seasonality (Biol15); 

- the altitudes (Alt); 

- and Age. 

In Table 5.6, we highlight the importance of the 10 first components of the final PCA. The first 

four are explaining more than 96% of the variance, with the first component explaining 46.4%, 

the second 34.0%, the third 9.5%, and the fourth 7.1%.  

Table 5. 6 The 10 first principal components of the final PCA. The Standard deviation 

is representing the variance in the data represented by the principal components.  

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

Standard deviation 2.153 1.843 0.975 0.840 0.506 0.207 0.077 0.065 0.036 0.013 

Proportion of variance 0.464 0.340 0.095 0.071 0.026 0.004 0.001 0.000 0.000 0.000 

Cumulative proportion 0.464 0.803 0.898 0.969 0.995 0.999 0.999 1.000 1.000 1.000 

 

In Fig. 5.6, we present the influence of the selected variables on the principal components PC1 

and PC2. AvTmean and Alt are both strongly influencing PC1, but not PC2. AvPrec, on the 

other hand, strongly influences PC2 while only lightly influencing PC1. The other variables 
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are showing different degrees of relevance for both components. In the same plot, we can see 

the PCA scores of the studied sites. We can cluster them into four groups. The first one, 

distributed on the negative side of PC2 and the positive one of PC1, includes the sites W3, W4, 

T1, and T2. The second one, with sites N, H2, B1, B2, and A, is situated on the opposite side 

of PC2. The third one, with the sites B18, B16, B12, B20, and B11, is situated along the 

negative side of PC1. Finally, the last cluster, which includes the remaining sites, is situated in 

the center of the plot.    

 

Fig. 5. 6 Final PCA biplot with the 10 pre-selected environmental variables. On the x-

axis, there is the first principal component PC1, and on the y-axis the second principal 

component PC2. The red arrows are representing the vector projections of the environmental 

variables on the PC1 and PC2 axis. The size of the arrows is representing the strength of the 

correlation with each component and the direction is indicating whether the correlation is 

positive or negative. The position of the 21 sites (A, B1, B2, etc.), marked in black, is 

representing the PC1 and PC2 scores for the respective sites.  

 In Table 5.7, we present the details of the importance of each variable in calculating the first 

four components. For the first two components, we report the same information as in Fig. 5.6, 

however, interestingly, we notice that while Age has a limited influence on the first two 
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components, it has a major influence on the third component. Similarly, Biol15 has its strongest 

influence on the fourth component.  

  

Table 5. 7 Importance of variables on the first 4 components of the final PCA. EV 

stands for environmental variables. 

EV  PC1 PC2 PC3 PC4 

Biol2 0.306 -0.403 0.067 -0.011 

Biol3 0.210 -0.400 0.286 0.105 

Biol7 0.385 -0.262 -0.084 -0.216 

Biol15 -0.200 -0.227 -0.392 -0.825 

AvPrec -0.084 -0.524 0.092 0.138 

AvTmean 0.460 0.007 0.029 -0.121 

Tmean2 0.382 0.297 0.014 -0.131 

Tmin2 0.276 0.430 -0.028 -0.115 

Alt -0.456 0.001 -0.012 0.048 

Age -0.158 0.100 0.861 -0.442 

5.2.2 Statistical analyses 

Assuming the single-site analyses, between 5 and 14 outliers were removed for each trait, 

based on the models' residual distributions. An illustration of the MAI-H data for site B3 is 

presented in Figs. 5.7 and 5.8. Fig. 5.7 showcases the residual plots containing all the data for 

site B3, while Fig. 5.8 depicts the same plots for site B3 after the removal of one outlier. This 

outlier can typically be found in the lower left corner of each plot.  
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Fig. 5. 7 Residual plots for the variable MAI-H at site B3 with all the data for this site.  

 

Fig. 5. 8 Residual plots for the variable MAI-H at site B3, after removing one outlier. 
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The heritability estimates for each site are reported in Table 5.8; they vary from 0.01 to 

0.99, with standard errors ranging from 0.01 to 0.68. For the whole dataset, the heritability 

estimates are 0.26 (SE= 0.07), 0.14 (SE= 0.05), and 0.27 (SE= 0.07) for MAI-H, PP, and MAI-

DBH, respectively. 

Table 5. 8 Single sites narrow-sense heritability estimates h with their associated 

standard errors SE. 

Site MAI-H MAI-DBH PP 

  h SE h SE h SE 

A 0.07 0.35 0.01 0.01 0.23 0.35 

B1 0.3 0.34 0.01 0.28 0.01 0.01 

B11 0.01 0.01 0.10  0.32 0.76 0.38 

B12 0.45 0.40 0.29 0.41 0.89 0.38 

B13 0.65 0.41 0.42 0.46 0.92 0.36 

B16 0.23 0.36 0.07 0.31 0.25 0.39 

B18 0.19 0.33 0.04 0.30 0.19 0.31 

B2 0.22 0.37 0.07 0.33 0.71 0.46 

B20 0.01 0.01 0.01 0.01 0.01 0.01 

B3 0.45 0.43 0.15 0.39 0.67 0.43 

B4 0.24 0.28 0.29 0.28 0.40 0.31 

B5 0.34 0.44 0.48 0.42 0.56 0.41 

B6 0.58 0.39 0.17 0.33 0.50 0.41 

B7 0.36 0.37 0.09 0.41 0.01 0.01 

B9 0.47 0.52 0.98 0.44 0.33 0.47 

H2 0.01 0.01 0.02 0.36 0.61 0.42 

N 0.99 0.27 0.34 0.22 0.62 0.25 

T1 0.99 0.01 0.99 0.01 0.62 0.34 

T2 0.99 0.01 0.95 0.56 0.16 0.68 

W3 0.68 0.52 0.01 0.01 0.01 0.01 

W4 0.6 0.35 0.28 0.33 0.27 0.32 

Total 0.26 0.07 0.14 0.05 0.28 0.07 

 

FA models from order 1 to 4 (FA1 to FA4) were fitted for each trait (see the summary in 

Table 5.9). The explained variance varied from 64.8% to 91.0%, 56.0% to 94.4%, and 65.9% 

to 92.2%, for MAI-H, MAI-DBH, and PP, respectively. For each trait, the log-likelihood 

consistently increased from FA1 to FA4 indicating better fits. On the contrary, the Akaike 

Information Criterion are indicating that the lower-order models have better fits. However, the 

likelihood ratio tests indicated, for both MAI-H and PP, that the FA2 models were significantly 
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better (p < 0.10) compared to the FA1 models, with respective p values of 0.022 and 0.094. 

Since the higher-order models did not demonstrate any significant enhancement, we chose to 

utilize the second-order models for each trait in the subsequent analyses. 

Table 5. 9 Summary statistics of the fitted FA models (order 1 to 4), for the three 

studied traits: MAI-H, MAI-DBH, and PP. In the third column, we have the cumulative 

variance explained VE, then we have the loglikelihood of each model LogL, the Akaike's 

Information Criteria AIC, the p-value P of model k+1 over model k, based on a significance 

level of 0.10, and the number of variance components Parameters which are estimated by the 

respective models.  

Trait Model VE LogL AIC P Parameters 

MAI-H 

FA1 64.8 -2829 5728  42 

FA2 77.4 -2813 5732 0.02 63 

FA3 87.4 -2804 5743 0.26 84 

FA4 91.0 -2798 5762 0.68 105 

MAI-DBH 

FA1 56.0 -3817 7703  42 

FA2 67.9 -3807 7719 0.35 63 

FA3 89.3 -3798 7731 0.26 84 

FA4 94.4 -3790 7743 0.29 105 

PP  

FA1 65.9 -1093 2259  42 

FA2 77.3 -1082 2268 0.09 63 

FA3 85.6 -1075 2285 0.59 84 

FA4 92.2 -1066 2297 0.27 105 
 

The averaged heritability estimates, based on the outputs of the selected FA2 models, 

were estimated at 0.79, 0.63, and 0.63 for MAI-H, MAI-DBH, and PP, respectively. The overall 

unbiased narrow-sense heritability estimates, corrected for GxE, were estimated at 0.41, 0.16, 

and 0.35 for MAI-H, MAI-DBH, and PP, respectively. 

The genetic correlations are illustrated in Figs. 5.9, 5.10, and 5.11. In the case of MAI-

H, the correlations are ranging from -0.53 to 0.99, with a mean of 0.53 (Table S2). In Fig. 5.9, 

we can see that sites A, B1, B11, B2, and B13 are displaying correlations approaching 1 which 

indicates a low GxE. The sites B5, B9, B16, B18, and T2, on the other hand, displayed close 

to null correlations indicating a high level of GxE. For this trait, 6.2 % of the correlations were 

negative, all of them being with site N. 
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Fig. 5. 9 Additive site-to-site genetic correlations generated by the FA2-MAI-H model. 

The blue color indicates positive correlations and the red color indicates negative ones. The 

size is also indicative of the strength of the correlation, the large circles signify correlations 

close to 1 or -1, and the small circles signify correlations close to 0.  

For MAI-DBH (Fig. 5.10), the genetic correlations are ranging from -0.87 to 0.99, with 

a mean of 0.25 (Table S3). For this trait, the differences between sites are more visible, pointing 

to high GxE, especially for the sites H2, N, B4, B5, B6, B9, and B20. For this trait, there is a 

high proportion of negative values corresponding to 32.8% of the correlations. 
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Fig. 5. 10 Additive site-to-site genetic correlations generated by the FA2-MAI-DBH 

model. The blue color indicates positive correlations and the red color indicates negative 

ones. The size is also indicative of the strength of the correlation, the large circles signify 

correlations close to 1 or -1, and the small circles signify correlations close to 0. 

In the case of PP (as depicted in Fig. 5.11), the genetic correlations span a range from -

0.17 to 0.99, with an average value of 0.56 (Table S4). The majority of the sites exhibit 

moderate to strong correlations, with only 4.3% of them being negative. The sites H2 and B20, 

in particular, are associated with the lowest correlation values.  
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Fig. 5. 11 Additive site-to-site genetic correlations generated by the FA2-PP model. 

The blue color indicates positive correlations and the red color indicates negative ones. The 

size is also indicative of the strength of the correlation, the large circles signify correlations 

close to 1 or -1, and the small circles signify correlations close to 0.  

The latent regression plots at the provenance level for each trait are illustrated in Figs. 

5.12, 5.13, and 5.14. In Fig. 5.12, for MAI-H, we can observe that the predicted site means are 

positively and significantly correlated with the first-factor loading, with a 𝑅2 of 0.34 and a p 

value of 0.003. However, the correlation with the second-factor loading is almost null, with a 

𝑅2 < 0.01 and a p value of 0.563.  
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Fig. 5. 12 Latent regression plots at the provenance level with the first and second-

factor loadings for the FA2-MAI-H model. The red lines represent the linear regressions, the 

𝑅𝑎𝑑𝑗
2  correspond to their associated adjusted coefficient of determination, and the P indicates 

the significance level of the correlation.  

In Figs. 5.13 and 5.14, for the two other traits, low (from 0.11 to <0.01) and non-

significant (from 0.08 to 0.37) correlations were found with both the first and the second-factor 

loadings. The observations are widely scattered around the plot with no discernable patterns. 

Noticeably, for the two growth traits, we can see that site 16 is showing considerably lower 

mean values (Figs 5.12, 5.13, and Table 5.10). 
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Fig. 5. 13 Latent regression plots at the provenance level with the first and second-

factor loadings for the FA2-MAI-DBH model. The red lines represent the linear regressions, 

the 𝑅𝑎𝑑𝑗
2  correspond to their associated adjusted coefficient of determination, and the P 

indicates the significance level of the correlation.  

 

Fig. 5. 14 Latent regression plots at the provenance level with the first and second-

factor loadings for the FA2-PP model. The red lines represent the linear regressions, the 𝑅𝑎𝑑𝑗
2  

correspond to their associated adjusted coefficient of determination, and the P indicates the 

significance level of the correlation.  
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Table 5. 10 Phenotypic measurements summary for MAI-H (cm/year), MAI-DBH 

(mm/year), and PP (mm), at each site; Nb is the number of sampled individuals per site, and 

min, max, and mean are corresponding to the minimum, maximum and mean values for each 

trait. The numbers in bold indicate the sites with the lowest values of min, max, and mean. 

  MAI-H MAI-DBH PP 

Site Nb min max mean Nb min max mean Nb min max mean 

A 56 0.51 0.90 0.74 58 0.30 1.10 0.78 57 12.50 18.00 15.35 

B1 63 0.44 0.70 0.61 63 0.33 0.95 0.73 63 12.50 19.50 15.61 

B11 52 0.53 0.72 0.64 53 0.34 0.92 0.65 53 13.50 19.50 16.64 

B12 54 0.38 0.68 0.57 54 0.29 0.94 0.63 54 12.00 20.00 15.54 

B13 56 0.39 0.65 0.53 56 0.48 0.97 0.64 56 14.50 21.00 17.22 

B16 57 0.22 0.46 0.37 57 0.15 0.64 0.41 57 12.00 18.00 14.96 

B18 51 0.43 0.68 0.59 53 0.29 0.85 0.61 53 14.50 19.50 16.92 

B2 47 0.49 0.86 0.67 47 0.46 1.06 0.73 47 12.00 17.00 14.30 

B20 64 0.30 0.72 0.54 65 0.28 1.10 0.75 65 12.00 20.00 15.63 

B3 51 0.44 0.61 0.51 51 0.37 0.79 0.56 52 11.50 19.50 15.60 

B4 59 0.52 0.77 0.67 58 0.43 0.92 0.69 59 14.50 23.50 18.23 

B5 40 0.42 0.66 0.54 40 0.31 0.82 0.59 38 12.00 18.50 15.11 

B6 59 0.52 0.82 0.70 60 0.38 1.10 0.81 60 14.00 19.00 16.07 

B7 49 0.42 0.67 0.56 48 0.34 0.75 0.54 49 15.00 24.50 19.19 

B9 47 0.50 0.85 0.69 46 0.55 1.12 0.76 47 12.50 21.50 16.83 

H2 53 0.39 0.59 0.52 53 0.39 0.83 0.61 51 10.50 19.00 14.71 

N 195 0.48 0.87 0.68 198 0.47 1.05 0.79 199 11.00 18.50 14.73 

T1 59 0.42 0.67 0.55 59 0.40 1.05 0.74 59 12.50 20.50 16.11 

T2 31 0.37 0.72 0.61 31 0.27 1.14 0.80 31 12.00 18.00 14.90 

W3 38 0.54 0.91 0.78 40 0.23 1.24 0.83 40 13.00 19.00 15.79 

W4 58 0.56 0.78 0.70 58 0.45 1.12 0.75 58 14.50 20.00 17.13 

 

In Fig. 5.15, for the trait MAI-H, we can see latent regression plots at the individual level 

with the eight genotypes that are represented by the highest number of individuals. Interestingly 

we can see several types of responses among individuals. If we take a look at the first-factor 

loading (Fig. 5.15 A), some individuals (i.e. L17, S24, and S6) are showing strong and positive 

correlations. Others (i.e. L8 and S21) are showing strong but negative correlations. The 

remaining individuals (i.e. L1, L10, S9) show relatively constant expressions along the factor 

loading with close to null correlations. Additionally, certain individuals possess higher 

breeding values than others across all sites. For example, genotype L1 mostly exhibits positive 

breeding values, in contrast to genotype L8, which primarily has negative values. Similar types 

of responses are found with the second-factor loading (Fig. 5.15 B). However, when comparing 
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the first and second-factor loadings, we can see that some individuals share the same expression 

across one of the factor loadings while having different expressions across the other one, with 

for example genotypes L10 and L17, or genotypes L17 and L8. Finally, it is interesting to note 

that while some genotypes are not correlated with one of the factor loadings, they are with the 

other one (e.g., L1 and S21).  

Concerning MAI-DBH (Fig. 5.16), similar types of expression can be seen. However, 

for several genotypes, such as S21, L8, and S9, it appears that the observations are more 

scattered around the regression line, indicating wicker correlations.   

In the case of PP (Fig. 5.17), we observe similar types of expressions as the two growth 

traits. Contrarily to MAI-DBH, for several genotypes such as L10, L8, and S24, the predicted 

breeding values are strongly correlated with both factor loadings with observation very close 

to the regression line.  
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Fig. 5. 15 Latent regression plots at the genotype level for the FA2-MAI-H model. The 

loadings of the first- and the second-factors are plotted in A and B, respectively. The red lines 

represent the linear regressions, the 𝑅𝑎𝑑𝑗
2  correspond to their associated adjusted coefficient 

of determination. 
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Fig. 5. 16 Latent regression plots at the genotype level for the FA2-MAI-DBH model. 

The loadings of the first- and the second-factors are plotted in A and B, respectively. The red 

lines represent the linear regressions, the 𝑅𝑎𝑑𝑗
2  correspond to their associated adjusted 

coefficient of determination. 
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Fig. 5. 17 Latent regression plots at the genotype level for the FA2-PP model. The 

loadings of the first- and the second-factors are plotted in A and B, respectively. The red lines 

represent the linear regressions, the 𝑅𝑎𝑑𝑗
2  correspond to their associated adjusted coefficient 

of determination. 
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The results of the Pearson correlation coefficients, with their associated p-values, 

between the rotated loadings and the selected environmental variables are presented in Tables 

5.11, 5.12, and 5.13, for MAI-H, MAI-DBH, and PP, respectively. For MAI-H, we established 

that five variables were significantly and moderately to highly correlated with the first-factor 

loading:  

- Alt, 

- Age, 

- Biol7, 

- Biol15,  

- AvTmean. 

Alt, Age, and Biol7 were negatively correlated while the other two variables were positively 

correlated. The absolute values of these correlations were situated between 0.40 and 0.50. 

AvTmean was also moderately and positively correlated with the second-factor loading (0.38).  

Table 5. 11 Pearson’s correlation coefficients between the selected environmental 

variables EV and the loadings of the first- and second-factors (L1 and L2), for MAI-H. P 

represents the significance of the correlations based on a significance level of 0.10. The 

values in black are representing the significant correlations. 

EV  L1 P L2 P 

Alt -0.48 0.03 -0.20 0.39 

Age -0.50 0.02 -0.03 0.89 

Biol2 0.31 0.18 0.31 0.17 

Biol3 0.11 0.65 0.30 0.19 

Biol7 0.40 0.07 0.38 0.09 

Biol15 -0.41 0.06 0.36 0.11 

Tmean2 0.30 0.19 0.16 0.48 

Tmin2 0.21 0.37 0.05 0.82 

AvPrec 0.01 0.97 0.08 0.72 

AvTmean 0.45 0.04 0.26 0.26 

 

In the case of MAI-DBH, we identified that one variable, Biol2, was positively and 

significantly correlated with the first-factor loading with a correlation of 0.41 and a p-value of 

0.06. No significant correlations were found for the second-factor loading.   



109 

 

Table 5. 12 Pearson’s correlation coefficients between the selected environmental 

variables EV and the loadings of the first- and second-factors (L1 and L2), for MAI-DBH. P 

represents the significance of the correlations based on a significance level of 0.10. The 

values in black are representing the significant correlations. 

EV  L1 P L2 P 

Alt -0.29 0.21 0.07 0.76 

Age -0.28 0.22 0.11 0.63 

Biol2 0.41 0.06 -0.30 0.19 

Biol3 0.29 0.20 -0.26 0.26 

Biol7 0.34 0.14 -0.27 0.23 

Biol15 -0.22 0.34 -0.21 0.35 

Tmean2 -0.04 0.87 0.14 0.56 

Tmin2 -0.17 0.46 0.23 0.32 

AvPrec 0.35 0.12 -0.33 0.14 

AvTmean 0.25 0.28 -0.04 0.85 

 

Finally, in the case of PP, we found that Alt was positively and significantly correlated 

with the second-factor loading with a correlation of 0.40 and a p-value of 0.07. No significant 

correlations were found with the first-factor loading.  

Table 5. 13 Pearson’s correlation coefficients between the selected environmental 

variables EV and the loadings of the first- and second-factors (L1 and L2), for PP. P 

represents the significance of the correlations based on a significance level of 0.10. The 

values in black are representing the significant correlations. 

EV  L1 P L2 P 

Alt -0.12 0.60 0.40 0.07 

Age 0.22 0.34 0.07 0.76 

Biol2 0.15 0.52 -0.25 0.28 

Biol3 -0.04 0.87 -0.16 0.48 

Biol7 0.12 0.59 -0.22 0.34 

Biol15 0.05 0.84 0.23 0.32 

Tmean2 -0.08 0.75 -0.17 0.46 

Tmin2 -0.13 0.59 -0.09 0.69 

AvPrec 0.15 0.52 -0.02 0.95 

AvTmean 0.05 0.82 -0.28 0.22 
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6 Discussion 

6.1 Discussion - Response function 

In this study, we wanted to combine two known processes for studying the genetic 

variation within tree populations. The first one is the response function methodology, which 

focuses on the genetic adaptive variation across environments at the population level, and the 

second one is the conventional breeding, which focuses mainly on the intrapopulation genetic 

variation. Combining both methodologies aimed at capturing the intrapopulation adaptive 

response of European larch across the environmental gradient. Additionally, we aimed to 

propose a practical way to implement this methodology in the field.  

At the population level, our results indicate a clear phenotypic variation across the 

studied environments. Additionally, we were able to illustrate how the genetic differences 

among individuals affected their performance across these environments.  These results suggest 

that the methodology proposed here was successful in understanding the intrapopulation 

genetic variation of the studied European larch provenance in a specific set of environments.  

In this study, we considered several environmental variables to represent our climatic 

gradient, and we chose to use MTCM (MTCM is the mean temperature of the coldest month; 

here the temperature of January). In the study by Chakraborty et al. (2018), the authors indicate 

how to use more than one climatic variable with the response function modeling. However, the 

set of variables selected using the random forest algorithm indicated high levels of collinearity, 

and for this reason, we only used one. Temperature is a major factor affecting tree growth, 

specifically European larch (Danek and Danek, 2022; Izworska et al., 2022). Additionally, the 

use of this specific variable is supported by Foff et al. (2014). In their study, the authors 

identified that cold temperature is an important factor limiting growth in the European larch 

species.  

The use of the bivariate mixed linear animal genetic model, with the traits MAI-H and 

PP, indicated a significant improvement over the univariate model using only MAI-H 
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measurements. Derived from the model, we obtained typical heritability estimates, for both 

height and wood density (0.27 and 0.30 for MAI-H and PP, respectively). Similar genetic 

variation values are found in conifers (White et al., 2007) and specifically in European larch 

(Lstiburek et al., 2020; Ratcliffe et al., 2014). This indicates that more than a quarter of the 

phenotypic variation is attributable to direct allelic effects. The GxE was not significant in the 

bivariate model, this can either be because there are no such interactions in our population, or 

because we do not have sufficient data to detect it. If a significant GxE was found, it would be 

possible to calculate first-order partial derivatives taking into account the environmental 

variables of both the planting location and the provenance origin (Chakraborty et al., 2015; 

Wang et al., 2010). 

The model regressed the phenotypic data onto random genetics (breeding values), and 

fixed site effects factors. The breeding values, as we can see in Fig. 5.1, unravel a relatively 

large gradient between the parents, with a difference of 11.4 cm/years between parents L11 

and S7, and rather narrow and constant 95% confidence intervals (around ± 1.2 cm/year). This 

indicates that there is a high genetic diversity within the orchard, even though the trees were 

originally selected based, at least partially, on their heights. Reasonably, we can infer that the 

original provenance area showed similar or even greater genetic diversity, which is supported 

by several studies of European larch in the Alpine region (Belletti et al., 1997; Nardin et al., 

2015; Pâques, 2013).  

The fitting of the quadratic response function at the population level was significant, with 

a moderate value of the adjusted 𝑅2. Similar values were published in several papers, including 

response function fittings for European larch and Norway spruce (Foff et al., 2014; Kapeller et 

al., 2017). The 95% confidence interval of the curve is very narrow across the curve but is 

wider on the extremities. We posit that it is due to having only a few sites on the colder and 

warmer ends of the MTCM gradient. This is supported by several publications where greater 

uncertainties were found on the edges of the response functions curves when having only a few 

sites, or even none, for those extreme conditions  (Rehfeldt et al., 2001; Wang et al., 2006b). 

Rehfeldt et al. (2001), proposed to use the curve breadth size (for y = 0) of a well-represented 
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provenance (across the climatic gradient) as the maximum breadth size for under-represented 

provenances. Wang et al. (2006b) proposed another approach consisting of using the average 

trait values of the extreme sites for all the response functions, including the ones for provenance 

not represented in these extremes. 

 When fitting the quadratic response functions at the individual level, we obtained a large 

range of coefficients of variations depending on the parent under study, and all but one curve 

were significant. The average value of these coefficients is 0.28, similar to the value of the 

population analysis. The number of individuals representing each parent varied quite largely 

(35 to 120) because the planted trees are the products of natural crosses in the orchard, resulting 

that the size of each family could only be determined when reconstructing the pedigree. 

Interestingly, an examination of the coefficient values as a function of the number of offspring 

available for each parent reveals a particular pattern. While the mean value remains stable, the 

variability is significantly greater when there are only up to around 80 individual records, as 

compared to when the number is higher. This pattern suggests that, given similar study 

parameters (such as the environmental range), having a minimum of 80 to 100 individuals 

appears to be sufficient to achieve robust results. However, we did not find any study 

corroborating or arguing against this claim.   

 In the next step, we wanted to compare the different responses of the half-sib families, 

to determine whether the offspring behaved similarly across environments or not. When 

plotting all the quadratic response functions together (Fig. 5.5), we made several observations. 

We noticed that half-sib families performed differently in terms of the maximum pMAI-H, 

which, as for the simple ranking of the breeding values, provides information on better parents 

for higher growth. Noticeably, the ranking of breeding values in Fig. 5.1 is similar to the order 

of the curves. However, while most curves tend to keep their ranking throughout the 

environmental gradient, some exceptions are clearly visible. Some curves tend to be steeper, 

reaching their highest values for a narrow part of the climatic gradient while rapidly dropping 

in terms of performance on both sides of that optimum. We can postulate that the selection of 

these individuals would be interesting in localized areas. Other curves tend to be wider, 
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indicating more stable genotypes across environments. Selecting stable and highly performant 

genotypes is generally preferred in forestry and tree breeding as they can be used in larger 

areas. However, one may also select sets of genotypes that include both stable and 

environment-specific material leading to higher site variety.  

In this study, the predicted phenotypes were used to plot individual response functions, 

which gives insight into the intra-population genetic diversity. Compared to the response 

functions methodology, this method provided additional and useful information for selecting 

valuable afforestation material for specific environments and can be used to further boost the 

adaptive response of forests to climate change. Additionally, compared to traditional breeding 

trials, this approach minimizes the resources (costs and time) needed to establish the actual 

experiments because all the activities, such as phenotyping and genotyping, would take place 

in operational afforestation sites implemented with designated seed sources. Furthermore, the 

unbalanced gametic contribution among and within the respective sites would be optimally 

taken into account within the combined genetic evaluation protocol (i.e., multi-site animal 

genetic model). While traditional breeding programs rely upon seed transfer among and within 

fixed seed zones, this approach is flexible. The delineation of seed transfer is dynamic, 

corresponding to the particular climate change development. 

In this study, we selected only one environmental variable as the others available were 

found to be highly colinear. However, other types of data such as soil composition, sun 

exposure, slope steepness, and pest damage were not recorded for this study even though they 

are known to also influence tree growth (McLane et al., 2011; O’Neill et al., 2014; Sáenz-

Romero et al., 2017). For instance, in this study, sites B5, B7, and B13 generally showed 

inferior performance than site B6, while sharing the same MTCM, indicating that other factors 

are likely at play. Additionally, while the studied sites were selected across an altitudinal 

gradient, the range of environmental conditions is relatively small. Hence, it is likely that more 

complete environmental records, and test sites selected on a broader scale, would give 

additional insights into the studied genotypes and their adaptation to the environment. 

Therefore, we believe that it would be an interesting and relevant research idea. 



114 

 

 

Moreover, the proposed strategy itself has several pitfalls that will be addressed here. 

First, while used in many response function models (Gömöry et al., 2012; Sáenz-Romero et 

al., 2017), the quadratic model fitting represents a simplification of traits’ response to the 

environment. It assumes an increase in traits’ values to a maximum, followed by an immediate 

decrease (Leites et al., 2012). In reality, the responses stem from complex genetic architectures 

of quantitative traits. The true underlying functions are likely non-parametric and non-linear.  

Another limitation is associated with the future adaptation of new plantations established 

from the half-sib families of the selected parents. While these would most likely present a better 

adaptation to the climatic conditions in the short term, the evaluation of the long-term selection 

response across several generations is more complicated. Repeated selection cycles would 

influence environmental sensitivity according to the characteristics of the reaction norms 

(Kolmodin et al., 2002). The optimization of this methodology across the repeated selection 

cycles could be the aim of future research.  

The particular finding of our investigation can be viewed as a case study that 

demonstrates the success of combining the response function methodology with in-situ large-

scale genetic evaluation. We propose that forest tree breeders can implement this method 

according to the following steps. (1.) Identification of several stands afforested using a common 

seed source that is representing a specific population of origin, i.e., a provenance, (2.) 

measurement and evaluation of the phenotypes across sites followed by the reconstruction of 

the pedigree via DNA analysis (Lstibůrek et al., 2015), (3.) utilization of the phenotypic 

measurements performed across multiple sites coupled with the pedigree information in a 

multivariate statistical analysis (using an animal model such as ASReml) to predict the genetic 

worth of individual parental trees, (4.) selection of the main environmental gradients that are 

influencing the studied traits, (5.) development of the response functions, both at the individual- 

and population-level, to describe the genetic variability across the selected environmental 

gradient(s), (6.) selection of the best-adapted material for specific reforestation areas while also 



115 

 

accounting for the genetic diversity (Funda et al., 2009), and (7.) utilization and monitoring of 

the adapted forest reproductive material in-situ. 

6.2 Discussion - Factor analytic  

This study aimed at the investigation of a European larch provenance response to its 

environment. The main goal is the facilitation of gene resource management to allow the 

species to cope with environmental changes either in different planting sites or for climate 

change impact mitigation. More specifically, we wanted to fit a MET statistical model to assess 

the magnitude of GxE for three traits: height, diameter at breast height, and wood density. 

Furthermore, we sought to assess the impact of climate on this species by employing a complex 

factor analytic GxE model that took into account essential environmental covariates. Finally, 

we wanted to determine the GxE response dynamics for specific genotypes. 

The factor analytic models fitting in this study were successful, and we found evidence 

of GxE for each trait. In addition, we found that genetic correlations between sites were more 

pronounced for the growth traits than for the wood density. Regarding the impact of the 

environment, we found several significant and moderately strong correlations between 

environmental variables and each of the traits. Our results suggest that height is positively 

influenced by temperature, balanced precipitation regimes, and decreasing altitude levels. In 

the case of diameter at breast height, our results indicate that the mean diurnal range is an 

important factor. Finally, for wood density, our analyses identified that altitude seems to be a 

significant influence. Interestingly, our results indicate highly variable responses among the 

genotypes of each trait, emphasizing the presence of GxE. 

When looking at the relative positions of the environmental covariables within the final 

PCA plot, we can see that altitude and temperature-related variables are situated along the first 

component, which explains almost half of the variability. Hence, it indicates that they are the 

main drivers of the difference among test sites. We notice that altitude and temperature 

variables vectors are directed in opposite directions; this is consistent as the selected sites are 

situated along a relatively steep altitudinal gradient (about 500m), and that temperature 



116 

 

variables are usually negatively associated with altitude. Precipitation-related variables, on the 

other hand, are distributed along the second component that explains over a third of the 

variability, indicating lower importance. Since the geographical area covered by the study does 

not exceed 170km in length, it is expected to observe a low precipitation gradient, thus 

explaining these results. In the plot, we can see that age is represented by a small vector, which 

indicates that, even though relevant, it accounts for less variability between the sites than the 

other covariables. A substantial number of variables exhibited very high absolute correlations 

with each other. Consequently, the chosen set of seven variables seems to be a reasonable 

selection for the subsequent analyses. 

The results indicated that the overall unbiased narrow-sense heritability estimates for the 

three traits were 0.41, 0.16, and 0.35 for MAI-H, MAI-DBH, and PP, respectively. These 

results are similar to previously reported heritability estimates for European larch (Lstiburek et 

al., 2020; Poupon et al., 2021; Ratcliffe et al., 2014). 

 Regarding the genetic correlations, we found interesting results with values ranging 

from -0.87 to 0.99. Some sites presented strong and positive correlations (> 0.60), some had 

lower values, and finally, others showed negative ones. The former type of interaction suggests 

a strong agreement concerning the genotypic ranking among sites. The second type suggests 

high GxE. The third type could be explained by genotypes exhibiting a degree of maladaptation 

to specific environmental conditions; alternatively, it could be explained by poor data quality 

on some of the sites (Oliveira et al., 2020). For both growth traits, it seems that we have mild 

to high GxE among many sites. However, in the case of MAI-DBH, we observed a high 

proportion (32.8%) of negative correlations. One possible interpretation can be that these 

values are connected with the inter-tree competition that may have introduced a certain level 

of noise in the model. Indeed, tree diameter growth is known to be highly correlated with the 

neighboring tree density (Ledermann, 2010). Regarding PP, we found that the majority of the 

genetic correlations were strong. This was expected as generally, wood density is found to be 

less sensitive to GxE (Fukatsu et al., 2010; Škorpík et al., 2018; Wielinga et al., 2009). 
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The latent regression plots, where the predicted site means were plotted as a function of 

the first- and second-factor loadings, were used to analyze the relationship between the larch 

provenance and the environments clustered in the loadings. For MAI-H, we found a significant 

but mild correlation between the site predictions and the first-factor loading (Fig. 5.12). This 

suggests that the studied genotypes have a resembling expression along the environments 

represented by the first-factor loading, with low to moderate GxE. Contrastingly, no clear 

pattern is observable along the second-factor loading. In the case of both MAI-DBH and PP, 

we also cannot see specific or significant patterns with either factor loading (Figs. 5.13 and 

5.14). Interestingly, we can observe that site B16 consistently exhibits the lowest min, max, 

and mean prediction values for the growth traits (Figs. 5.12 and 5.13), which indicates poor 

growing conditions for this specific site.  

The latent regression plots at the individual level were used to analyze patterns of 

genotypic expressions, such as GxE, for each trait (Figs. 5.15, 5.16, and 5.17).  We can observe 

a wide range of responses. This can be interpreted as different adaptability levels and the 

presence of strong GxE between the genotypes. It is interesting to notice that some genotypes 

are displaying relatively constant breeding values along the studied environments, which 

indicates stable performances. This factor is crucial to consider when making informed 

breeding decisions. This is because stable genotypes, associated with high breeding values, are 

preferably selected by breeding programs in the forest industry to obtain superior planting seeds 

that are expected to grow and perform well in wide ranges of environmental conditions.  

In the presented methodology, which aimed at identifying which environmental variables 

are influencing the genotypic performances along a gradient of environmental conditions, we 

calculated Pearson correlation coefficients between each of the selected variables and the two 

factor loadings, for each trait. To have a proper understanding of this methodology, one has to 

keep in mind that when a variable is positively correlated with a factor loading, and that this 

factor loading is also positively correlated with the predictions of the population or a specific 

genotype, then it is likely that there is a positive correlation between the variable and the 

population or this specific genotype. However, in the same case scenario, if the variable or the 
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factor loading is negatively correlated with the factor loading or the population/genotype, 

respectively, then it is likely that the environmental variable and the population or the specific 

genotype are negatively correlated. Analogous reasoning can be applied to all the other possible 

combinations of correlations.  

We found that, for each trait, one or more environmental covariables were significantly 

as well as moderately highly correlated with the first- and/or second-factor loadings. In the case 

of MAI-H, five environmental variables were correlated with the first-factor loading. AvTmean 

and Biol7 (annual temperature range) were determined to be positively correlated. This 

indicates that the temperature probably influences height growth. Additionally, since the first-

factor loading is also positively correlated with the population site means (Fig. 5.12), it suggests 

that an augmentation of the temperature has a positive effect on tree growth. This finding was 

not surprising as it is largely supported by various research (Carrer and Urbinati, 2006). 

However, dendroclimatic studies submitted that seasonal temperature variation, with for 

instance high summer temperatures combined with drought events, could have an adverse 

effect on radial growth  (George et al., 2017; Koprowski, 2012). Therefore, we can infer that it 

might similarly affect height growth. Age was found to be negatively correlated which suggests 

a negative correlation with tree growth. This is quite interesting because age was accounted for 

in the model, by utilizing mean annual increment values instead of cumulative heights. 

Nevertheless, the annual growth rate is commonly known to diminish over time, and our model 

did not take that into account. Consequently, this could explain the importance of age in our 

results. 

 At the level of the genotypes, still regarding MAI-H, we observed that the majority of 

the individuals are, to some extent, positively influenced by temperature which is congruent 

with the results at the population level. However, for a few of them, a decreasing trend was 

observed (Fig. 5.15). This can be interpreted in several ways. For instance, previous studies 

identified significant genetic variation correlated to drought response among, as well as within, 

larch populations (George et al., 2017; Schueler et al., 2021). Therefore, some genotypes might 

indicate some resistance to higher temperatures, which might be more likely connected to 
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drought. Additionally, the specific genotypic differences in the phenological pattern of needle 

enfolding, with the early- and late-wood growth, as well as with the growth cessation may 

cause a certain level of interactions with temperature-related variables (George et al., 2019). 

Altitude was found to be negatively correlated with the first-factor loading (Table 5.11), 

nevertheless, as mentioned previously, an increase in altitude level is generally coupled with a 

decrease in temperature, hence it is evidence of consistent results. Now, regarding Biol15, 

which corresponds to the precipitation seasonality and is calculated as the coefficient of 

variation of precipitation for each month, we found that it is negatively correlated with the first-

factor loading. This means that a more uneven precipitation distribution throughout the year, 

including potential drought spells, may have a negative influence on growth. Noticeably, no 

significant correlations were discovered with AvPrec.  

In the case of MAI-DBH (Table 5.12), only one variable was significantly positively 

correlated with the first-factor loading: Biol2 (mean diurnal range). It is a temperature-related 

climatic variable that expresses the amplitude between the monthly maximum and minimum 

temperatures. The variable values are increasing with a greater difference. As mentioned 

previously, no clear pattern was found between the factor loadings and this trait at the 

population level, however, many strong correlations, either positive or negative, are observable 

at the genotypic level (Fig. 5.16). This indicates that, while this variable may have an influence 

on MAI-DBH, it does not seem to be a good predictor variable for this species. However, it 

might still be used when selecting specific genotypes. 

Regarding the PP (Table 5.13), we found no correlations with the first-factor loading, but 

a positive correlation was found between Alt and the second-factor loading. In this model, only 

around 12% of the variability of PP is explained by the second-factor loading. Hence, it is 

important to consider that our results do not strongly support this correlation. However, several 

studies have already reported correlations between altitude and wood density for several 

species (Chave et al., 2006; Topaloğlu et al., 2016; Zhang et al., 2022).  

In this research, we used a complex type of modeling to provide insight into this dataset. 

Substantial documentation recognizes the superiority of factor analytic modeling over the 
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traditional linear models used in MET analysis (Beeck et al., 2010; Cullis et al., 2014; Smith 

et al., 2001b, 2001a). Here, two factors explained on average 74% of the variation found in 

each trait, and coupled with the narrow-sense heritability estimates, this indicates a successful 

characterization of the GxE dynamics in this larch provenance. Additionally, the latent 

regression plots (Figs. 5.15, 5.16, and 5.17) exhibited contrasting but strong correlations 

between the genotypes and the factor loadings, which emphasizes the explanatory power of 

this type of modeling for GxE characterization and interpretation. 

In tree breeding, it is fundamental to understand the dynamics of the GxE since tree 

selection usually aims at afforestation undertakings across a wide range of environmental 

conditions and landscape types. This is because a high GxE, which is represented by genetic 

correlations close to zero, indicates an unstable ranking of the studied genotypes across 

environments. Hence, it is necessary to perform rigorous GxE analyses, in MET, to enable 

improved accuracy and ameliorated ability for optimal genotypic selection. In the event of 

additional tests in the future, we suggest that sites sharing high correlations (such as the sites 

B1, B2, B11, B13, and A for MAI-H) could be clustered into a unique breeding zone. This 

would require less sampling and reduce the overall testing effort. Thus, it would allow the 

diversion and optimization of the available resources. For instance, more data could be obtained 

in each site, or more sites could be sampled, to improve the predictive power of the GxE 

modeling and thus, to improve the selection process. 

In tree breeding, as previously discussed, genotypic stability across environments is 

considered to be an important factor for selection (White et al., 2007). Furthermore, when we 

take into account the climate change context, the trees' ability to endure changing climatic 

conditions is becoming more and more essential. We are hypothesizing that stable genotypes, 

as well as genotypes that are projected to perform increasingly well along the predicted changes 

in the future, might be more likely to present higher resistance (tree ability to resist external 

stressors) and resilience (tree ability to promptly return to their initial state). We believe that 

further research in that direction would be beneficial in the field of tree breeding. 
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The reconstructed pedigree that was used in this study resulted, as previously mentioned, 

in the calculation of reasonable heritability estimates for the three studied traits. Furthermore, 

the data analyses performed based on these additive relationships were successful in revealing 

clear and detailed patterns of genotypic behaviors. Thus, we are recommending the utilization 

of this (or equivalent) methodology of pedigree reconstruction for observational analyses that 

are based on tree measurements across a set of forest stands. Additionally, the reconstructed 

pedigree was adequate to support the selection of superior genotypes for afforestation projects. 

Finally, it supports the conclusion of Lstibůrek et al. (2020) that this method has the potential 

to be faster and financially superior to the conventional forest breeding approach.  

The present study, because of the relatively steep altitudinal gradient across the Northern 

Alps foothills, encompasses an interesting range of environmental conditions situated around 

the lowest altitudinal ranges for European larch. Several studies have established that the 

warmest parts of tree species’ distribution ranges are those that are the most likely to be 

negatively impacted by climate change and climate warming (Schueler and Liesebach, 2014). 

This highlights a strong point of this study. However, the covered geographical range remains 

relatively limited, and it only encompasses a small-scale portion of the European larch’s range. 

Therefore, we postulate that identifying, sampling, and analyzing farther forest stands, 

afforested using the same provenance’s seeds, could be an interesting way to extend the 

applicability of this study.  

Regarding the data collection, we had the opportunity to use mature tree stands data 

which are excellent sources of information that, for example, new seedling test sites cannot 

always provide. Additionally, obtaining mature tree data, with known parentage and from 

specifically established study sites, is an excessively time-consuming and expensive process. 

The presented methodology allows the use of regular afforestation material, originating from a 

standard seed orchard, which greatly reduces the time and economic resources required. 

However, one disadvantage of this method is the unbalanced characteristic of the dataset (with 

a higher or lower representation of the genotypes). On one hand, due to its flexible nature, the 

factor analytic structure was able to provide interesting results. On the other hand, a more even 



122 

 

dataset would have likely provided more robust and precise results. In our opinion, we expect 

that sampling a larger number of stands, and/or trees per stand, would mitigate this issue.  

Understanding the influence of the environmental covariable on the dataset was, from 

our perspective, quite successful. In this research, we had the possibility to study together the 

potential influence of several temperature and precipitation variables along with the elevation. 

For each of the studied traits, we established that one or several variables were significantly 

correlated (moderately to highly). Nonetheless, we believe that one other possibility to further 

our understanding of the data in future analyses would be to incorporate other types of 

covariables and indicators, such as slope aspect and steepness, soil composition and structure, 

homogeneity of the stands, and sun exposition levels to mention a few.   
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7 Conclusion 

The two interrelated studies that constitute this dissertation have each contributed unique 

insights into the understanding of adaptive variation and environmental response within the 

European Larch (Larix decidua). 

The first study delved into an area often neglected in forestry: the exploration of tree-to-tree 

variation within a population. Traditional response function methodology has been limited to 

capturing adaptive variation among populations, thereby missing the intra-population nuances. 

In breaking this paradigm, the first study presented a novel methodology that synergized 

response functions with in-situ breeding, employing extensive progeny trials of European 

larch. The findings of this research demonstrated that intra-population genetic variance can be 

harnessed to select trees that are genetically adapted to specific climatic conditions. This 

innovative approach holds broad applicability in both breeding and conservation programs. 

Importantly, it also offers a pathway to boost adaptation speed under the ever-evolving 

challenges of climate change, all while preserving high genetic diversity. 

The second study in this dissertation aimed at comprehending the dynamics of European 

Larch's response to various environmental conditions. By analyzing data from 1253 trees 

planted across 21 sites using seeds from a single seed zone, the research evaluated key traits 

such as height, diameter at breast height, and wood density. The study revealed typical 

heritability estimates for European larch and discovered varying genetic correlations between 

sites, with growth traits generally exhibiting stronger genotype-by-environment interactions 

(GxE) than wood density. Notably, height was found to be positively influenced by factors like 

higher average monthly mean temperatures and balanced yearly precipitation but negatively 

affected by altitude. While the conclusions for diameter at breast height and wood density were 

more constrained, the research still identified key variables explaining a substantial portion of 

the variability, such as mean diurnal range for the former and altitude for the latter. 

These findings have broader implications, not only in understanding the complex responses of 

tree species to their environment but also in informing tree breeding programs for the selection 
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of suitable genotypes. These genotypes can be tailored to specific present and future conditions, 

thus enhancing the resilience and adaptability of forest ecosystems. Together, these two 

research papers complement one another in providing a multifaceted view of the adaptive 

dynamics within European Larch populations. The methodologies and insights gleaned from 

both studies offer valuable tools for the forestry industry, paving the way for more informed 

and effective breeding and conservation strategies. In addressing both intra-population genetic 

variance and the nuanced interplay between genotype and environment, this dissertation 

underscores the importance of a harmonized approach to tree adaptation and conservation. As 

the world grapples with the challenges of climate change, such insights are pivotal in ensuring 

the sustainable management and resilience of forest ecosystems. 
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9 Supplementary tables 

Table S 1 Pairwise correlations between each pair of sites. Diff represents the 

difference of pMAI-H between the sites, SD is the standard error, and P is the p value of the 

correlation.  

Site 1 Site 2 Diff SD P 

A B1 13.01 1.16 0.000 

A B11 9.64 1.22 0.000 

A B12 16.30 1.21 0.000 

A B13 21.18 1.20 0.000 

A B16 35.81 1.20 0.000 

A B18 14.33 1.22 0.000 

A B2 6.27 1.26 0.000 

A B20 19.13 1.16 0.000 

A B3 22.98 1.22 0.000 

A B4 6.44 1.19 0.000 

A B5 19.38 1.33 0.000 

A B6 3.82 1.18 0.001 

A B7 17.88 1.24 0.000 

A B9 5.05 1.25 0.000 

A H2 22.16 1.23 0.000 

A N 5.30 0.98 0.000 

A T1 18.67 1.18 0.000 

A T2 12.25 1.41 0.000 

A W3 -4.30 1.34 0.001 

A W4 3.97 1.19 0.000 

B1 B11 -3.37 1.18 0.002 

B1 B12 3.29 1.18 0.003 

B1 B13 8.18 1.18 0.000 

B1 B16 22.81 1.16 0.000 

B1 B18 1.32 1.19 0.134 

B1 B2 -6.74 1.22 0.000 

B1 B20 6.13 1.12 0.000 

B1 B3 9.98 1.19 0.000 

B1 B4 -6.57 1.16 0.000 

B1 B5 6.37 1.30 0.000 

B1 B6 -9.19 1.15 0.000 

B1 B7 4.88 1.21 0.000 

B1 B9 -7.96 1.22 0.000 

B1 H2 9.15 1.20 0.000 

B1 N -7.71 0.94 0.000 
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B1 T1 5.67 1.15 0.000 

B1 T2 -0.76 1.38 0.292 

B1 W3 -17.30 1.30 0.000 

B1 W4 -9.04 1.16 0.000 

B11 B12 6.66 1.23 0.000 

B11 B13 11.55 1.22 0.000 

B11 B16 26.17 1.21 0.000 

B11 B18 4.69 1.23 0.000 

B11 B2 -3.37 1.28 0.004 

B11 B20 9.49 1.18 0.000 

B11 B3 13.34 1.23 0.000 

B11 B4 -3.20 1.20 0.004 

B11 B5 9.74 1.34 0.000 

B11 B6 -5.82 1.21 0.000 

B11 B7 8.24 1.26 0.000 

B11 B9 -4.59 1.26 0.000 

B11 H2 12.52 1.24 0.000 

B11 N -4.34 1.01 0.000 

B11 T1 9.03 1.20 0.000 

B11 T2 2.61 1.44 0.035 

B11 W3 -13.94 1.35 0.000 

B11 W4 -5.67 1.21 0.000 

B12 B13 4.88 1.20 0.000 

B12 B16 19.51 1.21 0.000 

B12 B18 -1.97 1.23 0.055 

B12 B2 -10.03 1.27 0.000 

B12 B20 2.83 1.16 0.007 

B12 B3 6.68 1.24 0.000 

B12 B4 -9.86 1.20 0.000 

B12 B5 3.08 1.34 0.011 

B12 B6 -12.48 1.19 0.000 

B12 B7 1.58 1.25 0.102 

B12 B9 -11.25 1.26 0.000 

B12 H2 5.86 1.24 0.000 

B12 N -11.00 1.00 0.000 

B12 T1 2.37 1.19 0.024 

B12 T2 -4.05 1.42 0.002 

B12 W3 -20.60 1.35 0.000 

B12 W4 -12.33 1.21 0.000 

B13 B16 14.63 1.20 0.000 

B13 B18 -6.86 1.22 0.000 

B13 B2 -14.91 1.25 0.000 

B13 B20 -2.05 1.16 0.038 

B13 B3 1.80 1.22 0.071 
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B13 B4 -14.74 1.19 0.000 

B13 B5 -1.81 1.34 0.088 

B13 B6 -17.36 1.18 0.000 

B13 B7 -3.30 1.24 0.004 

B13 B9 -16.14 1.25 0.000 

B13 H2 0.97 1.23 0.214 

B13 N -15.89 0.99 0.000 

B13 T1 -2.51 1.18 0.017 

B13 T2 -8.94 1.42 0.000 

B13 W3 -25.48 1.35 0.000 

B13 W4 -17.22 1.20 0.000 

B16 B18 -21.49 1.22 0.000 

B16 B2 -29.54 1.25 0.000 

B16 B20 -16.68 1.15 0.000 

B16 B3 -12.83 1.22 0.000 

B16 B4 -29.37 1.18 0.000 

B16 B5 -16.44 1.32 0.000 

B16 B6 -31.99 1.19 0.000 

B16 B7 -17.93 1.24 0.000 

B16 B9 -30.76 1.25 0.000 

B16 H2 -13.66 1.22 0.000 

B16 N -30.52 0.98 0.000 

B16 T1 -17.14 1.18 0.000 

B16 T2 -23.57 1.41 0.000 

B16 W3 -40.11 1.33 0.000 

B16 W4 -31.85 1.19 0.000 

B18 B2 -8.06 1.29 0.000 

B18 B20 4.81 1.18 0.000 

B18 B3 8.66 1.24 0.000 

B18 B4 -7.89 1.20 0.000 

B18 B5 5.05 1.35 0.000 

B18 B6 -10.51 1.21 0.000 

B18 B7 3.56 1.26 0.002 

B18 B9 -9.28 1.27 0.000 

B18 H2 7.83 1.25 0.000 

B18 N -9.03 1.02 0.000 

B18 T1 4.35 1.21 0.000 

B18 T2 -2.08 1.44 0.074 

B18 W3 -18.62 1.36 0.000 

B18 W4 -10.36 1.21 0.000 

B2 B20 12.86 1.22 0.000 

B2 B3 16.71 1.29 0.000 

B2 B4 0.17 1.25 0.446 

B2 B5 13.11 1.39 0.000 
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B2 B6 -2.45 1.24 0.024 

B2 B7 11.61 1.30 0.000 

B2 B9 -1.22 1.31 0.176 

B2 H2 15.89 1.29 0.000 

B2 N -0.97 1.05 0.178 

B2 T1 12.40 1.25 0.000 

B2 T2 5.98 1.46 0.000 

B2 W3 -10.57 1.39 0.000 

B2 W4 -2.30 1.27 0.035 

B20 B3 3.85 1.18 0.001 

B20 B4 -12.69 1.15 0.000 

B20 B5 0.25 1.30 0.425 

B20 B6 -15.31 1.14 0.000 

B20 B7 -1.25 1.20 0.149 

B20 B9 -14.08 1.22 0.000 

B20 H2 3.03 1.19 0.005 

B20 N -13.84 0.94 0.000 

B20 T1 -0.46 1.14 0.344 

B20 T2 -6.88 1.39 0.000 

B20 W3 -23.43 1.31 0.000 

B20 W4 -15.16 1.16 0.000 

B3 B4 -16.54 1.20 0.000 

B3 B5 -3.60 1.35 0.004 

B3 B6 -19.16 1.21 0.000 

B3 B7 -5.10 1.26 0.000 

B3 B9 -17.93 1.27 0.000 

B3 H2 -0.82 1.25 0.254 

B3 N -17.69 1.02 0.000 

B3 T1 -4.31 1.21 0.000 

B3 T2 -10.73 1.44 0.000 

B3 W3 -27.28 1.36 0.000 

B3 W4 -19.01 1.21 0.000 

B4 B5 12.94 1.32 0.000 

B4 B6 -2.62 1.18 0.013 

B4 B7 11.44 1.22 0.000 

B4 B9 -1.39 1.23 0.129 

B4 H2 15.72 1.21 0.000 

B4 N -1.14 0.97 0.120 

B4 T1 12.23 1.17 0.000 

B4 T2 5.81 1.40 0.000 

B4 W3 -10.74 1.32 0.000 

B4 W4 -2.47 1.18 0.018 

B5 B6 -15.56 1.32 0.000 

B5 B7 -1.49 1.37 0.138 
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B5 B9 -14.33 1.38 0.000 

B5 H2 2.78 1.36 0.020 

B5 N -14.08 1.15 0.000 

B5 T1 -0.71 1.32 0.296 

B5 T2 -7.13 1.53 0.000 

B5 W3 -23.67 1.45 0.000 

B5 W4 -15.41 1.32 0.000 

B6 B7 14.06 1.22 0.000 

B6 B9 1.23 1.24 0.161 

B6 H2 18.34 1.21 0.000 

B6 N 1.48 0.97 0.063 

B6 T1 14.85 1.17 0.000 

B6 T2 8.43 1.41 0.000 

B6 W3 -8.12 1.33 0.000 

B6 W4 0.15 1.18 0.450 

B7 B9 -12.83 1.29 0.000 

B7 H2 4.27 1.27 0.000 

B7 N -12.59 1.04 0.000 

B7 T1 0.79 1.23 0.261 

B7 T2 -5.64 1.45 0.000 

B7 W3 -22.18 1.38 0.000 

B7 W4 -13.92 1.23 0.000 

B9 H2 17.11 1.28 0.000 

B9 N 0.25 1.05 0.406 

B9 T1 13.62 1.24 0.000 

B9 T2 7.20 1.46 0.000 

B9 W3 -9.35 1.38 0.000 

B9 W4 -1.08 1.25 0.194 

H2 N -16.86 1.02 0.000 

H2 T1 -3.49 1.21 0.002 

H2 T2 -9.91 1.44 0.000 

H2 W3 -26.45 1.36 0.000 

H2 W4 -18.19 1.23 0.000 

N T1 13.38 0.97 0.000 

N T2 6.95 1.24 0.000 

N W3 -9.59 1.15 0.000 

N W4 -1.33 0.98 0.089 

T1 T2 -6.42 1.40 0.000 

T1 W3 -22.97 1.33 0.000 

T1 W4 -14.70 1.18 0.000 

T2 W3 -16.54 1.53 0.000 

T2 W4 -8.28 1.41 0.000 

W3 W4 8.27 1.33 0.000 
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Table S 2 Additive site-to-site genetic correlations generated by the FA2-MAI-H 

model. The values in bold are the maximum and minimum correlations. 
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Table S 3 Additive site-to-site genetic correlations generated by the FA2-MAI-DBH 

model. The values in bold are the maximum and minimum correlations.  

 



157 

 

Table S 4 Additive site-to-site genetic correlations generated by the FA2-PP model. The 

values in bold are the maximum and minimum correlations. 

 


