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Abstract 

 

Climate change profoundly impacts both abiotic and biotic environmental factors in forest ecosystems. 

Rising temperatures and shifting precipitation patterns alter soil moisture content, which in turn 

influences the diversity, abundance, and functions of soil microbial communities. However, research 

on the long-term effects of precipitation variability on forest soil microfauna remains surprisingly 

limited. 

In this study, we investigated the impact of long-term precipitation variation on soil quality parameters 

and microbial community dynamics in the two Norway Spruce (Picea abies) clonal seed orchards: 

Lipová Lhota (L-site) and Prenet (P-site). Over three decades, precipitation data revealed that the P-site 

received nearly twice the amount of rainfall compared to the L-site. We analysed the effects of 

precipitation on both rhizospheric soil and the surrounding bulk soil. By integrating traditional methods 

with modern multi-omics approaches, we aimed to assess soil texture, physicochemical properties  

(pH, EC), biochemical parameters (total organic carbon (TOC), total nitrogen (TN)), phospholipid fatty 

acid (PLFA) content, extracellular enzyme activities, metabolic profiles, along with microbial community 

structure in the two forest soils.  

Our results revealed a positive correlation between TOC, TN, extracellular enzyme activities, and 

phospholipid fatty acid (PLFA) content in the soil with increased precipitation, while microbial diversity 

exhibited an opposite trend. The soil metabolite profiles showed distinct variations between the two 

sites, with a higher abundance of metabolite at the P-site, which receives greater precipitation. 

Additionally, the rhizospheric soul at the P-site had elevated levels of Aluminium (Al), Iron (Fe), 

Phosphorus (P), and Sulphur (S) compared to the L-site. Variance partitioning canonical 

correspondence analysis (VPA) further demonstrated that TOC and TN played a greater role in shaping 

soil microbial communities compared to soil pH and electrical conductivity. Clear microbiome 

differences were also observed between the sites. The P-site rhizospheric soil exhibited a higher 

abundance of Proteobacteria, Acidobacteriota, Ascomycota, and Mortierellomycota, while the L-site 

showed a higher prevalence of Bacteroidota, Actinobacteria, Chloroflexi, Firmicutes, 

Gemmatimonadota, and Basidiomycota. A higher clustering coefficient in the P-site rhizospheric soil 

microbial network indicated a more interconnected and closely clustered microbial community 

structure. 

  



 
 

Overall, our study unveiled the impact of precipitation variability on microbial communities and 

functions in bulk soil and the rhizospheric microbial associations of two Norway spruce stands. The 

generated field data provided valuable insights for modelling the effects of long-term precipitation 

changes on forest ecosystems, offering new perspectives for understanding how the global climate 

change affects soil microbial associations in forest tree species. 

 

Key words: precipitation, climate change, bacterial diversity, fungal diversity, microbiome, amplicon 

sequencing, PLFA analysis, soil metabolites, rhizosphere, bulk soil 

 

 

  



 
 

Table of contents 

 

LIST OF TABLES, FIGURES, AND EQUATIONS 14 

LIST OF PUBLICATIONS 15 

LIST OF USED SYMBOLS AND ABBREVIATIONS 16 

1. INTRODUCTION 18 

2. AIMS AND OBJECTIVES 19 

3. LITERATURE REVIEW 20 

3.1 FOREST ECOSYSTEMS AND CLIMATE CHANGE 20 

3.2 FOREST SOIL 20 

3.3 RHIZOSPHERE 21 

3.4 SOIL MICROBIAL COMMUNITIES 23 

3.5 IMPACT OF PRECIPITATION ON SOIL MICROBIOTA 26 

3.6 APPROACHES TO EXPLORING SOIL PROPERTIES AND SOIL MICROBIAL COMMUNITIES 28 

3.6.1 Soil physicochemical properties 28 

3.6.2 Soil enzyme activities 28 

3.6.3 Phospholipid fatty acids (PLFAs) 29 

3.6.4 Metabolite profiling 30 

3.6.5 High-throughput amplicon sequencing 31 

3.6.5.1 Classification of microbial taxa 32 

3.7 MICROBIAL DIVERSITY 33 

3.7.1 Alpha diversity 33 

3.7.1.1 Good's coverage 34 

3.7.1.2 Chao1 index 34 

3.7.1.3 Abundance-based Coverage Estimator (ACE) 35 

3.7.1.4 Shannon and Simpson indices 35 

3.7.1.5 Pielou index 36 

3.7.1.6 Rarefaction curve 37 

3.7.2 Beta diversity 37 

3.7.3 Microbial functional prediction 38 

3.7.4 Microbial co-occurrence networks 39 

3.8 ENVIRONMENTAL ASSOCIATION ANALYSIS (EAA) 40 

4. MATERIALS AND METHODS 42 

4.1 SEED ORCHARDS 42 

4.2 CLIMATIC DATA 43 



 
 

4.3 SAMPLE COLLECTION 44 

4.3.1 Bulk soil sampling 44 

4.3.2 Rhizosphere sampling 45 

4.4 SOIL TEXTURE AND WATER CONTENT DETERMINATION 46 

4.5 TRACE ELEMENTS IN SOIL 46 

4.6 SOIL PHYSICOCHEMICAL AND BIOCHEMICAL PROPERTIES 47 

4.7 EXTRACELLULAR ENZYME ACTIVITIES IN SOIL 47 

4.8 PHOSPHOLIPID FATTY ACIDS (PLFA) ANALYSIS 48 

4.9 METABOLITE PROFILING 48 

4.10 DNA EXTRACTION 49 

4.11 DNA AMPLIFICATION AND AMPLICON SEQUENCING 51 

4.12 SEQUENCING DATA ANALYSIS 52 

4.12.1 Data filtering 52 

4.12.2 Operational Taxonomic Units (OTUs) and Amplicon Sequence Variants (ASVs) 52 

4.12.3 Alpha diversity 53 

4.12.4 Beta diversity 53 

4.12.5 Functional prediction 54 

4.12.6 Network analysis 55 

4.12.7 Environmental association analysis 57 

5. RESULTS 58 

5.1 IMPACT OF LONG-TERM PRECIPITATION REGIME DIFFERENCES ON BULK SOIL 58 

5.1.1 Soil texture, physicochemical, and biochemical properties 58 

5.1.2 Extracellular enzyme activities 59 

5.1.3 Soil metabolomics 59 

5.1.4 Phospholipid fatty acids (PLFAs) analysis 60 

5.1.5 Soil microbial community composition and diversity 61 

5.1.5.1 Quality control 61 

5.1.5.2 Operational Taxonomic Units (OTUs) abundance 62 

5.1.5.3 Alpha diversity 68 

5.1.5.4 Beta diversity 70 

5.1.5.5 Functional composition 79 

5.1.5.6 Correlation between edaphic drivers and soil microbiota 80 

5.2 IMPACT OF LONG-TERM PRECIPITATION REGIME DIFFERENCES ON RHIZOSPHERIC SOIL 84 

5.2.1 Soil texture and trace elements analysis 84 

5.2.2 Metabolite profiling 85 

5.2.3 Rhizospheric soil microbial community structure 87 

5.2.3.1 Sequencing results 87 

5.2.3.2 Amplicon Sequence Variants (ASVs) abundance 88 

5.2.3.3 Alpha diversity 90 



 
 

5.2.3.4 Beta diversity 91 

5.2.3.5 Functional composition 98 

5.2.3.6 Microbial co-occurrence network 101 

6. DISCUSSION 104 

6.1 BULK SOIL 104 

6.1.1 Effect of soil physicochemical properties on soil water content 104 

6.1.2 Effect of precipitation on the soil factors 105 

6.1.3 Effect of precipitation on soil metabolite profile 106 

6.1.4 Effect of precipitation on soil microbial biomass 107 

6.1.5 Effect of precipitation on soil microbial enzymatic activity 108 

6.1.6 Effect of precipitation on soil microbial community structure 109 

6.1.7 Effect of edaphic variables on soil microbial communities 110 

6.2 RHIZOSPHERE 111 

6.2.1 Effect of precipitation on rhizospheric microbial communities 111 

6.2.2 Chemistry of rhizospheric soil 112 

6.2.3 Effect of precipitation on bacterial and fungal diversity in rhizospheric soil 114 

6.2.4 Predicted functions and network analysis of rhizospheric microorganisms 116 

7. CONCLUSIONS 118 

8. LIMITATIONS OF THE STUDY 119 

9. REFERENCES 120 

 



14 
 

List of tables, figures, and equations 

 

Table 1 – Selected environmental conditions in L-site and P-site 43 
Table 2 – Rhizosphere sampling details 45 
Table 3 – Primers targeting 16S rRNA and ITS2 domain 51 
Table 4 – Soil texture, physicochemical, and biochemical soil properties 59 
Table 5 – Extracellular enzyme activities 59 
Table 6 – PLFA analysis 61 
Table 7 – Illumina paired-end amplicon sequencing of bacterial 16S in bulk soil 61 
Table 8 – Illumina paired-end amplicon sequencing of fungal ITS in bulk soil 62 
Table 9 – Alpha diversity indices 69 
Table 10 – ANOSIM bulk soil 75 
Table 11 – MRPP bulk soil 75 
Table 12 – ADONIS bulk soil 75 
Table 13 – AMOVA bulk soil 75 
Table 14 – Illumina paired-end amplicon sequencing of bacterial 16S in rhizosphere 87 
Table 15 – Illumina paired-end amplicon sequencing of fungal ITS in rhizosphere 88 
Table 16 – ADONIS rhizosphere 92 
Table 17 – ANOSIM rhizosphere 92 
 

 

Figure 1 – Spatial distribution of microbial communities in forest soil 22 
Figure 2 – Soil biogeochemical processes regulated by microorganisms 23 
Figure 3 – Abundance and functionality of rhizospheric bacterial taxa 25 
Figure 4 – Location of L-site and P-site seed orchards 42 
Figure 5 – Variability in selected environmental factors 44 
Figure 6 – Network properties to characterise microbial communities 56 
Figure 7 – Bulk soil metabolite profile 60 
Figure 8 – Bacterial Operational Taxonomic Units (OTUs) abundance 62 
Figure 9 – Fungal Operational Taxonomic Units (OTUs) abundance 63 
Figure 10 – Flower diagram 64 
Figure 11 – Cladogram of bacterial phyla 65 
Figure 12 – Cladogram of fungal phyla 66 
Figure 13 – Evolutionary tree 67 
Figure 14 – Heatmap of 35 predominant bacterial and fungal genera 68 
Figure 15 – Bulk soil rarefaction curves 69 
Figure 16 – Boxplot and UPGMA tree 70 
Figure 17 – Heatmap, boxplot, and UPGMA tree 71 
Figure 18 – NMDS analysis of bulk soil microbiota 72 



15 
 

Figure 19 – Bacterial MetaStats analysis of bulk soil 73 
Figure 20 – Fungal MetaStats analysis of bulk soil 73 
Figure 21 – t-test analysis of bulk soil 74 
Figure 22 – LEfSe analysis of bulk soil 77 
Figure 23 – Cladogram of bulk soil biomarkers obtained by LEfSe 78 
Figure 24 – PICRUSt analysis 80 
Figure 25 – Spearman rank correlation analysis 81 
Figure 26 – Canonical Correspondence Analysis (CCA) 82 
Figure 27 – Variation Partition Analysis (VPA) 83 
Figure 28 – Elemental analysis 84 
Figure 29 – Metabolite profiling 85 
Figure 30 – Heatmap of rhizospheric soil metabolite profile 86 
Figure 31 – Amplicon sequence variants (ASVs) abundance 89 
Figure 32 – Rhizosphere rarefaction curves 90 
Figure 33 – Alpha diversity indices of rhizospheric soil 91 
Figure 34 – NMDS analysis of rhizospheric microbiota 92 
Figure 35 – Bacterial MetaStats analysis of rhizospheric soil 94 
Figure 36 – Fungal MetaStats analysis of rhizospheric soil 94 
Figure 37 – t-test analysis of rhizospheric soil microbial communities 95 
Figure 38 – LEfSe analysis of rhizospheric soil 96 
Figure 39 – Cladogram of rhizospheric soil biomarkers obtained by LEfSe 97 
Figure 40 – Functional composition 98 
Figure 41 – t-test analysis of predicted functions of rhizospheric bacteria 99 
Figure 42 – t-test analysis of predicted guilds of rhizospheric fungi 100 
Figure 43 – Co-occurrence network of rhizospheric bacterial communities 102 
Figure 44 – Co-occurrence network of rhizospheric fungal communities 103 
Figure 45 – Impact of long-term precipitation change on rhizosphere microbiome 112 
Figure 46 – Interactions in the rhizosphere 113 
 

 

Equation 1 – Good’s coverage 34 
Equation 2 – Chao1 index 34 
Equation 3 – Abundance-based Coverage Estimator (ACE) 35 
Equation 4 – Sample coverage estimator 35 
Equation 5 – Shannon index 36 
Equation 6 – Simpson index 36 
Equation 7 – Pielou index 36 
 

  



16 
 

List of used symbols and abbreviations 

 

16S rRNA  Component of the 30S subunit of a prokaryotic ribosome 

ACE   Abundance-based Coverage Estimator 

ADONIS  The Analysis of Dissimilarities 

AMF   Arbuscular Mycorrhizal Fungi 

AMOVA   Analysis of Molecular Variance 

ANOSIM  Analysis of Similarity 

ANOVA   Analysis of Variance 

ASV   Amplicon Sequence Variant 

CCA   Canonical Correspondence Analysis 

DAA   Differential Abundance Analysis 

EC   Electrical Conductivity 

EAA   Environmental Association Analysis 

FDR   False Discovery Rate 

G+   Gram-positive bacteria 

G-   Gram-negative bacteria 

GCxGC-MS  Two-dimensional Comprehensive Gas Chromatography–Mass Spectrometry 

GC-MS   Gas Chromatography–Mass Spectrometry 

GC-TOF-MS  Gas Chromatography–Time-of-Flight–Mass Spectrometry 

ICP-OES   Inductively Coupled Plasma Optical Emission Spectrometry 

ITS   Internal Transcribed Spacer 

KEGG   The Kyoto Encyclopedia of Genes and Genomes database 

LDA   Linear Discriminant Analysis 

LEfSe   Linear Discriminant Analysis Effect Size 

MD   Modularity 

MHB   Mycorrhizae Helper Bacteria 

MRPP   Multi-Response Permutation Procedure 

NMDS   Non-metric Multidimensional Scaling 



17 
 

OTU   Operational Taxonomic Unit 

PCoA   The Principal Coordinates Analysis 

PCR   Polymerase Chain Reaction 

PICRUSt  Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 

PGPR   Plant Growth-Promoting Rhizobacteria 

PLFA   Phospholipid Fatty Acids Analysis 

rRNA   Ribosomal RNA 

SCC   The Spearman Correlation Coefficient 

SEM   Standard Error of the Mean 

SOM   Soil organic matter 

sPLS-DA   Sparse Partial Least Square Discriminant Analysis 

SWC   Soil water content 

Tm   Melting temperature 

TN   Total nitrogen 

TOC   Total organic carbon 

UniFrac   Unique Fraction Distance 

UPGMA  Unweighted Pair-group Method with Arithmetic Means 

VPA   Variance Partitioning Canonical Correspondence Analysis 

  



18 
 

1. Introduction 

 

Ongoing global climate change is significantly affecting the functioning of forest ecosystems. One of 

the primary consequences of climate change is the shift in precipitation patterns (Ault, 2020;  

Stocker, 2014), which impacts not only life above ground but also the microbial communities within 

the soil (Hu et al., 2023). 

Soil microbes, particularly bacteria and fungi, play essential roles in maintaining forest ecosystem 

health. They are crucial for processing of organic matter, driving biogeochemical cycles, and 

contributing to carbon turnover and sequestration. Microbial activity is especially pronounced in the 

rhizosphere—a narrow soil zone surrounding plant roots that acts as a microbial hotspot. In this zone, 

microbes closely interact with plants, aiding in nutrient uptake, producing plant growth hormones, and 

even protecting plants from pathogens (Philippot et al., 2013). 

In addition to factors like temperature, pH, and soil texture, soil moisture is one of the primary 

determinants of soil microbial community structure and function (Li et al., 2016), influencing nutrient 

availability in the soil. Consequently, changes in soil moisture resulting from shifts in precipitation 

patterns can directly or indirectly affect ecosystem functions and processes (Sorensen et al., 2013;  

Patel et al., 2021). 

This study aims to investigate how precipitation and varying soil moisture levels influence edaphic 

factors and the structure of soil microbial communities in two clonal Norway spruce (Picea abies) seed 

orchards: Prenet (P-site) and Lipová Lhota (L-site). Over the past three decades, the P-site has 

experienced nearly twice the annual precipitation of the L-site. The study also seeks to characterize the 

bacterial and fungal microbiota inhabiting the rhizosphere associated with clonal Norway spruce 

individuals in these genetically identical stands. To achieve this, we used high-throughput sequencing 

and multi-omics approaches, combined with extensive statistical analysis. Ultimately, this research 

aims to assess the impact of reduced precipitation on forest soil microbial communities and provide 

insights into the potential consequences of climate change.  
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2. Aims and objectives 

 

The research aims to investigate the effect of drought on soil microbial community dynamics in two 

Norway spruce (Picea abies) seed orchards under significantly different precipitation regime. Three 

main objectives were formulated:  

 

1) Determination of soil quality parameters in forest soils under different precipitation regimes. 

2) Exploring the bacterial and fungal diversity in forest soils under different precipitation regimes. 

3) Understanding the bacterial and fungal community structure in the rhizosphere soil at two clonal 

seed orchards of Norway spruce (Picea abies) under different precipitation regimes. 
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3. Literature review 

3.1 Forest ecosystems and climate change 

Forests cover an estimated area of 38–40 million square kilometres on Earth, thus they present one 

third of total global land area (Baldrian, 2017). Forest ecosystems are found in majority Earth's biomes 

and harbour a large proportion of the global diversity (Lladó et al., 2017). Furthermore, forests are 

involved in many environmental processes of global importance. They take part in carbon sequestration 

(thus they are an important carbon sink) (Pan et al., 2011), erosion control, biodiversity conservation, 

and geochemical cycles of elements, such as nitrogen or phosphorus (Bonan, 2008). 

Forests, through their many ecological functions, take part in global climate control (Crowther et al., 

2015; Pan et al., 2011). However, ironically, it is the climate and its rapid changes that threatens the 

forests nowadays immensely (Bonan, 2008; Seppälä, 2009; Khaine and Woo, 2015). Global climate 

change alters the environmental conditions in a rapid speed and threatens even the well-adapted tree 

stands. Between 1850 and 2019, the global surface temperature has increased by 1.07 °C and is 

expected to further rise (IPCC, 2023). Consequentially, shifts in total precipitation amount and its 

interannual distribution (Held and Sonen, 2000; Han et al., 2024), large increases in mean temperature, 

and pronounced heat waves intensify the chronic forest stress, vulnerability and mortality (Khaine and 

Woo, 2015). Alterations in precipitation associated with rising temperatures may lead to drought and 

decreased soil moisture content (Dai et al., 2018; Cook et al., 2018).  

Forzieri et al. (2022) estimate that approximately 23% of the world’s forests—primarily tropical, 

temperate, and arid forests—have already reached a critical threshold of resilience against 

disturbances caused by climate variability and increasing water limitations. And further decline in 

resilience is expected. Moreover, according to IPCC (2023), global warming of 1.5 °C may lead to  

near-term high risks for biodiversity loss in forest ecosystems. Due to the strong connections within 

forest ecosystems, these risks might also be threatening to forest soils and their associated microbial 

communities. 

 

3.2 Forest soil  

Forest soils differ from other soil types, such as grasslands or agricultural soils. Trees largely contribute 

to the spatial heterogeneity of forest soil by multiple means, including the penetration of soils by the 

roots, generation of patches of litter and ground vegetation, and changes of the morphology of the 

terrain during uprooting or the production of deadwood (Hardoim et al., 2015; Štursová et al., 2016). 



21 
 

Residual components from the decomposition of litter and deadwood are accumulated in form of soil 

organic matter (SOM) further to be transformed by soil microorganisms, mainly fungi and bacteria 

(Clemmensen et al., 2013). 

In forests, unlike in other ecosystems, the identity of the dominant tree species affects both the 

community composition of soil microorganisms and their enzymatic activity (Baldrian, 2014). It is 

caused among others by amount of photosynthetic production of the dominant tree taxa or rooting 

depth of the particular tree individuals (Baldrian and Štursová, 2011). Consequently, the composition 

of forest soil microbiome differs from that of other soils. For instance, forest soils tend to have a higher 

fungal biomass and a greater abundance of root-associated ectomycorrhizal fungi compared to 

agricultural and grassland soils (Baldrian, 2014). Additionally, fungal mycelia growing in forest soils play 

a crucial role in immobilizing carbon derived from photosynthesis (Clemmensen et al. 2013). 

Consequently, forest soils exhibit spatial (both vertical and horizontal) and temporal heterogeneity. 

They are characterized by strong physicochemical gradients (Huhta and Setälä, 1990), which offer a 

mosaic of microhabitats for a diverse spectrum of microorganisms, including bacteria, archaea, and 

fungi. The accumulation of aboveground litter leads to the vertical layering of forest soils. The build-up 

of recalcitrant organic matter, along with the absence of roots near the soil surface, leads to the 

formation of a distinct litter layer. This layer is characterized by elevated extracellular enzyme activity 

of bacterial and fungal decomposers, resulting in higher rates of heterotrophic respiration and rapid 

decomposition (Žifčáková et al., 2016; Baldrian et al., 2012). Vertical stratification is largely driven by 

the decline in soil organic matter (SOM) content with increasing soil depth (Šnajdr et al., 2008), which 

also causes shifts in microbial community composition (O’Brien et al., 2005; López-Mondéjar et al., 

2015). Whereas saprotrophs are common in the upper soil layers, bacterial relative abundance tends 

to increase with depth (Lindahl et al. 2007; Šnajdr et al., 2008). Moreover, microorganisms in the soil 

are not evenly distributed. As Raynaud and Nunan (2014) point out, bacterial cells tend to form 

aggregates at the scale of a few micrometres, most likely due to soil structure and bacterial 

reproduction patterns. This spatial distribution regulates the interactions among microbial individuals. 

 

3.3 Rhizosphere 

The understanding of the rhizosphere dates back over a century, when it was first defined as the zone 

surrounding plant roots that is inhabited by a distinct population of microorganisms, shaped by the 

chemicals released from the roots (Hiltner, 1904). Indeed, rhizosphere forms the interface between 

living roots and the bulk soil and is considered a microbial hotspot, because each gram of soil in this 
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narrow zone can host up to 1011 microbial cells (Berendsen et al., 2012). Similarly to bulk soil microbial 

communities, the rhizospheric microbes also contribute to various ecosystem processes, including soil 

organic matter decomposition, biogeochemical cycling, and carbon sequestration (Mohanram and 

Kumar, 2019). Moreover, diverse microbial communities inhabiting the rhizospheric microenvironment 

play a key role in plant growth and health by enhancing nutrient acquisition from the soil, producing 

growth-promoting plant hormones, protecting against pathogen infection, and conferring tolerance to 

abiotic stress (Philippot et al., 2013). These functions are especially important for plants growing in 

nutrient-poor soils, where nutrients are limited and not easily accessible to roots, which is often the 

case of forests developed on acidic and nutrient-deficient soils (Uroz et al., 2016). Hence, the 

rhizospheric microbial communities influence the plant growth and overall ecosystem functioning 

(Berendsen et al., 2012). 

Figure 1 (Lladó et al., 2017) illustrates the key forest soil niches and highlights the main characteristics 

of their microbial diversity. It provides a comprehensive overview of the spatial distribution of microbial 

communities across different soil layers and their functional roles within the forest ecosystem. 

 

 

Figure 1 – Spatial distribution of microbial communities in forest soil 

Source: Lladó et al., 2017 
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3.4 Soil microbial communities 

Soil microbes represent an immense reservoir of biodiversity in terrestrial ecosystems and are largely 

responsible for the maintenance of soil quality and functioning (Philippot et al., 2013). The diversity of 

soil microbial communities directly influences forest health and productivity, contributing to the  

long-term sustainability of forest ecosystems (Chernov et al., 2021; Mishra et al., 2022). Quite literally, 

soil microbes bridge the gap between above-ground and below-ground processes in forests, 

significantly shaping the overall structure of the whole ecosystem (Chang et al., 2017). 

More specifically, microbes contribute to soil organic matter processing, organic carbon turnover and 

sequestration, orchestration of the biogeochemical cycling of various essential elements (i.e., nitrogen, 

phosphorus, or sulphur), and contribute to soil structure formation and stabilization (Banerjee and 

Chapman, 1996; Li et al., 2015; Fang et al., 2016; De Feudis et al., 2017; Martinovič et al., 2022;  

He et al., 2017). In addition, microbes also enhance plant growth, fitness, and resistance by facilitating 

nutrient uptake, thereby contributing to forest ecosystem productivity and fertility (Uroz et al., 2013; 

Chodak et al., 2016; Chang et al., 2017; Haas et al., 2018). Figure 2 (Fierer, 2017) highlights a selection 

of soil biogeochemical processes that are directly modulated by soil microorganisms. 

 

 

Figure 2 – Soil biogeochemical processes regulated by microorganisms 

Source: Fierer, 2017 

 

Several studies have investigated the main biotic and abiotic factors determining the structure and 

functioning of soil microbial communities. In addition to impacts of soil type, age, mineralogy, and pH, 

several studies have highlighted the strong link between plants and soil microorganisms (Yu et al., 2014; 

Jeanbille et al., 2016). Indeed, through litter degradation and the production of nutrients and in their 

rhizodeposits, plants modify the physical, chemical, and biological properties of their soil environment 
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(Uroz et al., 2016). In the context of forests, studies investigating the relationship between trees and 

the adjacent soil microbiome have been conducted on species such as Populus tremuloides,  

Pinus contorta, and Picea engelmannii (Ayres et al., 2009), and common European forest tree species, 

including Picea abies, Abies alba, Betula spp., Quercus spp.  (Augusto et al., 2002), as well as Fagus 

sylvatica and Fraxinus excelsior (Cezars et al., 2013). 

Microbial-driven ecosystem processes are the sum of the activities of microbial cells, most of which are 

subject to cell-to-cell interactions (Raynaud and Nunan, 2014). Therefore, not only the amount but also 

the composition of the microbes and their interactions are likely to have significant effects on overall 

processes. Understanding of microbial composition, their interactions, and the drivers shaping them is 

therefore critical for maintaining the role of forests in the future (Baldrian, 2017). 

The diversity and composition of the rhizospheric microbial community result from the collective 

influences of plant species (including its genotype and physiological stage), soil properties, and climate 

(Park et al., 2023; Bakker et al., 2013). Plant species or even specific genotypes tend to assemble 

relatively distinct rhizobacterial communities (Matthews et al., 2019), and these communities can be 

remarkably similar even in different environments across geographical regions (Trivedi et al., 2020;  

Xu et al., 2018). Moreover, rhizosphere microbiota exhibit succession patterns and phylogenetic 

conservation of rhizospheric competence characteristics, suggesting evolutionary adaptation to host 

plant species (Shi et al., 2015). Due to the intimate relationship between a plant and its microbiome, 

the microbiome is sometimes referred to as an extension of the plant genome or a form of the plant’s 

‘genetic outsourcing’ (Turner et al., 2013), greatly expanding the plant’s functional repertoire  

(Bakker et al., 2013). A concrete example of a plant partially relying on its associated rhizospheric 

microorganisms was described by Cook et al. (1995), who observed a strain of Pseudomonas 

fluorescens in the rhizosphere of wheat (Triticum) that produced an enzyme similar to those in the 

plant’s enzyme family involved in antibiotic production and defence against fungal diseases. This 

phenomenon is referred to as specific disease suppression, where certain microorganisms make soils 

particularly resistant to specific diseases, surpassing the general disease-suppressive properties of 

soils. In addition to P. fluorescens, other microorganisms contributing to suppressiveness have been 

identified within the Proteobacteria and Firmicutes bacterial phyla, as well as among fungi from the 

Ascomycota phylum (Berendsen et al., 2012). 

The microbial community in the rhizosphere is primarily acquired from the surrounding bulk soil pool 

(Yan et al., 2017; Ling et al., 2022). Soil microorganisms are chemotactically attracted to plant root 

exudates, after which they proliferate in this carbon-rich environment (Lugtenberg and Kamilova, 

2009). Furthermore, nutrients and signalling molecules present in the root exudates promote the 
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selection of particular taxa and functions within the vicinity of the root system (Marschner et al., 2004). 

One hypothesis to explain this selection, known as the ‘rhizosphere effect’ (Philippot et al., 2013), 

posits that plants recruit indigenous microbial communities from the soil that are beneficial for 

improving plant health and nutrition while also preventing the establishment of pathogens. An 

important aspect of the rhizosphere effect, as noted by Berendsen et al. (2012), is the significantly 

higher microbial population densities in the rhizosphere compared to the surrounding bulk soil. 

However, the overall diversity of these communities tends to be lower than that of bulk soil, as plants 

selectively recruit specific microorganisms from the larger microbial reservoir present in the 

surrounding soil (Berg et al., 2006).  

The rhizosphere-associated microbiome not only tends to have lower diversity than the surrounding 

bulk soil, but it also differs in its composition. For instance, Ling et al. (2022) observed a 0.9–5.3% 

decrease in bacterial diversity in the rhizosphere compared to bulk soil, suggesting that the rhizosphere 

contains only a subset of the broader soil community. Additionally, certain bacterial phyla, such as 

Proteobacteria and Bacteroidetes, were more prevalent in the rhizosphere, while others, like 

Chloroflexi, Acidobacteria, and Nitrospirae were significantly reduced. This shift may be attributed to 

the higher availability of organic carbon and faster nutrient cycling in the rhizosphere, which favour 

fast-growing bacteria with functions related to carbon transformation and plant pathogenesis, while 

reducing the abundance of bacteria responsible for processes like nitrification. Figure 3  

(Ling et al., 2022) illustrates these patterns of bacterial enrichment and depletion in the rhizosphere 

compared to bulk soil. 

 

 

Figure 3 – Abundance and functionality of rhizospheric bacterial taxa 

Source: Ling et al., 2022  
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Notably, the selection of microbes has been shown to shift throughout plant development and root 

growth, suggesting that this selection process adjusts based on the plant's changing nutritional needs 

or physiological state (DeAngelis et al., 2009; Chaparro et al., 2014). Given that root exudates vary 

between plant species, it is expected that the rhizosphere microbiomes of different plant species will 

also exhibit distinct differences (Bakker et al., 2013). 

Due to its importance, the rhizosphere is the focus of many studies. However, despite the vast area 

covered by forests worldwide and their high importance for global ecosystem, most studies on the 

rhizospheric microbiome are limited to agricultural ecosystems. There, the in-depth understanding of 

the stable rhizosphere microbiota is restricted due to the short growth periods of crops  

(Smalla et al., 2001; Kokalis-Burelle et al., 2017). In contrast, conifers establish their rhizospheric 

microbial associations through prolonged interactions with the soil environment in forest ecosystems 

(Mercado-Blanco et al., 2018).  Surprisingly, knowledge about the rhizosphere associated with forest 

trees remains rather limited to date. 

 

3.5 Impact of precipitation on soil microbiota 

The increase in the Earth’s surface temperature intensifies the global hydrological cycle and alters 

precipitation patterns (Dietzen et al., 2019), leading to prolonged periods of drought (Dai et al., 2018; 

Cook et al., 2018). Consequently, shifts in precipitation may affect soil microbiota by altering soil 

moisture content, nutrient availability, and plant communities (Li et al., 2016; Wu et al., 2020). Water 

availability is essential for soil microbial growth, biomass, and optimal activity (Bian et al., 2022;  

Gomez et al., 2021). In the rhizosphere specifically, precipitation is a key abiotic driver influencing its 

microbial community (Mavrodi et al., 2018). As Bengough (2012) highlights, up to 40% of terrestrial 

precipitation passes through the small volume of soil surrounding plant roots before being transpired, 

making the rhizosphere one of the most hydrologically active zones in the biosphere. Hence, changes 

in precipitation patterns and global warming can alter the structure of soil microbial communities and 

their functions as a whole (Schimel, 2018). 

Specifically, changes in precipitation and warming of the soil are expected to alter microbial community 

composition, the ratio of bacteria and fungi, and their functions. For instance, studies have shown that 

microbial activity is directly influenced by osmotic stress or limited substrate diffusion during short-

term drought (Schimel, 2018). In contrast, long-term droughts modify soil microbial community 

composition and subsequently alter nutrient flow and strategies for carbon utilization (Su et al., 2020; 

Fang et al., 2016; Sridhar et al., 2022). Drought reduces movement of substrates in the soil, lowers the 
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activity of root-associated microbes, and stresses plants, leading to reduced photosynthesis and 

belowground carbon allocation (Suseela and Dukes, 2013). Furthermore, water availability, together 

with temperature, are major drivers of soil microbial respiration (Liu et al., 2016; Bowd et al., 2022). 

This is especially important because the rate of terrestrial carbon storage depends on the balance 

between carbon fixed through photosynthesis and that released into the atmosphere via plant and soil 

respiration (Suseela and Dukes, 2013). 

Alternatively, higher precipitation can influence microbial activity by increasing the diffusion of soluble 

carbon substrates (Hungate et al., 2007; Yan et al., 2011), leading to enhanced plant growth and carbon 

allocation (Zak et al., 1993; Zak et al., 1994). Nevertheless, the positive correlation between water 

availability and microbial activity is valid only up to a certain threshold; beyond that, higher water 

availability can negatively affect microbial activity by reducing oxygen concentration (Horz et al., 2004; 

Linn and Doran, 1984). Therefore, accurate assessment and future predictions of the carbon budget 

require a better understanding of the impact of varying precipitation levels on microbe-mediated 

belowground processes (Nielsen and Ball, 2015; Schimel, 2016).  

Over the last few decades, experiments based on altered precipitation have increased significantly 

(Zhou et al., 2017). While meta-analyses have successfully demonstrated a connection between 

changes in precipitation and the structure and function of belowground microbial communities, they 

often struggle to fully capture the extent and direction of these effects, which can vary depending on 

other climatic factors (Zhou et al., 2017). Unfortunately, most studies have been conducted over short 

periods of precipitation alteration, limiting their ability to capture the long-term effects of seasonal 

precipitation differences on the structure and function of forest soil microbial communities. Thus, 

research on the long-term effects of precipitation on soil physiology, microbial community structure, 

and function is crucial for addressing existing knowledge gaps and developing more accurate models 

to predict the impacts of climate change (Zhang et al., 2017). 

Few studies have explored the microbial communities in the rhizosphere soil within forest ecosystems 

and their responses to climate change (Maitra et al., 2024; Fu et al., 2024; Zheng et al., 2020;  

Morales-Rodríguez et al., 2024). However, overall information on the ecological functions of 

rhizospheric microorganisms in forest soils under long-term differing precipitation regimes remains 

scarce. Gaining a deeper understanding of the dynamics and mechanisms governing these 

communities—particularly in response to changes in precipitation regime—is crucial for improving 

predictions of how climate change will impact the ecological functions of soil microbes. 
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3.6 Approaches to exploring soil properties and soil microbial communities 

3.6.1 Soil physicochemical properties 

The size, composition, and activity of soil microbial communities depend on various biotic and abiotic 

factors. Several studies have revealed a strong correlation between the structural and functional 

diversity of soil microbial communities and specific tree species composition (Li et al., 2014;  

Chodak et al., 2016), the amount of litter, and the quality of soil substrate (Haichar et al., 2008;  

He et al., 2017; Krashevska et al., 2015). Soil texture, moisture, and temperature are among the most 

crucial environmental drivers impacting microbial biomass (De Feudis et al., 2017). 

Soil texture plays a vital role in carbon storage and strongly affects nutrient retention and availability in 

forest ecosystems (Silver et al., 2000). For instance, clay-rich soils tend to accumulate organic carbon 

more rapidly than sandy soils and delay the decomposition of organic matter (Six et al., 2000;  

Six et al., 2002). In addition, soil texture also influences soil moisture, which in turn impacts organic 

carbon accumulation by manipulating the quantity of carbon input from plants and the rate of their 

decomposition in the soil (Zhou et al., 2008; O’Brien et al., 2010). 

Soil pH is another critical factor that influences microbial communities, particularly bacteria, due to the 

higher sensitivity of bacterial cells to narrow pH alterations (Chaparro et al., 2012; Lladó et al., 2017; 

Fierer and Jackson, 2006; Rousk et al., 2010). This is especially relevant for evergreen tree species, such 

as Norway spruce (Picea abies) and Scots pine (Pinus sylvestris), which are known to acidify soils  

(Uroz et al., 2016). Soil pH presumably also influences the bacterial-to-fungal ratio, as soil acidification 

can reduce the bacterial abundance while favouring fungal predominance (Coûteaux et al., 1998; 

Kennedy and Maillard, 2023). This phenomenon can be observed in acidic coniferous soils, where 

fungal biomass tends to exceed that of bacteria. Alternatively, elevated atmospheric nitrogen 

deposition causes a shift from fungal predominance to bacterial (Berg et al., 1998; Gao et al., 2016; 

Coûteaux et al., 1998; Frey et al., 2020). 

 

3.6.2 Soil enzyme activities 

Enzymes produced by soil microorganisms play a crucial role in wide range of biological processes, such 

as the degradation and mineralization of organic compounds, recycling of nutrients like nitrogen (N), 

phosphorus (P), and sulphur (S), and converting soil biopolymers into forms accessible to 

microorganisms and plants (Baldrian, 2009). As previously discussed, the dominant tree species in 

forests play a crucial role in shaping the microbial community composition (Baldrian, 2014). In mixed 

forests, the presence of different tree species can influence bacterial biomass and community 
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structure, likely due to factors such as differences in litter quality, rhizosphere effects, or soil moisture 

variations caused by differing levels of throughfall, as Saetre and Bååth (2000) demonstrated in a mixed 

stand of Norway spruce (Picea abies) and White birch (Betula pubescens). Interestingly, even in 

monoculture forests, soil enzymatic activity varies spatially. For example, Gömöryová (2004) found that 

catalase activity in a European beech (Fagus sylvatica) forest was unevenly distributed, with higher 

concentrations found near the edges of tree crowns. 

In forests, especially, enzymes involved in lignin transformation (such as Mn-peroxidase or lignin 

peroxidase), cellulose degrading (such as cellobiohydrolase or β-glucosidase), and hemicelluloses 

degrading (such as β-glycosidases or various esterases) hold an important place. Some enzymes are 

produced by a wide range of soil microorganisms. For example, enzymes involved in cellulose 

degradation are produced both by bacteria (for example genera Streptomyces, Micromonospora or 

Bacillus) and fungi (such as Ascomycota and Basidiomycota). On the other hand, production of some 

other enzymes, such as peroxidases, are often associated predominantly with fungi (Boer et al., 2005; 

Hättenschwiller et al., 2005). Furthermore, some ligninolytic enzymes (namely Mn-peroxidase and 

lignin peroxidase) are produced exclusively by saprotrophic species of fungi from Basidiomycota 

(Baldrian, 2009). Thus, measurements of enzymatic activity can serve as an indirect indicator of the 

activity of specific groups of microorganisms in the soil (Hofrichter, 2002; Baldrian, 2008) and can be a 

useful approach how to evaluate soil processes in ecosystems with a high turnover of organic 

compounds, such as in forest (Baldrian, 2009). 

Alterations in soil microbial community structure may affect the composition of enzyme production 

and thus impact the degradation of soil organic matter and other physiological processes in soil 

(Sinsabaugh, 2010; Fang et al., 2016; Borowik et al., 2022; Wu et al., 2022). Consequently, such shifts 

in the soil microbial equilibrium affect the energy and nutrients flow within the forest ecosystem and 

impact the aboveground life. 

 

3.6.3 Phospholipid fatty acids (PLFAs) 

Phospholipids are an integral component of the membranes in all living cells, forming a  

semi-permeable bilayer. Viable cells maintain intact membranes that contain fatty acids as part of their 

phospholipids. Furthermore, as noted by Lechevalier (1989), phospholipids represent a relatively stable 

proportion of an organism's biomass. 

Phospholipid Fatty Acid (PLFA) analysis present an effective non-culture-based method to evaluate the 

soil microbial communities in environmental samples (Frostegård et al., 2011; Yao et al., 2015).  
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It has two main advantages for assessing microbial community structure over the nowadays most 

widely used DNA-based techniques, as pointed by Zhang Y. et al. (2019). PLFA analysis can provide 

accurate quantification of microbial biomass and can be therefore more sensitive in detecting shifts in 

microbial community structure. Another benefit is that phospholipid fatty acids are taken to be 

indicative of living organisms since phospholipids are assumed to rapidly degrade after cell death. 

Consequently, PLFA analysis is a valuable method for detecting rapid changes in soil microbial 

community structure. Shifts in PLFA patterns can provide early insights into alterations within these 

communities. Since soil microbes play an essential role in various biogeochemical cycles, changes in 

their composition and activity are often among the first indicators of soil quality shifts (Zelles, 1999).  

 

3.6.4 Metabolite profiling 

Soil contains various chemical compounds produced by the metabolism of plants, microorganisms, and 

fauna. The range of metabolites found in soil includes low molecular weight (<1,000 Da) compounds 

such as fatty acids, amino acids, lipids, sterols, sugars, alcohols, organic phosphates, and purines 

(Withers et al., 2020; Rochfort et al., 2015). These metabolites appear in soil as a direct input or as a 

product of degradation and they are usually quickly processed by diverse microbial communities 

residing in soil (Song et al., 2024; Van Hees et al., 2005). Therefore, microbial metabolic activities play 

a crucial role in determining soil health, which in turn affects the overall health of the ecosystem. 

Metabolomics aims to analyse the metabolomes of organisms (Fiehn, 2002) which includes dozens of 

metabolites originating from both primary metabolism (such as amino acids and sugars), and 

secondary metabolism (for example flavonoids and terpenoids). Metabolomics can be targeted, which 

focuses on highly specific detection and quantification of beforehand selected metabolites  

(Jones et al., 2014; Lu et al., 2008). In contrast, untargeted metabolomics is global and unspecific  

(Jones et al., 2014) and aims to simultaneously analyse as many metabolites as possible in a single 

analysis, yielding hundreds of metabolites (Tautenhahn et al., 2012; Rivas-Ubach et al., 2013).  

This approach enables a broad analysis of the metabolites present in a sample  

(Vinayavekhin and Saghatelian, 2010). As highlighted by Withers et al. (2020), recent advancements in 

spectroscopy technologies have made it possible identify and quantify the relative abundance of 

thousands of metabolites in biological samples (Patti et al., 2012). 

Metabolomics has been widely used to analyse metabolic processes in plant physiology  

(Bundy et al., 2009; Shulaev et al., 2008) and microbiology (Koek et al., 2006). It offers a powerful tool 

not only for characterizing the structure of microbial communities (Abram, 2015; Graham et al., 2018), 
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but also for assessing their responses to environmental changes (Bundy et al., 2003; Jones et al., 2013; 

Jones et al., 2014; Viant, 2008). Metabolite production is regulated not only by gene expression, but it 

is further modulated by environmental factors (Jones et al., 2013). Furthermore, the metabolome is 

typically much more susceptible to environmental fluctuations than proteome or transcriptome 

(Peñuelas and Sardans, 2009). That makes metabolomics a useful method which provides valuable 

insights into how microbial communities respond to environmental changes (Riedl et al. 2012;  

Sardans et al., 2011). Additionally, the metabolic products generated by microbes can serve as 

biomarkers that reflect different soil conditions and shifts in the microbial communities (Jones et al., 

2014; Bundy et al., 2009). However, the knowledge on soil microbial metabolome is limited. Untargeted 

metabolomics analysis may therefore provide an insight into the soil-specific microbial nutrient and 

cellular pathways and shed a light on how climate change affects soil health (Withers et al., 2020).  

However, as White et al. (2017) highlights, it is important to acknowledge that the soil metabolites 

originate from numerous sources such as soil organic matter, plant exudates, and microbial 

metabolism. Ascertaining the source of metabolites is challenging, because it is difficult to differentiate 

the contribution of individual driving factors to the soil metabolite profiles.  

 

3.6.5 High-throughput amplicon sequencing 

Until recently, the knowledge of the structure of soil microbial communities was largely based on 

cultivation-dependent studies. However, nowadays it is recognized that these traditional  

cultivation-based methods considerably underestimate soil microbial diversity (Fierer, 2017). In fact, 

only about 1% of microorganisms on Earth can be cultured, while the remaining 99% are unculturable. 

However, advances in metagenomics, particularly in high-throughput sequencing technologies, now 

make it possible to analyse complex bacterial communities, including both culturable and unculturable 

species (Hongoh and Toyoda, 2011). Over the last decade, the development of high-density microarrays 

has resulted in major advancements in soil microbiome studies (Uroz et al., 2016). At the moment 

commonly applied DNA-based and RNA-based analyses of the soil microbiome have greatly expanded 

the knowledge on phylogenetic and taxonomic structure of soil microbial communities (Fierer, 2017). 

However, it is important to mention that soil contains a wide spectrum of microorganisms, the majority 

of which still stays uncharacterized (Torsvik and Øvreås, 2002). 

High-throughput amplicon sequencing of marker genes has greatly expanded the knowledge of 

microorganisms living in soils (Lundberg et al., 2012). In most of the studies, 16S ribosomal RNA (rRNA) 

gene sequencing has been widely used for diversity analysis in the polymicrobial population  

(Kamble et al., 2020). The 16S rRNA, an approximately 1,600 base pairs long gene, is universally present 
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in all prokaryotes and includes nine hypervariable regions, namely V1–V9, which differ in the level of 

their conservation (Wang et al., 2009). Whereas more conservative regions are useful for determining 

the higher-ranking taxa, less conservative ones can help to identify genus or species (Bukin et al., 2019). 

Currently, primer sets targeting the V3–V4 hypervariable regions (Klindworth et al., 2013) and the  

V4–V5 hypervariable regions (Parada et al., 2016) are the most widely used for investigation of bacterial 

communities (Fadeev et al., 2021). Internal transcribed spacer (ITS) on the other hand, has been 

selected as the primary DNA barcode for fungi (Schoch et al. 2012). ITS (comprising of two sections: 

ITS1 and ITS2) is the spacer DNA situated between the small-subunit and the large-subunit of rRNA 

genes in the chromosome or the corresponding transcribed region (Lindahl et al. 2013). 

Thanks to high-throughput amplicon sequencing, many studies have characterized root-associated 

microbial communities of plants, such as Arabidopsis thaliana (Lundberg et al., 2012), rice (Edwards et 

al., 2015), wheat (Donn et al., 2015), corn (Walters et al., 2018), citruses (Xu et al., 2018), and even 

some tree species such as Populus deltoides (Gottel et al., 2011) or Fagus sylvatica (Uroz et al., 2016). 

 

3.6.5.1 Classification of microbial taxa 

High-throughput amplicon sequencing generates reads which need to be further processed. 

Operational Taxonomic Units (OTUs) or Amplicon Sequence Variants (ASVs) are clusters with sequence 

similarity at the molecular level, and they are commonly used to classify microbial taxa. Both OTU and 

ASV analyses assume that the taxa clustered within the same OTU/ASV perform similar functions and 

share the same ecological roles, based on their genetic similarity (Beiko, 2015). A standard threshold 

for clustering of OTUs is 97% sequence similarity (He et al. 2015). Additionally, OTU can refer to a cluster 

of uncultivable microorganisms which are grouped according to their DNA sequence similarity detected 

by a specific taxonomic marker gene, such as 16S ribosomal RNA (rRNA) gene. ASV presents a 

modification of OTU. This denoising method creates an error model based on the quality of the 

sequencing run and uses it to differentiate between true biological variation and variations likely 

caused by sequencing errors. The remaining "true" sequences, which may differ by as little as a single 

nucleotide, are then classified as distinct ASVs (Chiarello, 2022). Despite this higher resolution up to 

99% similarity, the ASV approach generally provides similar ecological insights as OTUs  

(Glassman and Martiny, 2018). The obtained OTUs and ASVs are then annotated by matching with 

specific databases such as SILVA1 in case of bacterial 16S or UNITE2 in case of fungal ITS. 

 
1 http://www.arb-silva.de/ 
2 https://unite.ut.ee/ 
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3.7 Microbial diversity  

Although hidden beneath the surface, soil microbes represent a significant portion of global 

biodiversity, often rivalling the biomass of plants and animals aboveground. A hectare of soil can hold 

more than 1,000 kilograms of microbial biomass carbon (Fierer et al., 2009; Fierer, 2017).  A single gram 

of soil may contain up to 10 billion microorganisms, potentially encompassing thousands of species 

(Torsvik and Øvreås, 2002). In the case of bacteria, a single gram can house up to 1010 bacterial cells, 

with species diversity estimates ranging from 4,000 (Torsvik et al., 1990) to 50,000 species  

(Roesch et al., 2007). 

As outlined in previous chapters, these microorganisms play critical roles in nutrient cycling, carbon 

sequestration, and both directly and indirectly contribute to the health of aboveground ecosystems 

(Mohanram and Kumar, 2019). The abundance and composition of these microbes, along with their 

interactions, have substantial effects on microbe-driven processes. Consequently, various metrics are 

used to assess microbial richness and diversity within and across different sites. These microbial 

communities can be categorized at multiple levels using diverse indices, which will be discussed in 

further detail. 

 

3.7.1 Alpha diversity 

Alpha diversity estimates the diversity within a single community (within-sample). It reflects both the 

number of different species (species richness) and their distribution (species evenness). Therefore, 

alpha diversity metrics provide insight into the complexity and variability of the microbial community 

at a specific location, indicating how diverse the community is in terms of species presence and 

abundance. The selected alpha diversity indices characterizing the microbial community richness 

(Chao1, Abundance-based Coverage Estimator), diversity (Shannon, Simpson), evenness (Pielou), and 

sequencing depth (Good's coverage) are detailed in the following chapters. 
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3.7.1.1 Good's coverage 

The Good’s coverage index (Chao et al., 1988) is a metric used to estimate the completeness of 

sampling (sequencing depth) in microbial diversity studies. It gives an indication of what proportion of 

the total population has been sampled, based on the number of singletons (species observed only 

once) in the sample. The higher the Good’s coverage value (close to 1), the greater likelihood that the 

sequences present in the sample have been detected. Mathematically, Good’s coverage (C) can be 

expressed as follows: 

 
 

(1) 

 

where: 

− F1 is the number of singletons (species observed only once), 

− N is the total number of individuals or the sum of the abundances of all OTUs.  

 

3.7.1.2 Chao1 index 

Chao1 index (Chao, 1984) is a non-parametric estimator used to estimate the total species richness in 

a community, including unobserved species based on the number of rare species detected. Thus, it is 

an abundance-based estimator of species richness. A higher Chao1 index denotes a larger quantity of 

species, suggesting a relatively higher species diversity within the sample. The equation defining the 

index is as follows: 

 

 

(2) 

 

where:  

− SChao1 is the estimated total species richness, 

− Sobs is the number of observed species in the sample, 

− F1 is the number of singletons (species observed only once), 

− F2 is the number of doubletons (species observed exactly twice). 

 

  



35 
 

3.7.1.3 Abundance-based Coverage Estimator (ACE) 

ACE (Chao and Lee, 1992; Chao and Yang, 1993) is another richness index and is used to estimate 

species richness in a community, particularly focusing on rare species. It divides the species into 

“abundant” and “rare” groups and uses the frequency of the rare species to estimate the total species 

richness. ACE index is defined as: 

 

 

 

(3) 

where: 

− SACE is the estimated species richness, 

− Sabund is the number of abundant species, 

− Srare is the number of rare species (Sabund + Srare = Sobs), 

− F1 is the number of singletons (species observed only once), 

− γ2
ACE is the estimated coefficient of variation for the rare species, 

− CACE is the sample coverage estimator for rare species defined as: 

 

 

(4) 

where: 

− Nrare is the total number of individuals in the rare group. 

 

3.7.1.4 Shannon and Simpson indices 

The Shannon (Shannon, 1948) and Simpson (Simpson, 1949) indices are commonly used to estimate 

community diversity. These metrics account for both species abundance and their relative abundance 

(evenness), offering a more detailed understanding of community composition compared to basic 

species richness alone. 

The Shannon index (or Shannon Entropy) is based on the idea that as the number of unique species 

increases and their relative abundance becomes more evenly distributed, predicting which species will 

appear next in a sequence becomes increasingly difficult. This concept therefore measures the 

uncertainty (entropy) in predicting the identity of a randomly selected individual from a dataset.  
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A higher Shannon index value indicates greater diversity within the community. The formula for the 

Shannon Index (H') is: 

 

 

(5) 

where: 

− S is the total number of species (species richness), 

− p𝑖 is the proportion of individuals or the relative abundance of species 𝑖. 

The Simpson index reflects the probability that two entities, randomly selected from a dataset of 

interest, will belong to the same species. It emphasizes the dominance of species in a community, 

meaning it gives more weight to dominant species. Therefore, value closer to 1 indicates lower 

diversity. The formula of Simpson index (D) is given as below: 

 

 

(6) 

where: 

− S is the total number of species,  

− p𝑖 is the proportion of individuals of species 𝑖 relative to the total number of individuals in the 

community. 

 

3.7.1.5 Pielou index 

The Pielou’s Evenness Index (Pielou, 1966) is used to measure the evenness of species distribution 

within a community. It compares the actual diversity (observed species abundance distribution) to the 

maximum possible diversity (where all species are equally abundant). It ranges from 0 (no evenness – 

one species dominates the community while the others are rare) to 1 (complete evenness – all species 

are equally abundant). The formula for Pielou index (J') is: 

 

 

(7) 

where: 

− H’ is Shannon-Wiener diversity index, 

− S is the total number of species in the community (species richness). 
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3.7.1.6 Rarefaction curve 

A rarefaction curve (Sanders, 1968) is a graphical tool used to estimate species richness by analysing a 

random subset of individuals or samples from a population. The curve is plotted based on the 

association between the quantity of individuals and the number of represented species. This method 

allows for a standardized comparison of species diversity across different datasets by showing the 

cumulative number of species (or operational taxonomic units, OTUs) as more samples are collected.  

When the curve flattens, it indicates that most species in the community have been identified, meaning 

further sampling is unlikely to reveal many new OTUs.  In contrast, if the curve remains steep, additional 

sampling may still uncover a significant number of new species (OTUs). Thus, rarefaction curves provide 

valuable insight into whether the sequencing depth is sufficient (Deng et al., 2021). 

 

3.7.2 Beta diversity 

Beta diversity quantifies the variation in species composition between different communities 

(between-sample), evaluating how similar or different two communities are in terms of species 

presence or abundance. To analyse beta diversity of communities, a distance (or dissimilarity) metric is 

first needed to quantify the distances or dissimilarities between microbial communities. The 

comparisons of these communities are then made based on these distance measurements. Common 

distance metrics include the Bray-Curtis index, Jaccard index, and UniFrac distances. UniFrac distances, 

the phylogenetic beta diversity measures, are particularly useful for microbiome data and are 

frequently employed to summarize overall microbiota variability (Lozupone et al., 2011;  

Xia and Sun, 2023). UniFrac distances incorporate the phylogenetic relationships between taxa by 

assessing the level of divergence between different sequences. Unweighted UniFrac  

(Lozupone and Knight, 2005) focuses on phylogenetic information and considers only the presence or 

absence of species, calculating the fraction of unique branch lengths between communities without 

accounting for species relative abundance. On the other hand, Weighted UniFrac  

(Lozupone et al., 2007) takes into account the relative abundance of each taxon, adding a proportional 

weighting to the branch length with abundance difference. 

Out of many ordination techniques based on dissimilarity or distance matrix, the Non-metric 

Multidimensional Scaling (NMDS) is commonly regarded as the most robust unconstrained ordination 

method in community ecology (Minchin 1987). This indirect gradient analysis, creating an ordination 

based on a dissimilarity or distance matrix, is specifically useful method to analyse a large number of 

genes (Taguchi and Oono, 2005). Many studies have used NMDS in analysing microbial communities 

by constructing ordination plots of samples obtained through 16S rRNA gene sequencing (Che et al., 
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2015; Sinclair et al., 2015; LeBrun et al., 2018). Another commonly used distance matrix-based method 

is the Unweighted Pair-group Method with Arithmetic Means (UPGMA) (Sokal and Michener, 1958) 

which uses hierarchical clustering to construct phylogenetic trees based on distance data. The closest 

pairs of taxa are grouped based on a distance matrix with the distances represented in the branch 

lengths. This method is often used in studies to visualise the phylogenetic relationships within microbial 

communities (Schreiter et al., 2014; Jovel et al., 2016). 

Significant variation of the soil microbial communities can be determined by statistical methods, such 

as ADONIS (Anderson, 2001), Analysis of Similarity (ANOSIM) (Clarke, 1993), and Multi-Response 

Permutation Procedure (MRPP) analysis (Cai, 2006). ADONIS is a non-parametric multivariate test 

based on distance matrices that evaluates differences between sample groups and determines their 

significance through permutation tests (Stat et al., 2013). ANOSIM, utilizing the UniFrac distance 

matrix, provides a way to evaluate whether there is a significant difference in species composition 

between groups in sampling unit. Thus, it tests if the variation between groups is significantly greater 

than within groups (Chapman and Underwood, 1999). MRPP, on the other hand, assesses the strength 

and significance of sample clustering and explores associations between microbial communities and 

environmental factors by examining average distances (Mielke, 1991). 

Another statistical tool often used in microbiome studies is Linear Discriminant Analysis Effect Size 

(LEfSe) (Segata et al., 2011). It is used in microbial ecology and bioinformatics to identify features 

(typically microbial taxa or genes) that are significantly different between the groups. It combines 

standard statistical tests with Linear Discriminant Analysis (LDA) to estimate the effect size of each 

feature, indicating how strongly it differentiates the groups. LEfSe is particularly popular in microbiome 

studies to identify specific microbes that are associated with different conditions (for example 

environmental factors) and these microbes can be used as biomarkers distinguishing between the 

groups (Chang et al., 2022). 

 

3.7.3 Microbial functional prediction 

Microbes perform a wide range of vital functions in soil ecosystems. While high-throughput amplicon 

sequencing can generate sequences and operational taxonomic units (OTUs) that reveal the richness 

and composition of microbial communities, this approach does not provide insight into the biological 

processes or functional roles of the identified microbes (Toole, 2021). To predict the metabolic 

functions of soil microbes, the microbial composition from amplicon sequencing can be mapped to 

reference databases of microbial genomes. For instance, bacterial 16S ASVs can be aligned with 
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functional databases like the Kyoto Encyclopedia of Genes and Genomes (KEGG)3  

(Kanehisa et al., 2012), PFAM4 (Mistry et al., 2021), and Enzyme Commission (EC)5 (Bairoch, 2000) to 

predict different potential functional roles of bacterial communities in soil samples. Similarly, the 

putative functions of the fungal communities in soil can be determined by categorizing fungal ASVs 

based on their ecological guilds using tools such as FUNGuild6 (Nguyen et al., 2016). 

Functional predictions are particularly valuable in complex environments like soils (Quince et al., 2017; 

Diamond et al., 2019), but it is important to note that these predictions are based on computational 

models and may not fully reflect the actual in situ scenario. Therefore, further experimental validations 

are often necessary to confirm these predicted functions. 

 

3.7.4 Microbial co-occurrence networks  

Soil is a complex habitat inhabited by numerous microbial taxa. Many studies examining soil microbial 

communities primarily focus on the diversity within individual samples (alpha diversity) or the relative 

abundance of taxa and the similarities between different communities (beta diversity). However, less 

attention has been given to using sequencing data to investigate the direct or indirect interactions 

between microbial taxa that coexist in environmental samples. This is significant because, as previously 

mentioned, ecosystem processes driven by microbes are a result of both individual microbial activities 

and their interactions with one another (Raynaud and Nunan, 2014). Microorganisms thrive within 

intricate association networks, rather than functioning in isolation. Species that are highly 

interconnected likely play critical roles within microbial communities (Liu et al., 2024). Therefore, both 

the quantity and composition of microbes, along with their interactions, can significantly influence 

overall ecological processes. 

Network analysis provides a mathematical approach to uncover the complexity of relationships  

within a microbial community. In this framework, microbes are represented as nodes, while the 

interactions and associations between them are depicted as edges (Guseva et al., 2022).  

In microbial communities—particularly in environments as complex as soil—interactions between taxa 

are typically inferred indirectly through co-occurrence data, since these interactions are not directly 

observable in situ.  

  

 
3 http://www.genome.jp/kegg/ 
4 http://pfam.xfam.org/ 
5 https://enzyme.expasy.org/index.html 
6 https://github.com/UMNFuN/FUNGuild 
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As a result, network analysis relies on the observation of species co-occurrence patterns within 

molecular microbial datasets, such as those obtained from 16S rRNA amplicon sequencing  

(Röttjers and Faust, 2018), and this is commonly referred to as microbial co-occurrence network 

analysis. 

Network analysis has become a well-established tool for examining species interactions within 

ecosystems (Bascompte, 2009; Poisot et al., 2016), as it goes beyond traditional measures of alpha and 

beta diversity (Chaffron et al., 2010; Barberán et al., 2012). By integrating diverse types of information, 

networks can reveal patterns at the systems level (Röttjers and Faust, 2018). 

 

3.8 Environmental Association Analysis (EAA) 

Environmental Association Analysis (EAA) is an approach used to identify links between microbial 

community structures and site-specific environmental factors. EAA provides insights into how 

environmental variables affect the composition, diversity, and functional potential of soil microbial 

communities, illustrating how these communities respond to environmental changes  

(Rellstab et al., 2015). Various methods are available to connect microbial communities with their 

environmental drivers. 

One way to evaluate the relationship between microbial abundance and environmental factors is 

through Spearman’s rank correlation (Spearman, 1904), a non-parametric statistical metric that 

measures the nonlinear monotonic relationship between two variables (Fujita et al., 2009). It identifies 

whether an increase (or decrease) in one variable tends to correspond to an increase (or decrease) in 

another. The correlation ranges from 1 (a perfect positive correlation, where both variables increase in 

a perfectly monotonic relationship) to −1 (a perfect negative correlation, where one variable increases 

while the other decreases in a perfectly monotonic way). A value of zero signifies no correlation and 

no monotonic relationship between the variables. Additionally, the Mantel test (Mantel, 1967) can be 

used to examine the correlation between two distance matrices, typically to assess whether spatial or 

environmental distances correlate with biological, genetic, or ecological distances. The Mantel test is 

commonly used to evaluate the relationship between geographic distance and genetic divergence 

(Diniz-Filho et al., 2013). 
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Another widely used method is Canonical Correspondence Analysis (CCA) (Ter Braak, 1986), which 

explores how soil microbial communities vary in response to environmental factors. CCA identifies key 

environmental factors shaping the composition and structure of microbial communities by comparing 

a matrix of species abundances with a matrix of environmental variables from the same site.  

An extension of CCA is Variance Partitioning Canonical Correspondence Analysis (VPA or VP-CCA) 

(Borcard et al., 1992; Legendre and Anderson, 1999), which partitions the variation in microbial 

community composition into components explained by different sets of environmental variables. The 

aim of variance partitioning is to determine how much variation in community composition can be 

attributed to distinct categories of environmental factors, as well as to quantify the relative importance 

of these factors. Any residual variation represents unexplained variance not accounted for by the 

included explanatory variables.  
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4. Materials and methods 

 

4.1 Seed orchards 

For this study, two Norway spruce (Picea abies) clonal seed orchards were selected: Prenet (P-site) 

(49.2354172N, 13.2112808E) and Lipová Lhota (L-site) (49.2816108N, 13.5515606E), both located in 

the southwest of the Czech Republic (Plzeň Region, Klatovy county). The maps in Figure 4 depict the 

locations of both sites on both a larger and smaller scale. 

 

Figure 4 – Location of L-site and P-site seed orchards 

Location of the Lipová Lhota and Prenet study sites on (A) larger and (B) smaller scale (Source: mapy.cz) 
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These orchards were established as part of a breeding program aimed at preserving the gene pool of 

Norway spruce from the Modrava region. The project’s goal was to select indigenous Modrava Norway 

spruce individuals and create seed orchards that could produce seeds suitable for reforestation in the 

highest elevations of the Šumava Mountains. 

The Lipová Lhota seed orchard was officially established in 1984, using ramets from 64 spruce 

individuals from the Modrava forest district (altitudes of 1180–1350 meters above sea level).  

The Prenet seed orchard followed five years later in 1989, utilizing the same ramets. The establishment 

of the second seed orchard at a higher altitude was due to concerns about the potential impact of  

long-distance pollen transfer from the lower altitudes in Lipová Lhota, which could compromise the 

use of seeds for reforestation in the highest elevations of the Šumava Mountains. Establishing two 

orchards with identical clones at different altitudes enables the investigation of growth variations and 

other characteristics among the clonal individuals. Additionally, it allows for comparative studies of the 

surrounding environment such as soil conditions. 

 

4.2 Climatic data 

Despite their geographical proximity of approximately 25 kms, the seed orchards display remarkably 

different environmental conditions, as highlighted in Table 1. Over the past 30 years, the recorded 

average annual temperature in Prenet was 1.56°C lower than in Lipová Lhota. In contrast, Prenet 

received more than twice the average annual precipitation compared to Lipová Lhota. Boxplots in 

Figure 5 visualise the significant variability in average annual precipitation (A) and temperature (B) 

between the study sites.  

 

Table 1 – Selected environmental conditions in L-site and P-site 

 

 

 

Lipová Lhota (L) Prenet (P)

Altitude [MASL] 560 970

Slope [%] 9 14

Tree spacing [m] 5 × 5 6 × 6

Average annual temperature [°C] 8.6 7.04

Average annual precipitation [mm] 633 1306.48
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Figure 5 – Variability in selected environmental factors 

Variation in (A) average annual precipitation and (B) average annual temperature between the L-site and P-site 
study sites recorded over a period of more than 30 years. 

 

4.3 Sample collection 

Sampling of soil and rhizosphere took place between October and November 2019.  

 

4.3.1 Bulk soil sampling 

Bulk soil samples were obtained at a depth of 10 cm below the surface using a root corer  

(Eijkelkamp, Netherlands). Six randomly chosen samples from Prenet and nine from Lipová Lhota were 

collected to account for the difference in land size between the two seed orchards (L-site > P-site). In 

total, 15 samples were placed in sterile plastic zip-lock bags and transported to the laboratory for 

further analysis. The samples were first sieved using a 2.0 mm screen sieve. Some were kept at 4°C for 

later analysis of soil physicochemical and biochemical properties, while the rest were frozen at –80°C 
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for PLFA analysis, soil metabolite profiling, and DNA extraction to investigate microbial communities 

through next-generation sequencing. Physicochemical properties were measured using air-dried soil 

samples, whereas enzyme activity assays were conducted on moist field samples. All results were 

reported based on the soil's dry weight. 

 

4.3.2 Rhizosphere sampling 

For the sampling of rhizospheric soil, five Norway spruce clonal tree varieties (1901, 1902, 1908, 1941, 

and 1950) were selected. Each of these grafted clonal tree varieties had five tree replicates as shown 

in detail in Table 2.  

 

Table 2 – Rhizosphere sampling details 

 

Grafted clonal 

Spruce variety
Trees L-site P-site

A L1901_A P1901_A

B L1901_B P1901_B

C L1901_C P1901_C

D L1901_D P1901_D

E L1901_E P1901_E

A L1902_A P1902_A

B L1902_B P1902_B

C L1902_C P1902_C

D L1902_D P1902_D

E L1902_E P1902_E

A L1908_A P1908_A

B L1908_B P1908_B

C L1908_C P1908_C

D L1908_D P1908_D

E L1908_E P1908_E

A L1941_A P1941_A

B L1941_B P1941_B

C L1941_C P1941_C

D L1941_D P1941_D

E L1941_E P1941_E

A L1950_A P1950_A

B L1950_B P1950_B

C L1950_C P1950_C

D L1950_D P1950_D

E L1950_E P1950_E

1901

1902

1908

1941

1950
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Rhizospheric soil samples were gathered from a depth of 15 cm for each clonal tree replicate from the 

two sites. Since the trees were grafted and have different root systems, the variations in the rhizosphere 

microbiome among the clonal tree varieties were not considered. For each clonal tree variety, five 

rhizosphere soil samples were randomly taken from a distance of 20–30 cm from the trunk and 

approximately 10 mm from the roots. In total, 50 soil samples (25 from each site) were collected in 

sterile plastic zip-lock bags, transported to the laboratory, and sieved through a 2.0 mm screen sieve. 

Similarly to bulk soil samples, part of the samples was stored at 4°C for analysis of soil properties, while 

the remaining samples were frozen at –80°C for soil metabolite profiling and DNA extraction. These 

samples were used to assess microbial community structure through amplicon sequencing, targeting 

the bacterial 16S rRNA gene and the fungal ITS2 region. 

 

4.4 Soil texture and water content determination 

The soil particle size distribution was determined using a laser granulometer (CILAS 1190 LD) to 

measure particle sizes from 0.04 to 2,500 mm in wet mode. The soil samples were pretreated following 

the method outlined by Lisá et al. (2017). Three separate measurements were conducted: the first was 

taken after the sample had reacted with a KOH solution for 10 minutes to ensure proper dispersion. 

The second measurement was performed on the same sample after carbonates were removed through 

a 10-minute reaction with 35% concentrated HCl. The third dispersion aimed to eliminate any organic 

matter using the reaction with H2O2. The soil texture was classified into three fractions: clay (<2 μm), 

silt (2–63 μm), and sand (63–2,000 μm), according to Wentworth (1922). Soil water content (SWC, %) 

was determined by oven-drying 5 g of soil at 105°C for 24 hours, and the results were reported based 

on the soil's dry weight. 

 

4.5 Trace elements in soil 

Presence of the trace elements (Al, Ca, Fe, K, Mg, Mn, Na, P, S, Si, Zn) in the rhizospheric soil was 

determined following the Mehlich 3 (M3) extraction procedure (Mehlich, 1984). The M3 extraction 

solution consisted of 0.2M acetic acid (CH3COOH), 0.25M ammonium nitrate (NH4NO3), 0.015M 

ammonium fluoride (NH4F), 0.013M nitric acid (HNO3), and 0.001M ethylenediaminetetraacetic acid 

(EDTA) [(HOOCCH2)2 NCH2CH2N(CH2COOH)2] at pH 2.5±0.1. The air-dried soil was extracted with  

1:10 (m/v) soil: M3 solution for 10 min, and the extract was measured by ICP-OES using ICP-OES  

Agilent 5100 (Zbíral, 2016). All the results were reported based on the soil's dry weight. The level of 

significance was determined using the student’s t-test (p <0.05). 
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4.6 Soil physicochemical and biochemical properties 

Soil physicochemical and biochemical properties, including soil pH, electrical conductivity (EC), total 

organic carbon (TOC), and total nitrogen (TN), were analysed following standard procedures. Soil pH 

(in a 1:5 H2O ratio, w/v) was measured using an ISFET electrode (Sentron, Netherlands) after the 

equilibrium between hydrogen ions in the solution and hydrogen ions bonded to the sorption complex 

of the sample was established. EC was determined based on the increase in the specific electrical 

conductivity of the extracted infusion (water-soluble electrolytes were extracted in a 1:25 H2O m/V) 

after filtration. TOC was calculated from total carbon by subtracting the correction for carbonates 

present in the sample7. TOC was quantified using the dry oxidative combustion method to CO2 at 

1,250°C with a TOC analyser (SSM-5000A; Shimadzu Corp., Kyoto, Japan) as described by  

Nelson and Sommers (1982). TN content in the soil was determined using the Kjeldahl method 

(Bremner, 1996). Statistical significance was evaluated using the Kruskal-Wallis test. 

 

4.7 Extracellular enzyme activities in soil 

A total of seven hydrolytic soil extracellular enzymes were assessed using microplate-based 

fluorometric and photometric assays as outlined by Baldrian (2009). The enzymes cellobiohydrolase, 

β-galactosidase, α-glucosidase, β-glucosidase, and β-xylosidase are involved in the degradation of 

organic carbon, whereas chitinase and acid phosphatase catalyse nitrogen and phosphorous 

transformation in the soil (Bell et al., 2013).  

To measure enzyme activity, 1 g of moist field soil was suspended in 100 ml of distilled water and 

subjected to sonication for 4 min. A 200 μl aliquot of this soil suspension was then added to a 50 μl 

solution of methylumbelliferyl (MUF, pH 7.0) in a 96-well plate and incubated at 40°C. Fluorescence 

readings were taken at 5 and 125 min using a fluorescence reader (Infinite, TECAN, Austria), with 

excitation at 355 nm and emission at 460 nm (Baldrian, 2009). A standard curve was created from serial 

dilutions of 4-methylumbelliferone (MUF) (Vepsäläinen et al., 2001). Enzyme activity was calculated 

from the fluorescent readings using the standard curve and expressed as nmol g-1 soil × h-1 after 

correcting for dry weight. 

 

  

 
7 If the carbonates in the sample are removed beforehand, the organic carbon is determined directly. 
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4.8 Phospholipid fatty acids (PLFA) analysis 

The PLFAs were extracted using the protocols previously described by Stella et al. (2015) and  

Šnajdr et al. (2008). Phospholipids were extracted from 1 g of freeze-dried soil using a mixture of 

chloroform-methanol-phosphate buffer (1:2:0.8), purified using a solid-phase extraction cartridge 

(LiChrolut Si-60, Merck, White House Station, NJ, USA), and subjected to mild alkaline methanolysis. 

The free methyl esters of PLFAs were then analysed by gas chromatography-mass spectrometry  

(GC-MS) (450-GC, 240-MS ion trap detector, Varian, Walnut Creek, CA, USA). 

The fungal biomass in the soil samples was determined based on 18:2ω6,9 fatty acid content, while 

the bacterial biomass was estimated as the sum i14:0, i15:0, a15:0, 16:1ω5, 16:1ω7, 16:1ω9, 10Me-

16:0, i16:0, i17:0, a17:0, cy17:0, 17:0, 10Me-17:0, 18:1ω7, 10Me-18:0, 15:0, and cy19:0. Actinobacteria 

biomass was quantified according to 10Me-16:0, 10Me-17:0, and 10-Me18:0. The sum of all the 

identified lipids was used to estimate the total microbial biomass (total PLFAs). Different microbial 

ratios such as fungal:bacteria biomass, actinobacteria:bacteria, and G+ bacteria:G- bacteria were also 

calculated (Moore-Kucera and Dick, 2008). 

 

4.9 Metabolite profiling 

For the extraction of soil metabolites, freeze-dried samples stored at –80°C were homogenized using a 

mortar and pestle. The extraction process followed a protocol by Song et al. (2020), which was modified 

from Swenson and Northen (2019). Homogenized soil (500 mg) was mixed with 600 μl of a methanol 

solution (H2O 3:1, v/v) and 600 μl ethyl acetate, along with 10 μl of adonitol [0.5 mg/ml, internal 

standard A (IS_A)]. The mixture was sonicated with an ultrasonic rod homogenizer (30 s, 50%, 30 kHz) 

and incubated in a thermoshaker for 15 min at 10°C and 2,000 rpm, followed by centrifugation at 

16,000 g for 15 min at 4°C. The supernatant was collected, and the extraction steps were repeated for 

the soil pellet. All supernatants were pooled and vacuum-dried using a vacuum concentrator without 

heating (Modul 4080C, Hanil Science Industrial). The dried samples were resuspended in 50 μl of 

anhydrous pyridine and 50 μl of methoxyamine hydrochloride in pyridine (25 mg/ml) and incubated at 

40°C for 90 min at 1,700 rpm. To this solution, 100 μl of N,O-Bis(trimethylsilyl)trifluoroacetamide with 

trimethylchlorosilane (BSTFA + TMSC) was added and incubated at 40°C for 30 min. Finally, 10 μl of  

1-bromoeicosane [0.52 mg/ml in hexane, internal standard B (IS_B)] was added, mixed, and 

centrifuged for 5 min and 3,000 rpm. The supernatant was transferred for analysis in a GCxGC-MS. 
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The samples were analysed using a two-dimensional comprehensive gas chromatography with mass 

detection (GCxGC-MS; Pegasus 4D, Leco Corporation) controlled by ChromaTOF v4.5. The gas 

chromatograph is coupled with a time-of-flight mass spectrometer (GC-TOF-MS, Pegasus 4D, Leco 

corporation). A combination of non-polar and polar separation columns was used for the GCxGC 

analyses: Primary column; Rxi-5SilMS (29.5 m 0.25 mm, Restek); Secondary column BPX-50  

(1.44 m 0.1 mm, SGE). Other parameters were set as follows: inlet temperature 300°C, injection volume 

1 ml in split 10 mode, constant He flow 1 ml/min, modulation time 3 s (hot pulse 1 s), modulation 

temperature offset to the secondary oven 15°C, transfer line temperature 280°C, ion source 

temperature 220°C, mass range m/z 85–1,000. Temperature program applied to the primary oven:  

50°C (hold 1 min) with a gradual increase to 190°C (8°C/min) followed by an increase to 220°C (4°C/min) 

and then to 320°C (8°C/min) with 12 min hold. The same program was applied to the secondary oven 

with a temperature offset of +5°C. Two-dimensional chromatograms of the analyses were aligned and 

processed in Statistical Compare, an in-build module of ChromaTOF v4.5 software. 

Metabolites were analysed as trimethylsilyl derivatives and normalized according to the weight taken 

to the extraction and internal standards IS_A and IS_B. The metabolites were identified by comparing 

their mass spectra with those available in NIST Library, Fiehn Library, and the in-house-built mass 

library. If available in the mass databases, retention indices were determined using linear hydrocarbons 

with the retention indexes (based on linear hydrocarbons). Statistical analysis included a sparse PLS 

discriminant plot using the sPLS-DA algorithm (Lê Cao et al., 2011) and normalized data evaluation in 

MetaboAnalyst 5.01 (Chong et al., 2019). Soil samples were clustered using Euclidean distance, and 

metabolites were grouped using Ward's Clustering Algorithm. T-tests and ANOVA were used to assess 

the significance of metabolite differences across the soils. 

 

4.10 DNA extraction 

For sequencing, soil DNA was extracted from all samples of biological replicates that had been stored 

at –80°C. Around 250–300 mg (depending on the soil texture) of soil was used for each extraction, 

utilizing the Nucleospin Soil DNA Purification Kit (Macherey Nagel, Germany) according to the 

manufacturer’s protocol (minor protocol modifications are listed in footnotes).  

Approximately 250 mg of fresh sample material was transferred into a NucleoSpin Bead Tube Type A 

containing the ceramic beads and 700 μL of Buffer SL1 or Buffer SL28 was added. Then, lysis conditions 

 
8 Buffer SL1 proved to be more effective than SL2 for soil DNA extraction. 
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were adjusted by adding 150 μL of Enhancer SX9 into the tubes with pre-prepared samples. Afterwards, 

sample lysis was secured by vortexing the samples at full speed and room temperature (18–25 °C) for 

5 min. To precipitate the contaminants, samples were then centrifugated for 2 min at 11,000 x g in 

order to eliminate the foam caused by the detergent. Afterwards, 150 μL of Buffer SL3 was added and 

samples were vortexed for 5 s, followed by 5 min incubation at 0–4°C and then the samples were 

centrifuged for 1 min at 11,000 x g. To filtrate the lysate, NucleoSpin Inhibitor Removal Column was 

placed in a Collection Tube (2 mL, lid). 700 μL of clear supernatant from the previous step was loaded 

into the filter and then centrifuged for 1 min at 11,000 x g. In case of visible pellet in the flow through, 

clear supernatant was transferred to a new collection tube. To adjust the binding conditions, 250 μL of 

Buffer SB was added and the sample was vortexed for 5 s10 with a closed lid. In the DNA binding step, 

the NucleoSpin Soil Column was placed in a Collection Tube (2mL), 550 of μL the sample was loaded 

into the column and then the sample was centrifuged for 1 min at 11,000 x g. The flow-through was 

discarded and the column was placed back into the Collection tube. Remaining sample was loaded into 

the column and centrifuged for 1 min at 11,000 x g. Again, the flow-through was discarded and the 

column was placed back into the Collection tube. Afterwards, the washing of the silica membrane with 

bound DNA was performed by four consecutive washings. In the first washing, 500 μL of Buffer SB was 

added into the NucleoSpin Soil Column and the sample was centrifuged for 30 s at 11,000 x g.  

The flow-through was discarded and the column was placed back into the Collection tube. In the second 

washing, 550 μL of Buffer SW1 was added into the NucleoSpin Soil Column and the sample was 

centrifuged for 30 s at 11,000 x g. Again, the flow-through was discarded and the column was placed 

back into the Collection tube. In the third washing, 700 μL of Buffer SW2 was added into the NucleoSpin 

Soil Column. Sample was then vortexed with the closed lid for 2 s and then centrifuged for 30 s  

at 11,000 x g. Again, the flow-through was discarded and the column was placed back into the 

Collection tube. Lastly, in the fourth wash, 700 μL of Buffer SW2 was added into the NucleoSpin Soil 

Column, vortexed with the closed lid 2 s, and then centrifuged for 30 s at 11,000 x g. The flow-through 

was discarded and the column was placed back into the Collection tube. To dry the silica membrane 

with bound DNA, the sample was centrifuged for 2 min at 11,000 x g. The last step was the DNA elution 

when the NucleoSpin Soil Column was placed into a new microcentrifuge tube. 50 μL11 of Buffer SE was 

added into the column and the sample was incubated for 1 min at room temperature (18–25 °C) with 

opened lid. Afterwards, the lid was closed, and the sample was centrifuged for another 30 s at  

11,000 x g.  

 
9 This step was omitted, because Enhancer SX did not have an impact on soil DNA yield. 
10 Short spin was added after the vortexing to ensure the complete passage of the solution.  
11 To maximize DNA yield, two consecutive elutions (2×25 μL) into the same microcentrifuge tube were 
     performed. 
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The extracted soil DNA was quantified using a Qubit 2.0 Fluorometer with a Qubit 2.0 High Sensitivity 

dsDNA Assay Kit. The DNA integrity was then assessed by electrophoresis on a 1% agarose gel.  

Finally, the isolated DNA samples were sent to Novogene (Beijing, China) for high-throughput amplicon 

sequencing, which was conducted following their standardized protocol. 

 

4.11 DNA amplification and amplicon sequencing 

The purified DNA (1 ng/μl) was used for amplification with a specific set of universal primers with 

unique barcodes. These primers targeted the bacterial 16S rRNA gene region (341F/806R) as described 

by Klindworth et al. (2013) and the fungal ITS2 domain (ITS3, ITS4) according to White et al. (1990).  

The primer sequences are provided in Table 3. 

 

Table 3 – Primers targeting 16S rRNA and ITS2 domain 

 

 

The PCR reactions (including the negative control with no template DNA for contamination control) 

were performed using Phusion High-Fidelity PCR Master Mix (New England Biolabs, Ipswich, MA, USA). 

Amplification was performed in a thermal cycler with optimized PCR protocol. Initial denaturation  

at 95°C for 5 min, denaturation at 95°C for 30 s, primer annealing at Tm (melting temperature) for 30 s, 

extension at 72°C for 30 s, and final extension at 72°C for 1 min. Total of 30 cycles of amplification were 

performed. 

The equi-density of PCR amplicons was then pooled, and gel purified (Qiagen Gel Extraction Kit, 

Germany) before the library preparation. The sequencing library, with index codes, was prepared using 

the NEBNext Ultra DNA Library Prep Kit from Illumina. Following preparation, the library was quantified 

using a Qubit 2.0 Fluorometer (Thermo Scientific, Waltham, MA, USA), and its quality was assessed 

using the Agilent Bioanalyzer 2100 system. Sequencing was then carried out on the Illumina  

NovaSeq 6000 platform, producing 250 bp paired-end reads. 

 

  

Region Fragment lenght [bp] Primer Primer sequences (5' - 3') Tm [°C] Reference

341F CCTAYGGGRBGCASCAG 57.5 Klindworth et al., 2013

806R GGACTACNNGGGTATCTAAT 50.2 Klindworth et al., 2013

ITS3 GCATCGATGAAGAACGCAGC 57 White et al., 1990

ITS4 TCCTCCGCTTATTGATATGC 52.1 White et al., 1990

466

386

Bacterial 16S

Fungal ITS

V3–V4 

ITS2
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4.12 Sequencing data analysis 

4.12.1 Data filtering 

The paired-end reads generated from Illumina sequencing of soil DNA samples were assembled using 

FLASH (V1.2.7) (Magoč and Salzberg, 2011) following the removal of barcode and primer sequences. 

High-quality clean tags were then obtained by filtering the assembled reads based on pre-set 

parameters (Bokulich et al., 2013) in QIIME (V1.7.0) (Caporaso et al., 2010). Chimeric sequences were 

detected using the UCHIME algorithm (Edgar et al., 2011) by comparing the reads to reference 

databases: the SILVA database for bacterial 16S sequences (Wang et al., 2007) and the UNITE database 

for fungal ITS sequences (Nilsson et al., 2019). Any identified chimeras were removed, resulting in the 

final effective tags (Haas et al., 2011). 

For the rhizosphere DNA samples, data filtering and analysis were conducted using QIIME2 software 

(version 2022.2) (Bolyen et al., 2019). Similar to the soil samples, the Illumina paired-end reads 

assigned to each sample were assembled based on their unique barcodes after the removal of the 

barcode and primer sequence and merged to get raw reads using FLASH (V1.2.11)  

(Magoč and Salzberg, 2011). Quality control of the raw tags was carried out using fastp software 

(version 0.23.0) (Chen et al., 2018), discarding any reads with a Phred Quality score below 30, resulting 

in high-quality clean tags. Chimeric sequences were then identified and removed using  

VSEARCH software (version 2.7.1) (Rognes et al., 2016), yielding effective tags for further downstream 

bioinformatic analysis. 

 

4.12.2 Operational Taxonomic Units (OTUs) and Amplicon Sequence Variants (ASVs) 

For soil samples, OTU clustering was performed using UPARSE software (UPARSE v7.0.1001) 

(Edgar, 2013) and all sequences with ≥97% similarity were assigned to the same OTU. Each OTU was 

then searched for the representative species annotation against the respective reference databases. 

Bacterial species annotation was done against the SILVA database (Release v138.1) (Wang et al., 2007), 

while the UNITE database was used for the annotation of fungal species (Nilsson et al., 2019).  

The phylogenetic relationship of different OTUs was explored by the Multiple sequence alignment using 

MUSCLE software (Version 3.8.31) (Edgar, 2004). Additionally, the singletons obtained during the 

analysis were removed, and the normalized OTU abundance table was calculated using the number of 

sequences corresponding to the sample with the lowest reads. 

For the rhizosphere samples, the updated ASV approach using QIIME2 was employed. The effective 

tags were denoised using the DADA2 module (Callahan et al., 2016) in QIIME2 software  

(version 2022.2), and the sequence abundance of less than 5 reads was discarded to obtain the final 
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ASVs (Li M. et al., 2020) along with the feature table. The species annotation for each ASV was 

performed by comparing the ASVs against the SILVA database (Release v138.1) for bacterial sequences 

(Quast et al., 2012) and the UNITE database (version 9.0) for fungal sequences (Nilsson et al., 2019), 

using the Classify-sklearn module (version 2020.6) (Bokulich et al., 2018) in QIIME2. 

 

4.12.3 Alpha diversity 

Alpha diversity indices were calculated to assess the microbial diversity within each site, considering 

both the number of distinct species (species richness) and their relative abundance (species evenness). 

The selected alpha diversity indices used to characterize the richness (Chao1, ACE), diversity  

(Shannon, Simpson), evenness (Pielou), and sequencing depth (Good's coverage) of the soil and 

rhizospheric microbial communities were applied for analysis. 

The alpha diversity of bacterial and fungal species in bulk soil was calculated using normalized  

OTU abundance. These alpha diversity indices were estimated with QIIME (Version 1.7.0)  

(Caporaso et al., 2010) and visualized using R software (Version 2.15.3; R Core Team, 2013, Vienna, 

Austria) (R Core Team, 2013). Similarly, the alpha diversity indices for rhizospheric microbial 

communities were calculated using QIIME2. The statistical significance of the indices was assessed 

using the Wilcoxon test to compare the two seed orchards. 

 

4.12.4 Beta diversity 

Beta diversity metrics were evaluated to examine the variation in species composition between the 

sites, determining the degree of similarity or dissimilarity between two microbial communities based 

on species presence or abundance. 

Beta diversity, representing the variation in microbial diversity between bulk soil samples from two 

different sites, was measured using QIIME software (Version 1.7.0) (Caporaso et al., 2010). Pairwise 

dissimilarity between samples was calculated using Unweighted (Lozupone and Knight, 2005) and 

Weighted (Lozupone et al., 2007) UniFrac distance matrices. To visualize the complex multidimensional 

data, Non-metric Multidimensional Scaling (NMDS) analysis was conducted (Oksanen et al., 2010). 

Hierarchical clustering using the Unweighted Pair-group Method with Arithmetic Means (UPGMA) 

(Lozupone et al., 2011) was also performed to analyse the distance matrix using average linkage. 

Statistical methods such as ADONIS (Anderson, 2001), Analysis of Similarity (ANOSIM) (Clarke, 1993), 

and Multi-Response Permutation Procedure (MRPP) analysis (Cai, 2006) were used to determine the 

significant variation of the microbial communities in the soils of two different sites. 
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Additionally, differences in microbial species abundance between bulk soil samples from the two sites 

were analysed using a t-test (D’Argenio et al., 2014) and MetaStats (Paulson et al., 2011).  

The significance of these differences was evaluated through p-values, determined using the 

permutation method, and q-values, calculated using the Benjamini and Hochberg False Discovery Rate 

(FDR) correction method (White et al., 2009). 

The presence of microbial communities showing significant intra-group variation among the soil 

samples was assessed using Linear Discriminant Analysis Effect Size (LEfSe) with LEfSe software  

(Segata et al., 2011). A Linear Discriminant Analysis (LDA) score threshold of [log10]>4 was set to 

identify high-dimensional biomarkers, distinguishing between two sample groups. This approach 

highlighted both statistical significance and biological consistency, facilitating the detection of 

important biomarkers and distinguishing features, such as genes, metabolites, or taxa, based on their 

abundance across the samples. 

In a similar manner to the bulk soil samples, the beta diversity microbial variation between the 

rhizospheric soil samples was assessed using QIIME2 software (Version 2022.2) (Bolyen et al., 2019) 

and the Unweighted UniFrac distance metric. The Principal Coordinates Analysis (PCoA)  

(Minchin, 1987) was then performed and visualized in R software, where samples with comparable 

species compositions were grouped closer together, while those with distinct compositions were 

farther apart. Significant differences in the overall microbial community structure between the 

rhizospheric soils from the two sites were evaluated using ADONIS and ANOSIM functions. To 

determine the significant differences in microbial species abundance, a t-test was applied. Additionally, 

MetaStats analysis was used to detect significant differences in species abundance between groups, 

incorporating multiple hypothesis-testing and false discovery rate (FDR) corrections. Further analysis 

with LEfSe was conducted, setting the threshold at a linear discriminant analysis (LDA) score [log10] >4. 

 

4.12.5 Functional prediction 

Functional prediction of bulk soil microbial communities was carried out using PICRUSt analysis 

(Phylogenetic Investigation of Communities by Reconstruction of Unobserved States, version 1.0.0) 

(Douglas et al., 2018) on the bacterial 16S OTU table generated with QIIME (Version 1.7.0)  

(Caporaso et al., 2010). The Kyoto Encyclopedia of Genes and Genomes (KEGG) database 

(Kanehisa et al., 2012) was utilized to predict the abundance of various gene families within the 

microbial communities. 
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The metabolic functions of rhizospheric microbes derived from amplicon sequencing were predicted 

by mapping the microbial composition to various databases. For bacterial communities, functional 

predictions were made using the PICRUSt2 software (version 2.3.0) (Douglas et al., 2020) and the 

abundance of bacterial 16S ASVs was aligned with the KEGG database (Kanehisa et al., 2012) to infer 

potential functions associated with the bacterial communities in the rhizospheric soil samples.  

The KEGG functional annotations were visualized using Principal Component Analysis (PCA), and 

significant KEGG orthologs (KOs) were identified through a t-test. Similarly, the predicted functions of 

fungal communities in the rhizospheric soil were identified using the FUNGuild annotation tool  

(version 1.0), which classifies fungal ASVs by their ecological guild (Nguyen et al., 2016). Differentially 

abundant fungal guilds were also determined using a t-test. 

 

4.12.6 Network analysis 

Network analysis was employed to better grasp the complexity of soil environment and to reveal the 

microbial associations and interactions among dominant species (Guseva et al., 2022). Rhizospheric 

microbial abundance data (ASV table) were converted into a co-occurrence network using  

Graphviz-2.38.0 software to explore the interactions among microbial communities. Microbial species 

with an average relative abundance below 0.005% were excluded. The Spearman Correlation 

Coefficient (SCC) was calculated for all samples, and effective connections with a correlation coefficient  

cutoff of ±0.6 and p <0.05 were selected for network construction. Various network parameters, 

including nodes, links (positive and negative), network density, diameter, average degree, modularity 

degree, clustering coefficients, and average path length, were estimated using the igraph package 

(version 2.0.2) (Csardi and Nepusz, 2006). Basic principles of network analysis are illustrated in Figure 

6 (Guseva et al., 2022) and they are further explained below. 
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Figure 6 – Network properties to characterise microbial communities 

source: Guseva et al., 2022 

 

In this context, nodes represent microbial genera, and links (edges) depict interactions (either positive 

or negative) between microbial taxa. Network density reflects the proximity of the overall microbial 

community, with a higher density indicating a more interconnected network. Modularity (MD) 

measures the strength of divisions within the community. MD value ranges from 1 to −1 and values 

close to 1 signify a strong community structure (Clauset et al., 2004). The average degree indicates the 

average number of links per node, representing the average number of neighbours in the network. 

Network diameter measures the shortest distance between the two most distant nodes, while average 

path length identifies the shortest average distance between nodes. Clustering coefficients reflect the 

proportion of actual links compared to possible links, with higher values indicating more tightly 

connected communities, which suggest greater network robustness (Iyer et al., 2013; Shang, 2014). 

Networks with short average path lengths and high clustering coefficients are considered efficient and 

are often referred to as "small world" networks, characterized by high network efficiency  

(Watts and Strogatz, 1998). 
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4.12.7 Environmental association analysis 

Environmental association analysis (EAA) was applied to explore the relationship between soil 

microbial species abundance (alpha diversity) and site-specific environmental factors (such as soil pH, 

EC, TOC, and TN) in the two seed orchards. This relationship was assessed using the Spearman rank 

correlation (Algina and Keselman, 1999) and the Mantel test (Yang et al., 2007). Additionally, Canonical 

Correspondence Analysis (CCA) was conducted in R using the vegan package (Sheik et al., 2012) to 

identify the key environmental factors that shape the composition and structure of specific microbial 

communities.  

Furthermore, Variance Partitioning Canonical Correspondence Analysis (VPA) was used to quantify the 

relative contributions of selected environmental variables in explaining the structure of the microbial 

community (Peres-Neto et al., 2006). VPA enabled the partitioning of beta diversity variation across 

environmental and spatial factors, helping to determine whether the same factors influenced the 

spatial distribution of different organisms (Legendre, 2008). The analysis was carried out in R using the 

"varpart" function within the vegan package. The various components of variance were estimated 

following the methodology outlined by Borcard et al. (1992).  
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5. Results 

 

This section presents our findings on the physiology, enzymatic activity, metabolic profile, and microbial 

population structure of forest bulk and rhizospheric soils in two Norway spruce (Picea abies) seed 

orchards, which differ significantly in long-term precipitation patterns. Our study highlights how 

variation in precipitation, along with soil physicochemical properties, influence belowground microbial 

communities over the long term. These results offer an insight into the functioning of forest soil 

ecosystems under different precipitation regimes and provide field data for modelling microbial 

responses to future global climate change scenarios. 

The results are divided into two sections: one focusing on bulk soil and the other on rhizospheric soil, 

summarizing the outcomes of the methods and techniques described in the Materials and Methods 

section.  

For clarity, the Prenet seed orchard is referred to as the P-site, and Lipová Lhota as the L-site. 

All values are reported as means ± Standard Error of the Mean (SEM). 

 

5.1 Impact of long-term precipitation regime differences on bulk soil 

5.1.1 Soil texture, physicochemical, and biochemical properties 

The soil texture, physicochemical, and biochemical properties are summarized in Table 4. 

Granulometric analysis revealed that the soil at the P-site was classified as sandy loam (0.8% clay,  

28.3% silt, 70.8% sand), whereas the soil at the L-site was categorized as loamy sand (0.6% clay,  

24.9% silt, 74.3% sand). The P-site soil exhibited a significantly higher water content (32%) compared 

to the L-site soil (9%), likely due to its texture and the greater long-term average annual precipitation 

(1,306 mm at the P-site versus 633 mm at the L-site). 

The soil pH (measured in a 1:5 ratio with water) ranged from extremely acidic at the P-site  

(pH 4.45 ± 0.06) to strongly acidic at the L-site (pH 5.06 ± 0.24) (Burt, 2014). Both soils were non-saline, 

with low electrical conductivity (P-site: 0.04 ± 0.001 mS/cm; L-site: 0.03 ± 0.005 mS/cm).  

Additionally, notable differences in total organic carbon (TOC) and nitrogen (TN) content were 

observed. The P-site, with its higher annual precipitation, had significantly higher TOC (6.79% ± 0.14) 

and TN (0.51% ± 0.01) levels compared to the L-site soils (TOC: 3.27% ± 0.13; TN: 0.25% ± 0.01)  

(p < 0.05), which experienced considerably lower precipitation. 
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Table 4 – Soil texture, physicochemical, and biochemical soil properties 

 

 

5.1.2 Extracellular enzyme activities 

The extracellular enzyme activities in the bulk soil (Table 5) showed notable differences between the 

two sites. The P-site exhibited significantly higher activity levels for all the measured enzymes—

cellobiohydrolase, β-galactosidase, α-glucosidase, β-glucosidase, β-xylosidase, chitinase, and acid 

phosphatase—compared to the L-site (p < 0.05, Kruskal-Wallis test). These elevated enzyme activities 

at the P-site are consistent with its higher precipitation levels and the greater availability of nutrients 

(TOC, TN), both of which likely play a role in enhancing soil enzyme activity at this location. 

 

Table 5 – Extracellular enzyme activities 

 

The results are expressed as the dry weight of the soil. p-value denotes the significance level between the two 
sites (p <0.05, Kruskal-Wallis test). 

 

5.1.3 Soil metabolomics 

The two bulk soil samples contained 183 metabolites, including alcohols, carbohydrates, amino acids, 

fatty acids, and organic acids. Fatty acids were the most prevalent, accounting for 26.2% of the total 

metabolites, followed by carbohydrates (25.6%), alcohols (12.5%), and organic acids (6.5%). 

Component analysis revealed a clear distinction between the soil metabolite profiles of the L-site and 

P-site, as shown by their separate clustering (Figure 7A). A heatmap (Figure 7B) highlights the  

top 70 metabolites that differed significantly between the two sites. The P-site soil displayed a higher 

Soil properties L-site P-site p-value

Soil texture Loamy sand (0.6% clay, 24.9% silt, 74.3% sand) Sandy loam (0.8% clay, 28.3% silt, 70.8% sand) NA

Soil water content [%] 9 32 <0.0001

EC [mS/cm] 0.03 ± 0.005 0.04 ± 0.001 0.198

pH [1:5 H2O, v/v] 5.06 ± 0.24 4.45 ± 0.06 0.069

TN [%] 0.25 ± 0.01 0.51 ± 0.01 0

TOC [%] 3.27 ± 0.13 6.79 ± 0.14 <0.0001

Enzyme L-site [nmol·g
-1

·h
-1

] P-site [nmol·g
-1

·h
-1

] p-value

cellobiohydrolase 28.7 ± 0.12 234.6 ± 0.72 0

β-galactosidase 55.2 ± 0.18 337.5 ± 0.52 0.001

α-glucosidase 40.3 ± 0.17 148.8 ± 0.57 0.008

β-glucosidase 563.5 ± 1.44 1833 ± 5.00 0.001

β-xylosidase 141.9 ± 0.41 1853 ± 3.37 0

chitinase 116.3 ± 0.27 499.5 ± 1.38 0.001

acid phosphatase 1056.8 ± 2.49 2988.6 ± 5.10 0.001
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abundance of fatty acids, carbohydrates, and alcohols than the L-site. These metabolites largely 

originated from the decomposition of organic matter, plant exudates, and microbial by-products.  

The high organic carbon content (TOC) at the P-site aligns with the increased concentration of soil 

metabolites. However, it is important to note that distinguishing the contribution of microbial 

metabolites from other influencing factors in the soil remains challenging (White et al., 2017). 

 

Figure 7 – Bulk soil metabolite profile 

(A) Sparse Partial Least Square Discriminant Analysis (sPLS-DA) plot representing the differences in the metabolite 
profiles in soil samples. (B) Heatmap showing 70 most significant metabolites between the two soil samples from 
L-site and P-site in replicates based on t-test and ANOVA (Source: Chakraborty et al., 2023). 

 

5.1.4 Phospholipid fatty acids (PLFAs) analysis 

Phospholipid fatty acid (PLFA) analysis revealed notable differences in microbial cell membrane 

composition, used to assess the presence of functionally active microbial communities in the soil  

(Table 6) (Cavigelli et al., 1995; Torsvik and Øvreås, 2002). The P-site soil had significantly higher viable 

microbial biomass (71.7 ± 1.74 mg PLFA g⁻¹ soil, p < 0.05) compared to the L-site soil  

(22.7 ± 2.01 mg PLFA g⁻¹ soil), indicating a greater abundance of active microbial communities, likely 

supported by higher levels of TOC and TN. 

While both bacterial (59.5 ± 1.34 mg PLFA g⁻¹ soil, p <0.05) and fungal (1.1 ± 0.09 mg PLFA g⁻¹ soil,  

p <0.05) biomass were greater in the P-site soil, the bacteria-to-fungi ratio showed no significant 

difference between the two locations (P-site: 51.5 ± 3.77 mg PLFA g⁻¹ soil; L-site: 57.3 ± 4.21 mg  

PLFA g⁻¹ soil; p >0.05). Additionally, the amounts of G+ bacteria (7.83 ± 0.32 mg PLFA g⁻¹ soil, p <0.05), 

G- bacteria (37.8 ± 1.08 mg PLFA g⁻¹ soil, p < 0.05), and actinobacteria (13.4 ± 0.28 mg PLFA g⁻¹ soil,  

p <0.05) were significantly higher in P-site soil compared to L-site. 
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Table 6 – PLFA analysis 

 

Significant difference between the two sites is denoted by p-value (p <0.05, Mann-Whitney test of significance). 

 

5.1.5 Soil microbial community composition and diversity 

5.1.5.1 Quality control 

The structure of the soil microbial communities was assessed using Illumina paired-end amplicon 

sequencing, specifically targeting the bacterial 16S rRNA gene and the fungal ITS region. The bulk soil 

samples from the two different sites generated a total of 2,026,594 reads for bacterial diversity and 

1,932,039 reads for fungal diversity (Table 7 and Table 8). An initial quality check was applied with  

a Phred Quality score threshold of >30. Reads falling below this threshold were discarded, and the  

high-quality reads for both bacterial 16S and fungal ITS regions were processed using bioinformatics 

pipelines for further analysis. 

 

Table 7 – Illumina paired-end amplicon sequencing of bacterial 16S in bulk soil 

 

PLFA analysis [μg PLFA · g
-1 

soil] L-site P-site p-value

PLFAtotal 22.7 ± 2.01 71.7 ± 1.74 0

PLFAbacteria 19.2 ± 1.75 59.5 ± 1.34 0

PLFAfungi 0.35 ± 0.04 1.2 ± 0.09 0

PLFAG+ 2.09 ± 0.29 7.8 ± 0.32 0

PLFAG- 12.0 ± 1.30 37.8 ± 1.08 0

PLFAactinobacteria 5.0 ± 0.40 13.4 ± 0.28 0

PLFAbacteria:fungi 57.3 ± 4.21 51.5 ± 3.77 0.346

PLFAfungi:bacteria 0.02 ± 0.001 0.02 ± 0.001 0.346

Sample 

name

Raw PE 

reads

Combined 

reads

Uncombined 

reads

Percent 

combined [%]

Combined 

base [bp]

Min lenght 

[bp]

Max lenght 

[bp]

Average 

lenght [bp]

Qualified 

reads
Nochimera Base [nt] Q20 Q30 GC [%]

Effective 

[%]

L01 139 568 123 739 15 829 88.66 51 260 154 44 441 414 120 358 115 737 47 935 493 97.55 92.83 56.85 82.93

L02 134 505 120 660 13 845 89.71 50 174 371 44 441 416 117 733 113 465 47 157 103 97.54 92.72 56.76 84.36

L03 136 839 122 844 13 995 89.77 50 840 729 44 441 414 119 580 114 889 47 524 490 97.52 92.77 56.54 83.96

L04 139 907 126 084 13 823 90.12 52 379 250 64 441 415 122 960 118 499 49 219 271 97.6 92.9 56.5 84.7

L05 138 364 125 208 13 156 90.49 51 781 288 51 441 414 122 123 117 514 48 594 817 97.73 93.11 56.63 84.93

L06 147 510 134 328 13 182 91.06 55 879 188 44 441 416 131 031 126 025 52 398 217 97.62 92.96 57.08 85.43

L07 142 309 127 945 14 364 89.91 53 275 091 44 441 416 124 396 119 234 49 661 949 97.6 92.93 56.51 83.79

L08 148 735 133 801 14 934 89.96 55 729 463 44 441 417 130 550 125 437 52 223 278 97.51 92.73 56.44 84.34

L09 130 873 120 133 10 740 91.79 50 004 616 44 441 416 117 347 110 900 46 161 316 97.71 93.07 56.68 84.74

P01 131 057 118 105 12 952 90.12 48 551 100 101 441 411 115 341 111 586 45 843 576 97.6 92.93 56.69 85.14

P02 114 742 105 362 9 380 91.83 43 235 663 51 441 410 102 979 99 673 40 879 029 97.79 93.32 56.87 86.87

P03 138 481 126 725 11 756 91.51 52 117 697 109 441 411 123 535 120 024 49 351 092 97.72 93.22 56.57 86.67

P04 128 540 117 762 10 778 91.62 48 361 932 153 441 411 114 977 112 099 46 025 261 97.8 93.36 56.66 87.21

P05 119 819 108 145 11 674 90.26 44 341 949 53 441 410 105 362 101 452 41 615 725 97.76 93.29 56.76 84.67

P06 135 345 124 086 11 259 91.68 50 822 129 51 441 410 121 133 117 638 48 177 737 97.86 93.44 56.63 86.92
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Table 8 – Illumina paired-end amplicon sequencing of fungal ITS in bulk soil 

 

 

5.1.5.2 Operational Taxonomic Units (OTUs) abundance 

Illumina sequencing of the bulk soil samples revealed a total of 6,389 bacterial OTU clusters  

at a 97% similarity threshold. Out of these, 2,426 unique bacterial OTUs were identified in the L-site 

soil, while only 382 unique OTUs were found in the P-site soil (Figure 8A). 

The relative abundance of the top 10 bacterial orders detected in the soil samples is shown in  

Figure 8B. P-site soil exhibited a higher proportion of Rhizobiales (36.2%), Acidobacteriales (10.9%), 

Chthoniobacterales (7.3%), Rhodospirillales (6.8%), Ktedonobacterales (4.2%), and Frankiales (4.1%). 

In contrast, L-site soil had a greater presence of Gaiellales (6.6%), Solirubrobacterales (5.3%), 

Solibacterales (4.9%), and Xanthomonadales (3.7%). 

 

Figure 8 – Bacterial Operational Taxonomic Units (OTUs) abundance 

(A) Venn diagram showing the distribution of unique and common bacterial OTUs. (B) Relative abundance of the 
top 10 bacterial orders observed in L-site and P-site soil. “Others” denote the relative abundance of the rest of 
the bacterial orders present in the soil (Source: Chakraborty et al., 2023). 

Sample 

name

Raw PE 

reads

Combined 

reads

Uncombined 

reads

Percent 

combined [%]

Combined 

base [bp]

Min lenght 

[bp]

Max lenght 

[bp]

Average 

lenght [bp]

Qualified 

reads
Nochimera Base [nt] Q20 Q30 GC [%]

Effective 

[%]

L01 147 788 138 652 9 136 94 48 211 880 47 437 348 137 060 117 706 41 181 168 98 95 44 80

L02 134 494 125 760 8 734 94 42 644 923 47 438 339 124 094 97 596 33 354 042 98 94 48 73

L03 148 009 140 038 7 971 95 47 016 485 47 438 336 138 792 122 661 41 362 355 98 95 47 83

L04 136 353 128 991 7 362 95 43 350 477 23 438 336 128 197 107 643 36 494 396 98 95 50 79

L05 147 678 140 458 7 220 95 45 666 574 43 438 325 139 354 112 916 37 125 101 98 95 49 76

L06 145 675 139 586 6 089 96 44 210 268 42 438 317 138 784 101 655 32 314 649 98 95 51 70

L07 130 362 120 156 10 206 92 42 597 438 47 438 355 118 767 105 089 37 620 539 98 94 51 81

L08 142 594 133 488 9 106 94 44 970 804 48 438 337 116 548 100 271 34 693 042 98 95 50 70

L09 131 442 124 375 7 067 95 39 374 958 42 438 317 102 434 89 633 29 133 741 98 95 52 68

P01 135 539 128 963 6 576 95 45 684 897 48 438 354 125 413 113 892 40 685 087 98 94 50 84

P02 103 120 97 434 5 686 94 33 921 675 39 438 348 96 765 84 542 29 558 459 98 94 46 82

P03 125 048 118 722 6 326 95 41 772 148 52 438 352 117 789 105 705 37 187 334 98 94 44 85

P04 94 649 89 190 5 459 94 31 867 902 48 438 357 83 878 71 759 26 046 905 98 94 45 76

P05 79 350 74 788 4 562 94 27 341 088 48 438 366 74 063 64 674 23 807 931 98 94 44 82

P06 129 938 124 748 5 190 96 42 289 642 48 438 339 124 007 104 786 35 815 139 98 95 49 81
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Illumina sequencing also identified 2,288 fungal OTU clusters at a 97% similarity threshold. Similar to 

the bacterial findings, the L-site soil exhibited a higher number of unique fungal OTUs (1,313) compared 

to the P-site, which had only 256 unique OTUs (Figure 9A). The top 10 fungal orders present in the soil 

samples are displayed in Figure 9B. In the P-site soil, Mortierellales (39.2%),  

Incertae-sedis-Leotiomycetes (7.7%), and Entorrhizales (5.1%) were the most dominant orders. 

Conversely, the L-site soil had a higher prevalence of Russulales (12.9%), Tremellales (13.3%), 

Thelephorales (9.8%), Atheliales (10.9%), Hypocreales (6.3%), Hysteriales (4.5%), and Eurotiales (4.7%). 

 

 

Figure 9 – Fungal Operational Taxonomic Units (OTUs) abundance 

(A) Venn diagram showing the distribution of unique and common fungal OTUs. (B) Relative abundance of the 
top 10 fungal orders observed in L-site and P-site soil. “Others” denote the relative abundance of the rest of the 
fungal orders present in the soil (Source: Chakraborty et al., 2023). 

 

  



64 
 

Comparison of biological replicates within each site is visualized by Flower diagram (Figure 10). Within 

the site, the L-site soil replicates shared a total of 1,511 core bacterial OTUs and 127 core fungal OTUs 

(Figure 10A and Figure 10C). In contrast, the P-site soil replicates shared 944 core bacterial OTUs and 

160 core fungal OTUs (Figure 10B and Figure 10D). 

 

 

Figure 10 – Flower diagram 

A comparison of biological replicates within the sites revealed the L-site unique and core  
(A) bacterial and (C) fungal OTUs, as well as P-site unique and core (B) bacterial and (D) fungal OTUs  
(Source: Chakraborty et al., 2023). 

 

The bacterial communities in the bulk soil were classified into 41 different phyla. In the L-site soil,  

the Graphlan visualization highlighted the dominance of five key phyla: Proteobacteria, Firmicutes, 

Actinobacteria, Bacteroidetes, and Acidobacteria (Figure 11A). In contrast, the P-site soil displayed  

a similar predominance of Proteobacteria, Firmicutes, Acidobacteria, and Actinobacteria, but also 

showed a significant presence of the Chloroflexi and Verrucomicrobia phyla (Figure 11B). 
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Figure 11 – Cladogram of bacterial phyla 

Bacterial OTU tree of (A) L-site and (B) P-site soil visualized by Graphlan (Source: Chakraborty et al., 2023). 
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The fungal communities in the bulk soil were categorized into 6 distinct phyla. The OTU tree 

visualization via Graphlan revealed that Ascomycota, Basidiomycota, and Zygomycota were the 

predominant fungal phyla. In contrast to the bacterial phyla, these dominant fungal phyla were present 

in equal proportions in both L-site (Figure 12A) and P-site (Figure 12B) soils. 

 

Figure 12 – Cladogram of fungal phyla 

Fungal OTU tree of (A) L-site and (B) P-site soil visualized by Graphlan (Source: Chakraborty et al., 2023). 
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The evolutionary tree illustrated the relative abundance of the top 100 bacterial (Figure 13A) and fungal 

(Figure 13B) genera observed in the two soils. 

 

Figure 13 – Evolutionary tree 

Relative abundance of top 100 (A) bacterial and (B) fungal genera in bulk soil (Source: Chakraborty et al., 2023). 
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Finally, the heatmap illustrates the relative abundance of 35 predominant bacterial (Figure 14A)  

and fungal (Figure 14B) genera found in the bulk soils of both the L-site and P-site. 

 

 

Figure 14 – Heatmap of 35 predominant bacterial and fungal genera 

(A) The relative abundance of 35 predominant bacterial genera in bulk soil samples from the L-site and P-site, 
with six replicates each. (B) The relative abundance of 35 prevalent fungal genera in the bulk soil  
samples, with nine replicates each. The colour gradient indicates the relative OTU abundance for each soil sample, 
where darker colours denote higher abundance, and lighter colours represent lower abundance  
(Source: Chakraborty et al., 2023). 

 

5.1.5.3 Alpha diversity 

The rarefaction curves and Good's coverage index (>99%) confirm that the sequencing effectively 

captured the full microbial diversity present in the soil samples (Figure 15). Good's coverage index, 

along with other alpha diversity metrics that reflect microbial richness and evenness, are detailed in 

Table 9. 

For bacterial species, the L-site bulk soil revealed a total of 3,375 ± 89.23 species, while the P-site soil 

had 2,117 ± 62.61 species. Similarly, the observed fungal species were 743 ± 45.70 in L-site soil and  

429 ± 45.70 in P-site soil, indicating a lower number of both bacterial and fungal species at the P-site. 
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L-site soil exhibited greater bacterial community richness, with ACE (Abundance-based  

Coverage Estimator) of 3,778 ± 127.30 and Chao1 estimates of 3,926 ± 304.89, compared to P-site soil, 

which had ACE of 2,421 ± 75.58 and Chao1 of 2,375 ± 78.42 (Wilcoxon test, p <0.01). A similar  

pattern was observed for fungal richness, with L-site soil showing higher values (ACE: 933 ± 30.77; 

Chao1: 916 ± 32.17) compared to P-site soil (ACE: 508 ± 62.64; Chao1: 499 ± 60.38)  

(Wilcoxon test, p <0.01). 

Additionally, bacterial diversity, as indicated by Shannon and Simpson indices, was significantly  

higher in L-site soil (Shannon index: 9.14 ± 0.14; Simpson index: 0.99) compared to P-site soil  

(Shannon: 7.12 ± 0.04; Simpson: 0.97) (Wilcoxon test, p <0.01). Interestingly, fungal diversity did not 

show significant differences between L-site (Shannon: 4.79 ± 0.41; Simpson: 0.85 ± 0.05) and P-site 

(Shannon: 4.40 ± 0.18; Simpson: 0.88 ± 0.02). 

 

Figure 15 – Bulk soil rarefaction curves 

(A) Bacterial 16S amplicon sequencing and (B) fungal ITS sequencing of bulk soil samples from L-site and P-site. 
Different colours and symbols denote different samples (Source: Chakraborty et al., 2023). 

 

Table 9 – Alpha diversity indices 

 

Significant difference between the L-site and P-site soil is denoted by p-value (p <0.01, Wilcoxon test) 

Indices L-site P-site p-value L-site P-site p-value

Good's coverage [%] 99.3 99.5 - 99.7 99.8 -

Observed species 3375 ± 89.23 2117 ± 62.61 <0.001 743 ± 45.70 429 ± 45.70 <0.01

Chao1 3926 ± 304.89 2375 ± 78.42 <0.001 916 ± 32.17 499 ± 60.38 <0.001

ACE 3778 ± 127.30 2421 ± 75.58 <0.001 933 ± 30.77 508 ± 62.64 <0.001

Shannon 9.14 ± 0.14 7.12 ± 0.04 <0.001 4.79 ± 0.41 4.40 ± 0.18 0.45

Simpson 0.99 0.97 <0.001 0.85 ± 0.05 0.88 ± 0.02 0.9

Fungal diversityBacterial diversity
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5.1.5.4 Beta diversity 

The beta diversity analysis, utilizing both Unweighted (Figure 16A and Figure 16C) and Weighted  

(Figure 17B and Figure 17E) UniFrac distances, revealed significant differences in microbial diversity 

between the soil samples. 

The unweighted pair group method with arithmetic mean (UPGMA) hierarchical clustering analysis 

based on Unweighted UniFrac distances demonstrated that soil samples from the two sites formed two 

distinct clusters, highlighting the considerable differences in bacterial (Figure 16B) and fungal  

(Figure 16D) communities between the sites. Similar result was obtained for bacterial community using 

Weighted UniFrac distance (Figure 17C). 

However, when clustering fungal communities based on Weighted UniFrac distances, the UPGMA 

analysis showed that the biological replicates from the L-site soil were divided into two separate clades, 

indicating some level of heterogeneity within the site (Figure 17F). 

 

 

Figure 16 – Boxplot and UPGMA tree 

A box plot based on Unweighted UniFrac distance representing the variation in (A) bacterial and (C) fungal 
communities. UPGMA tree clustering, also based on Unweighted UniFrac distance, illustrates differences in  
(B) bacterial and (D) fungal communities between the soil samples collected from the same site in replicates. The 
relative abundance of soil bacterial and fungal communities at the phylum level is displayed alongside the UPGMA 
tree (Source: Chakraborty et al., 2023). 
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Figure 17 – Heatmap, boxplot, and UPGMA tree 

Heatmap representation of Weighted and Unweighted UniFrac distance matrices showing the pairwise 
dissimilarity coefficient of (A) bacterial and (D) fungal communities between L-site and P-site soils, with Weighted 
UniFrac distance displayed above and Unweighted UniFrac distance below.  Boxplots illustrate beta diversity 
variation based on Weighted UniFrac distance matrices for (B) bacterial and (E) fungal communities.  
The significance of differences between soils was assessed using the Wilcoxon signed-rank test.  
UPGMA tree clustering based on Weighted UniFrac distance shows the similarity in (C) bacterial and (F) fungal 
communities among the soil samples collected from the same site in replicates. The relative abundance of soil 
bacterial and fungal communities at the phylum level is represented alongside the UPGMA tree  
(Source: Chakraborty et al., 2023). 
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Additionally, the Non-Metric Multidimensional Scaling (NMDS) analysis revealed distinct differences in 

the soil microbiome between the two sites. The bacterial community structure formed two separate 

clusters (Figure 18A), indicating significant variation between the sites. A similar pattern of distinct 

clustering was observed for fungal communities as well (Figure 18B). These findings suggest that  

site-specific environmental factors have a notable impact on microbial communities. However, further 

validation is needed to confirm the extent of environmental influence on soil microbiota. 

 

 

Figure 18 – NMDS analysis of bulk soil microbiota 

Difference in (A) bacterial and (B) fungal communities in bulk soils from the L-site and P-site. Data points in the 

same colour represent soil samples from the same site, while different symbols indicate soil samples from 

different locations (Source: Chakraborty et al., 2023). 

 

 

The MetaStats (Figure 19 and Figure 20) and t-test (Figure 21A and Figure 21B) analysis of differentially 

abundant microbes between the two soil samples highlighted a marked predominance of distinct 

bacterial and fungal groups at each site. 
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Figure 19 – Bacterial MetaStats analysis of bulk soil 

Significant differences in relative abundance were evaluated using the FDR test where the “*” indicates significant 
variation at a q value <0.05, and “**” denotes high significance at a q value <0.01 (Source: Chakraborty et al., 2023). 

 

 

Figure 20 – Fungal MetaStats analysis of bulk soil 

Significant differences in relative abundance were evaluated using the FDR test where the “*” indicates significant 
variation at a q value <0.05, and “**” denotes high significance at a q value <0.01 (Source: Chakraborty et al., 2023). 
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Figure 21 – t-test analysis of bulk soil 

Significant variation in (A) bacterial and (B) fungal communities at the phylum level in the bulk soils from L-site 
and P-site. The last panel illustrates the abundance of phyla that significantly differ between the two soils.  
Each bar represents the mean abundance at the phylum level that is significantly different. The right panel 
displays the confidence intervals between the soils, where the leftmost part of each circle indicates the lower 
95% confidence interval limit, the rightmost part represents the upper limit, and the centre of the circle indicates 
the difference in mean values. The colour of each circle reflects the soil sample with the higher mean value.  
The rightmost value represents the p-value from the significance test (Source: Chakraborty et al., 2023). 

 

Statistical analyses were performed to evaluate the differences in microbial community structure 

between the L-site and P-site. The Analysis of Similarity (ANOSIM) (Table 10) revealed significant 

differences in the microbial community structure between the two soil types, compared to the 

variation observed within biological replicates. The positive R values indicate significant differences in 

the microbial communities in two different soils. P-value < 0.05 represents significant differences. 

Similarly, the Multi-Response Permutation Procedure (MRPP) (Table 11) analysis confirmed substantial 

differences in microbial communities across the two soil samples. The low observed-δ values within 
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replicates indicate minimal variation within each soil type, while the higher expected-δ values point to 

larger differences between the two soil types. The positive A-value suggests that the distinction 

between soil types is greater than the variation within replicates, with p-values < 0.05 supporting the 

significance of these differences. 

Consistent findings were also observed with other statistical methods, including The Analysis of 

Dissimilarities (ADONIS) (Table 12) and AMOVA (Table 13) (where Df stands for degree of freedom, 

F.Model stands for F-test value, and R2 is the ratio of grouping variance and total variance). Values in 

parentheses denote Residual Error. The Pr value in ADONIS and the p-value in AMOVA represent the 

significant variation in the microbial community structure. 

These analyses collectively support the conclusion that environmental factors at the different sites have 

a substantial impact on microbial community composition. 

 

Table 10 – ANOSIM bulk soil 

 

Table 11 – MRPP bulk soil 

 

Table 12 – ADONIS bulk soil 

 

Table 13 – AMOVA bulk soil 

 

 

R-value p-value R-value p-value

P-site vs L-site 0.939 0.001 0.569 0.002

ANOSIM

Bacterial diversity Fungal diversity
Comparison

A observed d expected d significance A observed d expected d significance

P-site vs L-site 0.3753 0.268 0.429 0.001 0.1517 0.6471 0.7628 0.001

MRPP

Bacterial diversity Fungal diversity
Comparison

P-site vs L-site Df Sum of Squares Mean Square F.Model R2 Pr(>F)

Bacterial diversity 1(13) 0.93967(0.55824) 0.93967(0.04294) 21.883 0.62732(0.37268) 0.001

Fungal diversity 1(13) 1.2714(2.9741) 1.27140(0.22878) 5.5573 0.29947(0.70053) 0.001

ADONIS

P-site vs L-site Df Sum of Squares Mean Square F.Model p-value

Bacterial diversity 1(13) 0.458513(0.160448) 0.458513(0.0123422) 37.1501 <0.001

Fungal diversity 1(13) 3.12511(6.47944) 3.131511(0.498418) 6.29012 <0.001

AMOVA
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The study identified specific microbial biomarkers that are significantly abundant and consistently 

present in the soil samples. Using Linear Discriminant Analysis Effect Size (LEfSe), bacterial (Figure 22A) 

and fungal (Figure 22B) biomarkers were determined with an LDA score [log10] > 4, highlighting key 

differences between the sites. Figure 23 depicts a cladogram of bacterial (A) and fungal (B) biomarkers 

in soils evaluated by the LEfSe analysis. 

For P-site bulk soil, the differentially abundant bacterial biomarkers included: 

− Acidobacteria (class—Acidobacteria, order—Acidobacteriales, family— 

Acidobacteriaceae_subgroup 1; class—Subgroup_2) 

− Proteobacteria (class—Alphaproteobacteria, order— Rhizobiales, family—Bradyrhizobiaceae, 

family—Roseiarcaceae, family—Xanthobacteraceae; order—Rhodospirillales) 

− Chloroflexi (class—Ktedonobacteria, order—Ktedonobacterales, family—HSB_OF53_F07) 

− Verrucomicrobia (class—Spartobacteria, order—Chthonlobacterales, family— 

Xiphinematobacteraceae) 

In contrast, L-site soil was characterized by bacterial biomarkers including: 

− Bacteroidetes (class—Sphingobacteriia, order—Sphingobacteriales) 

− Actinobacteria (class—Thermoleophilla, order—Gaiellales; order—Soilrubrobacterales) 

− Acidobacteria (class—Subgroup_6) 

− Proteobacteria (class—Betaproteobacteria; class—Gammaproteobacteria; class—

Deltaproteobacteria) 

Fungal biomarkers in P-site soil included: 

− Zygomycota (class—Incertae_sedis_Zygomycota; order—Mortierellales; family— 

Mortierellaceae) 

− Basidiomycota (class—Entorrhizommycetes, order—Entorrhizales, family—Entorrhizaceae) 

Fungal biomarkers in L-site soil were: 

− class—Dothideomycetes 

− class—Eurotiomycetes (order—Eurotiales, family—Trichocomaceae; order—Chaetothyriales, 

family—Herpotrichlellaceae) 

− order—Hypocreales (family—Nectriaceae) 

− order—Russulales (family—Russulaceae) 
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Figure 22 – LEfSe analysis of bulk soil 

Presence of (A) bacterial and (B) fungal biomarker species with significantly different abundance between soils 
from the L-site and P-site. The length of each bin, represented by the LDA score, indicates the effect size  
(the extent to which a biomarker explains the differentiating phenotypes among groups) at the LDA score cutoff 
threshold of >4 (Source: Chakraborty et al., 2023). 
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Figure 23 – Cladogram of bulk soil biomarkers obtained by LEfSe 

(A) Bacterial and (B) fungal biomarkers in soils evaluated using LEfSe analysis. The circles, radiating from inside to 
outside, represent taxonomic level from phylum to genus. Each circle corresponds to a distinct taxon at its 
respective taxonomic level, with the size of each circle being proportional to the relative abundance of that taxon. 
Bacterial and fungal biomarkers that exhibit significant differences are coloured according to the corresponding 
soil samples, while yellowish-green circles indicate non-significant species. Red and green nodes represent 
species that contribute significantly to their respective groups. The letters above the circles identify the different 
biomarkers (Source: Chakraborty et al., 2023). 
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5.1.5.5 Functional composition 

PICRUSt analysis of bacterial 16S gene sequences provided insights into the potential functional profiles 

of the soil bacterial communities, associating each OTU with specific functions. 

The analysis revealed that L-site soil had a higher predicted abundance for functions related to amino 

acid metabolism, lipid metabolism, terpenoids and polyketides, carbohydrate metabolism, membrane 

transport, DNA replication and repair, nucleotide metabolism, xenobiotics biodegradation, and 

metabolism of cofactors and vitamins. In contrast, P-site soil exhibited a higher abundance of functions 

associated with signal transduction, genetic information processing, biosynthesis of secondary 

metabolites, glycan metabolism, energy metabolism, and transcription (Figure 24A). Despite these 

differences, the most abundant gene functions, as identified in the top 10 categories, did not show 

significant variation between the two sites. These top functions included membrane transport, amino 

acid metabolism, carbohydrate metabolism, replication and repair, energy metabolism, xenobiotic 

metabolism, lipid metabolism, translation, and metabolism of cofactors and vitamins (Figure 24B). 

The Principal Component Analysis (PCA) plot based on PICRUSt data indicated that the predicted 

functional gene profiles of the two soil samples were distinct, clustering into two separate groups 

(Figure 24C). 
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Figure 24 – PICRUSt analysis 

(A) A heatmap illustrating the functional profile predicted at level 2 KEGGs Orthologs using PICRUSt analysis, 
which represents the overall functional contribution of bacterial communities present in two soil samples, each 
with replicates. (B) A bar plot displaying the relative OTU abundance contributing to the top 10 gene functions in 
soil, showing no significant differences. The “Others” category represents the relative OTU abundance for the 
remaining gene functions. (C) A PCA plot highlighting differences in the predicted functional contributions of the 
soil bacteriome between the two sites based on PICRUSt analysis (Source: Chakraborty et al., 2023). 

 

5.1.5.6 Correlation between edaphic drivers and soil microbiota 

The Spearman rank correlation analysis (Figure 25) demonstrated a significant association between 

microbial species abundance and environmental factors such as pH, electrical conductivity (EC), total 

organic carbon (TOC), and total nitrogen (TN) (p < 0.05). Bacterial communities were more strongly 

influenced by pH, TOC, and TN compared to fungal species. Several bacterial genera, including 

Streptomyces, Kitasatospora, Devosia, Reyranella, Pseudonocardia, Gemmatimonas, Arthrobacter, 

Nocardioides, Solirubacter, Rhizomicrobium, Acidibacter, Haliangium, RB41, Sporosarcina, Bacillus, 

Sphingomonas, Bryobacter, and Gaiella, showed negative correlations with TOC and TN. In contrast, 

Blastochloris, Pedomicrobium, Candidatus Koribacter, Granulicella, Roseiarcus, Candidatus 

Xiphinematobacter, and Bradyrhizobium displayed positive correlations with these factors (Figure 25A). 

Soil pH had a significant positive correlation with genera such as Streptomyces, Devosia, 

Pseudonocardia, Gemmatimonas, Nocardioides, Solirubacter, Haliangium, RB41, Sphingomonas, and 

Gaiella, while Granulicella, Acidothermus, Roseiarcus, Candidatus Xiphinematobacter, and 

Bradyrhizobium were negatively correlated. EC had minimal influence, with only Variibacter and 

Candidatus Solibacter showing significant correlations (Figure 25A). Mantel test results further 

confirmed a strong correlation between bacterial community structure and environmental factors   

(r = 0.7497, p = 0.001). 
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Fungal species abundance was also significantly (p < 0.05) influenced by soil pH, with genera such as 

Paraphoma, Phialosimplex, Preussia, Trichoderma, Oidiodendron, Hymenogaster, Cladosporium, 

Gibberella, Halokirschsteiniothelia, Fusarium, Cadophora, Entorrhiza, and Russula showing strong 

correlations (Figure 25B). TOC and TN notably affected the abundance of fungal genera like Clitopilus, 

Hygrocybe, Thelebolus, Preussia, Hymenogaster, Metarhizium, Cladosporium, Gibberella, 

Xerocomellus, Amanita, Fusarium, Mortierella, Russula, and Cenococcum. Interestingly, only Tylospora 

was significantly influenced by soil EC. The Mantel test also demonstrated a significant correlation 

between fungal communities and environmental variables (r = 0.4115, p = 0.002). 

 

 

Figure 25 – Spearman rank correlation analysis 

A heatmap illustrating the Spearman correlation between environmental factors such as pH, electrical 
conductivity (EC), total organic carbon (TOC), total nitrogen (TN) with (A) bacterial species abundance and  
(B) fungal species abundance. This analysis aims to assess the correlation and significance between the two 
variables. The columns represent the environmental factors, while the rows indicate the species. Coloured tiles 
correspond to the Spearman rank correlation coefficient (SCC) r values, which range from –1 to 1. 
An r < 0 indicates a negative correlation, while an r > 0 signifies a positive correlation. An asterisk ‘*‘ denotes 
significance at p < 0.05 (Source: Chakraborty et al., 2023). 

 

The Canonical Correspondence Analysis (CCA) results illustrated the relationship between microbial 

communities and environmental factors, showing that soil pH, EC, TOC, and TN significantly influenced 

microbial development (Figure 26). For bacterial communities, the CCA accounted for 91% of the 

community variance, suggesting a strong association with these edaphic factors. The analysis revealed 

that the first canonical axis (CCA1) was positively correlated with TOC and TN, while the second 

canonical axis (CCA2) showed a negative correlation with soil pH and EC. This differentiation resulted 

in a clear clustering of L-site and P-site soils into distinct groups (Figure 26A). 
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Similarly, the fungal community variance explained by the soil parameters was 64.87%, with a distinct 

grouping for P-site soil, while the L-site soil samples were more dispersed (Figure 26B). In fungal 

communities, CCA1 was positively correlated with soil pH and EC, and CCA2 was negatively correlated 

with TOC and TN. 

The length of the arrows representing soil pH, TOC, and TN indicated that these were the most 

influential factors shaping the soil microbial community structure across the two sites. This data 

highlights the significant role of these edaphic factors in driving microbial community composition and 

structure in different environments. 

 

 

Figure 26 – Canonical Correspondence Analysis (CCA) 

A Canonical Correspondence Analysis (CCA) plot representing the relationship between environmental factors 
(pH, EC, TOC, TN) and the distribution of (A) bacterial and (B) fungal communities in soil samples. The arrows 
indicate the association between environmental factors and microbial community distribution; longer arrows 
signify a stronger association, while shorter arrows indicate a weaker association. The angle between the arrows 
and the ordination axes reflects the relationship between each environmental factor and the ordination axes;  
a smaller angle indicates a stronger association, while a large angle indicates a weaker association. A positive 
relationship between two environmental factors is indicated by an acute angle, whereas a negative correlation is 
suggested when the angle is obtuse (Source: Chakraborty et al., 2023). 
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The Variation Partition Analysis (VPA) provided insights into the relative contributions of key edaphic 

factors (pH, EC, TOC, and TN) to the soil microbial diversity (Figure 27). For the bacterial communities, 

VPA revealed that soil physical characteristics, such as pH and EC, accounted for 6.5% of the total 

variation, while TOC and TN explained a significant 37.6% of the total variance (Figure 27A).  

This highlights the dominant role of organic carbon and nitrogen content in shaping bacterial diversity. 

Nevertheless, 20.7% of the variation in bacterial community structure remained unexplained, 

indicating the presence of other unidentified factors. 

In contrast, for fungal communities, pH and EC contributed to 6.6% of the total variance, and TOC and 

TN accounted for 32.8% (Figure 27B). Interestingly, a much larger portion of the fungal community 

variance, around 52%, remained unexplained, suggesting that fungal diversity might be influenced by 

additional factors not captured in this analysis. This substantial unexplained variance reflects the 

complexity of fungal ecology in soil environments. 

The partitioning of explained and unexplained variance in VPA was calculated following methods 

outlined by Legendre (2008), which emphasizes the differential impact of environmental factors on 

bacterial and fungal communities. 

 

 

Figure 27 – Variation Partition Analysis (VPA) 

Variance Partitioning Analysis (VPA) displaying the total variance in the distribution of (A) bacterial and (B) fungal 
communities, illustrating the respective contributions and covariations of each set of environmental variables. 
The outer value indicates the percentage of variance that remains explained (Source: Chakraborty et al., 2023).  
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5.2 Impact of long-term precipitation regime differences on rhizospheric soil 

5.2.1 Soil texture and trace elements analysis 

The analysis of soil texture based on particle size distribution confirmed that both L-site and P-site 

rhizospheric soils had a loamy sand texture. L-site soil contained 0.03% clay, 23.4% silt, and 76.5% sand, 

while P-site soil had 0.05% clay, 29.4% silt, and 70.4% sand. Despite the similar texture, P-site soil had 

a significantly higher moisture content (38%) compared to L-site soil (13%), likely due to increased 

precipitation at the P-site. 

Physicochemical and biochemical parameters, including pH, electrical conductivity (EC), total organic 

carbon (TOC), and total nitrogen (TN), were assessed for bulk soil as previously outlined. These 

measurements were not repeated for rhizospheric soil, as the primary emphasis was placed on 

exploring the diversity of the rhizospheric microbial community. 

Elemental analysis (Figure 28A and Figure 28B) indicated that Aluminium (Al), Iron (Fe),  

Phosphorous (P), and Sulphur (S) were present in significantly higher concentrations in P-site soil, 

whereas Calcium (Ca) was significantly more abundant in L-site soil (t-test, p < 0.05). There were no 

significant differences in the levels of Potassium (K), Magnesium (Mg), Manganese (Mn), Sodium (Na), 

Silicon (Si), or Zinc (Zn) between the two sites. This elemental abundance, particularly in P-site, could 

play a role in shaping the local soil microbial communities and overall soil fertility. 

 

 

Figure 28 – Elemental analysis 

(A) The relative abundance of various elements (expressed as percentages) present in the rhizospheric soil 

samples collected from the two sites. (B) A bar graph illustrating the differences in elemental content among the 

rhizospheric soil samples (Source: Zádrapová et al., 2024). 
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5.2.2 Metabolite profiling 

A total of 204 metabolites were identified, primarily comprising acids and alcohols. The top 50 

metabolites showed significant differences in abundance between the two sites (t-test, p < 0.05). The 

chordial plot illustrated the relative abundance of major metabolite classes in the rhizospheric soils 

from the L-site and P-site (Figure 29A). The L-site soil was enriched in carbohydrates (62.7%)  

and alcohols (17%), while the P-site had slightly lower carbohydrate content (55%) but higher 

alcohols (22%). Additionally, fatty acids (L-site: 2.5%; P-site: 4.5%), acids (L-site: 0.85%; P-site: 1.7%), 

and terpenes (L-site: 2.7%; P-site: 4.3%) were significantly more abundant in the P-site soil  

(t-test, p < 0.05). These differences suggest variations in soil organic matter composition, plant 

exudates, and microbial activity, although attributing the exact contribution of each factor to  

the metabolite profile remains challenging (White et al., 2017). 

The Sparse partial least square discriminant analysis (sPLS-DA) plot (Figure 29B) revealed distinct 

clustering into two groups based on site, indicating the differences in the metabolite profiles of 

rhizospheric soil samples from L-site and P-site. 

 

 

Figure 29 – Metabolite profiling 

(A) The relative abundance of various classes of metabolites (expressed as percentages) present 
in the rhizospheric soil samples collected from the two sites. (B) An sPLS-DA plot illustrating the  
differences in metabolite profiles between rhizospheric soil samples from the two different sites  
(Source: Zádrapová et al., 2024). 
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Additionally, variation in the rhizospheric metabolic profiles among individual clonal tree varieties 

(1901, 1902, 1908, 1941, and 1950) from both L-site and P-site were depicted in a heatmap (Figure 30), 

highlighting the top 70 metabolites that exhibited significant differences. 

 

 

Figure 30 – Heatmap of rhizospheric soil metabolite profile  

A heatmap showing 70 most significant metabolites between the rhizospheric soil of each clonal tree variety 
(1901, 1902, 1908, 1941, and 1950) in three replicates. 
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5.2.3 Rhizospheric soil microbial community structure 

5.2.3.1 Sequencing results 

Illumina paired-end amplicon sequencing of the bacterial 16S rRNA gene and fungal ITS2 region from 

the rhizospheric soil samples of two seed orchards yielded 12,945,042 raw bacterial reads  

and 8,730,722 raw fungal reads, capturing the microbial diversity in the soils. After quality filtering, 

9,630,977 clean bacterial reads (Table 14) and 8,253,265 clean fungal reads (Table 15) were obtained. 

These clean reads were then processed using bioinformatics pipelines in QIIME2 for further analysis. 

 

Table 14 – Illumina paired-end amplicon sequencing of bacterial 16S in rhizosphere 

 

Collection 

site

Rhizosphere 

soil samples
Sample Name

Raw PE 

reads

Combined 

reads

Qualified 

reads
Nochimera Base [nt]

Average 

lenght [bp]
Q20 Q30 GC [%]

Effective 

[%]

L1901_A L1901Rz.01 219 572 207 743 199 630 177 043 73 089 632 413 98.06 93.87 55.94 80.63

L1901_B L1901Rz.02 201 575 190 262 183 696 161 044 66 703 362 414 98.14 94.08 56.54 79.89

L1901_C L1901Rz.03 217 620 207 419 200 213 150 949 62 373 068 413 98.07 93.95 56.23 69.36

L1901_D L1901Rz.04 130 455 121 202 116 995 99 366 41 310 202 416 98.02 93.82 56.57 76.17

L1901_E L1901Rz.05 206 221 195 728 188 911 162 947 68 121 275 418 97.96 93.62 55.92 79.02

L1902_A L1902Rz.01 211 497 200 703 193 912 168 065 69 784 072 415 98.05 93.82 56.44 79.46

L1902_B L1902Rz.02 213 522 200 027 192 835 166 905 69 492 815 416 98.1 93.96 56.49 78.17

L1902_C L1902Rz.03 207 105 196 253 189 941 168 151 69 506 806 413 98.1 93.94 56.21 81.19

L1902_D L1902Rz.04 148 154 142 175 137 997 121 365 50 121 842 413 98.2 94.17 54.49 81.92

L1902_E L1902Rz.05 212 827 201 709 194 602 170 727 70 659 457 414 97.94 93.62 56.4 80.22

L1908_A L1908Rz.01 145 730 138 342 133 533 115 923 48 027 238 414 97.93 93.63 56.84 79.55

L1908_B L1908Rz.02 313 845 280 231 274 529 238 556 99 025 830 415 98.1 93.94 55.95 76.01

L1908_C L1908Rz.03 139 975 132 811 128 282 112 435 46 507 214 414 97.96 93.67 56.4 80.33

L1908_D L1908Rz.04 107 708 102 229 98 752 87 592 36 316 934 415 98.04 93.71 56.65 81.32

L1908_E L1908Rz.05 164 810 156 668 151 544 135 346 55 783 467 412 98.03 93.82 56.43 82.12

L1941_A L1941Rz.01 201 665 191 437 185 009 166 927 68 813 526 412 98.01 93.78 56.71 82.77

L1941_B L1941Rz.02 107 836 102 325 98 878 85 992 35 607 490 414 97.92 93.38 56.09 79.74

L1941_C L1941Rz.03 207 236 193 360 185 527 167 421 69 103 367 413 97.95 93.67 55.92 80.79

L1941_D L1941Rz.04 186 231 144 739 137 942 121 124 50 099 539 414 98 93.79 56.71 65.04

L1941_E L1941Rz.05 177 887 168 784 163 143 145 264 59 989 948 413 98 93.8 56.51 81.66

L1950_A L1950Rz.01 202 247 191 632 184 785 161 301 67 073 758 416 97.87 93.45 57.09 79.75

L1950_B L1950Rz.02 133 156 125 189 121 009 110 033 45 423 297 413 98.12 93.95 56.08 82.63

L1950_C L1950Rz.03 178 464 168 329 162 435 143 751 59 534 417 414 97.94 93.55 56.23 80.55

L1950_D L1950Rz.04 199 519 188 651 181 918 161 933 66 811 207 413 97.9 93.49 56.04 81.16

L1950_E L1950Rz.05 189 464 178 460 172 170 151 369 62 719 497 414 97.81 93.21 56.46 79.89

P1901_A P1901Rz.01 210 389 199 834 192 992 173 425 71 269 024 411 98.03 93.85 55.9 82.43

P1901_B P1901Rz.02 167 027 156 482 151 170 137 473 56 309 068 410 97.96 93.61 55.54 82.31

P1901_C P1901Rz.03 155 740 148 238 143 090 126 207 52 104 602 413 98 93.82 55.91 81.04

P1901_D P1901Rz.04 307 045 270 987 266 379 242 407 99 490 756 410 98.2 94.16 56.19 78.95

P1901_E P1901Rz.05 155 045 147 234 142 154 129 043 52 985 488 411 98.03 93.89 56.57 83.23

P1902_A P1902Rz.01 166 843 157 917 152 705 138 568 56 871 030 410 98.08 93.99 56.44 83.05

P1902_B P1902Rz.02 200 914 190 718 184 222 167 383 68 761 733 411 98.07 93.94 55.31 83.31

P1902_C P1902Rz.03 167 179 158 858 153 624 139 368 57 235 090 411 98.07 93.98 56.58 83.36

P1902_D P1902Rz.04 136 287 129 922 125 850 114 360 46 953 519 411 98.16 94.11 56.22 83.91

P1902_E P1902Rz.05 419 070 245 168 239 855 220 516 90 389 003 410 97.58 92.75 56.56 52.62

P1908_A P1908Rz.01 419 857 261 470 255 924 233 169 95 877 097 411 97.71 93.16 56.21 55.54

P1908_B P1908Rz.02 401 657 247 494 241 209 220 483 90 731 901 412 97.48 92.6 55.49 54.89

P1908_C P1908Rz.03 382 866 229 885 223 694 204 908 83 950 100 410 97.52 92.73 56.38 53.52

P1908_D P1908Rz.04 419 523 260 724 255 853 230 444 94 973 510 412 97.75 93.08 56.77 54.93

P1908_E P1908Rz.05 411 180 247 805 242 260 221 585 90 784 639 410 97.68 93.01 56.13 53.89

P1941_A P1941Rz.01 412 568 198 908 186 415 170 741 69 927 811 410 97.62 92.92 56.11 41.38

P1941_B P1941Rz.02 394 688 250 643 245 028 225 772 92 711 848 411 97.56 92.73 56.15 57.2

P1941_C P1941Rz.03 422 785 253 638 247 806 227 086 93 341 028 411 97.64 92.95 56.32 53.71

P1941_D P1941Rz.04 430 221 267 685 260 519 229 500 95 282 923 415 97.49 92.61 55.17 53.34

P1941_E P1941Rz.05 429 537 266 898 261 049 239 315 98 364 283 411 97.69 93.11 56.45 55.71

P1950_A P1950Rz.01 423 446 264 682 258 426 238 153 97 853 834 411 97.56 92.81 56.04 56.24

P1950_B P1950Rz.02 414 427 252 270 247 220 224 785 92 390 288 411 97.73 93.04 56.47 54.24

P1950_C P1950Rz.03 417 696 261 029 255 690 236 269 96 927 068 410 97.77 93.27 56.29 56.56

P1950_D P1950Rz.04 421 433 263 498 257 568 239 323 98 232 448 410 97.61 92.9 56.66 56.79

P1950_E P1950Rz.05 433 298 268 118 262 087 242 002 99 501 018 411 97.73 93.17 56.13 55.85

L-site

P-site
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Table 15 – Illumina paired-end amplicon sequencing of fungal ITS in rhizosphere 

 

 

5.2.3.2 Amplicon Sequence Variants (ASVs) abundance 

The rhizospheric soil samples from two seed orchards revealed a total of 29,770 bacterial amplicon 

sequence variants (ASVs) with 99% similarity. Of these, 15,835 ASVs were found exclusively in  

the L-site, while 9,576 ASVs were unique to the P-site (Figure 31A). These ASVs were classified  

into 46 bacterial and 2 archaeal phyla, with the most dominant bacterial phyla being Proteobacteria 

(39% at L-site, 43% at P-site), Acidobacteriota (25% at L-site, 30% at P-site), Actinobacteria  

(18% at L-site, 16% at P-site), Verrucomicrobia (5% at L-site, 4% at P-site), and Bacteroidota  

(3% at L-site, 2% at P-site) (Figure 31B). The evolutionary tree of the top 100 abundant bacterial genera 

highlighted the presence of Granulicella, Bradyrhizobium, Acidothermus, Rhodonobacter, Roseiarus, 

Candidatus Solibacter, Occallatibacter, and Burkholderia-Caballeronia-Paraburkholderia. 

Collection 

site

Rhizosphere 

soil samples
Sample Name

Raw PE 

reads

Combined 

reads

Qualified 

reads
Nochimera Base [nt]

Average 

lenght [nt]
Q20 Q30 GC [%]

Effective 

[%]

L1901_A L1901Rz.01 127 337 124 171 123 210 108 464 37 245 711 343 99.05 96.55 46.65 85.18

L1901_B L1901Rz.02 144 230 139 980 138 156 117 669 39 345 999 334 99.1 96.72 49.87 81.58

L1901_C L1901Rz.03 279 219 274 069 269 619 230 736 72 958 596 316 99.27 97.38 48.38 82.64

L1901_D L1901Rz.04 166 144 161 885 160 714 137 034 44 574 328 325 99.06 96.66 48.19 82.48

L1901_E L1901Rz.05 143 465 139 549 137 598 115 506 38 787 171 336 99.08 96.77 49.65 80.51

L1902_A L1902Rz.01 206 391 201 045 197 642 170 961 55 951 840 327 99.17 97.03 47.78 82.83

L1902_B L1902Rz.02 181 085 176 237 175 059 150 557 49 251 192 327 99.19 97.16 51.14 83.14

L1902_C L1902Rz.03 207 520 201 882 200 415 173 594 56 876 050 328 99.22 97.19 50.78 83.65

L1902_D L1902Rz.04 205 494 200 337 199 420 172 261 56 078 710 326 99.19 97.13 50.4 83.83

L1902_E L1902Rz.05 180 154 175 906 174 377 129 648 44 635 033 344 99.11 96.78 45.69 71.97

L1908_A L1908Rz.01 173 112 166 913 165 680 137 841 45 545 851 330 99.17 97.03 51.29 79.63

L1908_B L1908Rz.02 157 058 153 334 152 444 131 192 44 868 653 342 99.01 96.54 50.7 83.53

L1908_C L1908Rz.03 171 795 167 738 166 480 144 605 48 589 829 336 99.18 96.99 47.65 84.17

L1908_D L1908Rz.04 166 235 162 780 162 138 139 066 42 864 370 308 99.23 97.37 49.54 83.66

L1908_E L1908Rz.05 202 735 197 483 152 594 133 075 46 914 958 353 99.03 96.48 46.84 65.64

L1941_A L1941Rz.01 122 323 119 539 118 214 105 712 37 272 988 353 99.05 96.51 45.83 86.42

L1941_B L1941Rz.02 202 480 194 602 193 007 168 263 56 493 292 336 99.17 97.03 46.92 83.1

L1941_C L1941Rz.03 113 955 112 179 111 196 98 351 32 251 258 328 99.23 97.14 50.09 86.31

L1941_D L1941Rz.04 149 203 144 734 143 579 124 087 42 444 438 342 99.1 96.74 47.68 83.17

L1941_E L1941Rz.05 138 554 135 352 134 663 111 177 35 783 881 322 99.14 96.94 49.45 80.24

L1950_A L1950Rz.01 142 147 139 099 136 167 116 044 40 404 376 348 99.14 96.81 48.66 81.64

L1950_B L1950Rz.02 144 276 140 257 139 687 117 057 37 591 416 321 99.18 96.97 50.51 81.13

L1950_C L1950Rz.03 152 511 142 553 141 915 120 578 39 806 328 330 98.79 96.06 49.36 79.06

L1950_D L1950Rz.04 131 586 128 079 127 011 105 918 34 904 556 330 99.15 96.95 48.38 80.49

L1950_E L1950Rz.05 139 452 136 068 135 106 112 174 37 877 797 338 99.09 96.77 49.55 80.44

P1901_A P1901Rz.01 202 032 196 488 194 954 167 720 56 008 455 334 99.11 96.78 47.46 83.02

P1901_B P1901Rz.02 219 546 214 865 214 204 183 786 55 819 031 304 99.28 97.56 52.22 83.71

P1901_C P1901Rz.03 201 055 192 962 134 115 112 378 37 623 659 335 99.12 96.8 48.54 55.89

P1901_D P1901Rz.04 172 403 165 455 164 426 139 449 45 719 229 328 99.12 96.98 51.64 80.89

P1901_E P1901Rz.05 134 178 130 868 130 132 113 511 37 364 464 329 99.18 97.06 48.74 84.6

P1902_A P1902Rz.01 207 244 202 089 200 270 160 916 55 859 045 347 99.04 96.51 47.25 77.65

P1902_B P1902Rz.02 180 801 176 889 175 335 142 692 45 823 024 321 99.16 97.05 49.83 78.92

P1902_C P1902Rz.03 208 621 201 579 200 724 173 092 55 604 186 321 99.24 97.23 48.82 82.97

P1902_D P1902Rz.04 169 391 165 735 165 073 136 873 43 352 643 317 99.21 97.24 50.98 80.8

P1902_E P1902Rz.05 219 820 213 488 212 472 187 325 62 923 984 336 99.13 96.89 52.6 85.22

P1908_A P1908Rz.01 201 403 193 404 191 537 175 408 61 094 368 348 99.04 96.53 46.83 87.09

P1908_B P1908Rz.02 135 344 132 595 131 414 111 096 37 728 235 340 99.12 96.78 45.39 82.08

P1908_C P1908Rz.03 200 720 170 669 169 502 149 148 49 886 567 334 99.14 96.89 51.02 74.31

P1908_D P1908Rz.04 142 276 134 492 134 046 112 817 36 874 134 327 99.21 97.14 50.2 79.29

P1908_E P1908Rz.05 139 725 136 986 136 349 121 067 36 722 113 303 99.33 97.62 50.15 86.65

P1941_A P1941Rz.01 188 242 182 456 161 008 145 724 49 546 697 340 99.13 96.8 47.22 77.41

P1941_B P1941Rz.02 159 482 153 936 153 070 125 653 40 902 135 326 99.08 96.74 48.13 78.79

P1941_C P1941Rz.03 134 679 130 690 130 318 111 353 34 500 496 310 99.29 97.54 49.98 82.68

P1941_D P1941Rz.04 169 134 162 537 150 810 131 534 46 188 805 351 98.89 96.09 46.75 77.77

P1941_E P1941Rz.05 174 041 168 944 168 249 148 490 47 811 118 322 99.18 97.11 50.46 85.32

P1950_A P1950Rz.01 200 322 193 045 191 772 167 474 56 744 018 339 98.9 96.18 47.99 83.6

P1950_B P1950Rz.02 210 004 200 937 200 136 171 208 55 983 007 327 99.06 96.75 51.24 81.53

P1950_C P1950Rz.03 219 023 210 292 209 279 176 811 59 091 589 334 99 96.53 48.94 80.73

P1950_D P1950Rz.04 189 026 183 315 182 579 159 881 51 423 072 322 99.17 97.15 49.23 84.58

P1950_E P1950Rz.05 203 749 196 339 195 400 179 602 58 357 655 325 99.08 96.79 51.35 88.15

L-site

P-site
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For fungi, ITS2 sequencing identified 7,570 ASVs, with 3,778 ASVs specific to the L-site and 2,537 ASVs 

exclusive to the P-site (Figure 31C). These fungal ASVs were spread across 18 phyla, with Basidiomycota 

(53% at L-site, 44% at P-site), Ascomycota (35% at L-site, 44% at P-site), and Mortierellomycota  

(4% at L-site, 5% at P-site) being the most prevalent. The most abundant fungal genera included 

Tylospora, Macrolepiota, Hygrophorus, Piloderma, Exophiala, and Cenococcum in the L-site, whereas 

Hyaoscypha, Archaeorhizomyces, Amphinema, and Amanita dominated the P-site (Figure 31D). 

 

 

Figure 31 – Amplicon sequence variants (ASVs) abundance 

A Venn diagram illustrating the distribution of unique and shared (A) bacterial and (C) fungal ASVs between the 
two different rhizospheric soil samples. Additionally, an evolutionary tree representing the top 100 (B) bacterial 
and (D) fungal genera in soil samples from the two sites. Different colours of the branches indicate distinct phyla. 
The relative abundance of each genus in each soil sample is displayed outside the circle, with different colours 
representing different rhizosphere samples (Source: Zádrapová et al., 2024).  
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5.2.3.3 Alpha diversity 

The completeness of the amplicon sequencing was confirmed by Good’s coverage index, which 

surpassed 99%, demonstrating that the sequencing depth effectively captured nearly all microbial taxa 

present in the soil samples, with less than 1% of the diversity remaining undetected. Moreover,  

the rarefaction curves approached a plateau, reinforcing that the Illumina sequencing adequately 

represented the microbial diversity in the samples (Figure 32). These results underscore the 

thoroughness of the sequencing in accurately reflecting both bacterial (Figure 32A) and fungal  

(Figure 32B) communities in the rhizospheric soil. 

 

 

Figure 32 – Rhizosphere rarefaction curves 

(A) Bacterial 16S amplicon sequencing and (B) fungal ITS sequencing of rhizosphere soil samples collected from 
L-site and P-site. Different colours and symbols represent different samples (Source: Zádrapová et al., 2024). 

 

The bacterial diversity, richness, and evenness were significantly higher in the L-site soil compared to 

the P-site soil. The Shannon index, which measures bacterial diversity, was 11.0 in the L-site  

and 9.66 in the P-site. Similarly, community richness, based on the Chao1 index, was much higher in 

the L-site (20,460) compared to the P-site (14,308). The Pielou index, which reflects community 

evenness, was also greater in the L-site (0.77) than in the P-site (0.70). All these differences were 

statistically significant (Wilcoxon test, p <0.001) (Figure 33A–C). 

For fungal communities, the richness (Chao1) was also significantly higher in the L-site (5,184) than in 

the P-site (3,949) (Wilcoxon test, p <0.05). However, there was no significant difference in fungal 

diversity (Shannon index, L-site: 7.08; P-site: 6.994) or community evenness (Pielou index, L-site: 0.576; 

P-site: 0.589) (Figure 33D–F). 
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Figure 33 – Alpha diversity indices of rhizospheric soil 

The Chao1 index representing (A) bacterial and (D) fungal richness. The Shannon index estimating (B) bacterial 
and (E) fungal diversity. The Pielou index representing (C) bacterial and (F) fungal evenness in the rhizosphere 
samples from the two seed orchards. The level of significance was determined using the Wilcoxon test, where 
“*” denotes p <0.05 and “***” indicates p <0.001 (Source: Zádrapová et al., 2024). 

 

5.2.3.4 Beta diversity 

The overall microbial diversity, assessed using unweighted UniFrac distances, revealed clear clustering 

of bacterial communities from the rhizospheric soil of the two sites. This distinct separation highlights 

the significant role of site-specific environmental factors in shaping the bacterial populations in the 

rhizospheric soil (Figure 34A). In comparison, while the fungal populations also formed two distinct 

clusters based on the site, the clusters were positioned more closely together. This indicates that 

environmental factors specific to each site had a lesser impact on fungal community structure than on 

bacterial communities (Figure 34B). 
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Figure 34 – NMDS analysis of rhizospheric microbiota 

Difference in the (A) bacterial and (B) fungal communities in the rhizospheric soils from L-site and P-site.  
Data points of the same colour represent soil samples from the same site, while different symbols indicate 
samples from different locations (Source: Zádrapová et al., 2024). 

 

The ADONIS (Table 16) and ANOSIM (Table 17) analyses demonstrated significant differences in 

microbial diversity between the soil samples from the two sites. Although these findings suggest a 

strong environmental influence on the microbial communities, further studies are needed to validate 

these observations and better understand the specific environmental factors responsible for driving 

these differences. Additional research could offer more detailed insights into the mechanisms shaping 

microbial diversity across different environments. 

Table 16 – ADONIS rhizosphere 

 

The Bray–Curtis method indicates a significant difference between the bacterial and fungal communities in the 
soils of the two Norway spruce seed orchards. (Df—degree of freedom, MeanSqs—SS/Df, F. Model—F-test value, 
R2—the ratio of group variance to total variance). Values in parentheses denote residual error. The p-value reflects 
the significance of the variation in microbial community structure. 

 

Table 17 – ANOSIM rhizosphere 

 

Positive R values indicate significant differences in the microbial communities between the two soils, with  
p-value <0.05 representing statistically significant differences. 

L-site vs P-site Df Sum of Squares Mean Square F.Model R2 Pr(>F)

Bacterial diversity 1 (48) 3.74684 (8.50962) 3.74684 (0.17728) 21.13473 0.3057 (0.6943) 0.001

Fungal diversity 1 (48) 1.45718 (16.17559) 1.45718 (0.33699) 4.32409 0.08264 (0.91736) 0.001

ADONIS

R-value p-value R-value p-value

L-site vs P-site 0.87533 0.001 0.37832 0.001

ANOSIM

Comparison
Bacterial diversity Fungal diversity
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MetaStats and t-test analyses identified that the bacterial genera Granulicella, Bradyrhizobium, 

Acidothermus, Roseiarcus, Acidipila, Occallatibacter, Conexibacter, Candidatus Koribacter, Candidatus 

Xiphinematobacter, Acidisoma, and Agathobacter were significantly more abundant in the P-site 

(Figure 35 and Figure 37A). In contrast, the genera Candidatus Udaeobacter, Pseudolabrys, Gaiella, 

Bacillus, Haliangium, Rhodoplanes, Pedomicrobium, Sphingomonas, and Reyranella were 

predominantly found in the L-site. 

Similarly, several fungal genera were found to be significantly more abundant in the L-site, including 

Russula, Thelephora, Keithomyces, Trichocladium, Ilyonectria, Fusarium, Achroistachys, 

Xanthothecium, and Gamsia (Figure 36 and Figure 37B). In contrast, the fungal genera Hyaloscypha, 

Oidiodendron, Cortinarius, Podila, Meliniomyces, and Filobasidiella were predominantly abundant in 

the P-site. 
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Figure 35 – Bacterial MetaStats analysis of rhizospheric soil 

Significantly abundant bacterial species in L-site and P-site. Significant differences in relative abundance were 
evaluated using the FDR test, where “*” indicates significant variation at q-value <0.05, and “**” denotes highly 
significant variation at q-value <0.01 (Source: Zádrapová et al., 2024). 

 

 

Figure 36 – Fungal MetaStats analysis of rhizospheric soil 

Significantly abundant fungal species in L-site and P-site. Significant differences in relative abundance were 
evaluated using the FDR test, where “*” indicates significant variation at q-value <0.05, and “**” denotes highly 
significant variation at q-value <0.01 (Source: Zádrapová et al., 2024). 
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Figure 37 – t-test analysis of rhizospheric soil microbial communities 

Significant variation in (A) bacterial and (B) fungal communities at the genus level. The last panel displays the 
abundance of genera that significantly differ between the two rhizospheric soils. Each bar represents the mean 
abundance at the genus level for the genera with significant differences. The right panel illustrates the confidence 
interval. The left-most part of each circle indicates the lower 95% confidence interval limit, while the right-most 
part marks the upper limit. The centre of the circle represents the difference in the mean values. The colour of 
the circle corresponds to the soil sample with the higher mean value. The p-value of the significance test is shown 
at the far right (Source: Zádrapová et al., 2024). 

 

Bacterial biomarkers (Figure 38A and Figure 39A) determined by the Linear discriminant analysis effect 

size (LEfSe) with LDA score [log10]>4 showed the presence of significantly abundant and consistent 

bacterial population, which on P-site belonged to the members of: 

− class—Alphaproteobacteria (order—Rhizobiales, family—Beijerinckiaceae; order—

Acetobacterales, family—Acetobacteraceae) 

− class—Acidobacteriae (order—Acidobacteriales, family—Acidobacteriaceae_Subgroup_1) 

− class—Actinobacteria (order—Frankiales, family—Acidothermaceae) 
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Whereas the biomarker from L-site soil were: 

− class—Gammaproteobacteria (order—Burkholderiales) 

− class—Vicinamibacteria (order—Vicinamibacterales) 

− class— Thermoleophilia (order—Gaiellales) 

The fungal biomarkers (Figure 38B and Figure 39B) in the rhizospheric soil from P-site belonged to:   

− class—Leotiomycetes (order—Helotiales, family—Hyaloscyphaceae) 

− family—Myxotrichaceae, family—Amanitaceae, family—Cortinariaceae  

While on L-site: 

− class—Eurotiomycetes 

− family—Agaricaceae, family—Hygrophoraceae, family—Pilodermataceae 

− order—Thelephorales (family—Thelephoraceae) 

− order—Russulales (family—Russulaceae)  

 

 

Figure 38 – LEfSe analysis of rhizospheric soil 

Presence of (A) bacterial and (B) fungal biomarker species with significantly different abundances between soils 
from the L-site and P-site. The length of each bin, represented by the LDA score, indicates the effect, which reflects 
the extent to which a biomarker species contributes to distinguishing phenotypes between the groups.  
Only biomarkers with an LDA score above the cutoff threshold of >4 are shown (Source: Zádrapová et al., 2024). 
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Figure 39 – Cladogram of rhizospheric soil biomarkers obtained by LEfSe 

(A) Bacterial and (B) fungal biomarkers in the rhizosphere as identified by LEfSe analysis. The circles radiating 
outwards represent different taxonomic levels, from phylum at the core to genus at the outer edge. Each circle 
corresponds to a specific taxon at the respective taxonomic level, with the size of each circle proportional to the 
relative abundance of the taxon. Bacterial and fungal biomarkers with significant differences are color-coded 
according to the soil sample they are associated with, while yellowish-green circles indicate non-significant 
species. Red and green nodes highlight species that strongly contribute to group differentiation. Letters above 
the circles identify the different biomarkers (Source: Zádrapová et al., 2024). 
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5.2.3.5 Functional composition 

The putative metabolic functions of bacterial communities in the rhizospheric soil were predicted by 

analysing the relative abundance of bacterial 16S rRNA gene sequences, with ASVs mapped to  

the KEGG database. A bar plot illustrated the top 10 predicted functions, including carbohydrate 

metabolism, amino acid metabolism, membrane transport, lipid metabolism, cofactor and vitamin 

metabolism, as well as xenobiotic degradation and metabolism. These functions showed no significant 

differences between the soil samples from the two orchards, indicating that they are consistent across 

the bacterial communities (Figure 40A). Furthermore, PICRUSt2 data, visualized in a PCA plot, 

demonstrated that the predicted functional gene composition of the bacterial communities was similar 

between the two sites, with no distinct functional clustering (Figure 40B). However, a t-test analysis 

highlighted certain functions that were significantly more abundant based on KEGG annotations in the 

rhizospheric soil samples (Figure 41). 

 

 

Figure 40 – Functional composition 

Barplot illustrating the relative ASV abundance contribution to the top 10 (A) bacterial functions and (C) fungal 
guilds in the rhizospheric soil. "Others" represents the cumulative ASV abundance for the remaining gene 
functions or ecological guilds. The PCA plots depict an overlap in the predicted (B) functional contributions of 
bacterial communities and (D) fungal ecological guilds between the L- and P-site soils, based on PICRUSt2 analysis 
for bacterial functions and FUNGuild classification for fungal guilds (Source: Zádrapová et al., 2024). 
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Figure 41 – t-test analysis of predicted functions of rhizospheric bacteria 

Significant variation in bacterial putative functions based on the KEGG Orthology (KO) database using PICRUSt2 
data in two rhizospheric soil samples (L-site and P-site). Each bar represents the mean abundance of different 
KOs that significantly differ between the two sites. The right panel illustrates the confidence interval between the 
soils, with the left-most part of each circle representing the lower 95% confidence interval limit, and  
the right-most part representing the upper limit. The centre of the circle indicates the difference in the mean 
value. The colour of the circle corresponds to the soil sample with the higher mean value. The right-most value 
indicates the p-value of the significance test (Source: Zádrapová et al., 2024). 
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Similarly, the functional roles of the fungal communities were predicted using FUNGuild software v1.0, 

which classifies ASVs based on their ecological functions. In both rhizospheric soil samples, the fungal 

communities were predominantly composed of ectomycorrhizal fungi (Figure 40C). The PCA plot of the 

overall fungal community functions indicated a significant overlap, suggesting that the functional 

potential of the fungal populations in the two sites was similar (Figure 40D). Notably, a t-test analysis 

revealed a significantly higher abundance of Ericoid mycorrhiza in the P-site, while wood saprotrophs 

were more prevalent in the L-site (Figure 42). 

 

 

Figure 42 – t-test analysis of predicted guilds of rhizospheric fungi 

Significant fungal guilds identified using FUNGuild data in the rhizosphere of L-site and P-site. Each bar represents 
the mean abundance of different ecological guilds that show significant differences between the two soils. The 
right panel illustrates the confidence interval between the soils. The left-most part of each circle represents the 
lower 95% confidence interval limit, while the right-most part represents the upper limit. The centre of the circle 
indicates the difference in the mean value. The colour of the circle corresponds to the soil sample with the higher 
mean value. The right-most value shows the p-value of the significance test (Source: Zádrapová et al., 2024). 

 

It is important to note that both FUNGuild and PICRUSt2 are predictive tools, and their results may not 

fully represent the actual functional roles of the microbial populations. Therefore, additional 

experimental validation is necessary to confirm the functional capabilities of these microbial 

communities. 
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5.2.3.6 Microbial co-occurrence network 

The co-occurrence network analysis assists in understanding the complex microbial interactions and 

their responses to climate change. Bacterial network analysis represented the co-occurrence of 

dominant bacterial species in two sites with different precipitation regimes (Figure 43). 

The rhizosphere soil bacterial network comprises 227 nodes and 3,744 edges with significant 

correlation in the L-site (Figure 43A). Among them, 2,896 edges showed a positive correlation 

coefficient, while 848 edges represented a negative correlation coefficient. The major bacterial nodes 

in L-site belonged to Proteobacteria (37.4%), Actinobacteriota (21.14%), Bacteroidota (10.13%),  

and Acidobacteriota (7.92%). On the contrary, the bacterial co-occurrence network was simple in  

the P-site, representing 192 nodes and 1,658 edges with 1,402 positive interactions, while 256 edges 

constituted negative interactions (Figure 43B). P-site documented the highest positive  

bacterial interactions (~84%), with the major nodes belonging to Proteobacteria (35.93%), 

Actinobacteriota (18.75%), Firmicutes (12.5%), and Bacteroidota (6.77%). 

The network diameter was 10 for both sites. The average network distance (L-site 2.77; P-site 3.52), 

clustering coefficient (L-site 0.48; P-site 0.51), network density (L-site 0.07; P-site 0.04), average degree 

(L-site 33.13; P-site 17.27), and the modularity index (MD) (L-site 0.27; P-site 0.46) were estimated, 

representing the complexity of the bacterial population in the rhizospheric soil between the two sites. 

The higher modularity value documented in the P-site bacterial network indicates a modular 

community structure where the nodes are densely connected within the communities to form modules 

with similar ecological niches, suggesting a less complex network.  
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Figure 43 – Co-occurrence network of rhizospheric bacterial communities 

Analysis illustrating the interactions among bacterial communities within (A) L-site and (B) P-site. The connections 
between nodes indicate significant correlations (Spearman’s correlation coefficient cutoff = ±0.6, p <0.05).  
The size of each circle is proportional to the relative abundance of each taxon, and different colours of the nodes 
represent different phyla (Source: Zádrapová et al., 2024). 

 

Similarly, the fungal network analysis revealed 227 nodes and 708 edges (692 positive and 16 negative 

interactions) with significant correlation in L-site (Figure 44A). In contrast, the P-site rhizospheric  

fungal co-occurrence network documented 185 nodes and 1,280 edges (Figure 44B). Among  

the fungal interactions, 874 were positive, while 406 were negative. The major fungal nodes include 

Ascomycota (L-site 66.07%; P-site 60%) and Basidiomycota (L-site 22.46%; P-site 29.18%) in both sites. 

Although most fungal interactions were positive, L-site documented the highest positive  

interactions (>97%). The network diameter (L-site 14; P-site 9), average network distance  

(L-site 4.62; P-site 3.21), clustering coefficient (L-site 0.33; P-site 0.62), network density  

(L-site 0.01; P-site 0.04), and average degree (L-site 6.23; P-site 13.83) represented the co-occurrence 

of fungal communities and their interactions in the rhizospheric space between the sites. 
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In contrast to the bacterial community structure, the fungal community in the L-site documented  

a higher modularity index (L-site 0.48; P-site 0.34), representing a less complex fungal community 

structure. The higher average degree of fungal co-occurrence network in the P-site indicates higher 

interaction with the neighbouring fungal nodes. On the other hand, the L-site documented increased 

interactions with the neighbouring bacterial nodes. Such observation suggests that variation  

in the precipitation regime influences fungal and bacterial populations differently. 

 

 

Figure 44 – Co-occurrence network of rhizospheric fungal communities 

Analysis illustrating the interactions among fungal communities within (A) L-site and (B) P-site. The connections 
between nodes indicate significant correlations (Spearman’s correlation coefficient cutoff = ±0.6, p <0.05).  
The size of each circle is proportional to the relative abundance of each taxon, and different colours of the nodes 
represent different phyla (Source: Zádrapová et al., 2024). 
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6. Discussion 

 

Our study explored the connections between precipitation, various soil properties, and the 

composition of microbial communities at two sites with markedly different precipitation patterns.  

This section synthesizes and evaluates the findings presented earlier, placing them within the context 

of prior research on this topic. Additionally, it compares our results to those found in existing literature. 

To maintain clarity and continuity, the discussion is organized in two parts: the first focuses on the 

analysis of bulk soil, while the second addresses the rhizospheric soil. 

As in previous sections, the Prenet seed orchard will be referred to as the P-site, and Lipová Lhota as 

the L-site. 

 

6.1 Bulk soil 

6.1.1 Effect of soil physicochemical properties on soil water content 

Climatic data indicate that the L-site experiences significantly lower long-term precipitation compared 

to the P-site, which accounts for the expected lower soil water content (SWC) at the L-site. However, 

SWC is not solely determined by precipitation; it is also strongly influenced by soil texture, which affects 

the soil's capacity to retain water (Aina and Periaswamy, 1985; Vereecken et al., 1989). A higher 

proportion of sand in the soil is associated with reduced water retention, resulting in lower SWC (Li et 

al., 2009). Conversely, an increase in clay and silt content enhances water retention by reducing 

permeability, thereby improving the soil's water-holding capacity (Wang et al., 2022). Consequently, 

the lower water content observed in the L-site soil (9% compared to 32% at the P-site) is linked to its 

higher sand composition (74.3%) relative to that of the P-site (70.8%). 

In addition to enhancing SWC, soil texture, particularly its clay content, plays a crucial role in 

accumulating soil organic carbon (Franzluebbers et al., 1996; Dexter, 2004). The higher total organic 

carbon (TOC) levels in the P-site soil, characterized by greater clay and silt content, are likely a result of 

increased precipitation at that site (Borken and Matzner, 2009; Bell et al., 2014), in contrast to the 

conditions observed at the L-site. 
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6.1.2 Effect of precipitation on the soil factors 

This study revealed notable differences in total organic carbon (TOC) and total nitrogen (TN) content 

related to the varying annual precipitation rates between the two sites. The higher levels of TOC and 

TN observed at the P-site were attributed to increased rainfall at that location (Bell et al., 2014;  

Borken and Matzner, 2009). Additionally, soil moisture, along with higher clay content, plays  

a crucial role in the accumulation of soil organic carbon (Franzluebbers et al., 1996; Dexter, 2004).  

As previously mentioned, the greater percentage of clay and silt, combined with higher water content  

in the P-site soil, contributed to its increased TOC levels compared to the L-site. 

Rising soil moisture levels are expected to accelerate litter decomposition, potentially enhancing soil 

carbon sequestration. Several studies have reported that reduced water availability can negatively 

impact soil carbon sequestration (Burke et al., 1989; Zhou et al., 2002). However, this assumption has 

been recently challenged (Bowden et al., 2014; Fekete et al., 2016). Water availability promotes plant 

growth, which in turn boosts biomass and litter production. Increased litter decomposition can 

stimulate microbial activity, leading to enhanced decomposition, soil respiration, and reduced carbon 

storage (Fontaine et al., 2007; Kuzyakov, 2010). Conversely, it is also possible for lower moisture levels 

to result in decreased microbial activity and carbon release (Fekete et al., 2014; Fekete et al., 2017). 

For instance, some studies have documented lower soil carbon accumulation in forests with higher 

precipitation levels (Meier and Leuschner, 2010; Chen et al., 2016). Nonetheless, higher moisture levels 

encourage microbial growth, which influences their activity (Liu et al., 2009) and, in turn, contributes 

to increased carbon release from the soil (Huang et al., 2015). Research has shown that increased 

rainfall can release more dissolved organic carbon from soil aggregates, providing more accessible 

substrates for microbes, which leads to heightened activity and higher CO2 emissions  

(Wu et al., 2011; Wang B. et al., 2021). 

While global studies indicate that changes in precipitation can alter soil pH (Slessarev et al., 2016),  

our findings showed only minor pH variation between the two sites, likely due to their geographic 

proximity.  

The relationship between soil organic carbon turnover and precipitation is particularly significant in the 

context of ongoing global climate change, which alters precipitation patterns and consequently reduces 

soil moisture levels (Zhou et al., 2011). Given that soil moisture is a key factor driving organic carbon 

turnover (Zhou et al., 2005), understanding the impact of precipitation on soil carbon dynamics 

becomes increasingly important. 
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6.1.3 Effect of precipitation on soil metabolite profile 

Soil moisture, pH, and the content of soil organic matter (SOM) are key factors that regulate the 

structure of microbial communities and carbon cycling within soils (Judd et al., 2006; Xu et al., 2020; 

Collins et al., 2014). 

Changes in precipitation affect microbial community structure (Barnard et al., 2013) by altering both 

soil moisture and organic matter levels (Maestre et al., 2016). The interplay between soil moisture, 

organic matter content, and microbial community structure is crucial for effective nutrient cycling 

(Elbert et al., 2012). Microbes utilize dissolved organic carbon in the soil, including root exudates, which 

also shape microbial community structure (Swenson et al., 2015) and affect plant functions  

(Pétriacq et al., 2017). Soil metabolites often serve as indicators of microbial responses to various 

environmental conditions (Lankadurai et al., 2013; Jones et al., 2014). For example, anaerobic soil 

disinfestation has been shown to alter soil metabolite profiles and shift microbial communities  

(Johns et al., 2017). 

In our research, we identified distinct metabolite profiles in soil samples from two Norway spruce seed 

orchards exposed to different long-term precipitation patterns over three decades. The P-site exhibited 

a higher abundance of compounds such as fatty acids, carbohydrates, and alcohols compared to L-site, 

which correlates with the higher organic carbon content at the P-site. This variation in metabolite 

composition led to clear clustering of soil samples based on their location. Johns et al. (2017) suggest 

that soil metabolomics links organic and inorganic compounds with soil microbes. Consequently,  

our findings reveal differing microbial functions between the soils from the P-site and L-site. The lower 

moisture content at the L-site likely reduces the decomposition rates of plant materials, such as litterfall 

and roots (Martin et al., 2004; Ostertag et al., 2008), which could be attributed to diminished microbial 

biomass and lower activity. 

Similarly, soil pH affects the soil metabolite profile. For instance, higher soil pH is associated with 

increased citrate and decreased malate concentrations, and vice versa (Veneklaas et al., 2003). 

Several studies have reported a positive correlation between microbial diversity and soil organic matter 

across various ecosystems (Berthrong et al., 2013; Maestre et al., 2015). 
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6.1.4 Effect of precipitation on soil microbial biomass 

Soil water availability significantly enhances soil microbial biomass and its activity, as demonstrated in 

previous studies (Williams and Rice, 2007; Huang et al., 2015). The presence of functionally active 

microbial communities and their spatial distribution in the soil can be assessed using  

Phospholipid Fatty Acid (PLFA) analysis, based on differences in microbial cell membrane composition 

(Zelles, 1999; Cavigelli et al., 1995; Torsvik and Øvreås, 2002). According to the total PLFA estimates, 

the P-site with higher precipitation levels showed greater microbial biomass. In contrast, the drier  

L-site soil had lower microbial biomass, indicating fewer functionally active microbial communities. 

Hueso et al. (2012) suggest that during drought conditions, water scarcity can reduce microbial  

PLFA levels due to diminished microbial growth as resources are diverted to prevent dehydration, and 

due to reduced solute mobility and nutrient availability (Harris, 1981; Kieft, 1987; Schimel et al., 2007). 

PLFA estimation can serve as an indicator of soil health. For example, changes in the  

PLFA (fungi/bacteria) ratio can reflect shifts in soil microbial community structure (Zeglin et al., 2013). 

In our study, while increased precipitation boosted bacterial and fungal PLFA levels in P-site soil, it did 

not significantly alter the PLFA (fungi/bacteria) ratio between the two sites. Similarly, the PLFA (G+/G-) 

ratio is used as an indicator of water stress (Klamer and Bååth, 1998), with gram-positive bacteria being 

more resistant to water scarcity due to their thicker cell walls compared to gram-negative bacteria. 

However, our findings showed no significant effect of increased precipitation on the PLFA (G+/G-) ratio 

between sites. This observation may suggest that soil microbes are adaptable to environmental 

changes and maintain a stable community structure (Huang et al., 2015; Yang et al., 2017). 

Furthermore, both total and specific PLFA contents in the soil were positively correlated with total 

organic carbon (TOC) and total nitrogen (TN). The availability of organic nutrients is a key factor 

influencing soil microbial biomass (Wagai et al., 2011; De Vries et al., 2012). 
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6.1.5 Effect of precipitation on soil microbial enzymatic activity 

Soil microbial communities play a key role in nutrient cycling by producing extracellular enzymes 

(Bowles et al., 2014). These enzymes aid in the breakdown, transformation, and mineralization of soil 

organic matter (Sinsabaugh, 2010; Xiao et al., 2018), which in turn affects soil quality and ecosystem 

productivity (Sayer et al., 2013). While microbes are the main producers of extracellular enzymes  

in soil, specific enzymes are produced by particular microbial taxa. For example, fungi typically produce 

enzymes that degrade lignocellulose and chitin (Baldrian and Valášková, 2008; Sinsabaugh et al., 2008), 

allowing them to process recalcitrant nutrient-poor substrates. Bacteria, on the other hand, 

decompose more easily accessible substrates (Xu et al., 2015; Treseder et al., 2016). Fungi secrete 

enzymes that break down complex plant organic matter, which then provides bacteria with simpler, 

more accessible substrates (Romaní et al., 2006). However, the relationship between microbial 

communities and enzyme activities remains underexplored. 

In this study, we focused on extracellular enzymes involved in the decomposition of soil organic carbon 

(α-glucosidase, β-glucosidase, β-galactosidase, β-xylosidase, cellobiohydrolase), nitrogen (chitinase), 

and phosphorus (acid phosphatase) into forms that plants can assimilate (Bell et al., 2013).  

Our results indicated a significant increase in extracellular enzyme activities with higher microbial 

biomass in P-site soil under increased precipitation. This suggests that precipitation reduces microbial 

physiological stress and boosts microbial activity by enhancing nutrient availability (Austin et al., 2004; 

Tiemann and Billings, 2011; Manzoni et al., 2012). Consequently, the higher levels of organic carbon 

and nitrogen in P-site soil were positively associated with increased extracellular enzyme activities, 

consistent with previous studies (Sinsabaugh et al., 1991). 

Precipitation is a key factor influencing enzyme production and turnover, affecting soil enzyme 

responses and ecosystem productivity (Yang et al., 2017). Increased precipitation enhances the activity 

of soil microbial functional genes involved in biogeochemical cycling (Li et al., 2017). 

In summary, our study found notable differences in soil microbial composition between L-site and  

P-site. The L-site soil exhibited higher bacterial and fungal diversity, while the P-site soil on the other 

hand had significantly higher levels of extracellular enzyme activities and total PLFA. This suggests 

a greater abundance of metabolically active microbes at the P-site, which likely play a crucial role  

in organic matter recycling (Coolen and Overmann, 2000). This observation could be linked to the 

higher water content at the P-site, which positively influences microbial activity and enzyme production 

(Borowik and Wyszkowska, 2016). 
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6.1.6 Effect of precipitation on soil microbial community structure 

Soil microbial diversity and biomass are crucial for driving ecosystem processes such as nutrient cycling 

and organic matter decomposition (Crowther et al., 2016). While numerous studies have explored the 

influence of various biotic and abiotic factors on soil microbial diversity and biomass (Fierer, 2017; 

Tedersoo et al., 2014; Delgado-Baquerizo et al., 2018), the specific relationships between microbial 

diversity, biomass, and their controlling factors remain underexplored. 

One key abiotic factor affecting organic matter retention, microbial biomass, and microbial activity is 

soil texture (Bechtold and Naiman, 2006). Soils with finer particles, such as those with high clay content 

and low sand percentages, tend to form more stable aggregates. Such soils often accumulate higher 

levels of organic carbon and total nitrogen, which significantly influences nutrient availability  

(Raiesi, 2006). Soil texture also impacts the abundance of bacterial and fungal populations. Increased 

soil organic content generally supports the growth of dominant microbial taxa, leading to higher 

microbial biomass. However, this increase in biomass can result in reduced diversity among 

subordinate taxa due to competitive exclusion, leading to a decrease in overall species richness  

(Bastida et al., 2021). Similar patterns are observed in plant communities, where dominant species can 

suppress the diversity of other species (Loreau and Hector, 2001; Paquette and Messier, 2011; 

Rajaniemi, 2003). This aligns with our findings, where the L-site soil, with lower carbon content  

and reduced microbial biomass, exhibited higher microbial diversity compared to the P-site. 

Additionally, soil carbon content is influenced by microbial respiration, which is directly affected by 

temperature (Frey et al., 2013; Xu et al., 2021). Rising temperatures due to global warming increase 

microbial activity and accelerate the decomposition of soil organic matter, leading to a depletion of 

labile carbon substrates (Karhu et al., 2014). In response to such conditions, microbial communities 

may either acclimate or change in composition, resulting in variations in microbial biomass  

(Allison and Martiny, 2008; Bradford, 2013). Therefore, the differences observed in microbial structure 

and activity between the L-site and P-site may also be partially attributed to temperature variations. 
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6.1.7 Effect of edaphic variables on soil microbial communities 

As outlined above, soil organic matter, represented by total organic carbon (TOC) and total  

nitrogen (TN) content, plays a crucial role in shaping the soil microbiome (Drenovsky et al., 2004;  

Burns et al., 2015). Numerous studies have shown that the addition of organic carbon and nitrogen to 

soil significantly alters microbial composition (Drenovsky et al., 2004; Ng et al., 2014; Zhou et al., 2017). 

Our findings indicated that edaphic factors such as TOC and TN had a much greater influence on soil 

microbial communities compared to factors like soil pH and conductivity—37.66% (TOC and TN) 

compared to 6.5% (pH and EC) for bacteria, and 32.83% (TOC and TN) compared to 6.63% (pH and EC) 

for fungi. The bacterial genera belonging to the classes Rhizobiales, Acidobacteriales, 

Chthoniobacterales, Rhodospirillales, Ktedonobacterales, and Planctomycetales showed a significant 

positive correlation with TOC and TN content. These bacterial orders play key roles in soil carbon and 

nitrogen cycling (Barton et al., 2014; Jones, 2015; Köberl et al., 2020). For instance, Planctomycetales 

are facultative chemoorganotrophs that specialize in carbohydrate metabolism (Fuerst, 1995),  

while Rhodospirillales and Rhizobiales are involved in nitrogen fixation, helping to maintain  

the carbon-to-nitrogen ratio in the soil (Hayat et al., 2010; Jones, 2015). The relative abundance of 

these bacterial species is also closely linked to potential carbon mineralization rates (Jones, 2015). 

Chthoniobacterales contribute to carbon cycling by breaking down complex carbohydrates such as 

cellulose and xylan (Köberl et al., 2020), while Ktedonobacterales utilize nitrite and nitrate and encode 

ureases (Barton et al., 2014). 

Our study also identified a correlation between bacterial species and soil pH, with these species 

contributing to nutrient cycling by decomposing organic matter and fixing nitrogen in the soil  

(Wang et al., 2016). Similarly, the relative abundance of fungal communities was positively correlated 

with TOC, TN, and soil pH. These fungi play a critical role in carbohydrate degradation, which affects 

soil organic matter content and helps maintain the nitrogen-to-phosphorus (N:P) ratio  

(Kottke et al., 1998; Deacon et al., 2006; Avis, 2012; Ohm et al., 2012). 

In conclusion, our study highlights the impact of long-term variations in precipitation, along with soil 

texture and pH, on soil microfauna and their functions in the Norway spruce forest ecosystem. 

However, further research at the metatranscriptomics and metaproteomics levels is needed to validate 

these findings at the functional level. 
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6.2 Rhizosphere 

6.2.1 Effect of precipitation on rhizospheric microbial communities 

As previously mentioned, soil water content (SWC) plays a critical role in supporting belowground 

microfauna and soil processes, as water availability boosts microbial activity, facilitates organic matter 

decomposition, and reduces soil carbon sequestration (Fontaine et al., 2007; Kuzyakov, 2010). 

Consequently, precipitation events, which directly influence SWC, are key in regulating soil organic 

matter turnover (Bian et al., 2022; Li et al., 2021). Findings from the bulk soil study revealed that 

increased precipitation led to higher soil moisture, which in turn resulted in elevated organic matter 

and total nitrogen (TN) levels at the P-site (Chakraborty et al., 2023). However, there was no significant 

variation in soil pH or conductivity between the two Norway spruce seed orchards  

(Chakraborty et al., 2023), despite studies indicating that changes in precipitation can affect soil pH  

on a global scale (Zhang Y. Y. et al., 2019). 

The "root-soil-microbe" triangle is considered one of the most dynamic underground relationships in 

nature. These interactions, particularly in the rhizosphere, are further amplified through plant-microbe 

feedback mechanisms (Štraus et al., 2024). Bengough (2012) notes that about 40% of total terrestrial 

precipitation passes through the narrow volume of rhizosphere soil surrounding plant roots before 

being transpired, making it a highly active hydrological zone within the biosphere. The differences  

in precipitation between the study sites led to notable variations in soil metabolite content, specific 

element concentrations, and microbial community structure. These long-term precipitation changes 

and their effects on the rhizosphere microbiome at both the L-site and P-site are summarized  

in the schematic in Figure 45 (source: Zádrapová et al., 2024). 
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Figure 45 – Impact of long-term precipitation change on rhizosphere microbiome 

Source: Zádrapová et al., 2024 

 

6.2.2 Chemistry of rhizospheric soil 

The chemistry of the rhizosphere is complex and constantly evolving due to the influence of plant root 

exudates and microbial secretions (Mashabela et al., 2022). A large proportion of beneficial bacteria 

found in the rhizosphere are classified as plant growth-promoting rhizobacteria (PGPR),  

which form a mutual symbiotic relationship with the host plant through biochemical signalling 

(Grobelak et al., 2015; Mhlongo et al., 2020). In this perspective, rhizosphere can be seen as 

communication highway that connects the PGPR and the plant’s roots. Plants provide a steady stream 

of nutrients and signalling molecules, such as organic acids, amino acids, vitamins, minerals, and 

allelochemicals like phenolic acids, terpenoids, and flavonoids, creating a hospitable environment for 

PGPR to accumulate and proliferate (Miller et al., 2019; Strehmel et al., 2014). In return, PGPR release 

growth-enhancing and defence-related compounds, including phytohormones, which benefit the plant 

(Mus et al., 2016; Mhlongo et al., 2018). Certainly, the rhizosphere represents a highly intricate network 

of interactions involving both plant-microbe and microbe-microbe relationships. These interactions 

play a critical role in shaping the microbial community and supporting plant growth. A simplified 

representation of these interactions is shown in Figure 46 (Berendsen et al., 2012). 
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Figure 46 – Interactions in the rhizosphere 

Source: Berendsen et al., 2012 

 

In addition, metabolites play a key role in stabilizing carbon within the soil. Compounds like fatty acids, 

amino acids, lipids, organic acids, sugars, and volatile organic compounds are tightly linked to 

biogeochemical cycles, which are largely driven by soil microorganisms (Song et al., 2024).  

Microbial carbon use efficiency is influenced by the diffusional limitations of substrates, which are 

closely tied to soil water content (Butcher et al., 2020). As a result, soil moisture is a critical factor in 

regulating microbial activity, which subsequently affects the levels and composition of soil metabolites 

(Butcher et al., 2020). 

This study documented an increased abundance of rhizospheric soil metabolites, including fatty acids, 

alcohols, acids, and terpenes, in the P-site, while carbohydrates were more prevalent in the L-site.  

This variation in metabolite profiles may be linked to the higher abundance of microbial phyla such as 

Proteobacteria, Acidobacteriota, Actinobacteriota, Bacteroidota, and Firmicutes, which play key  
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eco-physiological roles in cycling essential elements like nitrogen, carbon, and sulphur  

(Zhao et al., 2022). Notably, the elevated levels of fatty acids and terpenes in the P-site may also be 

associated with the lower abundance of Actinobacteriota and Chloroflexi (Bi et al., 2021). 

Similarly, Shi et al., 2011 found that the addition of carbohydrate metabolites to forest soil significantly 

boosted the relative abundance of dominant bacterial taxa such as Actinobacteriota, Proteobacteria, 

and Firmicutes. This supports our findings, indicating that carbohydrates play a key role in shaping the 

soil bacterial community by enhancing the growth of certain microbial groups. A plausible explanation 

is that these bacterial taxa may be more efficient at using carbohydrates as a carbon source, providing 

them with a competitive advantage. However, this relationship warrants further experimental 

investigation for validation. 

In this study, it was not feasible to separately identify the individual contributions of these driving 

factors to the observed soil metabolite profiles. The mechanisms linking the complex metabolite pools 

to microbial diversity within the rhizosphere remain unclear and require further exploration. Gaining a 

deeper understanding of metabolite dynamics in rhizospheric soil could shed light on the intricate 

interactions between plants and belowground microbial communities in response to environmental 

shifts (Massalha et al., 2017). 

 

6.2.3 Effect of precipitation on bacterial and fungal diversity in rhizospheric soil 

Soil moisture content often influences microbial diversity and function. In this study, higher soil 

moisture in the P-site was associated with lower bacterial diversity, while fungal diversity remained 

unaffected. Similar findings were reported by Yang et al. (2021), where precipitation changes 

significantly impacted bacterial communities but not fungi in a meadow grassland in northeastern 

China. Bacteria tend to respond more quickly to shifts in soil water availability due to their distinct 

physiological traits and survival strategies, unlike fungi (Engelhardt et al., 2018). The increased moisture 

from higher precipitation may have led to osmotic stress, reducing bacterial diversity at the P-site  

(Kieft, 1987). However, fungal diversity in the rhizosphere remained consistent between the sites, likely 

due to fungi's resilience and their ability to extend hyphae, allowing them to access nutrient resources 

even in low-moisture environments (Boer et al., 2005).  

In this study, the P-site rhizosphere exhibited a high abundance of Proteobacteria and Acidobacteriota, 

particularly species like Granulicella, Roseiarcus, Acidobacteria, and Acidipila. These bacteria are k 

ey players in decomposing organic matter and enhancing the availability of nutrients such as  

nitrogen (N), calcium (Ca), and phosphorus (P) in acidic soils (Conradie, 2020; Ren et al., 2021).  
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The increased presence of acidophilic bacteria may be linked to the elevated levels of fatty acids and 

organic acid metabolites observed in P-site soil (Bi et al., 2022). According to Bi et al. (2022), high 

concentrations of fatty acids contribute to soil acidity, significantly influencing the conifer root 

microbial community structure. Our previous research on bulk soil from these sites confirmed lower 

pH levels in the P-site compared to the L-site (Chakraborty et al., 2023), though the difference in bulk 

soil pH between the two sites was not statistically significant. 

The elevated presence of Bradyrhizobium in the P-site is noted for its significant role in nitrogen fixation 

and nutrient uptake, particularly nitrogen (N) and phosphorus (P), as well as its interactions with 

mycorrhizal fungi (Meena et al., 2018). This high abundance of Bradyrhizobium is likely linked to the 

increased total nitrogen content found in soil samples from the P-site, as documented in our previous 

study (Chakraborty et al., 2023). 

Soil moisture and temperature play crucial roles in influencing fungal growth and the functioning of 

symbiotic relationships (Augé, 2004; Heinemeyer and Fitter, 2004). In the P-site, the combination of 

high soil moisture and low temperatures likely creates an optimal environment for mycorrhizal 

development. Studies indicate that changes in precipitation can significantly impact arbuscular 

mycorrhizal fungi (AMF) communities by altering their interactions among different AMF groups  

(Wang J. et al., 2021). Additionally, the prevalence of mycorrhizal communities at the P-site may be 

attributed to their association with various “Mycorrhizae Helper Bacteria” (MHB), which support and 

enhance the establishment of mycorrhizal symbiosis with the host plant (Frey-Klett et al., 2007).  

In the rhizosphere microbiota, genera such as Azospirillum, Burkholderia, Bradyrhizobium, 

Pseudomonas, Rhizobium, Bacillus, and Brevibacillus were identified as MHBs. Additionally, a high 

abundance of Acrodontium, Oidiodendron, and Cortinarius was documented in the rhizosphere 

of the P-site. Acrodontium is known for its inhibitory effects against powdery mildew pathogens 

(Sharma, 2015), while Oidiodendron sp. contributes to the forest ecosystem through its plant cell  

wall-degrading enzymes (Adnan et al., 2022) and mycorrhizal associations (Morvan et al., 2020). 

Cortinarius sp. is one of the most important symbiont mycorrhizal fungi associated with tree roots in 

forest ecosystems (Wang et al., 2019). 
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Interestingly, the L-site, which receives less precipitation compared to the P-site, showed higher 

bacterial diversity in the rhizospheric soil. Key bacterial genera in the L-site rhizosphere included 

Candidatus, Pseudolabrys, Bacillus, Gaiella, and Sphingomonas. These bacteria are known for their role 

in utilizing plant-derived hydrocarbons and polysaccharides, significantly contributing to soil nutrient 

cycling (Luo et al., 2019; Dobrovolskaya et al., 2020; Li J. et al., 2020; Zhang X. et al., 2019).  

Additionally, the L-site rhizosphere supported a diverse community of ectomycorrhizal fungi,  

such as Russula and Thelephora. These ectomycorrhizal fungi have been reported to recruit various 

helper bacteria within the mycosphere to facilitate their growth and maintain mycelium in the soil  

(Pent et al., 2017; Warmink et al., 2009; Antony-Babu et al., 2014). Additionally, a significant presence 

of pathogenic fungi was observed at the L-site, including Ilynocteria, Fusarium, Trichocladium,  

and Metarhizium. Metarhizium, known for its role as an entomopathogenic fungus, protects plants 

from insect pests (Liao et al., 2014). In contrast, Ilynocteria, Fusarium, and Trichocladium are recognized 

plant pathogenic fungi (Leslie et al., 2006; Farh et al., 2018; Belosokhov et al., 2022). Interestingly, the 

lower abundance of pathogenic fungi at the P-site could be linked to the presence of Occallatibacter, 

which is known to hydrolyse chitin and thus offers protection against pathogenic fungal infections 

(Dobrovolskaya et al., 2020). However, further experimental validation is needed to confirm this 

hypothesis. Among other fungi significantly abundant at the L-site, Humicola is noted for  

its β-glucosidase gene (bgl4) and β-xylosidase gene (hxylA) coding for β-glucosidase and β-xylosidases, 

which are involved in cellulose degradation (Benoliel et al., 2010; Cintra et al., 2017). 

 

6.2.4 Predicted functions and network analysis of rhizospheric microorganisms 

The rhizosphere soil biomass is predominantly composed of plant materials such as hemicellulose, 

cellulose, lignin, pectin, and proteins. Microbial communities responsible for cellulose degradation are 

crucial for nutrient cycling and organic matter decomposition in soil (Datta, 2024). According to the 

putative functional predictions made by PICRUSt2, there were no distinct clusters in the overall 

predicted functions of bacterial communities between the two sites, suggesting that the rhizospheric 

soil bacterial communities from both seed orchards have similar functional potentials. Similarly,  

the ecological fungal guilds at the two sites were found to overlap, indicating that changes in 

precipitation have minimal impact on the fungal populations. However, these findings are based on 

predictions from software and may not fully reflect the actual conditions. Therefore, further 

experimental validations are necessary to substantiate these observations. 
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Microorganisms often thrive through intricate association networks rather than existing in isolation. 

Highly interconnected species can potentially play crucial roles within microbial communities  

(Liu et al., 2024). In the bacterial network analysis, species belonging to the bacterial phyla such as 

Proteobacteria, Actinobacteriota, Acidobacteriota, Bacteroidota, and Firmicutes exhibited significantly 

more connections compared to other phyla. These bacterial groups are likely essential for 

biogeochemical cycling and carbon mineralization in forest ecosystems (Huang et al., 2023;  

Zhu et al., 2022; Zhang B. et al., 2019). Notably, these prominent bacterial nodes exhibit varying growth 

rates; for example, some Proteobacteria taxa grow rapidly, whereas certain Acidobacteria taxa grow 

are slow growers (Singh et al., 2010; Zhou et al., 2018). The interactions among these nodes indicate 

that the diverse microbial community optimizes resource utilization and supports the functioning of 

forest ecosystems (Liu et al., 2024). 

In the fungal co-occurrence network, the phyla Ascomycota and Basidiomycota were prominent, 

reflecting their key role in forming connections. These fungal genera are crucial for breaking down lignin 

and cellulose, processes that facilitate organic matter decomposition and enhance soil nutrient cycling 

in forest ecosystems (Lange et al., 2019). The L-site exhibited a higher level of overall microbial 

interactions compared to the P-site, with bacterial interactions being more than twice as frequent in 

the L-site. Despite the lower number of microbial interactions in the P-site, its microbial network 

displayed a higher clustering coefficient, indicating that the community structure in this site is highly 

interconnected and forms tight clusters. However, further experimental validation is required to 

confirm the functional implications of these observations.  
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7. Conclusions 

 

This thesis aimed to achieve three main objectives: to assess soil quality parameters in forest soils 

under different precipitation regimes, to explore bacterial and fungal diversity in these soils, and to 

investigate the bacterial and fungal community structure in the rhizosphere of Norway spruce  

(Picea abies). For this study, two clonal Norway spruce seed orchards with distinctly different 

precipitation regimes were selected. 

Our findings revealed that increased precipitation, along with soil texture, enhances water and nutrient 

availability. As a result, precipitation, combined with the effects of multiple edaphic factors, had a 

significant impact on microbial community composition and diversity. Higher soil moisture led to 

increased levels of total organic carbon (TOC) and total nitrogen (TN), which serve as vital nutrients for 

soil microorganisms. The combined influence of TOC, TN, and soil pH affected both the structure and 

activity of microbial communities, as evidenced by differences in soil metabolite profiles, extracellular 

enzyme activities, and phospholipid fatty acid (PLFA) content. Additionally, we observed that while 

increased soil moisture enhanced microbial biomass and activity, microbial diversity was relatively low, 

suggesting that soil microbial communities quickly adapt to their environment. 

Similarly, variations in the relative abundance of specific rhizospheric microbial classes between sites 

point to climatic influence. Higher moisture content increased metabolite levels and was associated 

with a greater relative abundance of acidophilic bacteria, nitrogen-fixing bacteria, and mycorrhizal 

association. While elevated soil moisture influenced the structure and complexity of the rhizospheric 

bacterial community network, the diversity of the fungal community remained consistent across sites, 

indicating that precipitation had a lesser effect on the rhizosphere mycobiome. 

This study provides a model for investigating the effects of climate change on belowground forest 

microbiomes and their implications for sustainable forest growth. It contributes to understanding soil 

microbial community dynamics towards future global climate change scenarios Understanding 

belowground processes and dynamics is a critical step toward effectively conserving aboveground 

ecosystems. 
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8. Limitations of the study 

 

Several limitations of this study need to be addressed. 

Although high-throughput amplicon sequencing is a powerful tool, it is prone to PCR bias  

(Kebschull and Zador, 2015). PCR amplification may not amplify all sequences equally, leading to 

variable amplification efficiency across different sequences. This bias can be minimized through 

alternative approaches such as shotgun sequencing or metatranscriptomics. 

Additionally, 16S rRNA gene amplicon sequencing has inherent limitations in taxonomic resolution, 

often only identifying bacteria to the genus level due to the high similarity between 16S rRNA genes of 

closely related species (Gupta et al., 2019). As a result, critical functional associations at the species 

level may be missed. This issue can be addressed by employing techniques such as shotgun sequencing, 

which provides higher taxonomic resolution. 

Functional predictions of microbial taxa, while useful, are based on computational models and may not 

fully reflect the actual in situ conditions in soil. Thus, further experimental validation is often necessary 

to confirm these predicted functions. The limitations of putative functional predictions can be 

addressed by using methods such as metatranscriptomics, metaproteomics, and other functional 

assays. 

Regarding metabolite profiling, determining the precise origin of metabolites is challenging, as they 

may originate from multiple sources such as soil organic matter, plant exudates, or microbial 

metabolism. Disentangling the contributions of these individual factors to soil metabolite profiles 

remains difficult. In this study, we used gas chromatography-mass spectrometry (GC-MS),  

which detects volatile compounds or gases. This limitation could be mitigated by employing more 

sensitive methods like liquid chromatography-mass spectrometry (LC-MS), which is capable of 

detecting a broader range of compounds (Zeki et al., 2020). 

Despite these limitations, our study provides valuable hypotheses that lay the foundation for future 

research. 
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