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Annotation 

In the last two decades, novel terrestrial-based laser scanning technologies have been 

introduced for the three-dimensional capture of forest states. These technologies allow us to 

measure and reconstruct different parts of forest ecosystems in a three-dimensional space on a sub-

twig scale. Achievable high accuracy and details provide us with many possibilities for forestry 

research and practice. However, the accuracy of mapping selected forest structural indicators by 

means of terrestrial and mobile laser scanning is needed to investigate and understand the benefits 

of these technologies. 

Terrestrial laser scanning (TLS) and mobile laser scanning (MLS) have shown potential in 

mapping individual tree dimensions (diameter at breast height (DBH), tree height, biomass) of 

living, standing trees. Automated tools are available for mapping individual trees at maximum 

accuracy. However, the benchmarking of these tools needs to be done to encompass various output 

parameters related to the application in forestry. The 100 % tree detection rate using TLS and MLS 

is also in the queue to be solved, especially concerning the different forest structures and 

complexity levels. The total time and cost associated with TLS and MLS devices have a lot of 

impact on the quality and quantity of the data. There is a lack of protocol for the data acquisition 

and processing using TLS and MLS in the forest ecosystem. Also, TLS has been proven to solve 

the biomass saturation problem at the plot level by integrating with other datasets. 

Therefore, this study focused on different aspects of data acquisition using TLS and MLS. 

Automated point cloud processing tools were compared, and a user guide and manual were 

prepared. A methodology was developed to create a database of existing processing solutions and 

benchmark their accuracy regarding forest parameters extraction. A comparative analysis was also 

conducted on the TLS and MLS devices. Later, a methodology was developed to showcase the 

significance of DBH and different tree species. Further analysis was done to overcome the biomass 

saturation problem with integrating TLS and ALOS PALSAR data and achieved the promising 

accuracy for above-ground biomass mapping.  

Further research is needed to explore more complex forest environments to check the 

applicability of the developed methodologies on a larger scale. The benchmarking of automated 

point cloud processing tools needs to be revised timely as new tools will be developed. Other forest 



 

structural indicators should be checked with the developed approaches, and further analysis and 

relations need to be finalized to see the effect of modern technology on forest ecosystem 

monitoring and management.  

Keywords: terrestrial laser scanning, mobile laser scanning, diameter at breast height, tree species, 

tree height, biomass, occlusion, point cloud. 
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1. Introduction 

1.1 State of the art and motivation  

Forest resource information is collected at various scales, i.e., stand level, regional level, and 

countrywide, to plan and manage various ecosystem services and improve forest management 

(Toivonen et al., 2023). Potential information on timber harvesting is also important for the 

regional and forest levels. Also, understanding terrestrial ecosystems functioning and physical 

changes due to climate change and monitoring leads to the quest for 3D information on forest 

structure (Verbeeck et al., 2019). Forest structural indicators are measures used to describe the 

distribution and arrangement of vegetation and the physical attributes within the forest (Korom et 

al., 2022). The forest structural indicators are tree height, diameter at breast height (DBH), canopy 

cover, basal area, stem volume, biomass, species composition, etc. Forest structure as a 3D 

complex can be described in two sections: vertical and horizontal structures. The vertical structure 

describes the vertical distribution of vegetation in the forest ecosystem. The vertical profile of the 

forest provides very in-depth information on the inter-relation of forest ecosystems and 

biodiversity, whereas horizontal structure defines the horizontal profile of the vegetation in the 

forest ecosystem (Palace et al., 2016). 

Forest structural indicators play an important role in the regulation and presence of biodiversity 

and in maintaining the microclimate of the forest ecosystem. They provide approximately 80% of 

global terrestrial biodiversity and fundamental ecosystem services to society, such as recreation, 

climate regulation, and timber (Balvanera et al., 2014). Forest structure also significantly regulates 

the occurrence and distribution of species and provides breeding sites. Also, it provides resources, 

niches, and shelter from predators (Melin et al., 2014). However, the more significant number and 

variability of niches are directly proportional to the presence of a greater diversity of species 

present in the forest (Stein et al., 2014). Extracting such detailed and fine scale information requires 

a high precision of measurement.  

The measurement of such a large scale and fine scale is critical and time-consuming. The ground 

sampling method for the reconstruction of 3-D vegetation characteristics is a cumbersome and 

resource-demanding procedure; furthermore, it may compromise precision due to the possibility 
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of manual measurement errors. However, current remote sensing methods include both active and 

passive sensors, which provides a possibility to measure the assessment of biodiversity of forests 

at a large scale (Turner et al., 2003). Light detection and ranging (LiDAR), as an active sensor, 

provides the measurement of vertical and horizontal vegetation structure of the forest at the 

landscape scale (Bergen et al., 2009). Previously, the qualitative representation of 3D forest 

structures was explicitly available. The hand-drawn tree archetypes were used as a representation 

(Hallé et al., 1978), and the conventional methods for the tree measurements were performed using 

tools such as calipers and clinometers. The traditional methods are labor-intensive and 

cumbersome. 

Later, the development of the terrestrial laser scanner (TLS) provided 3D information on trees and 

forests, which provides in-depth information.  Initially, the research was focused on tree parameter 

retrievals, such as tree height and DBH. However, the focus later diverted to tree volumetric 

assessment and aboveground biomass estimation (Gonzalez de Tanago et al., 2018). Currently, the 

applications also include the modeling aspects of branch architecture (Lau et al., 2018), habitat 

assessment (Ashcroft et al., 2014), forest fire modeling, or the quantification of fuel load (Y. Chen 

et al., 2016).  

The forest structural indicators are an inseparable entity in forest management and protection. The 

ecological insights from the 3D measurements challenge the potential of TLS and mobile laser 

scanner (MLS). A study by (Verbeeck et al., 2019) showed that TLS can be used as a structural 

information source to understand the descriptive orientation of the axis of structural traits in woody 

plants. LiDAR has also been used to profile forests to understand stratification and its role in the 

balance of the forest ecosystem. LiDAR application is of wide ranges. Starting from habitat 

selection, such as the specific pattern and ecological niche decided by the mammals in the forest 

ecosystem. It has also been used to resolve the unsaid truth about the habitat requirements of 

mammals (Stobo-Wilson et al., 2021). Also, biodiversity population monitoring can be done using 

TLS. In this regard, a study has been done on butterfly population monitoring (Hristov et al., 2019). 

Due to pollution, slight changes have been observed in the physiological patterns of the plants and 

trees. So, (Hofman et al., 2014, 2016) have done modeling of particulate deposition on the leaf and 

its consequences.  
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The multi-temporal TLS or MLS data can also provide the 4D data for canopy structural dynamics 

to understand the canopy structure of the tree. Combining real-time monitoring with spectral 

information can be used to analyze relationships between structural and functional trait-based 

analysis (Calders et al., 2020). 

The environmental changes can be assessed using continuous monitoring of different ecological 

indicators, helping to identify actual ecosystem conditions and changes that can potentially lead to 

irreversible transformation (Dale & Beyeler, 2001; Ratajczak et al., 2018). Here, the role of 

modern data acquisition technologies has started to be increasingly recognized and appreciated. 

For example, forest “health” and resilience were correlated with species and structural and 

functional diversity of the ecosystem (Espelta et al., 2020), and many of these features can be 

derived using advanced data acquisition methods such as TLS and MLS. The use of TLS and MLS 

in forestry is a revolution in lidar technology. This technology is more affordable and faster. It can 

provide autonomous observations which creates a possibility of forest inventory from stand level 

to regional level. It also identifies the state-of-the-art methods for various applications in ecology 

and projects on their various current issues and bottlenecks. The Spectral Variation Hypothesis 

says that spectral heterogeneity over the different pixel units of a spatial grid reflects a higher niche 

heterogeneity, allowing more organisms to coexist (Rocchini et al., 2021), suggesting an 

interesting link between remote sensing-based data and ecological properties. The well-recognized 

relationship between an indicator and indicandum (e.g., the indicated characteristics of 

biodiversity; Bastianoni et al. (2012)) suggests that, for example, deadwood volume and diversity 

and saproxylic beetle species richness are closely correlated (Gao et al., 2015). However, options 

for high-resolution mapping of deadwood parameters remain largely unresolved (Marchi et al., 

2018). Therefore, research is required to understand the complexity of the interaction between 

forest dynamics, ecosystem services, and human well-being (Carpenter et al., 2009).  

Generally, three fundamental aspects are considered to shape the adaptation of any new 

technology. Firstly, the overall time requirement for the data acquisition, equipment cost, and data 

post-processing. Secondly, the significance of the data collected from the field should be similar, 

surpass the conventional method, or provide some added advantages. Lastly, the tree attribute 

information should be precise enough to support the decision-making in forest management 

(Knoke et al., 2010). There is an intimate relation between these three aspects. The question 

remains regarding the potential use of MLSs in forest ecosystem applications. But it also has shown 
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the possibility of improving the quality and quantity of the reference data collection in the forest 

inventories because it is faster and provides a level of detail of tree structure.  A thorough literature 

review was done considering all the sections of this chapter, and the statistics on the number of 

publications focused on forestry and tree metrics using TLS and MLS are shown in Figure.1 and 

Figure.2. The keywords used to search in the Web of Sciences are mentioned in Table 1. 

Table 1: The Keywords used to search in Web of Sciences 

Technology Search code Focused 

area 

No. of 

Publication 

MLS  TS = ("mobile laser scann*" OR "personal laser scann*" OR "hand-held laser 

scann*" OR "backpack laser scann*" OR "backpack lidar" OR " mobile lidar")AND 

TS= ("forest" OR "tree" OR "forestry" ) 

Forestry  334 

TLS  TS = ("terrestrial laser scann*" OR "terrestrial lidar" OR "TLS" ) AND TS = 

("forest" OR "tree" OR "forestry" ) 

Forestry 1637 

TLS (TS = ("terrestrial laser scann*" OR "terrestrial lidar" OR "TLS" )  AND TS = 

("diameter at breast height" OR "dbh" OR "tree height") 

Tree metrics 392 

MLS TS = ("mobile laser scann*" OR "MLS" OR "personal laser scann*" OR "hand-held 

laser scann*" ) AND TS = ("diameter at breast height" OR "dbh" OR "tree height") 

Tree metrics 86 

 

 

Figure 1: No. of publications in the preceding years between January 2004 to January 2024 focused on 

forestry using TLS and MLS 
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Figure 2: No. of publications in the preceding years between January 2004 to January 2024 focused on 

tree metrics retrieval in forestry using TLS and MLS 

1.2 Hypothesis 

The study focused on the following hypothesis: 

1. The use of static and mobile laser scanning will significantly advance mainly in the field of 

mapping trees' positions and dimensions. In contrast, mapping of features such as tree 

parameters remains understudied. 

2. Options for mapping the parameters can be substantially improved by the fusion of different 

data sources (e.g., point clouds with images) 

3. Terrestrial laser scanning will provide more accurate and reliable data with lower estimation 

errors when compared to mobile laser scanning. 

4. Mobile laser scanning will be more efficient during the data acquisition and will provide the 

required accuracy. 

1.3 Objectives 

This dissertation aims to develop new methodologies for measuring different trees and stand 

parameters, which can be instrumental in further forest ecology research. We mainly focus on 



6 

 

using Terrestrial and a mobile laser scanner and the fusion of acquired data with other data sources. 

The following objectives will be addressed: 

1. To review existing scientific literature and synthesize the current option for mapping variables 

of forest parameters using terrestrial and mobile laser scanners and identify the major 

knowledge gaps. 

2. To establish experiments focusing on extraction of individual tree dimensions of living and 

standing trees from point clouds of terrestrial and mobile laser scanners and fusion with other 

data sources. 

3. To create a database of existing processing solutions and benchmark their accuracy regarding 

the forest parameters extraction. 

4. To explore options for estimating tree heights and diameters, aboveground forest biomass, 

and other parameters and formulate recommendations for integration into forest practice and 

research. 

1.4 Thesis structure  

The structure of the thesis is compiled in the form of chapters. The first chapter is a literature 

review and consists of an in-depth description of the previous and current work done using TLS 

and MLS. The second chapter is a methodology that entails brief information on the study areas 

used in this thesis and a description of the basic conceptual and methodological framework. This 

chapter also includes an overview of the statistical methods used for the evaluation of the results 

in all the papers related to this thesis. This chapter is further elaborated in the individual sections 

where each paper is described in detail. The other chapter includes results, all the papers included 

as an output of this thesis objectives are mentioned and described in detail sequence. There is 

another chapter on the discussion; this chapter includes an overall discussion of all the paper 

outcomes focusing on the key findings, knowledge gaps, and methodology limitations. 

Furthermore, the thesis also comprises sub-chapters on international collaborations and additional 

achievements during the study. Lastly, the Conclusion and recommendation is included to 

summarize the overall concept, findings, and future scope of the thesis.   

2. Literature Review  

This chapter includes the basic principle of TLS and MLS devices in section 2.1.1, and different 

data acquisition methods are explained in section 2.1.2. The processing of point cloud data is 
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divided into two subsections; section 2.1.3 describes the pre-processing and data analysis of TLS, 

whereas the pre-processing and data analysis of MLS is described in section 2.1.4. The post-

processing steps are explained in section 2.1.5 and its sub-sections. Thereafter, LiDAR data 

technology at various scales is explained in section 2.2. Furthermore, an emphasis is done on the 

LiDAR data fusion with other data; later, it is focused on the potential of synthetic aperture radar 

(SAR) data fusion with TLS.  

2.1 TLS and MLS principle, Sensors, and Systems 

TLS is based on the laser range measurement technique and measures its surroundings using 

LiDAR and angular measurements using the optical beam deflection method to acquire 3D points 

from the surface of the tree in the forest and other objects. Unlike TLS, MLS is used for mobile 

data collection fitted with LiDAR, cameras, and other remote sensors. The principle for range 

detection is based on two principles. The two main techniques involved in the measurement of 

range using a laser are time-of-flight (TOF) and phase shift (PS). The main difference between 

these two distance measurement technologies is that PS measures distance more accurately; 

however, it is subject to noise in the data, whereas TOF provides a greater data measurement range 

(Małaszek et al., 2022). 

In the PS technique, the range is discerned at high frequency through amplitude modulation and 

the continuous illumination of the laser. In contrast, the TOF measures the range with the precise 

timing from the pulse time of flight and speed of light. In TOF, the emitted radiation is 

backscattered and recorded as a single return at the receiver end, but it could be recorded as several 

returns (single, last, and intermediate) by exceeding the detection threshold. A single return 

provides less information about the interacted object. In contrast, the multiple returns provide 

dense point cloud data and information, especially in the vegetation, because the backscattered 

signal interacted with the target inside or behind vegetation. The signal returns are in discrete form, 

but they could be digitized at the receiver end resulting in waveform data. The waveform includes 

additional information on the interaction between the target and the laser pulse concerning the 

discrete form (Petrie & Toth, 2017). 

In MLS, there are terrestrial and airborne laser scanners. Most terrestrial-based laser scanners are 

enabled with the SLAM (Simultaneous Localization and Mapping). SLAM is explained in detail 
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in section 2.1.1.  It offers precise positioning of the scanner in the forest because global navigation 

satellite system (GNSS) is inaccurate inside the forest. MLS system is often associated with one 

or more laser scanners, an inertial measurement unit (IMU), and GNSS, which offers the real-time 

positioning of the scanner (Forsman et al., 2016; Kukko et al., 2017; Pierzchała et al., 2018).  

Several types of MLS have been used to estimate forest parameters, such as phone-based scanning, 

vehicle-based scanning, backpack MLS, unmanned aerial vehicle (UAV)-based, hand-held mobile 

laser scanner, etc. 

In hand-held mobile laser scanner (HMLS), various other terms were used, such as hand-held laser 

scanning (HLS), hand-held personal laser scanner (H-PLS), wearable laser scanning (WLS), or 

personal laser scanning (PLS) (Gollob et al., 2020). Furthermore, the vehicles need more access 

due to inaccessible areas in the forest, which hinders data acquisition. This limitation motivates 

the invention of something that can be carried by humans as operators and referred to as PLS. So, 

the first PLS was invented and was large and heavy (~30 kg) (Kukko et al., 2012; Liang et al., 

2018)There are several HMLS systems available in the market (ZEB1, ZEB-REVO, ZEB-REVO-

RT, ZEB-HORIZON) and evaluated in forest conditions. 

In backpack MLS, there are different methods for data collection. Hyyppä et al. (2020) 

demonstrated a method based on a pulse-based 2D laser scanner tilted from the vertical and 

mounted on a backpack. However, there is a major drawback with MLS, which is mapping the 

point cloud that has already been mapped in the previous steps, thereby increasing the positioning 

errors. So, SLAM corrections were also used to reduce positioning errors. Basically, in the forest 

area, the tree occlusion often deteriorates the GNSS signal and causes an interruption in forest 

mapping. So, the SLAM problem arises due to the requirement of estimation of the location of the 

MLS point clouds while mapping in the forest (Shao et al., 2020). 

2.1.1 Simultaneous Localization and Mapping (SLAM) 

A SLAM is a complex algorithm used for the mapping of an unknown environment and localizing 

and mapping a device in that environment. SLAM was initially incorporated in robotics; the 

movement guess was initially based on wheel odometry, and the corrections were made with the 

help of cameras and lidar sensors (Zheng et al., 2023).SLAM technique was incorporated into the 

MLS mapping system to compensate for the mapping issues in the forest ecosystems (Guan et al., 
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2013). There are various types of SLAM algorithms and approaches available, such as Graph 

SLAM, EKF SLAM, Fast SLAM, Topological SLAM, Visual, 2D LiDAR, 3D LiDAR, and ORB 

SLAM. Also, the filter-based and graph-based methods are common SLAM techniques. In the 

filter-based method, the common filters used are the extended Kalman filter (EK) (Kohlbrecher et 

al., 2011) and the Particle filter (PF) (Grisetti et al., 2007). The examples are Hector SLAM and 

G-mapping, respectively. The two methods are related and rely on the assumptions of the robot 

motion model and sensor noise and usually, consider the motion relationship between adjacent 

data. 

There are a few issues with the filter-based methods while violating the assumption and execution 

of loop closure. There is difficulty in addressing this method. Additionally, it also increases 

memory consumption and computation. So, another method called the graph method became very 

popular, which works by combining all the poses of the scanner at different times and executing 

loop closure and then the elimination of cumulative error is done by optimization of poses. For 

example, Karto-SLAM (Konolige et al., 2010) and Cartographer (Hess et al., 2016). It also 

resolves memory consumption and computational issues by combining poses and optimization in 

real-time. Apart from this, it also has some limitations in providing highly accurate positioning 

and mapping results which makes it unfit for a mapping environment like forest. However, the 

bundle adjustment (BA) method has also been widely used to correct SLAM problems. In this 

method, nonlinear optimization is performed to optimize the features and poses of the scanner 

simultaneously. 

The nonlinear optimization relies on the matched features and produces maps of high accuracy. 

The lidar odometry and mapping in real-time (LOAM) method is a very good example in this 

context (J. Zhang & Singh, 2014), which selects the line and plane features on object surfaces that 

consist of stable and distinct features to estimate the motion of a scanner and obtains highly 

accurate mapping results indoor and urban scenarios.  However, there is uncertainty in the forest 

mapping because of the presence of highly similar objects, so it is difficult to extract reliable 

features from the object surface. Also, the scan match can fall into the local optimum due to 

inaccurate corresponding pairs. Moreover, the challenges are never-ending as another hurdle in 

SLAM occurs while data acquisition by considering global optimization, and it is challenging to 

avoid error accumulation. However, there are other methods available that work on multiple loop-
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closure detections to maintain global positioning accuracy (Mur-Artal et al., 2015). Also, in other 

studies related to graph-based SLAM to correct the GNSS-IMU trajectory drift, the initial 

movement guess is made with the trajectory calculated from GNSS and IMU measurements. In 

this technique, the GNSS maintains the global position accuracy, whereas the IMU provides 

altitude information, which is helpful for the orientation of the laser scanner.  The drift is gradual 

and can be measured or corrected using the initial trajectory to extract tree stems from the point 

cloud whenever the trajectory drifts away from the real trajectory that is measured in a short period. 

The initial trajectory could also have an error, so the trajectory loops enable the correction options 

as trees are static objects (Kukko et al., 2017). 

2.1.2 Data Acquisition Methods  

In the TLS instrument scanning mechanism, the instrument scans stepwise in a horizontal and 

vertical direction. The instrument measures vertically using a fast mirror rotation and slow 

horizontal instrument movement. The instrument starts the laser beam in a vertical direction from 

the scanner zenith and rotates to the lowest scanning position below the horizontal plane of the 

instrument. Then, the instrument scans continuously to the scanner zenith on the other side. The 

instrument scans at 180° in the horizontal plane on both sides simultaneously. The scanning 

mechanism and the point cloud of the forest are shown in Figure 3 (Liang et al., 2016). 
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Figure 3: The TLS data acquisition mechanism and point cloud data. Source: (Liang et al., 2016) 

 

TLS has been used to acquire tree attributes and forest parameters. The data acquisition scheme is 

reliable on the two basic principles, i.e., TOF and PS. The scheme encompasses the three types of 

data-acquiring methods, i.e., single scan, multi-scan, and multi-single scan, shown in Figure 4. The 

single scan approach is performed to place the scanner at the center of the plot and acquire the full 

(360 x 310) view of the plot. In the multi-scan, the scanner is placed at the center and the different 

corners of the plot to acquire the point cloud at every direction and, therefore, minimizes the 

occlusion effect. The multi-single-scan approach relies on multiple single scans performed in all 

plot directions. Acquiring a plot using a multi-scan or multi-single-scan approach leads to very 

good data quality, but it is time-consuming. All the mentioned approaches are shown in Figure 4. 

 



12 

 

Figure 4: Scanning scheme of the plots (a) single scan approach, (b) multiple scan approach, (c) multi-

single scan approach (Liang et al., 2016). 

In MLS, the acquisition of 3D data is possibly done by employing several laser scanners mounted 

on a mobile platform. The main goal of mobile laser scanning is to record the 3D data of object 

surfaces. The expected requirements could be the high resolution and high accuracy of the 

registered data, automatic registration of 3D data in a common coordinate system, and time-

efficient data acquisition in expanded target areas. The MLS instrument is on-board with IMU or 

global positioning system (GPS). The IMU or GPS measures the exact position and orientation of 

the mobile platform within the geodetic system world geodetic system (WGS84). There are two 

main components of a differential GPS system, a stationary base station and a rover on the mobile 

platform. It also has at least one laser scanner, providing a 2D line scan mode. The platform should 

be rigid and shock-absorbing. It could have been mounted with an optional synchronized digital 

photo camera.  The scanning scheme varies depending on the instrument and the type of forest. 

The most often scanning scheme used is the serpentine which is shown in Figure 5. The main 

purpose is to reduce the occlusion of the trees and solve the time constraint due to the mobility of 

the device (Hyyppä et al., 2020b).  

Moreover, researchers have used different scanning schemes in previous studies to cover the entire 

plot and each tree. The serpentine scanning approach by (S. Chen et al., 2019) lasted approximately 

5 minutes, including the system initialization. There are alternative approaches have been tested 

(Bauwens et al., 2016) have acquired an approach to scanning in a circular pattern and took 24 min 

per plot, and  Ryding et al. (2015) acquired a free-walking approach to form a closed loop by 

starting and ending at the same point. It took them ~4m to complete the plot having a 15 m radius. 

The average time required to scan plots of 30m, 15m, and 10m was also estimated (Del Perugia et 

al., 2019). The description of scanning schemes is shown in Figure 5. 



13 

 

 

Figure 5: Examples of scanning trajectories acquired by recent studies using HMLS. Source: (Balenović 

et al., 2021) 

2.1.3 Pre-processing and data analysis for TLS  

Currently, the hour of need is the automation of the 3D data; due to the large size and time-

consuming processing, new and robust algorithms are required to switch to automation in the 3D 

world from manual dependencies. The need for automating algorithms to extract structural 

information from an object is equally important, as is sensor development concerning forest 

monitoring from different perspectives. Generally, the plot is extracted from the merged plot, a co-

registered point cloud of multiple scans in different directions. The co-registration is possible 

because of the available tie-points in different directions. These are highly reflective objects which 

are easy to differentiate. However, a new range of instruments, such as Leica BLK360 and RIEGL 

VZi-series, does not require this manual practice of co-registration. They provide onboard 

registration (Calders et al., 2020). Then, the individual tree is extracted from the merged plot, and 
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noise filtration is done to avoid unwanted objects. Then, all the necessary post-processing is 

performed accordingly. TLS has also shown good potential in the crown vertical profile model in 

one study; the crown radius was measured and compared to the reference crown radius and found 

to be R2 of 0.93, which shows a great potential to extract information at the crown level using TLS 

(F. Wang et al., 2023). 

 

2.1.4 Pre-processing and data analysis approach for MLS 

The pre-processing and data analysis for MLS is different from the TLS. The co-registration of 

point clouds is done using a SLAM algorithm where alignment and match of pair scans are done. 

This process is known as point cloud registration. The data drifting from the real trajectory is 

maintained in this step using SLAM.  Since it is difficult to apply any automated modeling without 

further geometric improvement (Liang et al., 2012). The graph SLAM optimization method was 

implemented in detail by (Kukko et al., 2017); the graph represents the features (tree stems) and 

the trajectory.  Furthermore, the positional accuracy of MLS was also tested under the forest 

canopy, and it was found that the SLAM algorithm integrated with IMU showed a planer 

positioning error of less than 15 cm and a vertical error of 10-30 cm. This concluded a need for a 

better GNSS-based global positioning inside the forest (Muhojoki et al., 2024). 

2.1.5 Post-processing  

Post-processing includes measuring the tree parameters in the forest regions with the Lidar 

technique, which is explained in the following sections: 

2.1.5.1 DTM Generation 

The DTM is the 3D representation of terrain elevation on the earth's surface. In the post-processing 

of Lidar data, the first step is generating DTM, an important information source in forest 

management planning and inventory. While measuring the forest parameters, the analysis also 

includes finding the ground level necessary as the reference level in further computation and 

analysis. DTM is considered the reference level. The generation of DTM is done successfully by 

using Airborne Laser scanning (ALS), but TLS and MLS are still emerging in this field (Murino 

& Puppo, 2015). The extraction of DTM in forestry involves several steps. Firstly, the separation 

of ground and canopy is required before fine DTM extraction in forested terrain. Then, detection 
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of the ground points and interpolation of total ground points from neighboring ground points is 

done (Xi et al., 2016). 

Additionally, different algorithms and methods are emerging using TLS to improve the generation 

of DTM. The accuracy of DTM in dense forests is questionable, but (Guarnieri et al., 2012) 

demonstrate the potential of TLS to provide DTM in dense vegetation using multi-target 

capability. Recently, there has been a trend of the fusion of datasets and the collective use of 

several devices for the improvisation of the results. So, in this context (Jurjevic et al., 2021) used 

TLS, hand-held personal laser scanning (PLShh, GeoSLAM Horizon), and other devices for DTM 

generation. The results proved to achieve < 15 cm of RMSE and a normalized median absolute 

deviation of <10 cm. Since TLS acquired data with more precision and accuracy, its spatial 

coverage is limited, which was improvised using MLS. In the other context, to improve the 

accuracy of stem detection, a voxel-based method was used for the generation of DTM using 

backpack MLS (Hyyppä et al., 2020).  The study (Pirotti et al., 2013) showed that TLS has always 

been used extensively for the generation of terrain and surface models, since the research in the 

field of LiDAR started. 

2.1.5.2 Automatic Tree reconstruction 

The automatic tree reconstruction requires geometrical modeling. So, a single tree is modeled in 

steps, a small piece of a tree trunk is reconstructed, and the rest is modeled in the direction of the 

tree growth. Generally, tree modeling approaches include skeleton, circle, cylinder, or another 

geometric primitive (Liang et al., 2016). In this approach, the 3D structure of the tree is exploited. 

The software and algorithms are available to do the same. For example, Treeseg is used by (Burt 

et al., 2019) with a different approach, and they considered the stem points close to the ground 

instead of dividing it into clusters as a possible tree. Generic point cloud processing techniques 

such as principal component analysis, region-based segmentation, Euclidean clustering, shape 

fitting, and connectivity testing were followed to extract the tree. The segmented point cloud is 

shown in Figure 6. These methods generally require manual intervention and quality control. The 

more complex the ecosystem is, the more manual assistance will be required. 

Moreover, the QSM algorithm can also be used to model the tree point cloud after extracting the 

tree. However, QSM quality depends on the quality of point clouds. In a few cases, the QSM fails, 

such as in buttressed trees in tropical forests (Disney et al., 2018), so instead of mesh-based models 
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advised (Liski et al., 2014), QSM was also tested with the MLS, but the resolution was not 

sufficient to generate QSM, the QSM generated with TLS and MLS point clouds are shown in 

Figure 8. The estimation of DBH using cylinder fitting produced a 3.7 cm standard deviation for 

a tree, shown in Figure 7 (Bienert et al., 2018). 

An automatic open-source package is available to determine basic tree structural metrics such as 

DBH, tree height, projected crown area, and diameter above buttresses. This tool works with 

QSMs (Terryn et al., 2023). The combination of point cloud acquisition sources and QSMs has 

shown great potential for understanding the forest structures; in this context, Tree QSM and 

AdQSM methods were used to make 3D tree models (Gan et al., 2024).  

 The extraction parameters also include leaf segregation from the tree point cloud. The current 

state-of-the-art for leaf-wood separation requires machine learning (ML) and other computer 

vision approaches (Béland et al., 2014; Belton et al., 2013). Wang (2020) tried unsupervised ML 

algorithms over supervised for the leaf wood separation or classification in a tree.  

The skeletonizing method is also used to derive the tree structural metrics, which are mainly 

focused on the branching architecture. The method mainly derives a graph comprising geometric 

information of the vertices and edges from the point cloud (Bucksch & Lindenbergh, 2008). Other 

software and algorithms are available to deal with the same, such as TreeQSM (Calders et al., 

2015) and Simpletree (Hackenberg et al., 2015) to extract tree structural metrics, tree volume, and 

topology. Both techniques rely on fitting the cylinders. Additionally, CloudCompare (Girardeau-

Montaut, 2015) and 3D Forest (Trochta et al., 2017; Yurtseven et al., 2019) are also available and 

are open-source software to extract tree structural parameters. 

There are various other algorithms available for tree skeletonization, such as DBSCAN, a 

clustering algorithm used to make tree skeletons using TLS data (You et al., 2023). To understand 

the physiological function of trees, it is important to segregate leaves and wood. Also, to measure 

accurate individual tree biomass. LWSNet was proposed in a study to segment leaves from the 

trees and found an F1 score of 97.29% (Jiang et al., 2023). 
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Figure 6: (a) and (c) show an above view of the forest point cloud, (b) and (d) show a side view of the tree 

point cloud. Source: (Calders et al., 2015) 

 

Figure 7: (a) A comparison of DBH measurement using TLS and MLS and DBH manually, (b) 

comparison of tree height using TLS and MLS. Source: (Bienert et al., 2018) 
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Figure 8: (a) and (c) point cloud of the leaf off and leaf on for Carpinus betulus, Fagus sylvatica, and 

QSM using TLS, respectively. (b) and (d) point cloud of the leaf off and leaf on for Carpinus betulus, 

Fagus sylvatica, and QSM using MLS, respectively. Source: (Bienert et al., 2018) 

2.1.5.3 Forest Metrics Retrieval 

Forest metrics consist of measurement of DBH, tree height, stem volume, stem quality, stem curve, 

stem detection, stem density, and biomass. Earlier, the focus of close-range device applications in 

the forest was to measure tree attributes. The measurement of tree attributes is performed with the 

TLS, MLS, and other related devices. However, tree species identification and change detection 

over time are equally important these days.  
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2.1.5.3.1 Stem detection, stem quality and density 

The stem detection in a plot is an integral part of the plot measurements. Stem detection is highly 

correlated with steam density and forest type. The higher the density of the forest, the more 

uncertain the detection of the stem. So, it varies with the type of plot and its stem density. The type 

of forest could be generally of 3 types: sparse, dense, and very dense. In the sparse forest, the tree 

allocation probability could be 80 % with a stem density of 200-400 stems/ha. For the forest type 

of very high density, it may be around 70 % with a stem density of 1000 stems/ha. With the support 

of these tests, 28 circular plots with a radius of 20-25 m were performed. It has been concluded 

that the average stem detection rate was 42% (Yao et al., 2011). Liang, Litkey, Hyyppä, et al. 

(2012) have also done a test for 9 circular plots with a 10 m radius, and a 73 % stem detection rate 

was reported, and using a 5 m radius, it has been improved to 85 %. This concluded that stem 

detection accuracy is a function of range in the single scan. In another study, it has been proven 

that the most accurate range for stem detection is 6 m (Astrup et al., 2014). The detection rate 

decreased as we increased the distance of the scanner from the tree in a single scan (Olofsson et 

al., 2014). Hence, the range is a function of the stem detection rate. In the multiscan mode, the 

stem detection accuracy could be between 62.1% to 100%, provided the type of forest and scanning 

setup needs to be considered (Maas et al., 2008). MLS also proved to be an efficient device for 

stem detection. S. Xu et al. (2018) exhausted MLS data for stem detection in residential 

environments and achieved completeness of 94.2 % and correctness of 95.7 %. 

Similarly, stem quality is also an important tree attribute. It shows the health status of the tree. The 

stem quality check can be regulated based on the status of fungal infection, i.e., presence of fungus, 

rotten branches, etc. TLS proved to be a fundamental device for this purpose and has shown its 

potential for the identification of stem form (taper, sweep, and lean) (Liang et al., 2013)and bark 

characteristics (Stängle et al., 2014). It can also be used for the classification of wood defects. The 

trees were also classified based on their timber quality into 3 classes, i.e., high-quality timber, 

timber, and pulpwood, with an accuracy of 95 % to 83.6% (Kankare et al., 2014) 

The measurement of tree stems is important not only for commercial purposes but also for 

biological purposes. A comparative study was done using mobile and terrestrial laser scanners for 

the modeling of tree stem taper. The results showed that MLS was not efficient for taper models 

but worked well for sampling DBH and reconstruction of stem maps (Stovall, MacFarlane, et al., 

2023).  
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2.1.5.3.2 DBH and Tree Height 

DBH and tree height measurement is the most crucial part of tree attribute retrieval. There could 

be any possibility of error being commissioned during the measurement. The most reliable 

instrument needed to be deployed onboard to reduce this uncertainty. TLS and MLS proved to be 

the most accurate devices for this purpose. A lot of studies have been done to support this 

argument. In support of this, (Yao et al., 2011) have done the DBH estimation using TLS for 28 

plots at tree level and mean plot level. The RMSE obtained for the estimation was 7.6 cm and 2.4 

cm, respectively. Another study (Liang, Hyyppä, et al., 2012) was done at tree level and came up 

with the RMSE of 1.3 cm, and the bias recorded was 0.2 cm. There is the same process to measure 

DBH and stem curves. Stem curve detection is also a very significant part of forest inventory. In 

support of this context, (Henning & Radtke, 2006) studied 9 pine trees and the spruce tree. 

Different modes of scan play a very vital role in this context. The single scan TLS data has been 

used, and observed that the RMSE of the stem curve measurement was 4.7 cm (Maas et al., 2008). 

Regarding the tree height measurements, there is uncertainty with the accuracy because of the 

improper visibility of the treetops in the TLS data. The tree heights were measured, and the RMSE 

obtained was 0.75 m at the tree level (Moskal & Zheng, 2012) There is evidence for the accuracy 

improvement in the sparse forest (Fleck et al., 2011; Huang et al., 2011), perhaps it is still 

questionable in the dense forest because of the tall and dense canopy trees provide a hindrance to 

measure the treetops of short trees in dense forest accurately. Considering the slant range effect, 

there could still be some possibility for the argument. The reliable point spacing should be 1-2 cm 

level at the treetops to capture the smallest branches at the top. With the multiscan approach, the 

possibility can be enhanced to a remarkable point or with the integration of ALS data.  

MLS is also used for the DBH measurement, and several studies have supported this new 

technology. So, a comparative study has been done to perform the field reference data collection 

using HMLS and backpack laser scanner in the boreal forests and compared the RMSE of MLS 

and UAV of 2-8 % for DBH measurements (Hyyppä et al., 2020). Also, a segmentation study was 

performed on an individual tree to extract biophysical information such as tree height, DBH, etc., 

using MLS and TLS (Zhong et al., 2017). An automatic approach was tried using algorithms 

(cylinder, circle, ellipse fitting) and machine learning models (e.g., random forest classifier) for 

the estimation of DBH and number of trees and found that 92.5% of 292 trunks were correctly 

classified (Zeybek & Vatandaşlar, 2021). The automatic processing algorithms save time and 
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provide a better understanding of the analysis of point clouds. In the process of making automatic 

processing tools, deep learning plays a very important role, Pointnet ++ is a deep learning semantic 

algorithm that is used for the segmentation of the trees. A study was conducted using Pointnet++ 

segmentation and concluded that this algorithm works well with tree segmentation (Krisanski et 

al., 2021).  

2.1.5.3.3 The estimation of stem volume 

The stem volume estimation is very significant in terms of forest biomass estimation. Several 

studies focused on the automated and manual methods for stem volume estimation. The stem 

detection and its accuracy are highly dependent on the scan mode. A study was performed 

(Pueschel et al., 2013) to compare the multi-scan and single-scan approach; the multiscan approach 

on 6 beech trees for volume estimation reported deviations ranged from 2% to 6%, whereas with 

the single scan results observed deviation was 34 % to 44 %. Also, in a study (Astrup et al., 2014), 

a single scan was performed for spruce, pine, and birch trees, and the reported bias was 68.0, 14.9, 

and 24.1 dm3. Stem volume was also estimated using allometric equations which are the function 

of DBH and tree height.  

The studies performed using TLS showed that stem volume estimation is as accurate as destructive 

measurement methods and allometric volume models. TLS does not rely on any predictor variables 

for volume estimation. Also, the estimation of height at the plot level is difficult using conventional 

measuring devices. The DBH estimation model was developed using Airborne Laser Scanning 

(ALS) and TLS data. Allometric models were combined, and the spectral attributes were derived 

using Landsat and ALS data. The result was evaluated with four forest growth environments, and 

different regression models were used to compare accuracy (Y. Wu et al., 2023). 

Moreover, the irregularity of the stem is usually ignored while the estimation of stem volume, the 

tetrahedron model was used with stem segments for the estimation of stem volume (Using et al., 

2023). The tree species-specific allometric equation modeling was done using a non-destructive 

method using TLS, and the results concluded that TLS biomass estimates with RMSE ~ 19 % were 

more precise than the nation scale allometry (RMSE ~39%) (Stovall, Vorster, et al., 2023). 

Another study was conducted on a non-destructive approach for the estimation of individual tree 

volume using TLS data. Comparison of QSM with 60 trees references allometric models, TLS-
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based geometric parameters of the stem, coarse wood, and fine branches was considered. The 

results showed that the integration of crown parameters in allometric models can improve the 

branch wood volume (Bornand et al., 2023). Considering the MLS data, the speed and accuracy 

of the device make it more reliable for forest inventory. The device was tested for the estimation 

of hardwood volume and concluded that SLAM based MLS systems are suitable for forest 

inventory and support in-situ measurements of trees (Vandendaele et al., 2022). MLS devices are 

also capable of tree detection in complex forest environments such as the Mediterranean mixed 

forest region due to the variability in the tree allometries and spacing and the presence of natural 

regeneration (Tupinambá-Simões et al., 2023).  

2.1.5.3.4 Biomass estimation 

Biomass is a function of DBH, tree height, and tree species. Allometric models are extensively 

used for the estimation of biomass and completely rely on tree structure parameters. Most of the 

allometric models are species-specific. However there is a question to establish an automated 

method to estimate biomass that is completely based on the structure of the tree and not the species. 

TLS has been extensively used to automate this process. The research continuously approaches 

sharpening the aboveground biomass models. In this context, (Yu et al., 2013) developed a model 

to predict the stem biomass and compared it with the field-estimated values. The RMSE obtained 

for the prediction model using TLS was 12.5 %, whereas the RMSE obtained using the field-based 

biomass equation was 17.9 %. This study also says that the branch biomass can be evaluated in 

the same manner if the branch point cloud is dense.  

Additionally, (Kankare et al., 2013) showed results for the branch biomass estimation using 

metrics derived from TLS point cloud data and obtained overall accuracy was 12.9 % and 11.9 %. 

Also, Hauglin et al. (2013) confirmed this finding. To further increase the accuracy of biomass 

estimation, integration of datasets and devices is required. So, another study is performed, which 

is focused on the integration of the TLS and ALS-derived biomass components to improve the 

accuracy of the biomass in the ALS-based branch biomass model. The outcome reveals a 3 % 

increase in the accuracy of the crown biomass. So, TLS can be used to assess tree biomass with 

high automation and increased accuracy . Consequently, a new method has been proposed to 

estimate tree attributes which are known as the concave hull by slices method. This is proven to 
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obtain better accuracy than the existing methods, especially the backpack lidar scanner proved its 

flexibility to collect data in a definite time (Xu et al., 2021) 

2.1.5.3.5 Change detection 

Change detection of the forest structure is a major concern to researchers nowadays, considering 

the fluctuation in the environment. The losses in terms of insect attacks, degradation due to human 

intervention, etc., also leave a concern and quest for forest monitoring. The use of TLS data in 

change detection has not been reported in detail, but a study by (Liang, Hyyppä, et al., 2012) did 

a single scan of pine-dominated plots for a consecutive 3 years gap and estimated biomass using a 

national-level allometric equation with a function of DBH. Another study has also reported the 

change detection using the automated method over a time of forest structure and has accounted for 

90 % of the tree stem changes in 5 plots using single scan TLS data. The bias for the estimated 

DBH was also calculated and found to be 0.2 cm, and the RMSE calculated was 1.3 cm (Srinivasan 

et al., 2014). 

The total tree volume increment over the year can be assessed using TLS, and this has been proved 

in a study. The mean increase in the total tree volume was estimated and compared. They 

concluded that the difference in the average tree volume increment with the conventional 

measurement was 6.0 % (4.8 m3 /ha) when only trees captured by the scanner were compared; it 

increased to 8.1% (7.0 m3 /ha) when all the trees in the plot were considered (Mengesha et al., 

2015). The multi-temporal TLS data is quite helpful for the study, which focuses on the change in 

forest productivity and structure. However, many more outcomes are still needed to support this 

hypothesis. 

MLS is still in the pipeline to detect changes in the forest. Change detection requires static and 

continuous observation, and MLS is not static, and observations could be changed after a certain 

period. This is still on the list of challenges faced by MLS in forest inventory. 

2.1.5.3.6 Tree Species Classification  

Tree species classification is nowadays a vital topic among researchers, especially the hassle in the 

classification of tree species in tropical forests. It is important to better understand the functional 

behavior of the forest ecosystem. Initially, an expert was required to identify the tree species, which 

limited the field surveys. These days, researchers are trying and testing an automatic approach for 
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this purpose. In this context, the pointNet++ model was used for tree species classification using 

a backpack laser scanner. The results showed that the tree height feature is not important for point 

cloud deep learning methods for tree species classification (Liu et al., 2022).  

2.2 Role of active remote sensing methods in the mapping of forest structural indicators  

The application of different remote sensing methods, such as close-range, satellite, and airborne, 

in forestry is depicted in Figure 9. The advancement of different remote sensing methods at various 

scales, from terrestrial to space-borne, introduces the possibility of observing forests from the stand 

to the global level. The global impact of ecology and biodiversity can be made possible by 

combining the large footprint space-borne GEDI missions (Marselis et al., 2018).  In-situ 

measurement techniques are costly and labor intensive, and bias is more likely to be introduced in 

manual measurements. These biases propagate with the fusion or integration of reference data to 

other remote sensing data, increasing the error and bias level in the outcome. Therefore, close-

range technology is more reliable because it can reach the level of detail in the forest, which is 

difficult to perform manually (Liang et al., 2022). Furthermore, the role of satellite remote sensing 

and the possibility of integrating different remote sensing technologies to get a fine level of 

observation is discussed here, with particular emphasis on SAR data.   

SAR is an active remote sensing technology. It illuminates the objects on the ground by sending 

microwave signals from the sensor platform to the ground and receives backscattered signals from 

the ground object. It can also operate in any weather conditions. The potential role of SAR in 

assessing forest AGB has been proven in many previous studies—however, a detailed analysis of 

the possibilities needed to be considered. Various SAR datasets with X, C, P, and L band 

polarizations have been used for mapping AGB with different methodological approaches over the 

years (Cartus et al., 2022; Choi et al., 2021; Godinho Cassol et al., 2021; Ji et al., 2020; Karila et 

al., 2019; Khati & Singh, 2022; Narvaes et al., 2023; Santoro et al., 2019; Vatandaşlar & Abdikan, 

2022; T. Zhang et al., 2023). SAR datasets such as ALOS PALSAR L-band have been analyzed 

and concluded to achieve the possible accuracy for estimating forest biophysical parameters such 

as forest height; hence, it was important to investigate the potential and correlation of different 

polarization of SAR datasets with the forest height. This approach was then extended with the 

fusion or integration of SAR datasets with other sensors, such as optical and LiDAR. While 

measuring the forest structure, the forest canopy density is highly affecting the sensitivity of the 
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L-band to the mean height of the forest, which was reported using TanDEM-X InSAR data that 

the vegetation density change is more correlated with the height change of forested area (de Jesus 

& Kuplich, 2020; Sinha et al., 2020; Tamiminia et al., 2022; Velasco Pereira et al., 2023) 

The primary purpose was to investigate the variability in the accuracy while addressing AGB with 

or without the fusion of SAR to other sensors and come up with methodological advancement that 

can be used for the AGB estimation. The fusion of SAR with other sensors is further extended, 

incorporating LiDAR at different platforms (terrestrial, aerial, and space-borne), which enhances 

the performance of already established AGB models and opens the possibility of AGB estimation 

at a global scale. In this context, a study claims the increase in correlation (R2) value from 0.64 to 

0.74, whereas RMSE obtained was 39.3 Mg/ha (Mohite et al., 2024; Solberg et al., 2024; Z. Wu 

et al., 2024).   

 

Figure 9: An overview of different remote sensing method application scenarios in forestry (Liang et al., 

2022). 
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3. Material and Methods 

In the following subchapters, we will establish the basis of the research experiments that were done 

by the PhD candidate. The experiments were done at three different locations in India, Slovakia, 

and Czechia. The details of the study sites and statistical analysis will be explained. However, the 

PhD candidate also did research work that was not dependent on a study size. These focused on 

reviews of processing solutions for forest point clouds and a review of LiDAR fusion. More details 

on these are within chapters 4.2.2 and 4.4.2 

3.1 Study areas and materials 

This dissertation aims at methodological advances, and it is not situated in one region. The field 

data collection covers a variety of forest stand structures.. The datasets used in the study were 

acquired at three places.  

3.1.1 Barkot Forest (India) 

The first study area selected from India was the Barkot Forest Range of the Dehradun Forest 

division. It lies at a latitude of 30°03’52” to 30°10’43” N and a longitude of 78°09’49” to 

78°17’09” E. The total forest area is 84.96 km2. We established 13 plots. The forest type is tropical, 

moist, and deciduous. It is dominated by Shorea robusta (Sal), with co-associated tree species such 

as Mallotus philippensis (Rohini). The study area is shown in Figure 10. The study is explained in 

detail in papers III and IV.  



27 

 

 

Figure 10: Study area 1 

The field data was collected using a measuring tape, rangefinder, and handheld GPS. A total of 13 

plots of 31.5 x 31.5 m area were selected. The field sampling was done at the LiDAR footprint 

with a stratified random sampling method. The tree parameters considered were tree height and 

DBH. DBH was calculated by measuring the circumference at breast height (CBH). The point 

cloud of the plots was acquired using TLS (Riegl VZ-400), and ALOS PALSAR L-band data was 

used for the spatial distribution of above-ground biomass (AGB). The ABG was estimated using 

the stem volume, specific wood gravity, and biomass expansion factor. The details of the datasets 

are mentioned in Table 2.  
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Table 2: Specification of the datasets used in the paper and III and IV 

ALOS PALSAR Terrestrial Laser Scanner (TLS) 

Product ALOS2-HBQR1_1_A-ORBIT_ALOS2157270590-

170421 

Product Riegl VZ-400 

Product Type HBQR 1.1 Range Up to 600m 

Mission ALOS2 Minimum Range 1.5 m 

Wavelength 23.6 cm Measurement rate 122000 pts/sec 

Frequency 1.27 Hz   

Orbit 15727 Field of View 100x360 

Polarization HH, HV, VH, VV Accuracy 5 mm 

SampleType Complex Precision 3 mm 

Pass Ascending Laser Type Class 1 

  Laser Wavelength NearInfrared (1553 nm) 

  Laser Beam Divergence 0.35 m rad 

  Weight Approx. 9.6 kg 

 

3.1.2 Kremnica Mountains (Slovakia) 

The second study location was in Kremnica Mountains, Slovakia. This study area is explained in 

papers V and VI. The dominant tree species were European beech (Fagus sylvatica) with a mixture 

of European oak (Quercus robur), Silver fir (Abies alba), Norway spruce (Picea abies) and 

European hornbeam (Carpinus betulus). The study area is depicted in Figure 11.                                                                                                                              

The field data was collected using Topcon GPT3000M, and the tree's circumference was measured 

by measuring tape. We established eight research plots with varying tree densities of 25 x 25 m. 

The details of the field data inventory are explained in paper II. The point cloud was acquired using 

TLS (Faro Focus s70), a hand-held personal laser scanner (PLShh) (GeoSLAM Horizon Scanner), 

an iPad Pro 2020 tablet, and a multi-camera prototype. Data acquisition by mobile 

photogrammetry was done by the multi camera prototype (MultiCam). Sony a6300 cameras with 
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Sony 10-18 mm F4 OSS lenses were used. Further details are available in the paper II. The other 

devices used are described in detail in Table 3. 

 

Figure 11: Study Area 2 

Table 3: Specification of the devices used in the paper II 

Specifications TLS (Faro Focus s70) PLShh (GeoSLAM Horizon 

Scanner) 

iPad Pro 2020 tablet 

Range 0.5 – 70 m 100 m 5 m 

Accuracy ±2 mm on 10 m or ±3.5 mm on 

25 m 

1-3 cm  

Resolution (point spacing) 6.14 mm/10 m   

Scan time 2 min and 24 sec   

Laser Type Laser Class 1 Laser Class 1  

Laser Wavelength 1550nm 903 nm  
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Measurement rate 614m upto 500,000 pts/sec 300,000 pts/sec  

weight 4.2 kg 1.3 kg 495 gm 

 

3.1.3 Czech University of Life Sciences (Czechia) 

In the third research location, we scanned nearby trees on the campus of the Czech University of 

Life Sciences, Prague. We selected six tree species, and for each of them, 20 individual trees were 

selected. The following tree species were selected:  Pinus sylvestris (Pine), Fagus sylvatica 

(Beech), Quercus robur (Oak), Carpinus betulus (Hornbeam), Abies alba (Fir), and Picea abies 

(Spruce). The study area used for paper VII. The tree species' bark image was captured using an 

iPhone 12 Pro; the range is 5 m and depicted in figure 12. Using a measuring tape, the DBH was 

estimated at 1.3 m above the ground for evaluation of the estimated DBH using three software 

tools. In total, 120 trees were selected for DBH estimation. The mean DBH varies between 24.7 

and 42.4 cm, and the standard deviation varies between 6.08 and 10.27, as shown in Table 4. The 

detailed methodology considered in the research is explained in the paper VI.  

Table 4: Statistical representation of BDH for each tree species 

Tree species Average_DBH (cm) Range of DBH (cm) Standard deviation 

Pine 42.4 30.5 - 50.9 6.08 

Oak 38.7 25.4 - 60.8 10.27 

Beech 30.8 18.1 - 46.1 7.37 

Hornbeam 24.7 14 - 44.5 6.67 

Spruce 35 17.1 - 51.5 8.35 

Fir 42.1 32.8 - 66.2 8.13 

 



31 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f)  

 

Figure 12: Bark images captured with iPhone 12 Pro of (a) Beech, (b) Fir, (c) Hornbeam, (d) Oak, (e) 

Pine, (f) Spruce 

3.2 Statistical analysis 

The diameter was estimated using all three different methods and was evaluated using two 

different statistical parameters: Root Mean Squared Error (RMSE) and relative Root Mean 

Squared Error (rRMSE). These statistical parameters were used to compare different methods for 

the estimation of DBH, as shown in equations 1 and 2.  

 

𝑹𝑴𝑺𝑬 = √
𝟏

𝑵
∑ ⬚𝑵

𝒊=𝟏 (𝒀𝒊 − Ŷ)𝟐                                                                             (Eq. 1) 
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𝒓𝑹𝑴𝑺𝑬 =
√

𝟏

𝑵
∑ ⬚𝑵

𝒊=𝟏 (𝒀𝒊−Ŷ)𝟐

∑ ⬚𝑵
𝒊=𝟏 𝒀𝒊

×  𝟏𝟎𝟎                                                                                 (Eq. 2) 

Where 𝒀𝒊 is the actual observation time series, Ŷ is the estimated time series, and N is the total 

number of observations. 

The root mean square error of cross-validation (𝑹𝑴𝑺𝑬𝒄𝒗) was calculated to evaluate the predictive 

accuracy of the regression models (random forest (RF) and artificial neural network (ANN)). The 

mathematical expression is mentioned in equation 3. 

𝑹𝑴𝑺𝑬𝒄𝒗 =
𝟏

𝒌
∑ ⬚𝒌

𝒊=𝟏 √
𝟏

𝒏𝒊
∑ ⬚

𝒏𝒊
𝒋=𝟏 (𝒚𝒋 − �̂�𝒋)

𝟐
                                                                    (Eq.3) 

Where 𝒌 is the number of folds, 𝒏𝒊 is the number of data points in the i-th fold, 𝒚𝒋 and is the true 

value for the j-th data point in the i-th fold. �̂�𝒋 is the predicted value for the j-th data point in the i-

th fold. 

A paired t-test was performed to check the statistical significance of ForestScanner and RANSAC 

for the measurement of DBH. To identify the significance of using different DBH measurement 

methods. This test was performed in R software. The formula for two-way ANOVA is mentioned 

in Equation 4. This test was performed in R software. 

𝑭 =  
𝑴𝑺𝑻

𝑴𝑺𝑬
                                                                                                                            (Eq.4) 

Where F is the Anova coefficient, 𝑴𝑺𝑻 is the mean sum of squares due to treatment, and 𝑴𝑺𝑬 is 

the mean sum of squares due to error. Then, the Tukey post-hoc test was performed using the 

formula mentioned in Equation 5. 

𝑻 = 𝒒 × √
𝑴𝑺𝑬

𝒏
                                                                                                                    (Eq.5) 

Where 𝑻 is the HSD statistics 𝒒 is critical value for the chosen significance level (often 0.05). 

𝑴𝑺𝑬 is the mean sum of squares due to error and 𝒏 is the number of observations in each group.  

4. Results 

The results of the dissertation thesis are presented in the form of seven original publications. The 

publications are elaborated briefly in the subsections of this chapter. Subsection 4.1, entitled 

Revolutionary Devices for Measuring DBH, which comprises papers II and VI. This subsection is 

focused on the potential use of the application of iPhone/iPad devices in DBH measurement and 

its comparison with the other available devices such as TLS, MLS, and a multi-camera prototype). 
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This subsection focused on the objectives 2, 3, and 4. The sub-section 4.2 describes the 

benchmarking of algorithms for point cloud processing; this includes papers III and VII. This 

elaborates an approach for tree volume estimation using RHT and RANSAC algorithms and 

further an intense review of the point cloud processing software solutions. This subsection focused 

on objectives 3 and 4.  The sub-section 4.3 comprises paper V and describes the methodology for 

the detection of canopy top points using different combinations of TLS scan positions and reveals 

the status of occlusion at the canopy top. The sub-section 4.4 is focused on LiDAR data fusion and 

future perspectives in forestry and encompasses papers I and IV. This subsection includes a 

thorough review of the LiDAR data fusion with other datasets and is followed by methodology for 

the estimation of AGB using the integration of TLS and ALOS PALSAR L-band datasets. This 

subsection focused on objective 1.   

4.1 Revolutionary devices (iPhone 12 Pro and iPad Pro) for measuring DBH 

4.1.1 Tree parameter extraction with iPhone point cloud data using multiple algorithms 

published as: This paper is accepted in the International Journal of Remote Sensing and currently 

under publishing process.  

Extended summary:  

In this paper, the DBH was estimated using iPhone 12 pro point cloud using three software tools 

(rTLS- R package, RANSAC -CloudCompare plugin, ForestScanner). In this context, the scanning 

of 123 trees comprising six species: pine, oak, beech, hornbeam, spruce, and fir was done. The 

scanning of each tree was done with the iPhone 12 Pro. This smartphone has a time-of-flight sensor 

with a maximum range of 5 m. This sensor is incorporated in newer versions of iPhones within 

Pro and Pro Max and is also a part of the iPad Pro (2021 and newer). The ForestScanner application 

(Mapry) was used to collect the point clouds of trees. ForestScanner can estimate DBH directly in 

the application in real-time. It is based on a circle-fitting algorithm using a cross-section at a 

particular height. The detailed conceptual framework is shown in Figure 13.  
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Figure 13: Conceptual workflow  

The three software tools were compared and analyzed. In the first software tool, the iPhone 12 

Pro-based application ForestScanner was used to estimate DBH, and statistical analysis was done 

to evaluate the DBH values obtained with the field-estimated DBH values. The RMSE value 

recorded for this method was 2.58 cm, and the rRMSE obtained 7.25 %. The R2 value obtained for 

this method was 0.976. The other method used was the CloudCompare-based plugin- RANSAC. 

RMSE obtained for this tool was 2.19 cm, and the rRMSE obtained was 6.25 %. The R2 value 

obtained was 0.976. This strongly correlates with the observed (field-estimated DBH) and 

predicted (RANSAC DBH, ForestScanner DBH) value of DBH. The scatter plot is shown in 

Figure 14.  

 

(a) 

 

(b) 

 

Figure 14: Scatter plots of field-estimated DBH with (a) ForestScanner (Lidar DBH), (b) RANSAC DBH 



35 

 

 

Significance of DBH estimation for tree species 

A comparative analysis of the ForestScanner and RANSAC algorithms was done to test the 

significance of the DBH estimation for different tree species. The statistical comparison was done 

using RMSE and rRMSE % for each tree species. The RMSE varies from 2.02 to 3.77 cm, whereas 

the rRMSE % varies within the range of 4.67 to 9.2 % for ForestScanner. The RMSE observed for 

RANSAC is in the range of 1.3 to 2.85 cm. The rRMSE % is observed to range from 5.15 to 7.82 

%. The detailed information is mentioned in Table 5, and the graphical representation is depicted 

in Figure 15. The biases and outliers are shown in Figure 16.  
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Figure 15: Comparison of the performance of iPhone 12 pro in estimating DBH among 6 tree species 
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Figure 16: Boxplot of errors for each tree species and both approaches (ForestScanner and RANSAC) 

 

Table 5: Comparing the statistical significance between ForestScanner and RANSAC in the context of 

tree species. 

 

Tree_species ForestScanner 

RMSE (cm) 

ForestScanner 

rRMSE% 

RANSAC  

RMSE (cm) 

RANSAC  

rRMSE% 

Pine 

Beech 

Oak 

Hornbeam 

Fir 

Spruce 

2.02 

2.83 

2.08 

1.22 

3.77 

2.72 

4.76 

9.2 

5.38 

4.95 

8.94 

7.79 

2.18 

2.4 

2.04 

1.3 

2.85 

2 

5.15 

7.82 

5.27 

5.28 

6.77 

5.74 

 

The Tukey post-hoc test was performed for the multiple comparisons of means for a two-way 

ANOVA with a confidence level of 95%. It shows the difference in means, the associated 

confidence intervals, and the p-value for different combinations of groups (Algorithm, species, 

and DBH). Inferences confirmed by ANOVA and Tukey post-hoc tests show that species 

significantly influence DBH. A more detailed analysis and description of the results is mentioned 

in the paper VI. 
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4.1.2 Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning 

alternatives. 

published as: Mokroš, M., Mikita, T., Singh, A., Tomaštík, J., Chudá, J., Wężyk, P., ... & Liang, 

X. (2021). Novel low-cost mobile mapping systems for forest inventories as terrestrial laser 

scanning alternatives. International Journal of Applied Earth Observation and Geoinformation, 

104, 102512. 

Extended summary: 

A comparative analysis was done using low-cost devices (mobile laser scanning, personal laser 

scanning (hand-held or in a backpack), photogrammetry, or even smart devices with Time-of-

Flight sensors) and TLS and conceptualized in paper II. The comparison was done to assess the 

performance of the capability of low-cost technologies to generate point clouds and their accuracy 

of tree detection and DBH estimation. A multi-camera prototype (MultiCam) was also tested.  

The MultiCam prototype is capable of capturing images from four cameras simultaneously and 

with exact synchronization during mobile data acquisition. The focus was on individual tree 

detection and DBH estimation by cylinder-based algorithm across eight test sites with dimensions 

25 x 25m. Altogether, 301 trees were located on test sites, and 268 were considered for the analysis 

and comparisons (DBH > 7 cm).  

TLS provided the most accurate data. Across all test sites, we achieved the highest accuracy 

(rRMSE ranged from 3.7% to 6.4%) and tree detection rate (90.6–100%). When we considered 

only trees with DBH higher than 20 cm, the tree detection rate was 100% across all test sites 

(altogether 159 trees). When the threshold of trees considered in the evaluation was changed to 10 

cm and then to 20 cm (from 7 cm), the accuracy (rRMSE) and tree detection rate increased for all 

devices significantly.  
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Figure 17: Tree detection rate of all devices used across eight plots 

 

Results achieved (DBH > 7 cm) by iPad Pro were closest to TLS results. The rRMSE ranged across 

test sites from 8.6% to 12.9% and tree detection from 64.5% to 87.5%. PLShh and MultiCam, the 

rRMSE ranged from 13.1% to 24.9% and 14% to 38.2%, respectively. The tree detection rate 

ranged from 55.6% to 75% and 57.1% to 71.9%, respectively. The graphical representation is 

shown in Figure 17. The time needed to conduct data collection on a test site was fastest using 

MultiCam (approx. 8 min) and slowest using TLS (approx. 40 min). The DBH estimated from 

TLS, iPad and MultiCam underestimated the conventional DBH measurements. For TLS and iPad, 

the underestimation was statistically significant. In the case of PLShh, the DBH is significantly 

overestimated, as shown in Figure 18. 

 

Figure 18: Boxplots of absolute errors (cm), where boxplots correspond to the 25th and 75th percentiles 

and whiskers are 1.5 * interquartile range. The line inside the box plots corresponds to the median. Dots 

represent outliers. 
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Results showed that DBH estimation from TLS point clouds is achieving the most accurate results 

with the highest tree detection rate across all test sites and overall, when compared to the other 

three mobile devices, as shown in Figure 19.  

 
Figure 19: Scatter plot visualizing tree detection rate and rRMSE grouped by used devices. Each device 

has eight filled points (representing test sites) with one data ellipse and one crossed circle representing an 

overall tree detection rate and rRMSE of trees with DBH larger than 7 cm. 

Conclusion: 

The experimental analysis using iPhone 12 pro and iPad Pro was done in subsections 4.1.1 and 

4.1.2. iPhone 12 pro and iPad Pro showed potential for the estimation of DBH and detection of 

trees in the forest. In subsection 4.1.1, The DBH estimated using ForestScanner and RANSAC 

showed same correlation value with the referenced DBH values. This shows that the ForestScanner 

application can be used for the estimation of DBH. Moreover, a significant relation was found 

between DBH, and tree species and inferences were confirmed by ANOVA and Tukey post-hoc 

tests. This shows that tree species significantly influence DBH. In subsection 4.1.2, iPad was tested 

against other devices for estimation of tree detection rate and DBH. And results showed that the 

TLS point clouds achieved most accurate results with the highest tree detection rate and DBH 

estimation accuracy, whereas iPad Pro showed the closet results accuracy to TLS.   
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4.2 Benchmarking of algorithms for point cloud processing 

4.2.1 An approach for tree volume estimation using RANSAC and RHT algorithms from TLS 

dataset 

published as: Singh, A., Kushwaha, S. K. P., Nandy, S., & Padalia, H. (2022). An approach for 

tree volume estimation using RANSAC and RHT algorithms from TLS dataset. Applied 

Geomatics, 14(4), 785-794. 

Extended summary: 

The basic tree attributes (DBH and tree height) are the key to the advanced tree attributes (stem 

volume and above-ground biomass). The conceptual methodology and detailed results are 

mentioned in papers III and VI. In paper III, DBH and tree height were estimated using TLS point 

cloud with randomized hough transformation (RHT) and random sample consensus (RANSAC) 

algorithms.  

Tree parameter extraction using RHT 

This method involves a coordinate transformation from a Cartesian to a polar coordinate system 

and further the parametric description of objects. In the first step, DBH subsets of each tree cloud 

were projected to a horizontal plane, and a possible center of the circle was located for every point 

of the point cloud. The frequent center will be selected as a resulting center. The implementation 

of the RHT algorithm was done in 3D Forest software. RHT detects the circle on the tree PCD at 

1.3 m and 0.65 above the lowest point of the tree PCD. The tree position allocation was done by 

the intersection of two vectors from two circles with the DTM surface of the tree PCD. The DBH 

was estimated based on the sub-section of tree PCD from 1.25 to 1.35 m.  

Tree height was also calculated in 3D Forest software by allocating the lowest point of the tree 

cloud at the base of a tree. Tree height was calculated as the z-coordinate difference between the 

highest and lowest (tree base) of the tree PCD. 

Tree parameter extraction using RANSAC 

This method encompasses two phases. The first phase is the hypothesis phase. In this phase, the 

minimal sampling set (MSS) of points is formed using all the input points to create a specific 

mathematical shape that satisfies some shape parameter. This phase would help to measure a tree 

DBH and height proportionally. The second phase deals with the testing of these MSS. These 
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sampling points were tested against all the dataset points. The points resembling the MSS points 

form a new set of points known as a consensus set (CS). 

The second step helped in the removal of outliers from the dataset. The algorithm is run multiple 

times to filter out all the outliers from MSS and get a probable threshold. The inliers were then 

selected in a cylinder shape, as shown in Figure 20. 

 

Figure 20: Visualization of (a) extracted tree point cloud, (b) presence of noise encircled with a black 

circle, (c) filtered point cloud of tree stem at 1.34 m.  

Relation between tree parameters retrieved using RHT and field-measurements 

The tree parameters, such as DBH and tree height, were retrieved separately using RHT and field 

measurement. The correlation R2 between DBH obtained using RHT and field-measured values is 

0.99, and 0.93 is obtained with tree height, which is mentioned in Figure 21. The R2 value obtained 

for heights calculated using both methods are 0.93, as shown in Figure 21. 
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Figure 21: Correlation between (a) DBH observed using RHT and field-measured DBH and (b) height 

estimated using RHT and field-measured height. 

Relation between tree parameters retrieved using RANSAC and field measurements 

The correlation value between heights calculated using RANSAC and the field-based method is 

obtained as 0.80 shown in Figure 22. whereas for DBH, it is 0.98, as depicted in Figure 22. a. So, 

it can be anticipated that DBH is more correlated with the field-based DBH than tree height. 

 

 

Figure 22: Correlation between (a) DBH calculated using RANSAC and field-measured DBH and (b) 

height estimated using RHT and field-measured height. 

The significance of the radius of the tree circumference was used to establish a relation between 

radius and stem volume. The radius for all the trees was calculated and statistically analyzed. The 

R2 value obtained for radius and field-based stem volume is 0.84, which shows a very significant 

relation between stem volume and radius; the relation is depicted in Figure 23. 
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Figure 23: Relation between radius calculated using RANSAC and stem Volume calculated using the 

Forest Survey of India (FSI) equation 

 

The correlation value obtained between the field estimated and RANSAC-based stem volume is 

0.95. The correlation plot is shown in Figure 24. This represents the potential of RANSAC to 

calculate the stem volume by merely using the radius and height of the tree. In FSI volumetric 

equations, the stem volume is highly dependent on the species of the tree. In contrast, in RANSAC 

the calculation of stem volume was mainly done with the tree structural parameters (radius of the 

stem and tree height). 

 

Figure 24: Relation between RANSAC and field estimated volume 

 

Secondly, the stem volume was estimated using DBH, and height was estimated with the RHT 

algorithm in 3D Forest software. A relation between stem volumes was estimated using field-based 

volumetric equations and RHT. The statistical analysis found that the R2 is 0.99, representing the 

high correlation between the stem volume estimated using RHT and the field measured; hence, 

RHT can be directly used for estimating stem volume. The correlation plot is depicted in Figure 

25. 
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Figure 25: Correlation plot between stem volume calculated using RHT and field estimated volume 

4.2.2 A review of point cloud processing software solutions in forest applications 

published as: Murtiyoso, A., Cabo, C., Singh, A., Obaya, D. P., Cherlet, W., Stoddart, J., Fol, C. 

R., Beloiu Schwenke, M., Rehush, N., Stereńczak, K., Calders, K., Griess, V. C., & Mokroš, M. 

(2024). A Review of Software Solutions to Process Ground-based Point Clouds in Forest 

Applications. Current Forestry Reports. https://doi.org/10.1007/s40725-024-00228-2 

Extended summary: 

3D point clouds have provided forest practitioners and scientists with a new way of surveying 

timber and ecological resources and conducting previously impossible research. As a result, more 

and more scientific groups are intensively developing methods and technologies to automate the 

surveying of ground plots and the determination of stand characteristics using point clouds.  

However, there is a lack of standardization and dynamic comparison focusing on end users, such 

as foresters, ecologists, scientists, and similar. There is a need for a joint initiative that will manage 

the new findings and based on them, make standards for the above-mentioned end users.  

In paper VII, a compiled list of available algorithms that deal with the processing of forest point 

clouds was tested and implemented based on certain criteria. From this variety of algorithms 

available, it might be challenging for users to decide which one to choose to fulfill their goals to 

the best. Within the framework of 3DForEcoTech COST Action, a comprehensive database was 

compiled to collect information about existing forest point cloud processing algorithms in one 

place. The database currently includes 24 algorithms with special emphasis on point clouds 

obtained by close-range techniques and ground-based platforms. Of the 24 solutions identified, 20 
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were open-source, 2 were free software, and 2 were commercial. For each of the algorithms 

identified in our database, metadata was collected while installation and test runs were conducted 

to assess their applicability for forestry. From these tests, technical guides on installation and 

general use were written and will be included in the web platform. The database was also published 

as a web-based platform, in which users may consult it easily using a query system. In this way, 

the database may serve the community as a single source of information to select a specific 

software/algorithm that works for their requirements. 

Conclusion: 

A comparative analysis of RHT and RANSAC algorithms is done for the estimation of DBH and 

tree height. The results showed that DBH and tree height estimated suing RHT is more correlated 

with the field measured values. Thereafter, stem volume estimation was also done using RHT and 

RANSAC and evaluated with the field measured value. The results showed that the estimated and 

observed values of stem volumes are highly correlated and therefore can be used for the estimation 

of stem volume by surpassing the volumetric equations prosed by Forest Survey of India.  

Thereafter, in subsection 4.2.2 a thorough review was done on point cloud processing software 

solutions in forest applications. Installation and testing of all the enlisted algorithms compiled 

using the currently and thoroughly used algorithms or software solutions was done. A database 

including guidelines on usage and protocol was created and published on the website of 

3DForEcotech project.  
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4.3 Estimation of occlusion in canopy top points using TLS 

4.3.1 Qualitative Analysis of Tree Canopy Top Points Extraction from Different Terrestrial Laser 

Scanner Combinations in Forest Plots. 

published as: Kushwaha, S. K. P., Singh, A., Jain, K., Vybostok, J., & Mokros, M. (2023). 

Qualitative Analysis of Tree Canopy Top Points Extraction from Different Terrestrial Laser 

Scanner Combinations in Forest Plots. ISPRS International Journal of Geo-Information, 12(6), 

250. 

Extended summary: 

The effect of occlusion and quantitative analysis of the tree canopy top points was shown in paper 

V. Eight plots were considered 25 x 25 m, of which four plots were of medium density and the 

other four with high density, see Table 6. Six TLS scan combinations were made from nine scan 

positions for each plot, such as Center Scans (CS), Four Corners Scans (FCS), Four Corners with 

Centre Scans (FCwCS), Four Sides Centre Scans (FSCS), Four Sides Centre with Centre Scans 

(FSCwCS). 

Table 6: Shows the number of trees in each subplot for both the TLS plots. 

Plot TLS_Plot1 Plot TLS_Plot2 

Subplots Number of Trees Subplots Number of Trees 

TLS_1a 49 TLS_2a 102 

TLS_1b 45 TLS_2b 72 

TLS_1c 32 TLS_2c 78 

TLS_1d 33 TLS_2d 76 

 

After merging point clouds obtained from each TLS scan position, noise filtering was done, as the 

noise can give false results during canopy top points extraction. Different grid sizes were tested, 

and canopy top points were extracted at a 10 cm grid size. If the grid size is less than 10cm, the 

number of points being extracted is quite dense in numbers; similarly, if the grid size is more than 

10 cm, the number of points being extracted is very few, which would not have served our purpose 

of extracting canopy top point at each tree stem position. Canopy top points at each tree stem 

position were manually extracted from all the TLS combinations from the canopy top layer points. 

The results show that the most significant combination of scans was FSCwCS with respect to ANS. 
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The rRMSE obtained for plots TLS_Plot1 and TLS_Plot2 ranged from 0.14 % to 2.48 % and 0.096 

% to 1.22 %, respectively. 

Conclusion: 

An experiment was done to estimate and analyze the presence of occlusion in canopy top points. 

A methodology was developed to qualitatively analysis the canopy top points extracted from 

different combinations of TLS scan positions. Overall, six scan combinations were made and 

compared with all nine scan (ANS) combination. The results showed that the FSCwCS scan 

combination was most significant to ANS and the canopy top points extracted from the FSCwCS 

was close to ANS combination. The CS combination had the highest number of points with the 

relative height deviation greater than 10 m as the coverage of the TLS radially decreased towards 

the corners and edges of the plots.  
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4.4 LiDAR data fusion and future perspectives in forestry 

4.4.1 Aboveground Forest Biomass Estimation by the Integration of TLS and ALOS PALSAR 

Data Using Machine Learning 

published as: Singh, A., Kushwaha, S. K. P., Nandy, S., Padalia, H., Ghosh, S., Srivastava, A., & 

Kumari, N. (2023). Aboveground forest biomass estimation by the integration of TLS and ALOS 

PALSAR data using machine learning. Remote Sensing, 15(4), 1143. 

Extended summary: 

In this paper, estimation of above ground forest biomass was done by the integration of TLS and 

ALOS PALSAR L-band datasets.  A total of 13 plots were established and scanned with TLS. 23 

parameters were retrieved using TLS and ALOS data for the integration at the LiDAR footprint. 

TLS was used to extract diameter at breast height (DBH) and tree height. The parameters derived 

from ALOS PALSAR L-band data are Gray-Level Co-Occurrence Matrix (GLCM) texture 

measures, Yamaguchi decomposition components, polarimetric parameters, and backscatter 

values of HH and HV band intensity. 

The integration was performed using two machine learning approaches, Random Forest (RF) and 

Artificial Neural Network (ANN). The spatial distribution and uncertainty analysis was done and 

mapped using ALOS PALSAR data, shown in Figure 26.  
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(a) 

 

(b) 

Figure 26: Visualization of (a) Spatial distribution of AGB(ton/ha). (b) Uncertainty of AGB (ton/ha) 

 

The variable used for the spatial distribution encompasses ALOS PALSAR GLCM textural 

variables, polarimetric, and TLS-derived parameters. The predicted biomass range was between 

122.46 to 581.89 ton ha-1. The uncertainty of AGB distribution was determined using bootstrap 

resampling and the Monte Carlo approach. The range of uncertainty obtained was 15.75 to 85.14 

ton ha-1.  

The statistical measures for RF were found to be promising as compared to ANN for AGB 

estimation. The R2 value obtained for the RF is 0.94 with an RMSE of 59.72 ton ha-1 for the 

predicted biomass value; RMSE% is 15.92, and RMSECV is 0.15. The R2 value for ANN is 0.77 

with an RMSE of 98.46 ton ha-1, the RMSE% is obtained as 26.0, and the RMSECV is 0.26. RF 

performed better to estimate the biomass which ranges from 122.46 to 581.89 ton ha-1 with the 

uncertainty of 15.75 to 85.14 ton ha-1, depicted in Table 7. The more detailed conceptual 

framework and results are shown in paper IV. 
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Table 7: Statistical evaluation of the models 

Model R2
 RMSE RMSE% RMSECV 

RF 

ANN 

0.94 

0.77 

59.72 

98.46 

15.97 

26.32 

0.15 

0.23 

 

4.4.2 LiDAR Data Fusion to Improve Forest Attribute Estimates: A Review 

published as Balestra, M., Marselis, S., Sankey, T. T., Cabo, C., Liang, X., Mokroš, M., ... & 

Hollaus, M. (2024). LiDAR Data Fusion to Improve Forest Attribute Estimates: A Review. Current 

Forestry Reports, 1-17. 

Extended summary: 

A thorough review of the LiDAR data fusion with other datasets, including hyperspectral, 

multispectral, and radar, is done with a panel of experts and reported important information, main 

challenges, and future scope. A structured review of the state-of-the-art studies on LiDAR data 

and fusion with other datasets was done to determine the study's main challenges and future 

directions. The questions addressed in this review are mentioned below: 

1. What are the trends in LiDAR data fusion in the last decade? 

2. What are the main motivations and applications of LiDAR data fusion? 

3. What are the main methods used to perform data fusion? 

4. What are the main gains of LiDAR data fusion? 

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach 

was used to answer these questions. The keywords used for the search in the Web of Sciences 

database: are LiDAR AND fus* (Topic) and forest* OR tree OR canop* (Topic) and structure 

OR height OR inventory (Topic). The publications used were with the status of ‘article’ or 

‘review article’ with the date range of January 2014 to May 2023. A total of 664 papers were found 

on the Web of Science mentioned in Figure 27. Out of these, only 407 papers were considered 

based on the review criteria (2014-2023, English, article, or review). The papers were thoroughly 

studied by the reviewers for the selection of best-fitted papers based on the criteria (1) all the 

papers that were not addressing some aspects of forest or trees or related to forestry applications 
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were eliminated, (2) the inclusion of LiDAR data in the fusion. The focus was also on the term 

used for data fusion, whether it should be data fusion, integration, or combination.  

 

Figure 27: Number of publications on LiDAR data fusion and general publication trend in LiDAR in 

forestry applications over the last decade. The shade bars refer to the various LiDAR platforms. Multiple 

platforms indicate that LiDAR data from two (or more) different platforms was fused. Note that 2023 

only includes papers published until May. 

Extraction of Information from Literature 

A coding scheme was developed to organize the information from 151 papers which is shown in 

Figure 28 to make the review process more understandable and comprehensive. Five main 

categories were considered in this coding scheme: general information, geographic location, 

survey area, data characteristics, and survey goals. In the general information category, the most 

pertinent information was considered for the later analysis of the papers. In geographic locations, 

different continents and countries were included. The survey area consisted of the scale of the 

study (global or local), and forest stands. Information on the platform and the LiDAR sensor name 

was used in data characteristics. Also, the datasets fused with the LiDAR data. The survey goals 

included the information on the application, the motivation for the fusion, and the outputs achieved 

with the fusion process.  
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Figure 28: Framework of structural literature review and coding scheme 

The review concluded that there is an uprising trend in the application of data fusion with both 

UAVs and airborne platforms in forestry observations. There is a potential to improve forestry 

observations with multi-sensors LiDAR data fusion in a great variety of applications. The term 

‘data fusion’ should be considered to avoid confusion among commonly used terms such as ‘data 

integration’ and ‘data combinations’. There are, furthermore, challenges in data fusion at the 

computational level, costs, processing times, data quality, and expertise in the application domain. 

Therefore, practitioners must carefully weigh the potential benefits of LiDAR data fusion in 

relation to the actual need for such benefits and the accompanying cost. A more detailed 

methodological framework and analysis can be found in the paper I.   

Conclusion: 

An experimental design and analysis are proposed in subsection 4.4.1. This subsection focused on 

the above-ground forest biomass estimation using TLS and ALOS PALSAR data using machine 

learning. RF and ANN were used for the prediction of AGB, and it was found that RF is more 

efficient and accurate for the prediction of AGB. Later, the AGB predicted values were correlated 

with the field-estimated AGB values, and the correlation was found to be high for RF. Then 



140 

 

prediction of AGB was done with RF. The predicted AGB value (581.89 ton ha-1) was highly 

correlated and close to the field referenced AGB values which is 685 ton ha-1. This shows the 

potential of fusion of LiDAR with SAR data to combat the biomass saturation issues in highly 

matured forest areas.  

Moreover, in subsection 4.4.2, a review of LiDAR data fusion was done to improve the forest 

attribute estimates. The major focus of the review was the appropriate use of words such as ‘data 

combination’, ‘data fusion’, ‘data integration’. Also, the challenges involved in the data fusion at 

computational level, costs, processing time, data quality, and expertise in the application domain 

was also focused.  
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  5. Discussions  

5.1 Summary of addressed knowledge gaps and objectives 

The mapping of selected forest structural indicators is crucial for assessing forest productivity and 

maintaining the ecosystem functioning. The accuracy and precision of mapping these selected 

structural indicators vary greatly from different methodological approaches. The thesis addressed 

the knowledge gaps in the accuracy and precision of mapping selected structural indicators using 

TLS and MLS. The key features and objectives of the thesis are explained as follows: 

a) Objective 1 is addressed as a review based on understanding the use and reliability of TLS 

and MLS for mapping selected forest structural indicators (DBH, tree height, Stem 

volume, AGB). A thorough review was also done to understand the role of LiDAR in tree 

parameter retrieval and its application in forestry.  

b) Objectives 1 are addressed in paper I as another review focused on LiDAR data fusion 

with other data sources. The review addressed the main gains in LiDAR data fusion with 

other data. The current trend and opinion on LiDAR data fusion.  

c) Objectives 2 and 4 are addressed in papers III and IV. A study was conducted on the 

estimation of AGB using TLS and ALOS PALSAR L-band data to resolve the saturation 

of biomass value with L-band. Machine learning algorithms were used to address this 

challenge, and it was found that biomass saturation can be resolved with better reference 

data training and machine learning approaches with the integration of TLS and ALOS 

PALSAR data.  

d) Objective 2 is addressed as in paper III and II; an approach of the estimation of tree 

parameters (DBH, tree height, and stem volume) using RHT and RANSAC algorithms. A 

comparison study was conducted using TLS, MLS, and Photogrammetry to see these 

technologies' significant importance and potential in mapping individual tree dimensions, 

specifically DBH.  

e) Currently, occlusion is one of the main challenges in LiDAR data acquisition in the forest 

environment, especially processing and analysis of the data, which makes it tricky to get 

the best accurate results. So, the investigation was done to propose a methodology to 

mitigate this challenge. This was addressed in paper V.  
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f) The investigation also focused on the role of revolutionary devices (iPhone 12 Pro and 

iPad Pro) in measuring DBH. Moreover, it also aimed at tree species' relevance and 

significance with DBH and algorithms. This was addressed in the paper III and VI. 

g) Objective 3 is addressed as a paper VII, the benchmarking study was done on all the 

possible software solutions for processing LiDAR data (TLS and MLS). Benchmarking 

the point cloud processing software solutions was done to propose the best solution 

considering the tree parameters estimation and ease of applicability. A detailed user 

manual and documentation were prepared so to provide an overview of the current 

software solutions to the end users.  

The objectives and thesis are structured based on the hypothesis that is answered as follows: 

a) Question: The use of static and mobile laser scanning will significantly advance, mainly 

in the field of mapping trees' positions and dimensions. In contrast, mapping a wide range of 

tree parameters remains understudied. 

Answer: In this context, software solutions were tested and installed considering a wide range 

of tree parameters. The mapping of tree parameters was conducted in paper VII during the 

testing and installation of the software solutions to benchmark the point cloud processing 

solutions. The results showed the potential to map those parameters using one of the 

benchmarking algorithms. 

b) Question: Options for mapping the parameters can be substantially improved by the fusion 

of different data sources (e.g., point clouds with images) 

Answer: Several options are available for mapping tree parameters by the fusion of different 

data sources; these have been clarified and found in the review conducted in the paper I. The 

potential of increasing the accuracy and precision of the tree parameters (AGB) with the 

integration of TLS and ALOS PALSAR data is shown in paper IV.   

c) Question: Terrestrial laser scanning will provide more accurate and reliable data with 

lower estimation errors than mobile laser scanning. 

Answer: TLS proved to be a more reliable and efficient device for accurately estimating tree 

parameters than MLS. A study was conducted and proved in paper II. 

d) Question: Mobile laser scanning will be more efficient during the data acquisition and 

provide the required accuracy. 
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Answer: Irrespective of accuracy, MLS proved to be the most efficient device for data 

acquisition, with satisfactory accuracy for estimating a few tree parameters (especially DBH). 

This was examined as part of papers II and VI.  

The thesis objectives were addressed and elaborated in the mentioned papers and explained briefly 

in the above sections of the thesis. 

5.2 Summary of Used Methodological Approaches 

A thorough Literature review on the Web of Science was conducted to understand the current 

state-of-the-art application of TLS and MLS in the estimation of tree metrics and forestry. A 

systematic review was done on Web of Science and Scopus to find the existing scientific literature 

and synthesize the current options for mapping variables of high ecological relevance using TLS 

and MLS. In the second review, PRISMA approach was utilized with the most suitable keywords 

at Web of Science which are mentioned in table 1. 

The literature review was based on the LiDAR data fusion and its prospective role in forestry. 

Regarding this, an experiment was done to estimate ABG with the integration of variables derived 

from TLS and ALOS PALSAR using machine learning approaches RF and ANN to resolve the 

biomass saturation issues in L-band, for which TLS scanning was done on 13 plots. RF and ANN 

were trained at the LiDAR footprint using the TLS derived tree parameters and features extracted 

from the ALOS data at the LiDAR footprints 

Occlusion is one of the main concerns during the scanning of forest plots. TLS is an efficient 

device to give detailed information about the vegetation, especially the canopy of the tree as it can 

penetrate deep into the canopy. However, the scanned data could have some voids due to different 

plot sizes, tree densities, and tree structure. Multiple scan positions were done to quantify these 

voids and analyze the occlusion in the canopy. These scans were combined into different 

combinations to get an overview of the number of canopy top points present in each scan 

combination. Based on these combinations, the most suitable combination was suggested for the 

same forest structure and density. 

An experiment was also done on the estimation of tree parameters (DBH, tree height, and Stem 

volume) using algorithms such as RANSAC and RHT. Moreover, DBH was also estimated using 
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three software tools such as rTLS, RANSAC , and ForestScanner application ,further statistical 

evaluation was done to find out the significance of tree species in the estimation of DBH. 

A comparative analysis was also done between TLS, MLS, and photogrammetry to assess the 

performance and potential in the ease of data collection, tree parameter estimation, tree detection 

rate, and time required to collect the data. A cylinder-based algorithm was used to estimate the 

DBH. 

Later, a benchmarking of 24-point cloud processing algorithms focused on forestry applications 

was done. A comprehensive and user-friendly database was prepared for the end users. This 

database illustrates the elaborative information on each of the algorithms mentioning different 

useful forestry parameters. The identified algorithms were tested, installed and a user manual was 

prepared for general use focusing on the user with no or little programming background. This 

manual is included in the web platform of the 3DForEcotech Cost Action Project 

(https://3dforecotech.eu/database/).   

5.2.1 Limitations of the methodological approaches  

The methodological approaches for the literature review were only focused on the review and 

articles and did not consider the conference proceedings. Some of the instances of data fusion were 

ignored during the review. Multi-temporal data fusion, multi-spectral LiDAR data, co-registration 

of data from the same instrument (strip adjustment of ALS data collection and co-registration of 

TLS point clouds acquired from various points of view to create a forest scene). These can still be 

relevant to forest monitoring, species classification, and tree localization.  

Another review was conducted on the point cloud processing software solutions to prepare and 

avail a list of potential software solutions that focused on forestry application. The current 

methodology for review only works for 24 software solutions; however, the point cloud processing 

software and algorithms are updated and included every now and then. So, another review needs 

to be conducted on these updated versions of software, and other upcoming solutions. The review 

procedure only included the point clouds acquired using terrestrial devices; there is a limitation in 

the considered point cloud data formats for point clouds. The categories used for the output level 

have not mentioned all the features (tree parameters) concerning the forest studies.  
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In paper II, the comparative analysis of close-range technologies (TLS, iPad, PLShh , MultiCam) 

has been done. The methodology includes testing these devices on the performance within the 

forest stands, focusing on tree detection, DBH estimation, and overall performance. The 

methodology did not include other tree parameters or forest metrics. The study area chosen has 8 

plots (25 x 25 m). The methodology neither considers different stand structures nor forest 

environments. The methodology applies to the same forest stand structure as it is mentioned in the 

study, and the results may vary in different forest stand structure environments. Moreover, 

depending on the devices used for the scanning of the forest plots, the accuracy and precision of 

the final output may vary because there are different ranges of terrestrial laser scanners (TLS) and 

mobile laser scanners (MLS) available with different technical features and capability of scanning 

are different compared to each other. 

Furthermore, tree parameter extraction can be subjective depending on the methodological 

approach. In Paper III, tree parameters (DBH, tree height) were mainly focused, and RANSAC 

and RHT were used to estimate DBH and tree height. However, the conceptual framework did not 

consider another potential algorithm to serve the purpose. Other tree parameters were not included 

in the methodology. The number of plots established was 13, so the results may vary with the 

increase in the number of plots, scanning scheme, and forest type. The scanning scheme and forest 

stand structure are highly subjective when estimating tree parameters (especially DBH and tree 

height) because of the possibility of occlusion. The accuracy and precision of the DBH and tree 

height may change depending on the scanner. For instance, in paper VI, the tree was scanned with 

an iPhone 12 Pro to estimate DBH. The software tools that were used for DBH estimation were 

RANSAC (CloudCompare plugin), ForestScanner application, and rTLS. The forest stand was 

different. So, the DBH estimate achieved different accuracy. The precision and accuracy of these 

tree parameters are highly important for further estimation of stem volume and above-ground 

biomass.  

In paper IV, forest above-ground estimation was used using TLS and ALOS PALSAR data. Two 

machine learning algorithms (RF and ANN) were used. The study was done in 13 plots. The 

conceptual framework of this study may vary depending on the study location, machine learning 

algorithms, and datasets used. This study aimed to mitigate the challenge of biomass saturation 

with the L-band of ALOS PALSAR data. The study works well in the tropical forest and was not 
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tested in other forest conditions or types. The biomass saturation varies depending on the SAR 

data; different bands have different saturation levels. The results may also change with the different 

scanning schemes because it highly affects the occlusion rate in the forest plots. 

The scanning scheme and position of scanners in the plots can change the entire output of the 

study, considering the forest stand structure and density. The number of points acquired in the 

forest plots may vary with different scanning schemes and so the estimated tree parameters. The 

quantification and assessment of the number of points acquired in the top of tree canopy using 

TLS was focused on paper V. The methodology can only work for the same forest stand structure 

and has not been tried in other forest types. The scan combinations may vary and will be different 

depending on the number and locations of scan positions in the forest plot. The study also does not 

consider the variation of DSM at each pixel, including canopy top points, points above branches, 

and surface points in non-canopy regions. 

5.3 Key findings  

The systematic review based on LiDAR data fusion reveals the confusion between the terms ‘data 

fusion’, ‘data combination’, and ‘data integration’. For instance, the studies focused on data-level 

or feature-level fusion using the term data combination (Arjasakusuma et al., 2020; Machala & 

Zejdová, 2014), data registration (Pohjavirta et al., 2022), or data integration (Anderson et al., 

2008; Guan et al., 2013); therefore, to avoid confusion, the definition was set to LiDAR data fusion 

as “Enhancement of forest observation and LiDAR characteristics using features derived from 

different data sources and merging of data of which at least one dataset is LiDAR”. Data 

integration terms should be used when only features and characteristics from the data sources are 

used to train and enhance the model's efficiency. They are not used to generating new datasets. 

The data combination term should be used when the data fusion is done at the pre-processing steps 

and data integration is done at the decision-making step.  

This review survey shows that precision forestry is oriented towards automated terrestrial point 

cloud processing. The precise measurement of individual trees including diameter, height, and 

location, is almost possible and mirrors the meticulous information as compared to traditional 

forest inventory. Besides the prevalence of automatic point cloud processing solutions, there is a 

gap to exploit the potential of terrestrial point clouds among practitioners fully.  However, some 
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software solutions utilize some complex metrics to unveil more information about the data; 

perhaps a broader utilization is required to thrive the full potential of these datasets. Furthermore, 

these datasets have the capability not only to recognize the basic forest structure but also to analyze 

some advanced variables such as canopy characterization, volumetric assessment, and habitat 

monitoring.  

The most important glance from papers III, IV, and VI is the utilization of different conceptual 

approaches for the estimation of tree parameters (DBH, tree height, stem volume). Different 

datasets were used and tested on different locations mostly to ensure the potential and accuracy of 

the outputs. The tree parameters estimation accuracy is highly subjective to the scanner used for 

the collection of point cloud, forest type and stand structure, algorithm, or software tools used for 

the estimation. The precision error can also be dependent on the operator of the device. However, 

the most important finding from papers III and VI is the best performance of estimation of DBH 

by RANSAC and ForestScanner (iPhone-based application). Also, the iPhone showed the potential 

to estimate DBH with an R2 of 0.976, equal to the R2 of 0.976 achieved using RANSAC. The 

RMSE and rRMSE (%) observed were 2.58cm and 7.25 for ForestScanner. Also, The RMSE and 

rRMSE calculated for RANSAC were 2.19 and 6.15cm. There are so many tools available for this 

purpose, so perhaps benchmarking of the tools is required to get the most robust tool for ease of 

estimation of DBH. Other studies focus on the estimation of DBH using MLS with the comparison 

of 3 algorithms, namely RANSAC, Monte Carlo, and optimum circle and found good results with 

RMSE 5.31 cm and 1.23 cm of bias (Pérez-Martín et al., 2021).The other study on the DBH 

estimation was done using the RANSAC algorithm, which tested 71 trees and found a promising 

outcome. The RMSE calculated was 0.7 cm, and 2.27 % was the relative error. This shows the 

potential application of RANSAC in the estimation of DBH (Zhou et al., 2019).This study showed 

that the number of points fitting a circle does not affect the RANSAC algorithm. LiDAR-based 

iPad Pro efficiently estimated accurate DBH and distance between each tree. So, these low-cost 

technologies can accurately estimate a few tree parameters(Çakir et al., 2021).  

Apart from this, statistical analysis was done to determine the significance of these devices on the 

estimation of DBH of different tree species and a significant relation was found between tree 

species and DBH. In paper IV, the biomass saturation issue was resolved at L-band ALOS 

PALSAR data by integrating it with tree parameters estimated using TLS. The R2 value obtained 
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for predicted biomass using RF is 0.94 and RMSE of 59.72 ton ha-1. The RMSEcv and RMSE% 

obtained were 0.15 and 15.92, respectively. However, the statistical evaluation reveals the values 

obtained for R2, RMSE, %RMSE, and RMSEcv are 0.77, 98.46 ton ha-1, 26.0, and 0.26, 

respectively. The biomass range improved was 122.46 to 581.89 ton ha-1 using RF with the 

uncertainty of 15.75 to 85.14 ton ha-1. These results were compared with a study and found that 

the LiDAR data is more reliable in estimating biomass and significantly improves the biomass 

saturation with intact precision and accuracy of the predicted biomass with correlation (R2) value 

of 0.98 and RMSE of 0.08 Mg (Beyene et al., 2020; Chowdhury et al., 2013; Liao et al., 2020).  

The most important finding in paper II was the best performance of TLS in the quality of point 

cloud and tree detection rate (90 %) compared to iPad (64.5 -87.5%), PLShh (55.6-74.3%), and 

MultiCam (57.1-74.3%), respectively. TLS achieved the highest accuracy in the estimation of 

DBH with an RMSE of 2 cm compared to other devices. Nevertheless, iPad achieved the closest 

accuracy to TLS with RMSE 2.6 to 3.4 cm. Furthermore, the time required to complete the scan 

of the plot is 40 mins (TLS), 10 mins (PLShh), 15 mins (iPad), and 8 mins (MultiCam). So, PLShh, 

the tree detection rate achieved was 57-100% (Balenović et al., 2021). The highest tree detection 

rate (100%) was found with a DBH threshold of 10 cm (Bauwens et al., 2016), and 90.9 % to 95 

% for a 5 cm or less DBH threshold; however, on the contrary, 57 % tree detection rate was 

achieved with the distance between the scanning strips of 15 m. The rate was increased to 94 % 

by changing the distance from 15 to 10 cm (Chen et al., 2019; Gollob et al., 2020; Perugia et al., 

2019). 

The top canopy surface point extraction in paper V was statistically evaluated, and it was found 

that the most reliable combination of all the 9 scan positions was Four Sides Centre with Centre 

Scans (FSCWCS) compared to All Nine Scan (ANS). The rRMSE % obtained for TLS_Plot 1 was 

0.14 to 2.48 %, whereas 0.096 to 1.22 % for TLS_Plot2. So, the study showed that using different 

scan combinations of TLS scan positions, the quantity assessment of point clouds can be done for 

forest plots. This approach will eventually help to assess and detect the probability of occurring 

occlusions while scanning a forest plot.  
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6. International Collaborations and Achievements 

Strong international collaborations were established as a part of this thesis. Papers I and VII were 

mainly done in collaboration with scientists from very high university rankings. The collaborations 

were part of the 3DForEcoTech Cost Action project. Most of the datasets used in this thesis were 

associated with the collaborators.  

Virtual mobility was done under the 3DForEcoTech project, and the mobility outcome was paper 

VII. A list of 24 algorithms was prepared, installed, and tested, and an intensive guideline and 

protocol were developed and made available on the project website 

(https://3dforecotech.eu/database/). The web portal is like in figure 30. 

Moreover, the extended achievement of virtual mobility, a hackathon was organized to benchmark 

software solutions for processing close-range forest point clouds. It happened on 25-29 September, 

2023, at TU Wien (Austria) https://3dforecotech.eu/activities/hackathon-a-benchmark-of-

software-solutions-for-processing-close-range-forest-point-clouds/ . The outcome of hackathon 

will further lead to a publication in peer reviewed journal.  

 

 

Figure 29: The webpage of the 3DForEcotech Cost Action project 

https://3dforecotech.eu/database/
https://3dforecotech.eu/activities/hackathon-a-benchmark-of-software-solutions-for-processing-close-range-forest-point-clouds/
https://3dforecotech.eu/activities/hackathon-a-benchmark-of-software-solutions-for-processing-close-range-forest-point-clouds/
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7. Conclusions and Recommendations  

The dissertation mainly focuses on utilizing TLS and MLS for mapping structural indicators in the 

forest and the significance of these indicators. The focus was to use the TLS and MLS technology 

to estimate tree parameters (structural indicators) using different software solutions or data 

integration. The thesis outcome was delivered in the respective studies described in papers I, II, 

III, IV, V, VI, and VII. The overall conclusion derived from all the papers is that the TLS is the 

most precise device for mapping structural indicators. However, in the analysis of the paper, I 

highlighted the data fusion technique and the literal meaning of data fusion, data integration, and 

data combination. Also, the proper use of these terminologies. The significance of the impact of 

the data fusion of the forestry application.  

Paper II mentioned the comparative analysis of close-range technology (TLS, PLShh, iPad, 

MultiCam) for the tree detection rate and DBH estimation using different scanning trajectories and 

found that the TLS is more precise than other devices, perhaps iPad works closely to TLS, and it 

shows more potential in the estimation of DBH and tree detection rate. However, TLS and PLShh 

proved to have more potential to acquire point clouds with more range. So, it would be necessary 

to use these devices for the estimation of other tree parameters such as tree height. Moreover, the 

methodology can also be tested in different forest types and with more tree parameters.  

In paper III, stem volume estimation was done using TLS point cloud. The stem volume was 

estimated and compared using RANSAC and RHT. RANSAC proved to be the best algorithm to 

estimate DBH with higher accuracy, and so stem volume.  These algorithms have the potential to 

do the modeling of stem volume, preferably including more plots and trees. The current 

methodology needs to be tested in different forest types as well. The DBH estimation is very fast 

and accurate with the iPhone 12 Pro. The statistical analysis found that the in-built algorithm in 

the iPhone 12 pro-ForestScanner application is precise and close to RANSAC. So, this can be used 

for the estimation of DBH in the mentioned forest type and tree species. A significant relation was 

found between the tree species and DBH. More species and different forest types can also be tested 

using iPhone 12 pro to test the outcomes of paper VI.  

Above-ground forest biomass was estimated using TLS and ALOS PALSAR data. The study 

proved that the biomass saturation using L-band SAR data can be mitigated with the integration 
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of ALOS and TLS datasets. Also, RF has the potential to predict biomass with the most accuracy.  

This kind of study relies on the data source and machine learning algorithms used.  This is clearly 

described in paper IV. The methodology is also used for the other forest types and different stand 

structures. Also, the deep learning approach could also make a significant difference in the biomass 

saturation range.  

In paper V, DSM was used to extract the canopy top points with nine scan combinations. The most 

suitable combination was the Four Sides Centre with Centre Scans (FSCWCS) compared to All 

Nine Scan (ANS). However, the scan combinations are highly subjective to the number of scan 

positions in the forest plots, and this methodology only works with static LiDAR devices (TLS). 

So, for future work, replication of the same methodology on different scan combinations can be 

done using TLS in different forest types. Also, benchmarking can be done to establish different 

scan combinations of TLS and other devices to establish the most accurate scanning scheme for 

tree detection rate and DBH estimation with some more tree parameters relevant to the 

understanding of the function of forest ecosystems.  

A benchmarking of 24-point cloud processing software solutions was using some selected tree 

parameters. These solutions were installed and tested with different computer configurations and 

a detailed user guide and technical protocol were prepared for the end users with respect to the 

type of analysis they are focused on.  For future work, the point cloud processing software solutions 

need to be updated, and more solutions need to be tested and updated at the web portal of 

3DForEcoTech website. The tree parameters and testing parameters can be elaborated and 

diversified to make the outcome of these software solutions more prevalent.  

These kinds of studies are important to understand the functionality of the forest ecosystem and 

help mitigate several challenges due to environmental crises and climate change. The structural 

indicators play a crucial role in understanding the minute level of change in the forest structure.   
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