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Annotation

In the last two decades, novel terrestrial-based laser scanning technologies have been
introduced for the three-dimensional capture of forest states. These technologies allow us to
measure and reconstruct different parts of forest ecosystems in a three-dimensional space on a sub-
twig scale. Achievable high accuracy and details provide us with many possibilities for forestry
research and practice. However, the accuracy of mapping selected forest structural indicators by
means of terrestrial and mobile laser scanning is needed to investigate and understand the benefits

of these technologies.

Terrestrial laser scanning (TLS) and mobile laser scanning (MLS) have shown potential in
mapping individual tree dimensions (diameter at breast height (DBH), tree height, biomass) of
living, standing trees. Automated tools are available for mapping individual trees at maximum
accuracy. However, the benchmarking of these tools needs to be done to encompass various output
parameters related to the application in forestry. The 100 % tree detection rate using TLS and MLS
is also in the queue to be solved, especially concerning the different forest structures and
complexity levels. The total time and cost associated with TLS and MLS devices have a lot of
impact on the quality and quantity of the data. There is a lack of protocol for the data acquisition
and processing using TLS and MLS in the forest ecosystem. Also, TLS has been proven to solve

the biomass saturation problem at the plot level by integrating with other datasets.

Therefore, this study focused on different aspects of data acquisition using TLS and MLS.
Automated point cloud processing tools were compared, and a user guide and manual were
prepared. A methodology was developed to create a database of existing processing solutions and
benchmark their accuracy regarding forest parameters extraction. A comparative analysis was also
conducted on the TLS and MLS devices. Later, a methodology was developed to showcase the
significance of DBH and different tree species. Further analysis was done to overcome the biomass
saturation problem with integrating TLS and ALOS PALSAR data and achieved the promising

accuracy for above-ground biomass mapping.

Further research is needed to explore more complex forest environments to check the
applicability of the developed methodologies on a larger scale. The benchmarking of automated

point cloud processing tools needs to be revised timely as new tools will be developed. Other forest



structural indicators should be checked with the developed approaches, and further analysis and

relations need to be finalized to see the effect of modern technology on forest ecosystem
monitoring and management.

Keywords: terrestrial laser scanning, mobile laser scanning, diameter at breast height, tree species,
tree height, biomass, occlusion, point cloud.
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1. Introduction
1.1 State of the art and motivation

Forest resource information is collected at various scales, i.e., stand level, regional level, and
countrywide, to plan and manage various ecosystem services and improve forest management
(Toivonen et al., 2023). Potential information on timber harvesting is also important for the
regional and forest levels. Also, understanding terrestrial ecosystems functioning and physical
changes due to climate change and monitoring leads to the quest for 3D information on forest
structure (Verbeeck et al., 2019). Forest structural indicators are measures used to describe the
distribution and arrangement of vegetation and the physical attributes within the forest (Korom et
al., 2022). The forest structural indicators are tree height, diameter at breast height (DBH), canopy
cover, basal area, stem volume, biomass, species composition, etc. Forest structure as a 3D
complex can be described in two sections: vertical and horizontal structures. The vertical structure
describes the vertical distribution of vegetation in the forest ecosystem. The vertical profile of the
forest provides very in-depth information on the inter-relation of forest ecosystems and
biodiversity, whereas horizontal structure defines the horizontal profile of the vegetation in the

forest ecosystem (Palace et al., 2016).

Forest structural indicators play an important role in the regulation and presence of biodiversity
and in maintaining the microclimate of the forest ecosystem. They provide approximately 80% of
global terrestrial biodiversity and fundamental ecosystem services to society, such as recreation,
climate regulation, and timber (Balvanera et al., 2014). Forest structure also significantly regulates
the occurrence and distribution of species and provides breeding sites. Also, it provides resources,
niches, and shelter from predators (Melin et al., 2014). However, the more significant number and
variability of niches are directly proportional to the presence of a greater diversity of species
present in the forest (Stein et al., 2014). Extracting such detailed and fine scale information requires

a high precision of measurement.

The measurement of such a large scale and fine scale is critical and time-consuming. The ground
sampling method for the reconstruction of 3-D vegetation characteristics is a cumbersome and

resource-demanding procedure; furthermore, it may compromise precision due to the possibility



of manual measurement errors. However, current remote sensing methods include both active and
passive sensors, which provides a possibility to measure the assessment of biodiversity of forests
at a large scale (Turner et al., 2003). Light detection and ranging (LiDAR), as an active sensor,
provides the measurement of vertical and horizontal vegetation structure of the forest at the
landscape scale (Bergen et al., 2009). Previously, the qualitative representation of 3D forest
structures was explicitly available. The hand-drawn tree archetypes were used as a representation
(Hallé et al., 1978), and the conventional methods for the tree measurements were performed using
tools such as calipers and clinometers. The traditional methods are labor-intensive and

cumbersome.

Later, the development of the terrestrial laser scanner (TLS) provided 3D information on trees and
forests, which provides in-depth information. Initially, the research was focused on tree parameter
retrievals, such as tree height and DBH. However, the focus later diverted to tree volumetric
assessment and aboveground biomass estimation (Gonzalez de Tanago et al., 2018). Currently, the
applications also include the modeling aspects of branch architecture (Lau et al., 2018), habitat
assessment (Ashcroft et al., 2014), forest fire modeling, or the quantification of fuel load (Y. Chen
etal., 2016).

The forest structural indicators are an inseparable entity in forest management and protection. The
ecological insights from the 3D measurements challenge the potential of TLS and mobile laser
scanner (MLS). A study by (Verbeeck et al., 2019) showed that TLS can be used as a structural
information source to understand the descriptive orientation of the axis of structural traits in woody
plants. LIDAR has also been used to profile forests to understand stratification and its role in the
balance of the forest ecosystem. LIiDAR application is of wide ranges. Starting from habitat
selection, such as the specific pattern and ecological niche decided by the mammals in the forest
ecosystem. It has also been used to resolve the unsaid truth about the habitat requirements of
mammals (Stobo-Wilson et al., 2021). Also, biodiversity population monitoring can be done using
TLS. Inthis regard, a study has been done on butterfly population monitoring (Hristov et al., 2019).
Due to pollution, slight changes have been observed in the physiological patterns of the plants and
trees. So, (Hofman et al., 2014, 2016) have done modeling of particulate deposition on the leaf and

its consequences.



The multi-temporal TLS or MLS data can also provide the 4D data for canopy structural dynamics
to understand the canopy structure of the tree. Combining real-time monitoring with spectral
information can be used to analyze relationships between structural and functional trait-based
analysis (Calders et al., 2020).

The environmental changes can be assessed using continuous monitoring of different ecological
indicators, helping to identify actual ecosystem conditions and changes that can potentially lead to
irreversible transformation (Dale & Beyeler, 2001; Ratajczak et al., 2018). Here, the role of
modern data acquisition technologies has started to be increasingly recognized and appreciated.
For example, forest “health” and resilience were correlated with species and structural and
functional diversity of the ecosystem (Espelta et al., 2020), and many of these features can be
derived using advanced data acquisition methods such as TLS and MLS. The use of TLS and MLS
in forestry is a revolution in lidar technology. This technology is more affordable and faster. It can
provide autonomous observations which creates a possibility of forest inventory from stand level
to regional level. It also identifies the state-of-the-art methods for various applications in ecology
and projects on their various current issues and bottlenecks. The Spectral Variation Hypothesis
says that spectral heterogeneity over the different pixel units of a spatial grid reflects a higher niche
heterogeneity, allowing more organisms to coexist (Rocchini et al., 2021), suggesting an
interesting link between remote sensing-based data and ecological properties. The well-recognized
relationship between an indicator and indicandum (e.g., the indicated characteristics of
biodiversity; Bastianoni et al. (2012)) suggests that, for example, deadwood volume and diversity
and saproxylic beetle species richness are closely correlated (Gao et al., 2015). However, options
for high-resolution mapping of deadwood parameters remain largely unresolved (Marchi et al.,
2018). Therefore, research is required to understand the complexity of the interaction between
forest dynamics, ecosystem services, and human well-being (Carpenter et al., 2009).

Generally, three fundamental aspects are considered to shape the adaptation of any new
technology. Firstly, the overall time requirement for the data acquisition, equipment cost, and data
post-processing. Secondly, the significance of the data collected from the field should be similar,
surpass the conventional method, or provide some added advantages. Lastly, the tree attribute
information should be precise enough to support the decision-making in forest management
(Knoke et al., 2010). There is an intimate relation between these three aspects. The question

remains regarding the potential use of MLSs in forest ecosystem applications. But it also has shown



the possibility of improving the quality and quantity of the reference data collection in the forest

inventories because it is faster and provides a level of detail of tree structure. A thorough literature

review was done considering all the sections of this chapter, and the statistics on the number of

publications focused on forestry and tree metrics using TLS and MLS are shown in Figure.1 and

Figure.2. The keywords used to search in the Web of Sciences are mentioned in Table 1.

Table 1: The Keywords used to search in Web of Sciences

Technology Search code Focused No. of
area Publication
MLS TS = ("mobile laser scann*" OR "personal laser scann*" OR "hand-held laser | Forestry 334
scann*" OR "backpack laser scann*" OR "backpack lidar" OR " mobile lidar")AND
TS= ("forest" OR "tree" OR "forestry" )
TLS TS = ("terrestrial laser scann*" OR "terrestrial lidar" OR "TLS" ) AND TS = | Forestry 1637
("forest” OR "tree" OR "forestry™)
TLS (TS = ("terrestrial laser scann*" OR "terrestrial lidar" OR "TLS" ) AND TS = | Tree metrics | 392
("diameter at breast height" OR "dbh" OR "tree height™)
MLS TS = ("mobile laser scann*" OR "MLS" OR "personal laser scann*" OR "hand-held | Tree metrics | 86
laser scann*" ) AND TS = ("diameter at breast height" OR "dbh" OR "tree height™)
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Figure 1: No. of publications in the preceding years between January 2004 to January 2024 focused on

forestry using TLS and MLS
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Figure 2: No. of publications in the preceding years between January 2004 to January 2024 focused on

tree metrics retrieval in forestry using TLS and MLS

1.2 Hypothesis

The study focused on the following hypothesis:

1. The use of static and mobile laser scanning will significantly advance mainly in the field of
mapping trees' positions and dimensions. In contrast, mapping of features such as tree
parameters remains understudied.

2. Options for mapping the parameters can be substantially improved by the fusion of different
data sources (e.g., point clouds with images)

3. Terrestrial laser scanning will provide more accurate and reliable data with lower estimation
errors when compared to mobile laser scanning.

4. Mobile laser scanning will be more efficient during the data acquisition and will provide the

required accuracy.

1.3 Objectives

This dissertation aims to develop new methodologies for measuring different trees and stand

parameters, which can be instrumental in further forest ecology research. We mainly focus on



using Terrestrial and a mobile laser scanner and the fusion of acquired data with other data sources.

The following objectives will be addressed:

1. Toreview existing scientific literature and synthesize the current option for mapping variables
of forest parameters using terrestrial and mobile laser scanners and identify the major
knowledge gaps.

2. To establish experiments focusing on extraction of individual tree dimensions of living and
standing trees from point clouds of terrestrial and mobile laser scanners and fusion with other
data sources.

3. To create a database of existing processing solutions and benchmark their accuracy regarding
the forest parameters extraction.

4. To explore options for estimating tree heights and diameters, aboveground forest biomass,
and other parameters and formulate recommendations for integration into forest practice and

research.

1.4 Thesis structure

The structure of the thesis is compiled in the form of chapters. The first chapter is a literature
review and consists of an in-depth description of the previous and current work done using TLS
and MLS. The second chapter is a methodology that entails brief information on the study areas
used in this thesis and a description of the basic conceptual and methodological framework. This
chapter also includes an overview of the statistical methods used for the evaluation of the results
in all the papers related to this thesis. This chapter is further elaborated in the individual sections
where each paper is described in detail. The other chapter includes results, all the papers included
as an output of this thesis objectives are mentioned and described in detail sequence. There is
another chapter on the discussion; this chapter includes an overall discussion of all the paper
outcomes focusing on the key findings, knowledge gaps, and methodology limitations.
Furthermore, the thesis also comprises sub-chapters on international collaborations and additional
achievements during the study. Lastly, the Conclusion and recommendation is included to

summarize the overall concept, findings, and future scope of the thesis.

2. Literature Review
This chapter includes the basic principle of TLS and MLS devices in section 2.1.1, and different

data acquisition methods are explained in section 2.1.2. The processing of point cloud data is
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divided into two subsections; section 2.1.3 describes the pre-processing and data analysis of TLS,
whereas the pre-processing and data analysis of MLS is described in section 2.1.4. The post-
processing steps are explained in section 2.1.5 and its sub-sections. Thereafter, LIDAR data
technology at various scales is explained in section 2.2. Furthermore, an emphasis is done on the
LiDAR data fusion with other data; later, it is focused on the potential of synthetic aperture radar
(SAR) data fusion with TLS.

2.1 TLS and MLS principle, Sensors, and Systems

TLS is based on the laser range measurement technique and measures its surroundings using
LiDAR and angular measurements using the optical beam deflection method to acquire 3D points
from the surface of the tree in the forest and other objects. Unlike TLS, MLS is used for mobile
data collection fitted with LiDAR, cameras, and other remote sensors. The principle for range
detection is based on two principles. The two main techniques involved in the measurement of
range using a laser are time-of-flight (TOF) and phase shift (PS). The main difference between
these two distance measurement technologies is that PS measures distance more accurately;
however, it is subject to noise in the data, whereas TOF provides a greater data measurement range
(Mataszek et al., 2022).

In the PS technique, the range is discerned at high frequency through amplitude modulation and
the continuous illumination of the laser. In contrast, the TOF measures the range with the precise
timing from the pulse time of flight and speed of light. In TOF, the emitted radiation is
backscattered and recorded as a single return at the receiver end, but it could be recorded as several
returns (single, last, and intermediate) by exceeding the detection threshold. A single return
provides less information about the interacted object. In contrast, the multiple returns provide
dense point cloud data and information, especially in the vegetation, because the backscattered
signal interacted with the target inside or behind vegetation. The signal returns are in discrete form,
but they could be digitized at the receiver end resulting in waveform data. The waveform includes
additional information on the interaction between the target and the laser pulse concerning the
discrete form (Petrie & Toth, 2017).

In MLS, there are terrestrial and airborne laser scanners. Most terrestrial-based laser scanners are

enabled with the SLAM (Simultaneous Localization and Mapping). SLAM is explained in detail



in section 2.1.1. It offers precise positioning of the scanner in the forest because global navigation
satellite system (GNSS) is inaccurate inside the forest. MLS system is often associated with one
or more laser scanners, an inertial measurement unit (IMU), and GNSS, which offers the real-time
positioning of the scanner (Forsman et al., 2016; Kukko et al., 2017; Pierzchata et al., 2018).
Several types of MLS have been used to estimate forest parameters, such as phone-based scanning,
vehicle-based scanning, backpack MLS, unmanned aerial vehicle (UAV)-based, hand-held mobile

laser scanner, etc.

In hand-held mobile laser scanner (HMLS), various other terms were used, such as hand-held laser
scanning (HLS), hand-held personal laser scanner (H-PLS), wearable laser scanning (WLS), or
personal laser scanning (PLS) (Gollob et al., 2020). Furthermore, the vehicles need more access
due to inaccessible areas in the forest, which hinders data acquisition. This limitation motivates
the invention of something that can be carried by humans as operators and referred to as PLS. So,
the first PLS was invented and was large and heavy (~30 kg) (Kukko et al., 2012; Liang et al.,
2018)There are several HMLS systems available in the market (ZEB1, ZEB-REVO, ZEB-REVO-
RT, ZEB-HORIZON) and evaluated in forest conditions.

In backpack MLS, there are different methods for data collection. Hyyppd et al. (2020)
demonstrated a method based on a pulse-based 2D laser scanner tilted from the vertical and
mounted on a backpack. However, there is a major drawback with MLS, which is mapping the
point cloud that has already been mapped in the previous steps, thereby increasing the positioning
errors. So, SLAM corrections were also used to reduce positioning errors. Basically, in the forest
area, the tree occlusion often deteriorates the GNSS signal and causes an interruption in forest
mapping. So, the SLAM problem arises due to the requirement of estimation of the location of the

MLS point clouds while mapping in the forest (Shao et al., 2020).

2.1.1 Simultaneous Localization and Mapping (SLAM)

A SLAM is a complex algorithm used for the mapping of an unknown environment and localizing
and mapping a device in that environment. SLAM was initially incorporated in robotics; the
movement guess was initially based on wheel odometry, and the corrections were made with the
help of cameras and lidar sensors (Zheng et al., 2023).SLAM technique was incorporated into the

MLS mapping system to compensate for the mapping issues in the forest ecosystems (Guan et al.,



2013). There are various types of SLAM algorithms and approaches available, such as Graph
SLAM, EKF SLAM, Fast SLAM, Topological SLAM, Visual, 2D LiDAR, 3D LiDAR, and ORB
SLAM. Also, the filter-based and graph-based methods are common SLAM techniques. In the
filter-based method, the common filters used are the extended Kalman filter (EK) (Kohlbrecher et
al., 2011) and the Particle filter (PF) (Grisetti et al., 2007). The examples are Hector SLAM and
G-mapping, respectively. The two methods are related and rely on the assumptions of the robot
motion model and sensor noise and usually, consider the motion relationship between adjacent
data.

There are a few issues with the filter-based methods while violating the assumption and execution
of loop closure. There is difficulty in addressing this method. Additionally, it also increases
memory consumption and computation. So, another method called the graph method became very
popular, which works by combining all the poses of the scanner at different times and executing
loop closure and then the elimination of cumulative error is done by optimization of poses. For
example, Karto-SLAM (Konolige et al., 2010) and Cartographer (Hess et al., 2016). It also
resolves memory consumption and computational issues by combining poses and optimization in
real-time. Apart from this, it also has some limitations in providing highly accurate positioning
and mapping results which makes it unfit for a mapping environment like forest. However, the
bundle adjustment (BA) method has also been widely used to correct SLAM problems. In this
method, nonlinear optimization is performed to optimize the features and poses of the scanner

simultaneously.

The nonlinear optimization relies on the matched features and produces maps of high accuracy.
The lidar odometry and mapping in real-time (LOAM) method is a very good example in this
context (J. Zhang & Singh, 2014), which selects the line and plane features on object surfaces that
consist of stable and distinct features to estimate the motion of a scanner and obtains highly
accurate mapping results indoor and urban scenarios. However, there is uncertainty in the forest
mapping because of the presence of highly similar objects, so it is difficult to extract reliable
features from the object surface. Also, the scan match can fall into the local optimum due to
inaccurate corresponding pairs. Moreover, the challenges are never-ending as another hurdle in
SLAM occurs while data acquisition by considering global optimization, and it is challenging to

avoid error accumulation. However, there are other methods available that work on multiple loop-



closure detections to maintain global positioning accuracy (Mur-Artal et al., 2015). Also, in other
studies related to graph-based SLAM to correct the GNSS-IMU trajectory drift, the initial
movement guess is made with the trajectory calculated from GNSS and IMU measurements. In
this technique, the GNSS maintains the global position accuracy, whereas the IMU provides
altitude information, which is helpful for the orientation of the laser scanner. The drift is gradual
and can be measured or corrected using the initial trajectory to extract tree stems from the point
cloud whenever the trajectory drifts away from the real trajectory that is measured in a short period.
The initial trajectory could also have an error, so the trajectory loops enable the correction options

as trees are static objects (Kukko et al., 2017).

2.1.2 Data Acquisition Methods

In the TLS instrument scanning mechanism, the instrument scans stepwise in a horizontal and
vertical direction. The instrument measures vertically using a fast mirror rotation and slow
horizontal instrument movement. The instrument starts the laser beam in a vertical direction from
the scanner zenith and rotates to the lowest scanning position below the horizontal plane of the
instrument. Then, the instrument scans continuously to the scanner zenith on the other side. The
instrument scans at 180° in the horizontal plane on both sides simultaneously. The scanning

mechanism and the point cloud of the forest are shown in Figure 3 (Liang et al., 2016).
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Figure 3: The TLS data acquisition mechanism and point cloud data. Source: (Liang et al., 2016)

TLS has been used to acquire tree attributes and forest parameters. The data acquisition scheme is
reliable on the two basic principles, i.e., TOF and PS. The scheme encompasses the three types of
data-acquiring methods, i.e., single scan, multi-scan, and multi-single scan, shown in Figure 4. The
single scan approach is performed to place the scanner at the center of the plot and acquire the full
(360 x 310) view of the plot. In the multi-scan, the scanner is placed at the center and the different
corners of the plot to acquire the point cloud at every direction and, therefore, minimizes the
occlusion effect. The multi-single-scan approach relies on multiple single scans performed in all
plot directions. Acquiring a plot using a multi-scan or multi-single-scan approach leads to very

good data quality, but it is time-consuming. All the mentioned approaches are shown in Figure 4.

(@) (b) (©)
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Figure 4: Scanning scheme of the plots (a) single scan approach, (b) multiple scan approach, (c) multi-
single scan approach (Liang et al., 2016).

In MLS, the acquisition of 3D data is possibly done by employing several laser scanners mounted
on a mobile platform. The main goal of mobile laser scanning is to record the 3D data of object
surfaces. The expected requirements could be the high resolution and high accuracy of the
registered data, automatic registration of 3D data in a common coordinate system, and time-
efficient data acquisition in expanded target areas. The MLS instrument is on-board with IMU or
global positioning system (GPS). The IMU or GPS measures the exact position and orientation of
the mobile platform within the geodetic system world geodetic system (WGS84). There are two
main components of a differential GPS system, a stationary base station and a rover on the mobile
platform. It also has at least one laser scanner, providing a 2D line scan mode. The platform should
be rigid and shock-absorbing. It could have been mounted with an optional synchronized digital
photo camera. The scanning scheme varies depending on the instrument and the type of forest.
The most often scanning scheme used is the serpentine which is shown in Figure 5. The main
purpose is to reduce the occlusion of the trees and solve the time constraint due to the mobility of
the device (Hyyppa et al., 2020b).

Moreover, researchers have used different scanning schemes in previous studies to cover the entire
plot and each tree. The serpentine scanning approach by (S. Chen et al., 2019) lasted approximately
5 minutes, including the system initialization. There are alternative approaches have been tested
(Bauwens et al., 2016) have acquired an approach to scanning in a circular pattern and took 24 min
per plot, and Ryding et al. (2015) acquired a free-walking approach to form a closed loop by
starting and ending at the same point. It took them ~4m to complete the plot having a 15 m radius.
The average time required to scan plots of 30m, 15m, and 10m was also estimated (Del Perugia et

al., 2019). The description of scanning schemes is shown in Figure 5.
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Figure 5: Examples of scanning trajectories acquired by recent studies using HMLS. Source: (Balenovi¢
etal., 2021)

2.1.3 Pre-processing and data analysis for TLS

Currently, the hour of need is the automation of the 3D data; due to the large size and time-
consuming processing, new and robust algorithms are required to switch to automation in the 3D
world from manual dependencies. The need for automating algorithms to extract structural
information from an object is equally important, as is sensor development concerning forest
monitoring from different perspectives. Generally, the plot is extracted from the merged plot, a co-
registered point cloud of multiple scans in different directions. The co-registration is possible
because of the available tie-points in different directions. These are highly reflective objects which
are easy to differentiate. However, a new range of instruments, such as Leica BLK360 and RIEGL
VZi-series, does not require this manual practice of co-registration. They provide onboard

registration (Calders et al., 2020). Then, the individual tree is extracted from the merged plot, and
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noise filtration is done to avoid unwanted objects. Then, all the necessary post-processing is
performed accordingly. TLS has also shown good potential in the crown vertical profile model in
one study; the crown radius was measured and compared to the reference crown radius and found
to be R? of 0.93, which shows a great potential to extract information at the crown level using TLS
(F. Wang et al., 2023).

2.1.4 Pre-processing and data analysis approach for MLS

The pre-processing and data analysis for MLS is different from the TLS. The co-registration of
point clouds is done using a SLAM algorithm where alignment and match of pair scans are done.
This process is known as point cloud registration. The data drifting from the real trajectory is
maintained in this step using SLAM. Since it is difficult to apply any automated modeling without
further geometric improvement (Liang et al., 2012). The graph SLAM optimization method was
implemented in detail by (Kukko et al., 2017); the graph represents the features (tree stems) and
the trajectory. Furthermore, the positional accuracy of MLS was also tested under the forest
canopy, and it was found that the SLAM algorithm integrated with IMU showed a planer
positioning error of less than 15 cm and a vertical error of 10-30 cm. This concluded a need for a
better GNSS-based global positioning inside the forest (Muhojoki et al., 2024).

2.1.5 Post-processing

Post-processing includes measuring the tree parameters in the forest regions with the Lidar

technique, which is explained in the following sections:

2.1.5.1 DTM Generation

The DTM is the 3D representation of terrain elevation on the earth's surface. In the post-processing
of Lidar data, the first step is generating DTM, an important information source in forest
management planning and inventory. While measuring the forest parameters, the analysis also
includes finding the ground level necessary as the reference level in further computation and
analysis. DTM is considered the reference level. The generation of DTM is done successfully by
using Airborne Laser scanning (ALS), but TLS and MLS are still emerging in this field (Murino
& Puppo, 2015). The extraction of DTM in forestry involves several steps. Firstly, the separation

of ground and canopy is required before fine DTM extraction in forested terrain. Then, detection
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of the ground points and interpolation of total ground points from neighboring ground points is
done (Xi et al., 2016).

Additionally, different algorithms and methods are emerging using TLS to improve the generation
of DTM. The accuracy of DTM in dense forests is questionable, but (Guarnieri et al., 2012)
demonstrate the potential of TLS to provide DTM in dense vegetation using multi-target
capability. Recently, there has been a trend of the fusion of datasets and the collective use of
several devices for the improvisation of the results. So, in this context (Jurjevic et al., 2021) used
TLS, hand-held personal laser scanning (PLShh, GeoSLAM Horizon), and other devices for DTM
generation. The results proved to achieve < 15 cm of RMSE and a normalized median absolute
deviation of <10 cm. Since TLS acquired data with more precision and accuracy, its spatial
coverage is limited, which was improvised using MLS. In the other context, to improve the
accuracy of stem detection, a voxel-based method was used for the generation of DTM using
backpack MLS (Hyyppé et al., 2020). The study (Pirotti et al., 2013) showed that TLS has always
been used extensively for the generation of terrain and surface models, since the research in the
field of LiDAR started.

2.1.5.2 Automatic Tree reconstruction

The automatic tree reconstruction requires geometrical modeling. So, a single tree is modeled in
steps, a small piece of a tree trunk is reconstructed, and the rest is modeled in the direction of the
tree growth. Generally, tree modeling approaches include skeleton, circle, cylinder, or another
geometric primitive (Liang et al., 2016). In this approach, the 3D structure of the tree is exploited.
The software and algorithms are available to do the same. For example, Treeseg is used by (Burt
et al., 2019) with a different approach, and they considered the stem points close to the ground
instead of dividing it into clusters as a possible tree. Generic point cloud processing techniques
such as principal component analysis, region-based segmentation, Euclidean clustering, shape
fitting, and connectivity testing were followed to extract the tree. The segmented point cloud is
shown in Figure 6. These methods generally require manual intervention and quality control. The
more complex the ecosystem is, the more manual assistance will be required.

Moreover, the QSM algorithm can also be used to model the tree point cloud after extracting the
tree. However, QSM quality depends on the quality of point clouds. In a few cases, the QSM fails,

such as in buttressed trees in tropical forests (Disney et al., 2018), so instead of mesh-based models
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advised (Liski et al., 2014), QSM was also tested with the MLS, but the resolution was not
sufficient to generate QSM, the QSM generated with TLS and MLS point clouds are shown in
Figure 8. The estimation of DBH using cylinder fitting produced a 3.7 cm standard deviation for
a tree, shown in Figure 7 (Bienert et al., 2018).

An automatic open-source package is available to determine basic tree structural metrics such as
DBH, tree height, projected crown area, and diameter above buttresses. This tool works with
QSMs (Terryn et al., 2023). The combination of point cloud acquisition sources and QSMs has
shown great potential for understanding the forest structures; in this context, Tree QSM and
AdQSM methods were used to make 3D tree models (Gan et al., 2024).

The extraction parameters also include leaf segregation from the tree point cloud. The current
state-of-the-art for leaf-wood separation requires machine learning (ML) and other computer
vision approaches (Béland et al., 2014; Belton et al., 2013). Wang (2020) tried unsupervised ML
algorithms over supervised for the leaf wood separation or classification in a tree.

The skeletonizing method is also used to derive the tree structural metrics, which are mainly
focused on the branching architecture. The method mainly derives a graph comprising geometric
information of the vertices and edges from the point cloud (Bucksch & Lindenbergh, 2008). Other
software and algorithms are available to deal with the same, such as TreeQSM (Calders et al.,
2015) and Simpletree (Hackenberg et al., 2015) to extract tree structural metrics, tree volume, and
topology. Both techniques rely on fitting the cylinders. Additionally, CloudCompare (Girardeau-
Montaut, 2015) and 3D Forest (Trochta et al., 2017; Yurtseven et al., 2019) are also available and
are open-source software to extract tree structural parameters.

There are various other algorithms available for tree skeletonization, such as DBSCAN, a
clustering algorithm used to make tree skeletons using TLS data (You et al., 2023). To understand
the physiological function of trees, it is important to segregate leaves and wood. Also, to measure
accurate individual tree biomass. LWSNet was proposed in a study to segment leaves from the
trees and found an F1 score of 97.29% (Jiang et al., 2023).
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Figure 6: (a) and (c) show an above view of the forest point cloud, (b) and (d) show a side view of the tree
point cloud. Source: (Calders et al., 2015)
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Figure 7: (a) A comparison of DBH measurement using TLS and MLS and DBH manually, (b)
comparison of tree height using TLS and MLS. Source: (Bienert et al., 2018)
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Figure 8: (a) and (c) point cloud of the leaf off and leaf on for Carpinus betulus, Fagus sylvatica, and
QSM using TLS, respectively. (b) and (d) point cloud of the leaf off and leaf on for Carpinus betulus,
Fagus sylvatica, and QSM using MLS, respectively. Source: (Bienert et al., 2018)

2.1.5.3 Forest Metrics Retrieval

Forest metrics consist of measurement of DBH, tree height, stem volume, stem quality, stem curve,
stem detection, stem density, and biomass. Earlier, the focus of close-range device applications in
the forest was to measure tree attributes. The measurement of tree attributes is performed with the
TLS, MLS, and other related devices. However, tree species identification and change detection

over time are equally important these days.
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2.1.5.3.1 Stem detection, stem quality and density

The stem detection in a plot is an integral part of the plot measurements. Stem detection is highly
correlated with steam density and forest type. The higher the density of the forest, the more
uncertain the detection of the stem. So, it varies with the type of plot and its stem density. The type
of forest could be generally of 3 types: sparse, dense, and very dense. In the sparse forest, the tree
allocation probability could be 80 % with a stem density of 200-400 stems/ha. For the forest type
of very high density, it may be around 70 % with a stem density of 1000 stems/ha. With the support
of these tests, 28 circular plots with a radius of 20-25 m were performed. It has been concluded
that the average stem detection rate was 42% (Yao et al., 2011). Liang, Litkey, Hyypp4, et al.
(2012) have also done a test for 9 circular plots with a 10 m radius, and a 73 % stem detection rate
was reported, and using a 5 m radius, it has been improved to 85 %. This concluded that stem
detection accuracy is a function of range in the single scan. In another study, it has been proven
that the most accurate range for stem detection is 6 m (Astrup et al., 2014). The detection rate
decreased as we increased the distance of the scanner from the tree in a single scan (Olofsson et
al., 2014). Hence, the range is a function of the stem detection rate. In the multiscan mode, the
stem detection accuracy could be between 62.1% to 100%, provided the type of forest and scanning
setup needs to be considered (Maas et al., 2008). MLS also proved to be an efficient device for
stem detection. S. Xu et al. (2018) exhausted MLS data for stem detection in residential
environments and achieved completeness of 94.2 % and correctness of 95.7 %.

Similarly, stem quality is also an important tree attribute. It shows the health status of the tree. The
stem quality check can be regulated based on the status of fungal infection, i.e., presence of fungus,
rotten branches, etc. TLS proved to be a fundamental device for this purpose and has shown its
potential for the identification of stem form (taper, sweep, and lean) (Liang et al., 2013)and bark
characteristics (Stingle et al., 2014). It can also be used for the classification of wood defects. The
trees were also classified based on their timber quality into 3 classes, i.e., high-quality timber,
timber, and pulpwood, with an accuracy of 95 % to 83.6% (Kankare et al., 2014)

The measurement of tree stems is important not only for commercial purposes but also for
biological purposes. A comparative study was done using mobile and terrestrial laser scanners for
the modeling of tree stem taper. The results showed that MLS was not efficient for taper models
but worked well for sampling DBH and reconstruction of stem maps (Stovall, MacFarlane, et al.,
2023).
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2.1.5.3.2 DBH and Tree Height

DBH and tree height measurement is the most crucial part of tree attribute retrieval. There could
be any possibility of error being commissioned during the measurement. The most reliable
instrument needed to be deployed onboard to reduce this uncertainty. TLS and MLS proved to be
the most accurate devices for this purpose. A lot of studies have been done to support this
argument. In support of this, (Yao et al., 2011) have done the DBH estimation using TLS for 28
plots at tree level and mean plot level. The RMSE obtained for the estimation was 7.6 cm and 2.4
cm, respectively. Another study (Liang, Hyypp4, et al., 2012) was done at tree level and came up
with the RMSE of 1.3 cm, and the bias recorded was 0.2 cm. There is the same process to measure
DBH and stem curves. Stem curve detection is also a very significant part of forest inventory. In
support of this context, (Henning & Radtke, 2006) studied 9 pine trees and the spruce tree.
Different modes of scan play a very vital role in this context. The single scan TLS data has been
used, and observed that the RMSE of the stem curve measurement was 4.7 cm (Maas et al., 2008).
Regarding the tree height measurements, there is uncertainty with the accuracy because of the
improper visibility of the treetops in the TLS data. The tree heights were measured, and the RMSE
obtained was 0.75 m at the tree level (Moskal & Zheng, 2012) There is evidence for the accuracy
improvement in the sparse forest (Fleck et al., 2011; Huang et al., 2011), perhaps it is still
questionable in the dense forest because of the tall and dense canopy trees provide a hindrance to
measure the treetops of short trees in dense forest accurately. Considering the slant range effect,
there could still be some possibility for the argument. The reliable point spacing should be 1-2 cm
level at the treetops to capture the smallest branches at the top. With the multiscan approach, the
possibility can be enhanced to a remarkable point or with the integration of ALS data.

MLS is also used for the DBH measurement, and several studies have supported this new
technology. So, a comparative study has been done to perform the field reference data collection
using HMLS and backpack laser scanner in the boreal forests and compared the RMSE of MLS
and UAV of 2-8 % for DBH measurements (Hyyppa et al., 2020). Also, a segmentation study was
performed on an individual tree to extract biophysical information such as tree height, DBH, etc.,
using MLS and TLS (Zhong et al., 2017). An automatic approach was tried using algorithms
(cylinder, circle, ellipse fitting) and machine learning models (e.g., random forest classifier) for
the estimation of DBH and number of trees and found that 92.5% of 292 trunks were correctly

classified (Zeybek & Vatandaslar, 2021). The automatic processing algorithms save time and
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provide a better understanding of the analysis of point clouds. In the process of making automatic
processing tools, deep learning plays a very important role, Pointnet ++ is a deep learning semantic
algorithm that is used for the segmentation of the trees. A study was conducted using Pointnet++
segmentation and concluded that this algorithm works well with tree segmentation (Krisanski et
al., 2021).

2.1.5.3.3 The estimation of stem volume

The stem volume estimation is very significant in terms of forest biomass estimation. Several
studies focused on the automated and manual methods for stem volume estimation. The stem
detection and its accuracy are highly dependent on the scan mode. A study was performed
(Pueschel et al., 2013) to compare the multi-scan and single-scan approach; the multiscan approach
on 6 beech trees for volume estimation reported deviations ranged from 2% to 6%, whereas with
the single scan results observed deviation was 34 % to 44 %. Also, in a study (Astrup et al., 2014),
a single scan was performed for spruce, pine, and birch trees, and the reported bias was 68.0, 14.9,
and 24.1 dm?®. Stem volume was also estimated using allometric equations which are the function
of DBH and tree height.

The studies performed using TLS showed that stem volume estimation is as accurate as destructive
measurement methods and allometric volume models. TLS does not rely on any predictor variables
for volume estimation. Also, the estimation of height at the plot level is difficult using conventional
measuring devices. The DBH estimation model was developed using Airborne Laser Scanning
(ALS) and TLS data. Allometric models were combined, and the spectral attributes were derived
using Landsat and ALS data. The result was evaluated with four forest growth environments, and

different regression models were used to compare accuracy (Y. Wu et al., 2023).

Moreover, the irregularity of the stem is usually ignored while the estimation of stem volume, the
tetrahedron model was used with stem segments for the estimation of stem volume (Using et al.,
2023). The tree species-specific allometric equation modeling was done using a non-destructive
method using TLS, and the results concluded that TLS biomass estimates with RMSE ~ 19 % were
more precise than the nation scale allometry (RMSE ~39%) (Stovall, Vorster, et al., 2023).
Another study was conducted on a non-destructive approach for the estimation of individual tree
volume using TLS data. Comparison of QSM with 60 trees references allometric models, TLS-
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based geometric parameters of the stem, coarse wood, and fine branches was considered. The
results showed that the integration of crown parameters in allometric models can improve the
branch wood volume (Bornand et al., 2023). Considering the MLS data, the speed and accuracy
of the device make it more reliable for forest inventory. The device was tested for the estimation
of hardwood volume and concluded that SLAM based MLS systems are suitable for forest
inventory and support in-situ measurements of trees (Vandendaele et al., 2022). MLS devices are
also capable of tree detection in complex forest environments such as the Mediterranean mixed
forest region due to the variability in the tree allometries and spacing and the presence of natural

regeneration (Tupinamba-Simdes et al., 2023).

2.1.5.3.4 Biomass estimation

Biomass is a function of DBH, tree height, and tree species. Allometric models are extensively
used for the estimation of biomass and completely rely on tree structure parameters. Most of the
allometric models are species-specific. However there is a question to establish an automated
method to estimate biomass that is completely based on the structure of the tree and not the species.
TLS has been extensively used to automate this process. The research continuously approaches
sharpening the aboveground biomass models. In this context, (Yu et al., 2013) developed a model
to predict the stem biomass and compared it with the field-estimated values. The RMSE obtained
for the prediction model using TLS was 12.5 %, whereas the RMSE obtained using the field-based
biomass equation was 17.9 %. This study also says that the branch biomass can be evaluated in
the same manner if the branch point cloud is dense.

Additionally, (Kankare et al., 2013) showed results for the branch biomass estimation using
metrics derived from TLS point cloud data and obtained overall accuracy was 12.9 % and 11.9 %.
Also, Hauglin et al. (2013) confirmed this finding. To further increase the accuracy of biomass
estimation, integration of datasets and devices is required. So, another study is performed, which
is focused on the integration of the TLS and ALS-derived biomass components to improve the
accuracy of the biomass in the ALS-based branch biomass model. The outcome reveals a 3 %
increase in the accuracy of the crown biomass. So, TLS can be used to assess tree biomass with
high automation and increased accuracy . Consequently, a new method has been proposed to
estimate tree attributes which are known as the concave hull by slices method. This is proven to
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obtain better accuracy than the existing methods, especially the backpack lidar scanner proved its
flexibility to collect data in a definite time (Xu et al., 2021)

2.1.5.3.5 Change detection

Change detection of the forest structure is a major concern to researchers nowadays, considering
the fluctuation in the environment. The losses in terms of insect attacks, degradation due to human
intervention, etc., also leave a concern and quest for forest monitoring. The use of TLS data in
change detection has not been reported in detail, but a study by (Liang, Hyypp4, et al., 2012) did
a single scan of pine-dominated plots for a consecutive 3 years gap and estimated biomass using a
national-level allometric equation with a function of DBH. Another study has also reported the
change detection using the automated method over a time of forest structure and has accounted for
90 % of the tree stem changes in 5 plots using single scan TLS data. The bias for the estimated
DBH was also calculated and found to be 0.2 cm, and the RMSE calculated was 1.3 cm (Srinivasan
etal., 2014).

The total tree volume increment over the year can be assessed using TLS, and this has been proved
in a study. The mean increase in the total tree volume was estimated and compared. They
concluded that the difference in the average tree volume increment with the conventional
measurement was 6.0 % (4.8 m® /ha) when only trees captured by the scanner were compared; it
increased to 8.1% (7.0 m® /ha) when all the trees in the plot were considered (Mengesha et al.,
2015). The multi-temporal TLS data is quite helpful for the study, which focuses on the change in
forest productivity and structure. However, many more outcomes are still needed to support this
hypothesis.

MLS is still in the pipeline to detect changes in the forest. Change detection requires static and
continuous observation, and MLS is not static, and observations could be changed after a certain

period. This is still on the list of challenges faced by MLS in forest inventory.

2.1.5.3.6 Tree Species Classification

Tree species classification is nowadays a vital topic among researchers, especially the hassle in the
classification of tree species in tropical forests. It is important to better understand the functional
behavior of the forest ecosystem. Initially, an expert was required to identify the tree species, which

limited the field surveys. These days, researchers are trying and testing an automatic approach for

23



this purpose. In this context, the pointNet++ model was used for tree species classification using
a backpack laser scanner. The results showed that the tree height feature is not important for point

cloud deep learning methods for tree species classification (Liu et al., 2022).

2.2 Role of active remote sensing methods in the mapping of forest structural indicators

The application of different remote sensing methods, such as close-range, satellite, and airborne,
in forestry is depicted in Figure 9. The advancement of different remote sensing methods at various
scales, from terrestrial to space-borne, introduces the possibility of observing forests from the stand
to the global level. The global impact of ecology and biodiversity can be made possible by
combining the large footprint space-borne GEDI missions (Marselis et al., 2018). In-situ
measurement techniques are costly and labor intensive, and bias is more likely to be introduced in
manual measurements. These biases propagate with the fusion or integration of reference data to
other remote sensing data, increasing the error and bias level in the outcome. Therefore, close-
range technology is more reliable because it can reach the level of detail in the forest, which is
difficult to perform manually (Liang et al., 2022). Furthermore, the role of satellite remote sensing
and the possibility of integrating different remote sensing technologies to get a fine level of
observation is discussed here, with particular emphasis on SAR data.

SAR is an active remote sensing technology. It illuminates the objects on the ground by sending
microwave signals from the sensor platform to the ground and receives backscattered signals from
the ground object. It can also operate in any weather conditions. The potential role of SAR in
assessing forest AGB has been proven in many previous studies—however, a detailed analysis of
the possibilities needed to be considered. Various SAR datasets with X, C, P, and L band
polarizations have been used for mapping AGB with different methodological approaches over the
years (Cartus et al., 2022; Choi et al., 2021; Godinho Cassol et al., 2021; Ji et al., 2020; Karila et
al., 2019; Khati & Singh, 2022; Narvaes et al., 2023; Santoro et al., 2019; Vatandaslar & Abdikan,
2022; T. Zhang et al., 2023). SAR datasets such as ALOS PALSAR L-band have been analyzed
and concluded to achieve the possible accuracy for estimating forest biophysical parameters such
as forest height; hence, it was important to investigate the potential and correlation of different
polarization of SAR datasets with the forest height. This approach was then extended with the
fusion or integration of SAR datasets with other sensors, such as optical and LIDAR. While

measuring the forest structure, the forest canopy density is highly affecting the sensitivity of the
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L-band to the mean height of the forest, which was reported using TanDEM-X InSAR data that

the vegetation density change is more correlated with the height change of forested area (de Jesus

& Kuplich, 2020; Sinha et al., 2020; Tamiminia et al., 2022; Velasco Pereira et al., 2023)

The primary purpose was to investigate the variability in the accuracy while addressing AGB with

or without the fusion of SAR to other sensors and come up with methodological advancement that

can be used for the AGB estimation. The fusion of SAR with other sensors is further extended,

incorporating LIiDAR at different platforms (terrestrial, aerial, and space-borne), which enhances

the performance of already established AGB models and opens the possibility of AGB estimation

at a global scale. In this context, a study claims the increase in correlation (R?) value from 0.64 to
0.74, whereas RMSE obtained was 39.3 Mg/ha (Mohite et al., 2024; Solberg et al., 2024; Z. Wu

etal., 2024).

Satellite Remote Sensing
Region/Country/Continental/
Global Scale

Airborne Remote Sensing
Region/Country Scale

Close-Range Remote Sensing
Plot/Stand Scale

Terrestrial Systems I

¢' s
’ .
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)' .

Aerial Systems

Laser Scanning
Multispectral Imagery
Hyperspectral Imagery
Radar

Mobile Mapping
System

Global Navigation
Satellite System

Image-Based Point
Clouds/Imagery

Laser Scanning

Figure 9: An overview of different remote sensing method application scenarios in forestry (Liang et al.,

2022).
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3. Material and Methods

In the following subchapters, we will establish the basis of the research experiments that were done
by the PhD candidate. The experiments were done at three different locations in India, Slovakia,
and Czechia. The details of the study sites and statistical analysis will be explained. However, the
PhD candidate also did research work that was not dependent on a study size. These focused on
reviews of processing solutions for forest point clouds and a review of LIDAR fusion. More details
on these are within chapters 4.2.2 and 4.4.2

3.1 Study areas and materials

This dissertation aims at methodological advances, and it is not situated in one region. The field
data collection covers a variety of forest stand structures.. The datasets used in the study were

acquired at three places.

3.1.1 Barkot Forest (India)

The first study area selected from India was the Barkot Forest Range of the Dehradun Forest
division. It lies at a latitude of 30°03°52” to 30°10°43” N and a longitude of 78°09°49” to
78°17°09” E. The total forest area is 84.96 km?. We established 13 plots. The forest type is tropical,
moist, and deciduous. It is dominated by Shorea robusta (Sal), with co-associated tree species such
as Mallotus philippensis (Rohini). The study area is shown in Figure 10. The study is explained in

detail in papers 1l and IV.
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Figure 10: Study area 1

The field data was collected using a measuring tape, rangefinder, and handheld GPS. A total of 13

plots of 31.5 x 31.5 m area were selected. The field sampling was done at the LiDAR footprint

with a stratified random sampling method. The tree parameters considered were tree height and

DBH. DBH was calculated by measuring the circumference at breast height (CBH). The point
cloud of the plots was acquired using TLS (Riegl VZ-400), and ALOS PALSAR L-band data was
used for the spatial distribution of above-ground biomass (AGB). The ABG was estimated using

the stem volume, specific wood gravity, and biomass expansion factor. The details of the datasets

are mentioned in Table 2.
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Table 2: Specification of the datasets used in the paper and 11l and IV

ALOS PALSAR Terrestrial Laser Scanner (TLS)

Product ALOS2-HBQR1_1_A-ORBIT_ALOS2157270590- | Product Riegl VZ-400

170421
Product Type HBQR 1.1 Range Up to 600m
Mission ALOS2 Minimum Range 15m
Wavelength 23.6 cm Measurement rate 122000 pts/sec
Frequency 1.27 Hz
Orbit 15727 Field of View 100x360
Polarization HH, HV, VH, VV Accuracy 5 mm
SampleType Complex Precision 3mm
Pass Ascending Laser Type Class 1

3.1.2 Kremnica Mountains (Slovakia)

Laser Wavelength

NearlInfrared (1553 nm)

Laser Beam Divergence

0.35 m rad

Weight

Approx. 9.6 kg

The second study location was in Kremnica Mountains, Slovakia. This study area is explained in

papers V and V1. The dominant tree species were European beech (Fagus sylvatica) with a mixture

of European oak (Quercus robur), Silver fir (Abies alba), Norway spruce (Picea abies) and

European hornbeam (Carpinus betulus). The study area is depicted in Figure 11.

The field data was collected using Topcon GPT3000M, and the tree's circumference was measured

by measuring tape. We established eight research plots with varying tree densities of 25 x 25 m.

The details of the field data inventory are explained in paper I1. The point cloud was acquired using

TLS (Faro Focus s70), a hand-held personal laser scanner (PLSnh) (GeoSLAM Horizon Scanner),

an iPad Pro 2020 tablet, and a multi-camera prototype. Data acquisition by mobile

photogrammetry was done by the multi camera prototype (MultiCam). Sony a6300 cameras with

28




Sony 10-18 mm F4 OSS lenses were used. Further details are available in the paper Il. The other

devices used are described in detail in Table 3.
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Romania
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Figure 11: Study Area 2

Table 3: Specification of the devices used in the paper Il

Specifications

TLS (Faro Focus s70)

PLShh (GeoSLAM Horizon

iPad Pro 2020 tablet

Scanner)
Range 0.5-70m 100 m 5m
Accuracy +2 mm on 10 m or £3.5 mm on 1-3cm
25m
Resolution (point spacing) 6.14 mm/10 m

Scan time

2 min and 24 sec

Laser Type

Laser Class 1

Laser Class 1

Laser Wavelength

1550nm

903 nm
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Measurement rate

614m upto 500,000 pts/sec

300,000 pts/sec

weight

4.2 kg

1.3 kg

495 gm

3.1.3 Czech University of Life Sciences (Czechia)

In the third research location, we scanned nearby trees on the campus of the Czech University of

Life Sciences, Prague. We selected six tree species, and for each of them, 20 individual trees were

selected. The following tree species were selected: Pinus sylvestris (Pine), Fagus sylvatica

(Beech), Quercus robur (Oak), Carpinus betulus (Hornbeam), Abies alba (Fir), and Picea abies

(Spruce). The study area used for paper VII. The tree species' bark image was captured using an

iPhone 12 Pro; the range is 5 m and depicted in figure 12. Using a measuring tape, the DBH was

estimated at 1.3 m above the ground for evaluation of the estimated DBH using three software

tools. In total, 120 trees were selected for DBH estimation. The mean DBH varies between 24.7

and 42.4 cm, and the standard deviation varies between 6.08 and 10.27, as shown in Table 4. The

detailed methodology considered in the research is explained in the paper VI.

Table 4: Statistical representation of BDH for each tree species

Tree species Average_DBH (cm) Range of DBH (cm) Standard deviation
Pine 42.4 30.5-50.9 6.08
Oak 38.7 25.4 - 60.8 10.27
Beech 30.8 18.1-46.1 7.37
Hornbeam 24.7 14 -445 6.67
Spruce 35 17.1-515 8.35
Fir 42.1 32.8-66.2 8.13
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(d) (€) (f)

Figure 12: Bark images captured with iPhone 12 Pro of (a) Beech, (b) Fir, (c) Hornbeam, (d) Oak, (e)
Pine, (f) Spruce

3.2 Statistical analysis

The diameter was estimated using all three different methods and was evaluated using two
different statistical parameters: Root Mean Squared Error (RMSE) and relative Root Mean
Squared Error (rRMSE). These statistical parameters were used to compare different methods for

the estimation of DBH, as shown in equations 1 and 2.

RMSE = |-XL Vi(Y; - ¥)2 (Eq. 1)
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St Hii-1)?

ST X 100 (Eq. 2)

Where Y; is the actual observation time series, Y is the estimated time series, and N is the total
number of observations.

The root mean square error of cross-validation (RMSE .,,) was calculated to evaluate the predictive
accuracy of the regression models (random forest (RF) and artificial neural network (ANN)). The

mathematical expression is mentioned in equation 3.

RMSE,, =+ 3k i X (v - 9,)° (Eq.3)
Where k is the number of folds, n; is the number of data points in the i-th fold, y; and is the true
value for the j-th data point in the i-th fold. y; is the predicted value for the j-th data point in the i-
th fold.

A paired t-test was performed to check the statistical significance of ForestScanner and RANSAC
for the measurement of DBH. To identify the significance of using different DBH measurement

methods. This test was performed in R software. The formula for two-way ANOVA is mentioned

in Equation 4. This test was performed in R software.

MST

Where F is the Anova coefficient, MST is the mean sum of squares due to treatment, and MSE is

F =

the mean sum of squares due to error. Then, the Tukey post-hoc test was performed using the

formula mentioned in Equation 5.

Tqu/%? (Eq.5)

Where T is the HSD statistics q is critical value for the chosen significance level (often 0.05).

MSE is the mean sum of squares due to error and n is the number of observations in each group.

4. Results

The results of the dissertation thesis are presented in the form of seven original publications. The
publications are elaborated briefly in the subsections of this chapter. Subsection 4.1, entitled
Revolutionary Devices for Measuring DBH, which comprises papers Il and VI. This subsection is
focused on the potential use of the application of iPhone/iPad devices in DBH measurement and

its comparison with the other available devices such as TLS, MLS, and a multi-camera prototype).
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This subsection focused on the objectives 2, 3, and 4. The sub-section 4.2 describes the
benchmarking of algorithms for point cloud processing; this includes papers Il and VII. This
elaborates an approach for tree volume estimation using RHT and RANSAC algorithms and
further an intense review of the point cloud processing software solutions. This subsection focused
on objectives 3 and 4. The sub-section 4.3 comprises paper V and describes the methodology for
the detection of canopy top points using different combinations of TLS scan positions and reveals
the status of occlusion at the canopy top. The sub-section 4.4 is focused on LiDAR data fusion and
future perspectives in forestry and encompasses papers | and IV. This subsection includes a
thorough review of the LiIDAR data fusion with other datasets and is followed by methodology for
the estimation of AGB using the integration of TLS and ALOS PALSAR L-band datasets. This
subsection focused on objective 1.

4.1 Revolutionary devices (iPhone 12 Pro and iPad Pro) for measuring DBH
4.1.1 Tree parameter extraction with iPhone point cloud data using multiple algorithms

published as: This paper is accepted in the International Journal of Remote Sensing and currently

under publishing process.

Extended summary:

In this paper, the DBH was estimated using iPhone 12 pro point cloud using three software tools
(rTLS- R package, RANSAC -CloudCompare plugin, ForestScanner). In this context, the scanning
of 123 trees comprising six species: pine, oak, beech, hornbeam, spruce, and fir was done. The
scanning of each tree was done with the iPhone 12 Pro. This smartphone has a time-of-flight sensor
with a maximum range of 5 m. This sensor is incorporated in newer versions of iPhones within
Pro and Pro Max and is also a part of the iPad Pro (2021 and newer). The ForestScanner application
(Mapry) was used to collect the point clouds of trees. ForestScanner can estimate DBH directly in
the application in real-time. It is based on a circle-fitting algorithm using a cross-section at a

particular height. The detailed conceptual framework is shown in Figure 13.
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Figure 13: Conceptual workflow

The three software tools were compared and analyzed. In the first software tool, the iPhone 12

Pro-based application ForestScanner was used to estimate DBH, and statistical analysis was done
to evaluate the DBH values obtained with the field-estimated DBH values. The RMSE value
recorded for this method was 2.58 cm, and the rRMSE obtained 7.25 %. The R? value obtained for
this method was 0.976. The other method used was the CloudCompare-based plugin- RANSAC.
RMSE obtained for this tool was 2.19 cm, and the rRMSE obtained was 6.25 %. The R? value
obtained was 0.976. This strongly correlates with the observed (field-estimated DBH) and
predicted (RANSAC DBH, ForestScanner DBH) value of DBH. The scatter plot is shown in

Figure 14.
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Figure 14: Scatter plots of field-estimated DBH with (a) ForestScanner (Lidar DBH), (b) RANSAC DBH
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Significance of DBH estimation for tree species

A comparative analysis of the ForestScanner and RANSAC algorithms was done to test the
significance of the DBH estimation for different tree species. The statistical comparison was done
using RMSE and rRMSE % for each tree species. The RMSE varies from 2.02 to 3.77 cm, whereas
the rRMSE % varies within the range of 4.67 to 9.2 % for ForestScanner. The RMSE observed for
RANSAC is in the range of 1.3 to 2.85 cm. The rRMSE % is observed to range from 5.15 to 7.82
%. The detailed information is mentioned in Table 5, and the graphical representation is depicted

in Figure 15. The biases and outliers are shown in Figure 16.
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Figure 15: Comparison of the performance of iPhone 12 pro in estimating DBH among 6 tree species
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Table 5: Comparing the statistical significance between ForestScanner and RANSAC in the context of

tree species.

Tree_species ForestScanner ForestScanner RANSAC RANSAC
RMSE (cm) rRMSE%

RMSE (cm) rRMSE%
Pine 2.02 4.76 2.18 5.15
Beech 2.83 9.2 24 7.82
Oak 2.08 5.38 2.04 5.27
Hornbeam 1.22 4.95 1.3 5.28
Fir 3.77 8.94 2.85 6.77
Spruce 2.72 7.79 2 5.74

The Tukey post-hoc test was performed for the multiple comparisons of means for a two-way

ANOVA with a confidence level of 95%. It shows the difference in means, the associated

confidence intervals, and the p-value for different combinations of groups (Algorithm, species,

and DBH). Inferences confirmed by ANOVA and Tukey post-hoc tests show that species

significantly influence DBH. A more detailed analysis and description of the results is mentioned

in the paper V1.
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4.1.2 Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning
alternatives.
published as: Mokro$, M., Mikita, T., Singh, A., Tomastik, J., Chuda, J., Wezyk, P., ... & Liang,
X. (2021). Novel low-cost mobile mapping systems for forest inventories as terrestrial laser
scanning alternatives. International Journal of Applied Earth Observation and Geoinformation,
104, 102512.

Extended summary:

A comparative analysis was done using low-cost devices (mobile laser scanning, personal laser
scanning (hand-held or in a backpack), photogrammetry, or even smart devices with Time-of-
Flight sensors) and TLS and conceptualized in paper Il. The comparison was done to assess the
performance of the capability of low-cost technologies to generate point clouds and their accuracy

of tree detection and DBH estimation. A multi-camera prototype (MultiCam) was also tested.

The MultiCam prototype is capable of capturing images from four cameras simultaneously and
with exact synchronization during mobile data acquisition. The focus was on individual tree
detection and DBH estimation by cylinder-based algorithm across eight test sites with dimensions
25 x 25m. Altogether, 301 trees were located on test sites, and 268 were considered for the analysis

and comparisons (DBH > 7 cm).

TLS provided the most accurate data. Across all test sites, we achieved the highest accuracy
(rRMSE ranged from 3.7% to 6.4%) and tree detection rate (90.6-100%). When we considered
only trees with DBH higher than 20 cm, the tree detection rate was 100% across all test sites
(altogether 159 trees). When the threshold of trees considered in the evaluation was changed to 10
cm and then to 20 cm (from 7 cm), the accuracy (rRMSE) and tree detection rate increased for all

devices significantly.
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Figure 17: Tree detection rate of all devices used across eight plots

Results achieved (DBH > 7 cm) by iPad Pro were closest to TLS results. The rRMSE ranged across
test sites from 8.6% to 12.9% and tree detection from 64.5% to 87.5%. PLSn, and MultiCam, the
rRMSE ranged from 13.1% to 24.9% and 14% to 38.2%, respectively. The tree detection rate
ranged from 55.6% to 75% and 57.1% to 71.9%, respectively. The graphical representation is
shown in Figure 17. The time needed to conduct data collection on a test site was fastest using
MultiCam (approx. 8 min) and slowest using TLS (approx. 40 min). The DBH estimated from
TLS, iPad and MultiCam underestimated the conventional DBH measurements. For TLS and iPad,
the underestimation was statistically significant. In the case of PLSn, the DBH is significantly

overestimated, as shown in Figure 18.
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Figure 18: Boxplots of absolute errors (cm), where boxplots correspond to the 25th and 75th percentiles
and whiskers are 1.5 * interquartile range. The line inside the box plots corresponds to the median. Dots

represent outliers.
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Results showed that DBH estimation from TLS point clouds is achieving the most accurate results
with the highest tree detection rate across all test sites and overall, when compared to the other
three mobile devices, as shown in Figure 19.
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Figure 19: Scatter plot visualizing tree detection rate and rRMSE grouped by used devices. Each device

60

has eight filled points (representing test sites) with one data ellipse and one crossed circle representing an

overall tree detection rate and rRMSE of trees with DBH larger than 7 cm.

Conclusion:

The experimental analysis using iPhone 12 pro and iPad Pro was done in subsections 4.1.1 and
4.1.2. iPhone 12 pro and iPad Pro showed potential for the estimation of DBH and detection of
trees in the forest. In subsection 4.1.1, The DBH estimated using ForestScanner and RANSAC
showed same correlation value with the referenced DBH values. This shows that the ForestScanner
application can be used for the estimation of DBH. Moreover, a significant relation was found
between DBH, and tree species and inferences were confirmed by ANOVA and Tukey post-hoc
tests. This shows that tree species significantly influence DBH. In subsection 4.1.2, iPad was tested
against other devices for estimation of tree detection rate and DBH. And results showed that the
TLS point clouds achieved most accurate results with the highest tree detection rate and DBH

estimation accuracy, whereas iPad Pro showed the closet results accuracy to TLS.
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Tree Parameter Estimation with iPhone Point Cloud Data Using Multiple Algorithms
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Abstract: LiDAR technology introduced the possibility of indirectly estimating various tree parameters. In
2020, Apple incorporated LiDAR sensors into their iPhone 12 Pro. This brings an opportunity to make data
collection and plot scanning incredibly convenient. The main aim is to search for a tool and software to estimate
the most accurate Diameter at BreastHeight(DBH) for individual trees. Therefore, this study focuses on using an
iPhone 12 Pro for data collection of individual trees. The performance of three software tools (ForestScanner,
rTLS, RANSAC) for the estimation of DBH with field-estimated DBH was compared. The investigation of the
significance of the estimation of DBH for each tree species was performed using the three algorithms. In this
context, the scanning of 123 trees comprising six species: pine, oak, beech, hornbeam, spruce, and fir was done.
DBH was estimated of the scanned tree point cloud using a built-in algorithm of ForestScanner application in the
iPhone 12 Pro, RANSAC (CloudCompare plugin), and rTLS (an R-based package). In this study, ForestScanner
showed the best results. Therefore, ForestScanner can be used as a reliable tool for measuring DBH. Inferences
confirmed by ANOVA and Tukey post-hoc tests show that species significantly influence DBH. Accurate DBH
estimation is crucial, and using lightweight devices like the iPhone can revolutionize the forestinventory sector
in terms of the estimation of DBH.

Keywords: DBH (Diameter at Breast Height), RANSAC (Random Sample Consensus),rTLS, tree parameters,
iPhone.

1. Introduction

Conventional forest inventory measurements are costly, labor-intensive, and time-consuming. This
motivated the forest researchers to focus on the applications of Close-Range Sensing as an alternative
mode of forest inventory measurements. In recent years, with the modem developments and
miniaturization of lidar sensors, they have become very compactly available. The latest iPhones and
iPads have been integrated with LIDAR sensors. The range and accuracy of these LIDAR sensors are
not comparable with high-end LIDAR systems; however, they are user-friendly and cost-effective ways
of estimation and 3D data acquisition when the objectsin focus are on shorterrange (Liang et al., 2022).

In contrast, photogrammetry uses 2D images to create 3D point clouds using the structure from the
motion algorithm, which is a low-cost alternative to costly LiDAR systems to produce 3D models.
However, the post-processing is very demanding, especially for computational power. Also, therate of
failing to process the images to sufficient point cloud or model is relatively high in practice. Another
alternative has been available recently using Time of Flight sensors within smartphones. Apple’s
iPhones (Pro and Pro Max) and iPads Pro have integrated ToF sensors since 2021. It is an opportunity
to create 3D models using just a smartphone. The point cloud and model are ready right away onsite. It
saves much time and is also great for quality checks directly in the field. Photogrammetry, on the other
hand, requires images to be transferred from on-site to the lab and processed in high-end computers.
This ease of 3D model generation has also helped in geometric research and reproduction of cultural
heritage sites (Vlachos et al., 2022). The relative accuracy of the iPhone in 3D map generation by
estimating its relative orientation, position, and navigation around the study area also needs to be studied
thoroughly (Tamimi, 2022). iPhone 12 Pro LiDAR was also tested for its efficiency in measuring
different roughness variations over 24 surface profiles. The results were also compared with
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photogrammetry-based Structure from Motion (SFM), and a significant correlation (R?) of 0.70 was
observed (Alijani et al., 2022).

The point cloud quality obtained is also important to test through these recently developed Lidar-
integrated smartphones. The test used three smartphones (Huawei P30 Pro, iPhone 12 Pro, and iPAD
2021 Pro) based on planarity, surface variation, and omnivariance. Some issues were observed in the
point cloud generated through these devices, such as loss of planarity, surface splitting, and drift
problems with the Inertial Navigation System (INS) (Costantino et al., 2022).

Previous studies have proven that the point cloud derived from SfM is of little less quality than the
high precision TLS. However, due toits cost efficiency, SfM is still deployed in many research studies.
Recently developed iPhone LiDAR played a crucial role as an intermediate point cloud generation
technology source. This also showed promising results in the rock mass characterization through
geometrical analysis of the point cloud generated through iPhone-based LiDAR compared with TLS
and SfM (Riquelme et al., 2021). Rapid scanningis essential when acquiring data at unstable surfaces
of slopes and tunnels (Torkan et al., 2023).

iPhone 12 Pro’s effectiveness was evaluated based on its geolocation accuracy, Inertial
Measurement Unit (IMU), magnetometer for data collection orientation, and depth perception with its
LiDAR sensor. The results demonstrated that theiPhone's geolocation is acceptable for geological and
other field applications (Tavani et al., 2022). The reduction in the sensor size has allowed 3D to
document the cultural heritage sites. Aslanli fountain in Ickale of the Centre Sur district of Diyarbakir
province was 3D documented using iPhone 13 Pro photographs and LIDAR data (Aslan & Polat, 2022).
Three i0S-based point cloud-generating apps were tested with iPad Pro in the Cultural Heritage
application. The apps were compared in different conditions because of overall accuracy, acquisition
pattern, and operational limitations (Teppati Losé et al., 2022). An experiment was carried out to
accurately monitor the snow depth variation over 75 days using iPhone LiDAR. Daily changes in the
snow depth were compared with the snow ruler measurements, and a high correlation of 0.99 was
observed with an RMSE of approximately 6mm. The authors also proposed that a mobile application
can be developed to monitor the snow depth before, during, and after the snowfall. This can be handy
and easy for all users (King et al., 2022) The research was conducted to evaluate the application of the
iPhone 12 pro attachedto a DJI Phantom 4 quadcopter for snow depth estimation. The iPhone 12 pro
was attached to the UAV with a special 3D-printed mount for this specific purpose. The implementation
was done on 3 study sites, and it was observed that the results were quiterecommendable (King et al.,
2023). Similarly, a study was conducted to test the iPhone 12 Pro LiDAR 3D modeling application and
analysis of a coastal cliff in Denmark (Luetzenburg et al., 2021).

Moreover, researchers have already used Terrestrial Laser Scanners (TLS) in forest plots for
accurate, detailed measurements and conveyed that TLS is very efficient in forest plot measurements
(Kushwahaet al., 2022; A Singh et al., 2022; Singh et al., 2022). Tree parameters are crucial to calculate
the Above Ground Biomass (AGB) and health of the tree growth (Singh et al., 2023). DBH is a vital
forest inventory parameter with a very high correlation with tree height, volume, and biomass. Thus,
the effective calculation of DBH is one of the main factors in forest measurements. Individual tree stem
modeling is required to get themost accurate DBH. Tree stem modeling was done using an automated
algorithm with a cylinder fit approach and found an accuracy better than 4 cm (Tarsha Kurdi et al.,
2024). Modeling trees using point clouds could be difficult, so an algorithm was proposed to simulate
tree models by rotating the surfaces. The test was evaluated with multiple trees with an overall accuracy
between 0.3 to 0.89 m (Kurdi et al., 2024). The Lidar sensor generates the point cloud and estimates the
depth using themotion sensors, camera exposure, and feature extractions. The maximum range of data
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acquisition is limited to 5 m. So, the operators must move closely around the tree stemsto get sufficient
points for DBH estimation. Multiple applications have been designed and made available on the online
platform that estimates depth using these LIDAR sensors. A researcher has evaluated the use of iPad
Pro 2020 to estimatethe DBH of 101 urban trees. They compared three different scanning resolutions
with two different confidence levels and two scanning modes (Wang et al., 2021). The availability and
applicability of low-cost solutions such as the iPhone 12 Pro in the forest environment must be explored
more. Evaluating the accuracy and efficiency of the iPhone 12 Pro for DBH estimation can be an easy
and low-cost solution for forest inventory purposes. Also, it is important to see the significance of DBH
measurement on individual tree species. So, in this research, 123 trees of different species were scanned
using an iPhone 12 Pro. The stem regions were effectively acquired to estimate DBH. The DBH was
estimated and compared through three different algorithms to evaluate the effective method for DBH
estimation. An experiment was also done to find the significant relevance of tree species with DBH
estimation using these three different algorithms.

2. Material and methods
2.1 Test Sites and Conventional in-situ measurements

The trees were collected within forest stands near the Czech University of Life Sciences,
Prague, in the Czech Republic. In total, six tree species, and for each of them, 20 individual trees
were selected. The following tree species were selected: Pinus sylvestris (Pine), Fagus sylvatica
(Beech), Quercus robur (0Oak), Carpinus betulus (Hornbeam), Abies alba (Fir), and Picea abies
(Spruce). The tree species' bark image was captured using an iPhone 12 Pro and depicted in Figure
1 to show the different textures of the bark of each tree species. Using a measuring tape, the DBH
was estimated at 1.3 m above the ground for evaluation of the estimated DBH using three software
tools. In total, 120 trees were selected for DBH estimation. The mean DBH varies between 24.7 to
42.4 cm, and the standard deviation varies between 6.08 and 10.27 (Table 1).

Table 1: Statistical representation of DBH for each tree species

Tree species | Average DBH (cm) | Range of DBH (cm) Standard deviation
Pine 424 30.5-50.9 6.08
Oak 387 25.4-60.8 10.27
Beech 30.8 18.1-46.1 7.37
Hornbeam 24.7 14 -445 6.67
Spruce 35 17.1-51.5 8.35
Fir 42.1 32.8-66.2 8.13
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Figure 1: Bark images captured with iPhone 12 Pro of (a) Beech, (b) Fir, (c) Hommbeam, (d) Oak, (e) Pine,
(f) Spruce

2.2 Data acquisition and pre-processing

The scanning of each tree with the iPhone 12 Pro was done. This smartphone has a time-
of-flight sensor with a maximum range of 5 m. This sensor is incorporated in newer versions of
iPhones within Pro and Pro Max and is also a part of the iPad Pro (2021 and newer). The
ForestScanner application (Mapry) was used to collect the point clouds of trees. ForestScanner can
estimate DBH directly in the application in real time. It is based on a circle-fitting algorithm using
a cross-section at a particular height (Tatsumi et al., 2023). This application can collect the point
clouds but also estimate the DBH right away in the application.

The data collection was done with the depicted trajectory (Figure 2). Each tree was
acquired individually to avoid the unnecessary surrounding information. Forest Scanner scans the
tree surfaces moving around the tree with the device. The real-time scanned surface recognition
was done as it provides the point cloud and 3D triangle meshes on the phone screen in real-time.
The point clouds were colorized with RGB information collected using the device's camera.
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The relative coordinates were tracked from the starting point as it has IMU (Inertial
Measurement Unit). The GNSS receiver built into the iPhone determined the starting point's
absolute position. The real-time scanning and measurement of the tree stem were done, and the
information was stored in the .csv file. This information was used for further statistical analysis.
The scanned trees are shown in Figure 3.

@ Tree position
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{d) Hornbeam (e) Fir (f) Spruce

Figure 3: Point cloud of individual tree using iPhone 12 pro of (a) Pine, (b) Beech, (c) oak,
(d) Hornbeam, (e) Fir, (f) Spruce (https:/sketchfab.com/arunima92/models)
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2.3 Post-Processing of Point Cloud

The DBH assessment was conducted using three software tools. The first was done using
theForestScanner application for iPhone 12 Pro directly on the iPhone in the field. For the Second,
1TLS (R-based library) and the RANSAC algorithms (a plugin within CloudCompare) (Schnabel et
al., 2007) was used as a third tool. For each approach, point clouds captured by the ForestScanner
app were utilized, so the estimation by RANSAC and rTLS were based on the same data.

The point cloud obtained with the iPhone 12 pro containsnoise. The point cloud was used
without noise filtering in all three software tools to compare the potential of DBH estimation.

The iPhone 12 Pro-based ForestScanner application version 1.0.3 was used to estimate
DBH. Thisapplication obtains single tree information and savesit to .csv file format. ForestScanner
estimate DBH in real time using instance segmentation followed by the application of the
Levenberg-Marquardt (LM) algorithm, which is used for the circle fitting method (Tatsumi et al.,
2023). Secondly, an R-based r'TLS library was used. The tree_metrics function wasused to estimate
DBH for each tree (Guzman et al., 2021). The tree_metrics function incorporated the RANSAC
algorithm for the estimation of DBH. This library only works with single tree point cloud input and
not on the plot level.

Lastly, the RANSAC plugin is a CloudCompare (Girardeau-Montaut, 2015) based 2D
circle fitting algorithm, which provides the best-fitted cylinder based on the random sample of the
points on the tree trunk. The CloudCompare plugin provides theradius and height of the cylinder,
which was later used to estimate the DBH for the individual trees. This algorithm was used in the
CloudCompare-based plugin. After estimating the diameters of all the trees, statistical analysis was
done to ensurethe results' authenticity. The detailed workflow of the methodology used is depicted
in Figure 4.
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Figure 4: Workflow of the methodology
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2.4 Statistical Analysis

The diameter was estimated using all three different methods and was evaluated using two
different statistical parameters: Root Mean Squared Error (RMSE) and relative Root Mean Squared
Error 1RMSE). These statistical parameters were used to compare different methods for the
estimation of DBH, as shown in equations 1 and 2.

RMSE = [L3¥,(¥; — 1) (Eq. 1)
LR
rRMSE = E X 100 (Eq. 2)

v

Where Y; is the actual observation time series,
¥ is estimated time series,
N is the total number of observations.

A paired t-test was performed to check the statistical significance of ForestScanner and
RANSAC for the measurement of DBH. To identify the significance of using different DBH
measurement methods. This test was performed in R software. The formula for two-way ANOVA
is mentioned in Equation 3. This test was performed in R software.

MST

F = E (Eq 3)
Where F is the Anova coefficient, MST is themean sum of squares due to treatment, and MSE is
the mean sum of squares due to error. Then, the Tukey post-hoc test was performed using the
formula mentioned in Equation 4.

T=gqx /% (Eq.4)

Where, T is the HSD statistics, q is Critical value for the chosen significance level (often 0.05).
MSE is themean sum of square due to error, and n is the number of observations in each group.

Results

The three software tools were compared and analyzed. In the first software tool, the iPhone
12 Pro-based application ForestScanner was used to estimate DBH and statistical analysis was done
to evaluate the DBH values obtained with the field-estimated DBH values. The RMSE value
recorded for thismethod was 2.58 cm, and therRMSE obtained as 7.25 %. All the error values are
shown in Table 2. The DBH obtained for all the trees using this method was correlated with the
field-estimated DBH values to observe the accuracy of the method. So, the R? value obtained for
thismethod was 0.976, which shows a promising correlation between the field-estimated DBH and
DBH estimated using the ForestScanner application. The Scatter Plot is shown in Figure 5 (a).

The other method used was the CloudCompare-based plugin- RANSAC. The estimation of
diameter using this tool was most accurate, precise, and close to the field-estimated DBH. The error
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value (RMSE) obtained for this tool was 2.19 cm, and the IRMSE obtained was 6.25 %. The error
values are shown in Table 2. The DBH values estimated with this tool were visualized as scatter
plots versus field-estimated DBH. The R?value obtained was 0.976. This strongly correlates with
the observed (field-estimated DBH) and predicted (RANSAC DBH). The scatter plot is shown in
Figure 5 (b).
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Figure 5: Scatter plots of field-estimated DBH with (a) ForestScanner (Lidar DBH), (b)
RANSAC DBH

In the R-based library rTLS, the diameter estimation was not promising. The error analysis depicted
that therTLS #ree_metrics function is not accurate to estimate the diameter of the tree. The RMSE
of the estimated diameter obtained using this tool was 132.61 cm, and the IRMSE obtained was
371.18 %. The results were visualized as scatterplots of field-estimated DBH versus 1TLS-estimated
DBH, and a weak correlation (R2) of 0.025 was found. The results from rTLS were not promising
enough to be included in further analysis. Therefore, it was excluded from further statistical
analysis.
Table 2: Statistical error analysis

Type RMSE (%) | RMSE(cm)
Field estimated DBH & ForestScanner DBH 7:25 2.58
Field estimated DBH & RANSAC DBH 6.15 2.19

A comparative analysis of the ForestScanner and RANSAC algorithms was done to test the
significance of the DBH estimation for different tree species. The statistical comparison was done
using RMSE and IRMSE % for each tree species. The RMSE varies from 2.02 to 3.77 cm, whereas
1RMSE % varies within the range of 4.67 to 9.2 % for ForestScanner. The RMSE observed for
RANSAC is in therange of 1.3 to 2.85 cm. The IRMSE % is observed to range from 5.15 to 7.82
%. The detailed information is mentioned in Table 3. The biases and outliers are shown in Figure
7. The graphical representation of RMSE and tRMSE% for ForestScanner and RANSAC for each
tree species is depicted in Figures 8 and 9.
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Figure 6: Comparison of the performance of iPhone 12 pro in estimating DBH among 6 tree

species

Moreover, a comparative analysis was done between the estimated DBH of each tree species and
the field-estimated DBH. The highest correlation (R2) found for ForestScanner was for hornbeam,
oak, and pine and ranged from 0.95 to 0.99. Whereas R? obtained for RANSAC was highest for
hornbeam, oak, and spruce and range from 0.94 to 0.99. For visual interpretation, the correlation
plots for all 6 species are shown in Figure 6.

Table 3: Comparing the statistical significance between ForestScanner and RANSAC in the
context of tree species.

Tree_species ForestScanner | ForestScanner | RANSAC RANSAC
- RMSE (cm) rRMSE % RMSE (cm) rRMSE %
Pine 2.02 4.76 2.18 5.15
Beech 2.83 9:2 2.4 7.82
Oak 2.08 5.38 2.04 5.27
Hornbeam 1.22 4.95 1.3 5.28
Fir 377 8.94 2.85 6.77
Spruce 2.72 7.79 2 5.74
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Figure 7: Boxplot of errors for each tree species and both approaches (ForestScanner and
RANSAC).

The paired t-test results show a significant difference between the DBH measured with the
ForestScanner and RANSAC. Out of the three algorithms used, RANSAC and ForestScanner
application-based estimates were very close to the field-estimated DBH values. The statistical error
evaluation was done. The RMSE obtained ranges from 2.19 to 132.61 cm, whereas IRMSE varies
between 6.15 to 372.18 %. The higher variation in the error values is due to the i'TLS algorithm.
The estimated DBH values from the 1TLS algorithm are insignificant and irrelevant to the field-
estimated DBH values.
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Figure 8: Graphical representation of RMSE (cm) for each tree species for ForestScanner and
RANSAC
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After the error calculation, a paired t-test was performed to see the statistical significance of the
ForestScanner and RANSAC for the DBH estimation. The P-value is lower than the significance
level, which is 0.05. This shows a significant difference between the means of ForestScanner and
RANSAC. The summary of the t-test is shown in Table 4.

Table 4: Paired t-test observations

statisti

daf

p_value

mean_differenc
e

confidence_interval lowe
r

confidence_interval uppe
r

-4.15

122

6.14E-05

-0.512

-0.75

-0.26

Based on the RMSE and tRMSE % evaluation, a significant difference is observed in the tree species and
DBH. So, the ANOVA test was performed, and the detailed analysis description is shown in Table 5. The
F-value notedis 29.72, and the p-value obtained is close to zero (2.47E-23), indicating that the species factor
is statistically significant. Meanwhile, the algorithm and interaction between the algorithm and species are
not statistically significant. This shows that the species significantly impact DBH, and the data has a
significant amount of variation. The interaction between the DBH, Algorithm, and species is clearly shown
in Figure 10.
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Table 5: ANOVA observations

Df Sum Sq Mean Sq F value Pr(>F)
Algorithm 1 16.12936 16.12936 0.278 0.599
Species 5 8627.396 1725.479 29.72 2.47E-23
Algorithm:Species 5 12.07765 2.415531 0.0416 0.99
Residuals 234 13584.3 58.05255 NA NA

Signif. codes: 0 “***>0.001 “**>0.01 “*> 0.05°.> 0.1 ‘1

- a Species

40 1 " |~*- Beech
~ Fir

+ Hombeam

Oak
| - Pine

‘ +  Spruce

35
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30 1

251

Forest Scanner Ransac
Algorithm

Figure 10: Interaction plot between the DBH, algorithm, and species
Tukey Post-Hoc test:

The Tukey Post-Hoc test was performed for the multiple comparisons of means for a two-way ANOVA
with a confidence level of 95%. It shows the difference in means, the associated confidence intervals, and
the p-value for different combinations of groups (Algorithm, species, and DBH). The analysis showed that
the comparison RANSAC-Forest Scanner for the algorithm group does not show a significant difference (p
adj = 0.598619), indicating no significant difference between these two algorithm levels. The graphical
representation of the means of the species and interaction of algorithms is shown in Figure 11 and Figure
12. The further inferences are mentioned as:

1. For the Beech tree species, the p-value for the algorithm effect is 0.5986, which is greater than a
typical significance level of 0.05. This suggests no significant difference between the algorithms
(ForestScanner and Ransac) for the Beech tree species regarding their effects on the variable DBH.
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2. However, when comparing different tree species for ForestScanner and Ransac, there are significant

differences in some cases. For example, for the Fir tree species, thereis a significant difference (p
= 0.0006573), indicating that the choice of algorithm affects the DBH values. Significant
differences are found for Oak, Pine, and Spruce tree species.

When looking at the interaction between Algorithm and Species, it's essential to note that the
differences between ForestScanner and RANSAC vary depending on the tree species. For example,
for Fir, the difference is significant (p = 0.000657), but for Beech, the difference is non-significant
(@ = 1.000000).

For individual comparisons between ForestScanner and RANSAC for specific tree species (e.g.,
Fir, Oak, Pine, Spruce), significant differences indicate that the choice of algorithm significantly
affects DBH for those specific tree species.

Hence, Overall, it appears that the choice of algorithm significantly impacts DBH values for certain

tree species but not for others. The significance of thisimpact varies by tree species. For the Beech tree
species specifically, there is no evidence of a significant difference between ForestScanner and RANSAC
regarding their effects on DBH.
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Figure 11: Graphical representation of mean of the interaction of species
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Figure 12: Graphical representation of mean of the interaction of Algorithm

For the Species, some comparisons show significant differences (p adj <0.05), while others do not. Fir-
Beech has a highly significant difference (p adj = 0.000000), indicating a significant difference in the mean
of Fir and Beech. On the contrary, Hornbeam-Beech shows no significance as the p adj observed is
0.072602, which can be marginally significant.

4. Discussion

This research used the iPhone 12 pro-based LiDAR application ForestScanner to estimate
DBH, CloudCompare-based RANSAC plugin, and 1TLS (R-package). The unfiltered point clouds
acquired using iPhone 12 Pro were used. The potential use of ForestScanner and RANSAC in DBH
estimation was found. However, rTLS did not show promising results. Although rTLS also works
on the RANSAC algorithm, the results were not promising due to noise in the data. The problem
was associated with the reading of the point cloud input file with rTLS library, and it also has issues
while reading a post-processed point cloud. Due to noise in thepoint cloud, the estimates of DBH
were vague, and the error was high. Consequently, we excluded rTLS from further statistical
analysis. Instead, ForestScanner showed good results and accurately estimated DBH with unfiltered
data.

The estimation of DBH is crucial for forest inventory. There are so many tools available
for this purpose, so perhaps benchmarking of the tools is required to get the most robust tool for
ease of estimation of DBH. Other studies focus on the estimation of DBH using MLS with the
comparison of 3 algorithms, namely RANSAC, Monte Carlo, and optimum circle, and found good
results with RMSE 5.31 cm and 1.23 cm of bias (Pérez-Martin et al., 2021). The other study on the
DBH estimation was done using the RANSAC algorithm, which tested 71 trees and found a
promising outcome. The RMSE calculated was 0.7 cm, and 2.27 % was the relative error. This
shows the potential application of RANSAC in the estimation of DBH (Zhou et al., 2019). This
study showed that the number of points fitting a circle does not affect the RANSAC algorithm.

Other studies support the robustness of the algorithms using real-time monitoring with
mobile phones to estimate DBH. An algorithm was developed to detect tree position and measure
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DBH. The RMSE observed was 0.33 cm for the DBH estimation and 0.12 m for tree position
detection. The results showed that mobile phones with RGB-D SLAM could be a potential solution
for real-time tree position detection and DBH estimation (Fan et al., 2018). The other methods, such
as multi-height diameters for estimating DBH, are also accurate. This method also used RANSAC
to estimate diameters at a certain height of the trees. The study shows RMSE of3.17 cm and 2.5 cm
as the mean absolute error for the estimation of DBH (Liu et al., 2021). To define the accurate
estimation of DBH, a study reported the DBH thresholds of 7, 12, and 20 cm (Kiikenbrink et al.,
2022).

The research was carried out to test the performance of iPad Pro 2020 in different groups
of tree species in urban forests. The evaluation was based on the Perimeter at Breast Height (PBH)
and relative tree position. The estimation obtained from iPad Pro 2020 was compared with a
measuring tape and Faro Focus 3D (TLS). After the analysis, it was observed that acquiring a 3D
scan by going around the tree trunk twice improved the DBH estimation, and iPad Pro 2020 can
deliver precise relative tree positions (Bobrowski et al., 2023; Pace et al., 2022). However, the time
taken by the iPad Pro was approximately twice that of GeoSLAM ZEB Horizon and much less
compared to TLS. In contrast, it is very cost-effective among all the LIDAR-based sensors. The tree
detection rate was also very efficient in urban forest scenarios (Gollob et al., 2021). LIDAR-based
iPad Pro efficiently estimated accurate DBH and distance between each tree. So, these low-cost
technologies can accurately estimate a few tree parameters (Cakir et al., 2021).

Research was conducted to compare the performance of different low-cost technologies
like Multicam photogrammetry, iPad Pro, hand-held, and Terrestrial Laser Scanner (TLS) to
estimate Diameter at Breast Height (DBH). The authors observed that iPad Pro results were closest
to TLS results when the trees with DBH > 7 cm were considered (Mokros et al., 2021). TLS can
generate 3D models in various applications with the required accuracy and precision. The point
cloud density and distance measurement accuracy generated by the iPhone 12 Pro were tested on
different surface materials like aluminum, plastic board, ceramic tile, canvas, and plywood. The
results were compared with TLS, and it was observed that theiPhone 12 Pro could produce a point
cloud with good density and proximate measurement values. The author concluded that the iPhone
12 Pro LiDAR is an efficient data acquisition source in 3D indoor building environments (Razali et
al., 2022).

Apart from this, Wood log measurementsare also a good application of LiDAR integrated iPhone
12 pro max and iPhone 13 pro max. It proved very efficient in measuring 267 and 200 spruce logs
in two different test cases (Borz et al., 2022). A systematic review of 304 peer-reviewed papers is
also presented for timber assortments using multi-source LiDAR platforms, which is done based on
specific log dimensions, including log length and diameters at both ends. Promising results were
obtained when airbome LiDAR was integrated with Terrestrial LIDAR. However, a high potential
of smartphone-based LIDAR measurements was also presented (Alvites et al., 2022). A
comparative analysis was done to measure the forest roads wearing with iPhone 13 Pro and was
compared with the high Precision TLS and GeoSLAM ZEB Horizon. The results showed that the
forest roads cross-section profile was being generated quite accurately. However, the estimates were
not precise, and the error increased as the distance increased along the horizontal traverse of the
path. The researchers did multiple analyses and observations and concluded that the iPhone 13 Pro
LiDAR could not be exactly used for any design or calculation of materials required for forest road-
wearing course repair (Mikita et al., 2022).
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A free mobile application using an iPhone or iPad has been developed for forest inventory
measurement: ForestScanner (Tatsumi et al., 2023). The application estimates the stem diameter by
circle fitting and the relative position of each tree based on real-time instance segmentation. The
application was tested on 672 trees and detected 100% of trees with DBH >5 cm. The application
can be effectively used by non-experts; also, there is no need for manual analysis of 3D point clouds.

In this study, we have compared three algorithms and found that the ForestScanner is the
best option when you have unfiltered data, and the CloudCompare-based RANSAC plugin is very
good for the usage in the estimation of DBH when you have filtered data. We have also done
statistical analysis to determine the significance of these devices for estimating DBH of different
tree species and found a significant relation with the species. A significant relationship between
species and DBH is also observed due to the variation in the bark texture of each tree species (Figure
1). The ANOVA and Tukey post-hoc test showed that the DBH estimation highly influenced the
tree species. However, selecting algorithms between ForestScanner and RANSAC is an option, as
it does not account much for the estimation of DBH and gives almost the same estimation.

5. Conclusion and Recommendation

The application of algorithms for estimating tree parameters is now in trend. There are a lot
of algorithms and standalone software available for this purpose. However, benchmarking for the
accuracy of the estimation of tree parameters is missing. In this study, we have tried to compare
three methods using iPhone point cloud data. The comparison was based not only on the accuracy
of the estimation of DBH by the algorithms but also on theimpact of different methods on different
tree species' diameters. Due to the different textures of the bark of different trees, the point cloud
density and occurrence near the surface of the bark can be different. So, it can cause some
differences while considering the surface point for fitting the algorithm. However, we found that
ForestScanner and RANSAC can be used for the DBH estimation irrespective of the tree species;
these algorithms are independent of noise in the data. Perhaps rTLS is highly dependent on noise in
thedata. The ForestScanner and the RANSAC algorithm demonstrate strong robustness in forestry
applications, particularly for accurately estimating DBH considering the data quality. Future work
will include more trees for the mentioned tree species in this study. Benchmarking of algorithms
should be done to ensure the accuracy of the estimation of DBH. The algorithms should also be
tested on the other tree species.
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1. Introduction

The development of new measurement techniques (e.g., laser scan-
ning, or LIDAR) and the increasement of computational power of per-
sonal and mobile devices have in the last two decades changed the
traditional inventory of forest properties and structures (Liang et al.,
2016). New techniques provide new possibilities for users to take the
forest to the laboratory and evaluate the needed characteristics in post-
processing, e.g., in three-dimensional (3D) spaces. This procedure
widens the possibilities to investigate forest conditions compared with
traditional measures (tree height, diameter at breast height (DBH), trunk
position).

3D data is useful in forest inventory and modelling applications,
especially when combined with advanced visualisation techniques
(Fabrika et al., 2018). However, the adoption of mentioned methods is
limited by several constraints. Terrestrial laser scanners (TLS) are
generally expensive and laborious in the field, although their spatial
accuracy is very high (Liang et al., 2018a). The Structure-from-Motion
(SfM) photogrammetry is easy to use from the user point of view,
which relies on low-cost camera measurement equipment. The results
are, however, highly dependent on the user’s experience and the data-
acquirement methodology that is complicated under conditions of un-
structured environments, e.g. (Liang et al., 2015; Mokros et al., 2018;
Piermattei et al., 2019).

These limitations inspired efforts to bring the technologies able to
produce 3D point clouds in a ready-to-use manner. One of the directions
is the development and deployment of mobile laser scanners (MLS)
(Cernava et al., 2019; Forsman et al., 2016b; Kukko et al., 2012; Liang
et al., 2014, 2018b) and hand-held personal laser scanners (PLShn)
(Balenovic et al., 2021). This approach overcomes the static nature of
terrestrial laser scanning (TLS) and mitigates occlusion effects. MLS and
PLSy, use Simultaneous Localization and Mapping (SLAM) (Durrant-
Whyte and Bailey, 2006) to merge trajectories. The SLAM determines
the “pose” of the device (position and orientation in a local coordinate
system) at a particular moment using recognized features and simulta-
neously generates a map of the surroundings. The method can be con-
ducted in real-time, but the results can be often improved in post-
processing.

The methods of MLS and PLSp;, eliminated some limitations of TLS.
On the other hand, MLS and PLSy, typically have lower spatial accuracy,
and many studies reported mismatches between different trajectories
(Cernava et al., 2019; Liang et al., 2018b).

The next logical step to promote the wide use of 3D information in
vast daily applications is to improve the sensor availability to average
users. With this regard, the sensors using infrared light were adopted
using two measurement principles: “structured light” and “time-of-flight

Beech (223) ® Oak (48) ® Fir (14) ® Spruce (12) ® Hombeam (7)

International Journal of Applied Earth Observation and Geoinformation 104 (2021) 102512

(ToF)” (Sarbolandi et al., 2015), with the latter being more suitable also
for outdoor measurements. Concepts of the 3D reconstruction using
mentioned sensors were evaluated by Microsoft Kinect cameras (Hyyppa
et al., 2018; McGlade et al., 2020; Wasenmiiller and Stricker, 2017). In
2014, Google announced the “Project Tango™”, where the sensors were
incorporated into mobile phones. The technology was based on three
functionalities: depth perception (measuring of distances), motion
tracking (using visual-inertial odometry) and area learning (recognition
of already known features). The first two devices — a phone (codename
Peanut) and a tablet (Yellowstone) were only available to developers.
The first commercial device was the Lenovo Phab 2 Pro phablet, fol-
lowed by the Asus Zenfone AR. The support for the technology was
stopped in March 2018, most probably due to negligible success in the
main area of interest — augmented and virtual reality. However, the 3D
reconstruction capabilities were evaluated by researchers in many areas,
including cultural heritage (Boboc et al., 2019; Schops et al., 2015),
environment monitoring (Chudy et al., 2018) and others. Despite the
short lifespan, forestry applications were reported mainly aiming at
diameters and positions of trees (Fan et al., 2018; Hyyppa et al., 2018;
Tomastik et al., 2017). Currently, modified versions of ToF sensors are
included in smartphones and tablets. In 2020, Apple announced its latest
iPad Pro and iPhone 12 Pro/Pro Max, which integrated such a sensor.
Following these recent technical progresses, it can be foreseen that there
will be more and more low-cost solutions coming into professional and
consumer market in the near future. 3D information of the environment
will be easier to be collected, but the applicability of such acquired 3D
information is still unclear. In this study, we compared four solutions
and their performance in the capturing 3D point clouds within a forest
environment, ie., a professional TLS, a state-of-the-art PLSp,, a
consumer-level mobile scanning using iPad Pro 2020 with a LiDAR
sensor for the first time, and a self-developed multi-camera system for
mobile photogrammetry (MultiCam). The idea of the multi-camera
system is to provide a solution to compensate for the individual hand-
held camera in order to achieve a successful mobile type of data
acquisition. Among the four techniques, three sensors are based on
active LiDAR sensors and one is based on passive sensors. All devices are
compared with each other based on the tree detection rate, the accuracy
of DBH measurements and the time needed for data acquisition.

2. Methodology
2.1. Test sites
The test sites are located in the middle of Slovakia within the

Kremnica Mountains. Eight research plots with 25 x 25 m dimensions
were established (Fig. 1).

3

Hungary

it
/ Romania
250 K|

Fig. 1. The overview of all test sites with positions of individual trees (points — tree species based) and borders of research plots (white line) is on the left. On the top
right is a position of plots within Slovakia. On the bottom right is a composition of test sites and a photograph from the research plot H.
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Table 1
Range and mean of diameter at breast height across test sites with number of
trees.

Plot DBH range (cm) DBH avg. (cm) No. of trees Density (trees/ha)
A 3.3-63.3 222 41 656
B 3.1-57.7 25.1 36 576
C 4.7-68.6 27.7 32 512
D 5.1-71.7 30.1 26 416
E 3.9-59.7 26.3 34 544
F 7.4-74.3 31.4 28 448
G 4.7-55.9 21.3 50 800
H 3.8-54.8 22.2 54 864

The number of trees varied from 26 to 54 across test sites (all trees
considered) with dominant tree species European beech (Fagus sylvatica
L.) and Norway spruce (Picea abies (L.) H. Karst.). In total, there are 301
trees and 268 trees have a diameter greater than 7 cm. The mean DBH
varied from 21.3 cm to 31.4 cm across research plots (Table 1). The
mean DBH of all trees was 25.0 cm.

2.2. Co | in-situ measur

Trees within each test site were measured by total station Topcon
GPT3000M, and perimeters of trees were measured by measuring tape.
Firstly, two orientation points and the first position of the total station,
representing the first comer of the research plot were built up. The
points were measured using the GNSS receiver Topcon Hiper SR com-
bined with the total station Topcon 9000. The corners of the remaining
research plots represent the corners of the grid with dimensions 25 x 25
m. They were calculated using coordinate increments of 25 m in the
directions of the X and Y axes based on the first total station position,
staked out by the total station, and permanently stabilised. The data set
was collected with the aim to reach the highest allowed coordinate and
elevation errors at the level of 0.02 m, using the corner points as a base
for calculation of other consequential objects-representing points.

Afterwards, the position and perimeters of trees and the position of
targets were measured for georeferencing purposes. All data were
collected from one total station position in the middle of the plots, and
two comer points were used as orientation points. The position for the
machine was chosen so that all trees could be seen from one place (it was
possible in most cases). The six targets oriented to the plot centre were
evenly distributed in the plots, and their polar coordinates were
measured in a non-prism operation mode. The polar coordinates of the
trees at the height of 1.3 m were measured by length offset of the spatial
polar method. According to the perimeter of trees, the lengths were
adjusted by the radius of a particular individual during office processing.
All polar coordinates were transferred to Cartesian coordinates after

(@) (b)
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that.

2.3. Data acquisition and pre-processing

In the experiment, we used four devices: TLS, PLSy}, Apple iPad Pro
2020 with LiDAR sensor (iPad), and a prototype of a multi-camera
system (MultiCam). Two main distinguishing parameters are data
acquisition approach, i.e., static (TLS) and mobile (PLSpy, iPad, Multi-
Cam), and the type of sensor used, i.e., active (TLS, PLSpy, iPad) and
passive (MultiCam).

We have approached data acquisition paths (Fig. 2) and pre-
processing workflows differently based on the device properties and
capabilities. However, for the same device, the workflow was the same
across all research plots, and the processing to final tree positions and
DBH estimation was also similar for all point clouds.

2.3.1. Terrestrial laser scanning

In the experiment, we used a Faro Focus s70 laser scanner (FARO
Technologies, Inc., Florida, USA). It has a range from 0.5 to 70 m. The
accuracy is +2 mm on 10 m or +3.5 mm on 25 m. We have used the
resolution (point spacing) of 6.14 mm/10 m. One scan took 2 min and
24 s (2 kpt/sec). The advantages of the scanner, important for forestry
use, are small dimensions (230 x 183 x 103 mm) and low weight (4.2 kg
including battery). Since the scanner is a shift-based type of scanner, the
scanning time is quite fast and at the same time with a high number of
captured points.

A multi-scan approach was used to scan all research plots. Eight
positions were placed on the border or near the border of the research
plot and one in the centre of the research plot. The positions on the
border were placed near the corners and near the middle of the plot side.
The placement was based on the condition of each plot with regards to
achieving the lowest occlusions (Fig. 2).

Plastic spheres were placed in the research plots for the purpose of
the individual scan merging. Within each plot, twelve spheres were
placed inside of the plot. With such a number of spheres and altogether
nine scan positions, it was secured that more than four spheres were seen
from each scanning position. Merging and georeferencing of the point
clouds were done in Faro Scene software (ver. 2020.0.6) using the
default workflow. We have used artificial black and white targets on tree
trunks to georeference all merged point clouds to the System of the
Unified Trigonometrical Cadastral Network (S-JTSK, EPSG:5514).

2.3.2. Hand-held personal laser scanning

The data acquisition by PLSy, was performed using a GeoSLAM
Horizon scanner (GeoSLAM Ltd., Nottingham, UK). It has a collection
rate of 300,000 points per second, an accuracy of 1-3 em and a range of
100 m. Before the scanning, it was necessary to place plastic spheres for

[» Camera positions|

(c) (d)

Fig. 2. Data acquisition positions (cross) and paths (black line) of all used devices on an example of plot A. Green circles represent tree positions, and their size is
proportional to the diameter measured in the field. Paths of a, b and d are actual paths derived from devices. In the case of ¢, the path is illustration of the actual

scanning path.
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Fig. 3. The scheme of the multi-camera system. Cameras are connected directly to Triggerbox, which is powered by a powerbank and controlled by an interval-
ometer. Below are examples of images from each camera from plot A from the same position during the mobile imagery.

the subsequent georeferencing of the point cloud. It was not possible to
use markers placed on trunks since they were not adequately visible due
to the noise. The spheres were placed at the four corners of each plot and
scanning always started in the upper right corner and proceeded along
the lines at about 5 m intervals with a subsequent cross pass with a di-
agonal return to the starting point (Fig. 2b). This measurement method
was chosen in order to obtain a higher density of points. The data
acquisition in one plot, including the placement of reference spheres, did
not exceed 10 min.

GeoSLAM Hub software (ver. 5.3.1) was used for post-processing of
scanned data, and subsequently, point clouds from each surface were
georeferenced into the JTSK system in GeoSLAM Draw software (ver.
3.1). During processing in GeoSLAM HUb, we used default parameters
and workflow.

2.3.3. iPad pro scanning

The third device used for scanning the study sites was a 4th gener-
ation iPad Pro 2020 tablet (Apple Inc. San Francisco, USA). This is the
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generation that is equipped with an Apple LiDAR sensor able to scan the
environment. Based on the information that Apple has not officially
announced, the sensor is a direct time-of-flight custom-designed LiDAR
scanner that also uses a camera and motion sensor to measure depth.
The sensor is able to scan up to 5 m. We have used a 3d Scanner App
(Laan Labs, New York, USA). The app also provides the possibility to
colourise and export mesh and point clouds.

Since the range of the scanner is 5 m, we have used a different
approach of data acquisition as with other mobile devices (PLSp},, Mul-
tiCam). The plots were divided into three segments, and the path started
in the first segment, and the operator walked around each tree in
sequence. And when all trees were scanned, the path continued to the
following segment (Fig. 2¢). In the iPad measurement, the operator
needed to carefully walk around trees and avoid rescanning already
scanned trees. In cases where rescanning of already scanned trees was
done, the reconstruction of such trees got worse. In some cases where
trees were very near each other, it was necessary to scan them together.

During pre-processing of point clouds, we have found out that it was

PLS,, s

Fig. 4. Examples of point clouds from all devices in Plot B in the side view (top) and 5 cm cross-section at DBH height (below), i.e., 1.275-1.325 cm above

the ground.
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Fig. 5. Tree detection rate of all devices used across eights plots.

not possible to use markers that were placed on tree trunks for geore-
ferencing. Due to this fact, resulting point clouds were aligned with
point clouds from TLS in CloudCompare using Iterative Closest Point
(ICP) algorithm. It was necessary to georeference point clouds to be able
to compare them with reference data.

2.3.4. Multi-camera mobile photogrammetry

Data acquisition by mobile photogrammetry was done by the multi-
camera prototype (MultiCam) constructed by authors. The MultiCam
consists of four cameras placed on the aluminium profile. We have used
Sony a6300 cameras with Sony 10-18 mm F4 OSS lens (Sony Corp.,
Tokyo, Japan). Two middle cameras were facing in the walking direc-
tion, and two cameras on edge have been shifted to the side (Fig. 3). The
overlap of at least 60% on 3 m was ensured between edge and middle
camera pairs. The overlap was checked before each plot imagery.

We have controlled the imagery capturing by TriggerBox (Esper Ltd.,
Nottingham, United Kingdom). This device is a multi-camera shutter
controller which can control up to six cameras at once. The synchroni-
sation of the shutter for all cameras is secured by very low delay
(0.000002 s). The TriggerBox was powered by a powerbank (5,000
mAH), and the shutter was controlled by an intervalometer.

The whole MultiCam system weighs 4.1 kg. It consists of four

TLS

cameras with lenses (2.5 kg), rig (0.9 kg), TriggerBox with cables (0.45
kg), intervalometer (0.12 kg) and powerbank (0.1 kg). The price is
approximately 7,200 euros, where 6,800 euros is for cameras with
lenses.

The image capturing was set to one image per second for each
camera simultaneously. The path of data acquisition consists of six
strips. The distance between strips was approximately 5 m. The Multi-
Cam was facing in the walking direction. On turns, the walking speed
was slowed down to ensure high overlap. The number of images ranged
through plots from 1,616 to 1,916 (median = 1,850) with all four
cameras considered. The number of positions per plot ranged from 404
to 479 (median = 462.5).

The camera settings were adjusted accordingly to the light condi-
tions. Since the mobile approach for data acquisition was used in this
experiment, the shutter speed was set to 1/320 s. The ISO was set to
3200 and aperture to 7.1.

Processing of images to georeferenced point clouds was done using
Agisoft Metashape (Agisoft LLC, Saint Petersburg, Russia). Firstly, we
calibrated the camera using a chessboard screen and the calibration
module within the Agisoft Metashape. We have captured images from
multiple angles following the calibration protocol from Agisoft docu-
mentation. The calibration file was then used within the alignment

PLSpn
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Fig. 6. Conventional and point cloud based hods for DBH
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Table 2
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Results of tree attribute estimation (when all trees across eight plots were considered), i.e., root mean square error and bias in both absolute and relative values, tree
detection rate (TDR), false tree detection (FTD) for devices used across all eight plots. Then we report data acquisition time per plot, the weight of the devices with all
necessary accessories and approximate price (sources: echosurveying.com and amazon.com).

RMSE (cm) rRMSE (%) Bias (cm) rBias (%) TDR (%) FID (No.) Time (min) Weight (kg) Approximate Price $
TLS 1.45 5.18 —-0.98 3.48 95.15 12 40 6.2 20,970
PLSp, 6.26 18.88 4.34 13.11 67.91 10 10 3.8 30,350
iPad 3.14 10.89 =2.12 7.35 77.24 0 15 0.5 799
MultiCam 6.98 22.86 -0.78 2.56 64.18 137 8 4.1 7,200

process. The images were aligned with “High quality”, which is the
original resolution of images. We have not used any preselection, which
means each image was compared to each image in the dataset. After
alignment, we manually searched for markers that were placed on
trunks. Markers were used to georeference the tie point cloud to S-JTSK
system. On each plot, at least four markers were found. Next step, the
densification of tie points was performed with medium quality. Gener-
ated point clouds were exported for tree detection and DBH estimation.

The examples of point clouds with their cross-sections at 1.3 m are
shown in Fig. 4. Differences in the point-cloud data quality can be
clearly seen from the cross-section sub-figures, where the TLS data has
the highest level of data accuracy, iPad also provide data with little
noise, and MultiCam and PLSy}, contain clear noise.

2.4. Tree detection and DBH estimation

The point cloud data from stationary TLS and mobile PLSpy, iPad and
MultiCam were processed through the same processing chain as
described in (Liang et al., 2018b).

The TLS, PLSy, and MultiCam point clouds were sampled. The point
closest to the centre of gravity within each 1 cm voxel was selected. The
sampling process gives a comparable data set of the original point cloud
in the sense of the point distribution, where the gravity is a unique point
that the position vectors relative to this point sum to zero and the point
closest to the gravity faithfully represents this unique point without
introducing any additional measurement errors. The original point
clouds from the iPad were used because of its low resolution.

The DTM was reconstructed using a morphological filter and linear
interpolation. Stem points were identified through point-based analyses.
Point distributions were studied within their immediate neighbourhood,
where potential stem points have vertical planar structures. Tree stem
models were built from the recognised stem points as a series of 3D
cylinders representing the stem growth. The DBH and location of a stem
were estimated from the cylinder element at the breast height (1.3 m
above the ground).

2.5. Data evaluation

The tree positions and diameter estimation have been calculated for
point clouds generated by each device for all eight plots. These esti-
mated trees were matched with field data measured by total station and
measuring tape. For each reference tree, a buffer with a 1 m radius was
made to help to locate matches. The pairing was done manually in
ArcGIS for desktop 10.7 (ESRI, California, USA) to ensure the correct-
ness of matches.

When all pairs were identified, we calculated estimation errors. Er-
rors were calculated by subtracting reference diameter with estimated
diameter (1). To exclude gross error, we have deleted estimated DBH
when the relative DBH error exceeded 100% of that particular tree (2).

DBH,,, = DBH ., — DBH,. [¢))
rDBH.,,; = (DBH.,A-DBH.)*100. (2

where DBH,,, is a calculated error of estimated DBH, DBH,; is a DBH
estimated from point cloud, DBH, is measured DBH in the field and

rDBH,,; is relative error of estimated DBH.

Furthermore, bias, relative bias (rBias), root mean square error
(RMSE), and relative RMSE (rRMSE) were calculated to compare the
results between devices.

The tree detection rate was calculated based on correct matches
between reference and estimated DBH. Falsely detected trees were also
identified and reported.

One sample t-Test was used to statistically identify the significance of
over- or underestimation of DBH by estimation. We have tested calcu-
lated errors of DBH estimation against zero.

A two-way analysis of variance (ANOVA) was used to identify the
influence of the device and plot on the DBH estimation accuracy.

3. Results
3.1. Tree detection

The sum of trees with DBH higher than 7 cm is 268 across all test
sites. The tree detection rate of all trees was as follows: 95.15% (TLS),
67.91% (PLShy), 77.24% (iPad), 64.18% (MultiCam).

TLS provided the highest tree detection rate overall. Within each
plot, the detection rate ranged from 93.5% to 100%, where 100% tree
detection rate was achieved on two plots. PLSy, tree detection rate
ranged from 55.6% to 74.3%, for iPad, it ranged from 64.5% to 87.5%,
and for MultiCam, it ranged from 57.1% to 71.9% (Fig. 5, Table A1).

The highest amount of falsely detected trees was from MultiCam
point clouds, through which 137 trees were falsely detected from an
amount of 327 detected trees. The opposite was achieved by the iPad,
where 0 trees were falsely detected across all plots. Then TLS had 12 and
PLSp, 10 falsely detected trees across all plots. The number of falsely
detected trees for each plot and device is shown in the Table A2.

3.2. DBH estimation

The correlation between the reference and estimated DBH was
highest when point cloud from TLS was used (r* = 0.996) and lowest for
MultiCam (* = 0.799) (Fig. 6). DBH estimated from iPad had also
reached a high correlation similar to TLS (12 = 0.973).

The bias and relative bias for all considered trees measured from a
point cloud of TLS, PLSyy, iPad and MultiCam was —0.98 cm (3.48%),
4.34 cm (13.11%), —2.12 cm (7.35%) and —0.78 em (2.56%) respec-
tively (Table 2). The range across plots was —1.43 cm to —0.7 cm, 2.58
cmto 6.00 cm, —2.59 cmto —1.79 and —5.04 cm to 2.53 cm respectively
(Tables A3 and A4).

The DBH estimated from TLS, iPad and MultiCam underestimated
the conventional DBH measurements. For TLS and iPad, the underesti-
mation was statistically significant. In the case of PLSh,, the DBH is
significantly overestimated (Fig. 7). The significance of over- and un-
derestimation was tested by One-Sample t-Test.

When all trees from eight plots were used to calculate RMSE and
rRMSE, the highest accuracy was achieved by TLS with RMSE 1.45 cm
and rRSME 5.18%. The least accurate results were achieved by Multi-
Cam, where RMSE was 6.98 cm, and rRMSE was 22.86% (Table 2).
When results are grouped by plots, TLS achieved the most accurate re-
sults across all plots with RMSE ranging from 1 cm to 2 cm and rRMSE
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TLS-

PLShn-

iPad-

MultiCam-

-20 -15 -10 -5

0
Errors (cm)

Pots EABBECEDEESBFR2G&8H

Fig. 8. Boxplots of absolute errors (cm). boxplots correspond to the 25th and 75th percentiles and whiskers are 1.5 * interquartile range. The line inside the boxplots

corresponds to the median.

100
100 96
=95 2
88
83
76 7 78

2 75 70
$
Y £ 64
®
5
£ 50
s
@
]
@
@
= 25

o

Tis PLS., iPad MultiCam
[>70>10W>20

229 24
211
20
188493
= 15.7
515
w
2
[ 109 105 p
_ﬂz’ 10
5
&
52
SA ﬂii
o1
s PLS,, iPad MultiCam
>70>10M>20

Fig. 9. The changes of tree detection rate (left) and rRMSE (right) for three DBH thresholds (7 cm, 10 cm and 20 cm) grouped by used devices.

from 3.7% to 6.4%. Regarding the least accurate results, the MultiCam
has achieved it on six plots and PLSp on two plots (B and G). The range
was 5.3 cm to 14.3 ecm (18.8-38.2%) and 4.8 cm to 8.8 cm
(13.1-24.9%), respectively. The iPad achieved RMSE 3.14 cm and
rRMSE 10.89% when all trees were considered. The RMSE and rRMSE
for all used devices for each plot are shown in Tables A5 and A6.
Two-way ANOVA was used to test the significant influence of de-
vices, plots and their interaction on the accuracy of DBH estimation. The
ANOVA indicates a significant impact of devices, plots and their in-
teractions (Table A7). We have used the Tukey post hoc test to identify
which devices, plots and interactions are significantly different from
each other. When only devices were compared, only the difference

between TLS and MultiCam was not statistically significant. When plots
were compared, only the difference between Plot D and B was statisti-
cally significant. To compare interactions 496 pairs were made of those
154 were statistically significantly different from each other and 145 of
them were pairs that contained PLSyy,. This difference can be clearly seen
in Fig. 8. The remaining pairs that were significantly different were pairs
of MultiCam plot B with all iPad plots.

3.3. DBH thresholds

Next, we have evaluated trees with DBH higher than 10 cm and 20
cm. The hypothesis is that the results for such trees are going to be more
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Fig. 10. Scatter plot visualising tree detection rate and rRMSE grouped by used devices. Each device has eight filled points (representing test sites) with one data
ellipse and one crossed circle which represents an overall tree detection rate and rRMSE of trees with DBH larger than 7 cm.

DI G A

Fig. 11. The point clouds of two individual trees from PLSy, (left) and TLS (right). A top view of 10 cm cross-sections at the breast height in both datasets is also

illustrated in the middle.

accurate with a higher tree detection rate and the larger the tree size, the
higher possibility is the correct detection/modelling. Across the plots,
301 trees were measured by conventional methods with all DBH sizes
considered, 268 trees (89%) with DBH higher than 7 em, 229 (76%) with
>10 cm and 153 (51%) with >20 cm. The accuracy ({RMSE) and tree
detection rate increased significantly and linearly for all devices when
the threshold of DBH was changed to 10 cm and then to 20 em (Fig. 9,
Table A8).

4. Discussion
4.1. The overall evaluation on the extracted tree parameters

Results showed that DBH estimation from TLS point clouds is

achieving the most accurate results together with the highest tree
detection rate across all test sites and overall when compared to the
other three mobile devices (Fig. 10). The reliable accuracy achieved by
iPad Pro across all sites is showing a high potential for future applica-
tions, especially when other high-quality sensors and options of smart
devices will be used. On the other hand, PLSy;, and MultiCam data have
issues such as a high amount of noise and inaccurate alignments, results
typically have lower accuracy.

The most visible advantage of TLS and PLShn is the long-range of the
sensors. It is usually tens of meters and with scanners that we have used
it was 70 m for TLS and 100 m for PLSyy. Such range is sufficient for tree
height measurements (Jurjevic et al., 2020; Wang et al., 2019) or crown
reconstruction. This is not feasible with iPad or MultiCam. The range of
the iPad is 5 m. The MultiCam system is based on passive sensor
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(camera). The range is based on the field of view of the camera and only
objects captured at least from two positions are going to be recon-
structed. Furthermore, the far objects are going to be reconstructed with
lower detail than those close to the camera, since the ground sample
distance (GSD) will be bigger. The example of point clouds from all
devices of plot A are shown in Video 1.

Video 1.

4.2. Hand-held personal laser scanning

Among published studies, the range of tree detection rate was
57-100% (Balenovic et al., 2021). The highest rate (100%) tree detec-
tion rate for trees over 10 cm of DBH was reported by (Bauwens et al.,
2016) over ten plots (331 trees) with different conditions. (Chen et al.,
2019) achieved 90.9% tree detection rate for trees over 5 cm and with
the same threshold (>5cm), authors (Gollob et al., 2020) achieved a tree
detection rate higher than 95% within the majority of 20 plots. On the
other hand, some authors achieved worse results. For example (Del
Perugia et al., 2019) used three different data collection approaches, and
with the one where the distance between strips was 15 m, the tree
detection rate was 57%, but when the distance was decreased to 10 m,
the tree detection rate was significantly higher (94%).

Based on these results, we assumed that the point cloud would be
denser and the issue of occlusion would be significantly decreased if we
would have use the distance between lines approximately 5 m and we
would have also add perpendicular line paths. But our results rejected
this hypothesis. The tree detection rate ranged from 56% to 75%. We
assume that this approach brought a higher amount of data to be pro-
cessed and aligned, which caused more geometric discrepancies. Within
all plots, the trunks are not aligned precisely, and many trunks are
misaligned themselves (Fig. 11). The problem of the forest environment
is that there is an only small number of objects with clearly defined
edges that could improve the alignment of the applied SLAM algorithm
in the GeoSLAM. According to our results, the chosen trajectory with
cross repetition tended to worsen rather than improve the SLAM results.

Although the PLS,, method is promising in forestry, finding the
optimal trajectory for data collection will require considerable effort. It
is not possible to determine a single procedure for all forest types. Young
forest stands with smaller DBH, and higher density will require different
data collection than older stands with higher DBH.

When TLS was compared with PLSyy,, (Gollob et al., 2020) achieved
higher tree detection by PLSy,. This can be caused by the relatively low
number of TLS scan positions (four with one in the centre). A similar
comparison was done by (Ryding et al., 2015) where 54 trees were
detected by TLS and 45 by PLSpy. (Cabo et al., 2018) reported 100%
agreement between TLS and PLSy;,, where both devices detected 271
trees across two plots.

Based on the review paper of (Balenovic et al., 2021), the rRMSE of
DBH estimation using PLSy, varied from 3.5% (Hyyppa et al., 2020) to
23% (Ryding et al., 2015). The accuracy of DBH estimation achieved by
us was from 13% to 25% and 18.9% overall. The accuracy increased
significantly when the threshold of consideration was changed to 10 em
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and 20 cm as an opposite of 7 em. Overall it was changed to 18.3% and
15.7%, respectively. (Ryding et al, 2015) achieved 23% rRMSE when all
trees were considered and 9% when only trees with DBH higher than 10
cm were considered. Furthermore, they also calculate tTRMSE for trees
smaller than 10 em DBH and the tRMSE was 46%.

Our results also confirm the significant influence of DBH threshold of
considered trees. The tree detection rate and accuracy of DBH estimation
increased significantly when we have considered trees with DBH > 10
cm and then only those with >20 cm. This is clearly raising the
important issue of where the threshold should be and how it will in-
fluence whole forest stand results.

4.3. Smart devices with ToF

The advantages of using smart devices such as smartphones or tablets
is the easy manipulation (weight and size) and also familiarity with such
devices within a majority of the population. Furthermore, in future,
when additional sensors or functions of such devices are going to be
explored and used for forestry applications, the employment will be
even more reasonable. For example, the usage of GNSS data from
smartphones for positioning within forest environment (Tomastik et al.,
2017). In recent years studies focused mainly on two paths. Firstly, the
“Project Tango™ where developers mainly focused on augmented reality
applications. To be able to scan the environment, devices with infrared
depth sensors were needed. For example, Lenovo Phab 2 Pro phablet.
Authors (Fan et al., 2018; Hyyppa et al., 2018; Tomastik et al., 2017)
explored the application for the tree parameters estimation. The accu-
racy (fRMSE) achieved for DBH estimation within plots varied from
6.8% to 8.8% (Tomastik et al., 2017) and from 2% to 11.1% (Fan et al.,
2018). The results achieved within the presented study ranged from
8.6% to 12.6%. These results are similar and slightly worse than the
previous reported studies. However, the main difference between the
iPad Pro scanning and Google Tango approach is that Google Tango has
implemented the SLAM algorithm with the “loop closure” detection,
which improves the trajectory accuracy using the alignment of multiple-
times scanned features. This algorithm is helping to localise the device
without using a GNSS device or sensor.

The disadvantage when we have used the iPad to scan the plots was
the removal of already scanned areas due to the lack of SLAM-like al-
gorithm. We needed to always check whether we are far enough from
already scanned trees to avoid rescanning them from faraway positions,
which would lead to worse accuracy of such trees. Since the range is 5m
it was possible to avoid it in the majority of cases. But for more dense
plots this can cause issues during scanning and will lead to worse ac-
curacy. We believe that the implementation of the SLAM algorithm will
help to eliminate such issues.

Besides Google Tango, Microsoft Kinect is another similar alterna-
tive. (McGlade et al., 2020) has conducted an experiment within an
urban park with larger trees (mean DBH 73.4 cm). The data acquisition
focused on individual trees, and it was static from a tripod with a
different distance from the trunk (1-3 m). The RMSE ranged from 6.8 cm
to 16.9 cm. What is approximately 9.2-23.0% of rRMSE (the average
DBH was 73.4 cm).

4.4. Multi-camera photogrammetry

Few studies have been published which used more than one camera
at once to conduct a photogrammetry image collection of forest stands.
Moreover, we believe only (Forsman et al., 2016a) has dealt with more
than two cameras at once. They used a camera rig with five cameras.
Since the two cameras have been found to have insufficient optical
stabilisation they were used just partially. Altogether 25 research plots
with a 20 m radius were used. On these plots, images from the centre
were taken from 12 positions. It was possible to sufficiently reconstruct
point clouds on six plots for the DBH estimation and evaluation. The
relative root mean square error varied from 12.4% to 60.5% within six
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plots. The range of the presented study using MultiCam is 14.8-38.2%.
The study of (Forsman et al., 2016a) used a multi-camera rig, but the
data acquisition was static and only from the centre of a plot by three
cameras and partially with two other cameras.

In our experiment, we have used mobile photogrammetry. In the
majority of published papers on the subject of using terrestrial photo-
grammetry for measuring DBH is a static approach prefered or the so-
called stop-and-go method. With this approach, the operator is taking
images only when it is not moving with the camera on a tripod or in
hand. When mobile is compared to a stop-and-go (static) approach, the
advantage is faster data acquisition. In Molros et al. (2018), the average
time needed to conduct mobile photogrammetry was slightly above 13
min, and by the stop-and-go method, it was 31 min on average for the
same plot (35 x 35 m).

On the other hand, the mobile photogrammetry is more prone to fail
to align images and generate sufficient and accurate point clouds. The
operator is continuously moving and taking images. It is essential to
secure a sufficient overlap between images. From our experience, the
trickiest part of such data acquisition is the turning points outside the
plot where the operator needs to turn back to the plot and do another
line strip. In these places, the alignment photogrammetry process is
failing most. Our hypothesis was that using multiple cameras in a row
will greatly help to keep the overlap during the walking but also on those
turning points. This hypothesis seems correct. We have aligned all im-
ages on turning points or in other parts of imagery paths. We have not
needed to repeat data acquisition.

The challenge of mobile photogrammetry is the camera settings.
Since the operator is constantly moving during imagery, the shutter
speed must be quite high to avoid blurry images. When the shutter speed
is high in a fairly dark environment, as the dense forest during vegeta-
tion season is, the ISO and aperture must be set appropriately to achieve
bright enough images. In our case, we have used 1/320 s shutter speed,
3200 ISO and 7.1 aperture. The ideal combination for such data acqui-
sition should be explored. If we change the shutter speed to faster values,
the ISO and aperture should be adjusted, but we do not have an answer
yet which settings will bring results with less noise and with higher
accuracy. Regarding the stop-and-go method, the shutter speed can be
slower especially when a tripod is used. This is the main advantage of the
static approach versus the mobile one.

Overall terrestrial photogrammetry can provide high accuracy of
DBH measurements. The RMSE can achieve sub-centimetre accuracy.
Especially in cases where a stop-and-go approach is used and only one
tree at a time is photographed. In Moluos et al. (2020), authors used
such an approach, and the rRMSE has not exceeded 1% in all 40 trees,
and they were able to measure the annual trunk increment of mature
trees. When authors focus on multiple trees at plots using a single
camera, the rRMSE can vary from 2% (Mikita et al., 2016) to 61%
(Forsman et al., 2016a). Results are highly dependent on the data
acquisition approach, camera and lens, camera settings, forest stand
parameters and so on.

In the present study, we have achieved an rRMSE range 14-38%. We
believe that the results could be improved. In future experiments, we
will focus on the different setup of cameras on the rig, higher number of
cameras, composition, or orientation. Furthermore, the influence of
different camera settings should be tested.

5. Conclusion

We presented here a comparison of well-known terrestrial laser
scanning (TLS), state-of-the-art hand-held personal laser scanning
(PLShp), laser scanning based on iPad Pro (hand-held) and mobile
photogrammetry with a self-constructed multi-camera system (Multi-
Cam). The comparison was based on the performance within forest
stands focusing on tree detection, DBH estimation and overall perfor-
mance. Altogether, eight plots (25 x 25m), with 301 trees (602 trees per
ha), were established. Data acquisition of one plot lasted 40 min (TLS),
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10 min (PLSyy,), 15 min (iPad) and 8 min (MultiCam). TLS achieved tree
detection above 90% for all eight plots. None of the other used devices
reached a 90% tree detection rate. The highest range among them was
when iPad was used 64.5% 87.5%. The tree detection rate range of PLS,y,
and MultiCam was 55.6-74.3% and 57.1-71.9%, respectively. Similar
results were achieved when the accuracy of DBH estimation was
compared. TLS had RMSE under 2 em for all plots. None of the other
used devices reached such accuracy. Nevertheless, iPad performed the
closest results, 2.6-3.4 cm.

Each device provides certain benefits. The advantage of TLS and
PLSy, is the coverage of the upper parts of trees. Therefore, also tree
height or crown parameters are possible to measure directly from point
clouds. On the other hand, both devices are significantly more expensive
than the iPad or MultiCam. Thus, if the goal is to measure DBH, these
devices could be the suitable alternative. However, further experiments
have to be done within forests with different levels of complexity.
Furthermore, experiments focusing on achieving 100% tree detection
rate on the plot, and in the case of MultiCam, the focus should be on
decreasing point cloud noise. Only iPad Pro is a solution that provides
point cloud right away in the field. This advantage is highly usable for
forestry practice, where operators can have results right away in the
field. On the other hand, the data acquisition must be done very care-
fully to avoid rescanning already scanned parts, which makes it less
practical in the field, especially in more complex forests. Potentially it
might be solved by SLAM algorithm implementation.

Overall, TLS provided the most accurate and reliable results.
Nevertheless, the performance of iPad Pro with the LiDAR sensor had
the DBH estimation accuracy and tree detection rate closest to the TLS
results when PLSy;, and MultiCam are considered for comparison.
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Appendix A

Tables A1-A8.

Table A1
Tree detection rate (%) of all devices used for each plot are reported.
A B c D E P G H
TLS 100 90.6 93.5 95.8 93.5 100 95.2 93.5
PLSpn 74.3 56.2 742 75 67.7 55.6 71.4 67.4
iPad 80 81.2 774 87.5 64.5 74.1 78.6 76.1
MultiCam 68.6 719 677 58.3 61.3 63 57.1 65.2
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Table A2

Falsely detected trees (n) of all devices used for each plot are reported.

International Journal of Applied Earth Observation and Geoinformation 104 (2021) 102512

A

B

C D E F G H
TLS 2 3 2 3 1 0 1 0
PLSp, 3 1 0 1 0 3 2 [
iPad 0 0 0 o 0 0 0 )
MultiCam 25 12 18 16 19 14 12 21
Table A3
BIAS (cm) of all devices used for each plot are reported.
A B C D E F G H
TLS -0.92 -0.96 -0.95 -1.43 -1.14 =115 -0.86 -0.7
PLSy, 5.55 4.59 3.5 2.82 2.58 4.85 3.97 6
iPad -2.59 -2.6 -217 -1.79 -2.15 -1.8 -1.95 -1.87
MultiCam -1.62 2.53 =133 -5.04 -1.65 -0.12 1.3 -1.78
Table A4
1BIAS (%) of all devices used for each plot are reported.
A B C D E F G H
TLS 3.67 3.37 3.19 4.32 3.85 3.67 3.44 2.67
PLSyy, 19.21 12.94 10.03 778 7.03 13.33 13.41 18.95
iPad 9.87 8.87 6.93 5.57 7.07 5.88 7.51 6.79
MultiCam 6.05 9.9 3.83 135 5.1 0.37 4.5 5.9
Table A5
RMSE (cm) of all devices used for each plot are reported.
A B C D E F G H
TLS 1.3 1.4 b 7 2 1.9 1.5 1.2 1
PLSp, 6.3 8.8 5.2 4.8 5 5.3 56 75
iPad 3.4 3.4 3.3 33 29 26 32 2.8
MultiCam 5.1 5.9 49 14.3 8.6 7.1 4.3 5.4
Table A6
rRMSE (%) of all devices used for each plot are reported.
A B C D E F G H
TLS 5 49 5.6 6 6.4 47 4.7 3.7
PLSp, 21.9 249 15 13.1 13.6 147 18.8 23.7
iPad 12.9 11.5 10.5 10.4 9.4 8.6 12.5 10.3
MultiCam 19.1 23 14 38.2 26.7 219 14.8 18.1
Table A7
Analysis of variance results.
term df sumsq meansq statistic p value
1 Device 3 0.470974 0.156991 99.34317 1.66E—54
2 Plot 4 0.024285 0.003469 2.195353 0.032723
3 Device:Plot 21 0.072798 0.003467 2.193635 0.001581
4 Residuals 784 1.238951 0.00158 NA NA
Table A8
Absolute and relative root mean square error and tree detection rate for used devices across all eight plots for trees with DBH higher than 7 cm, 10 cm and 20 cm are
reported.
RMSE (cm) rRMSE (% TDR (%)
>7 =10 =20 >7 =10 =20 >7 =10 =20
TLS 1.45 1.51 1.67 5.18 4.86 4.33 95.15 96.07 100
PLSpy 6.26 6.24 6.09 18.88 18.3 15.7 67.91 76.42 92.16
iPad 3.14 3.21 3.58 10.89 10.5 9.65 77.24 82.97 88.24
MultiCam 6.98 7.16 8.00 22.86 22.4 21.1 64.18 70.3 78.43
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4.2 Benchmarking of algorithms for point cloud processing

4.2.1 An approach for tree volume estimation using RANSAC and RHT algorithms from TLS
dataset

published as: Singh, A., Kushwaha, S. K. P., Nandy, S., & Padalia, H. (2022). An approach for
tree volume estimation using RANSAC and RHT algorithms from TLS dataset. Applied
Geomatics, 14(4), 785-794.

Extended summary:

The basic tree attributes (DBH and tree height) are the key to the advanced tree attributes (stem
volume and above-ground biomass). The conceptual methodology and detailed results are
mentioned in papers I11 and V1. In paper 111, DBH and tree height were estimated using TLS point
cloud with randomized hough transformation (RHT) and random sample consensus (RANSAC)

algorithms.

Tree parameter extraction using RHT

This method involves a coordinate transformation from a Cartesian to a polar coordinate system
and further the parametric description of objects. In the first step, DBH subsets of each tree cloud
were projected to a horizontal plane, and a possible center of the circle was located for every point
of the point cloud. The frequent center will be selected as a resulting center. The implementation
of the RHT algorithm was done in 3D Forest software. RHT detects the circle on the tree PCD at
1.3 m and 0.65 above the lowest point of the tree PCD. The tree position allocation was done by
the intersection of two vectors from two circles with the DTM surface of the tree PCD. The DBH
was estimated based on the sub-section of tree PCD from 1.25 to 1.35 m.

Tree height was also calculated in 3D Forest software by allocating the lowest point of the tree
cloud at the base of a tree. Tree height was calculated as the z-coordinate difference between the
highest and lowest (tree base) of the tree PCD.

Tree parameter extraction using RANSAC

This method encompasses two phases. The first phase is the hypothesis phase. In this phase, the
minimal sampling set (MSS) of points is formed using all the input points to create a specific
mathematical shape that satisfies some shape parameter. This phase would help to measure a tree
DBH and height proportionally. The second phase deals with the testing of these MSS. These
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sampling points were tested against all the dataset points. The points resembling the MSS points

form a new set of points known as a consensus set (CS).

The second step helped in the removal of outliers from the dataset. The algorithm is run multiple

times to filter out all the outliers from MSS and get a probable threshold. The inliers were then

selected in a cylinder shape, as shown in Figure 20.

(a) (b)

(c)

Figure 20: Visualization of (a) extracted tree point cloud, (b) presence of noise encircled with a black
circle, (c) filtered point cloud of tree stem at 1.34 m.

Relation between tree parameters retrieved using RHT and field-measurements

The tree parameters, such as DBH and tree height, were retrieved separately using RHT and field

measurement. The correlation R? between DBH obtained using RHT and field-measured values is

0.99, and 0.93 is obtained with tree height, which is mentioned in Figure 21. The R? value obtained

for heights calculated using both methods are 0.93, as shown in Figure 21.
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Figure 21: Correlation between (a) DBH observed using RHT and field-measured DBH and (b) height
estimated using RHT and field-measured height.

Relation between tree parameters retrieved using RANSAC and field measurements

The correlation value between heights calculated using RANSAC and the field-based method is
obtained as 0.80 shown in Figure 22. whereas for DBH, it is 0.98, as depicted in Figure 22. a. So,
it can be anticipated that DBH is more correlated with the field-based DBH than tree height.
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Figure 22: Correlation between (a) DBH calculated using RANSAC and field-measured DBH and (b)
height estimated using RHT and field-measured height.

The significance of the radius of the tree circumference was used to establish a relation between
radius and stem volume. The radius for all the trees was calculated and statistically analyzed. The
R? value obtained for radius and field-based stem volume is 0.84, which shows a very significant

relation between stem volume and radius; the relation is depicted in Figure 23.

R = 0.84
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Figure 23: Relation between radius calculated using RANSAC and stem Volume calculated using the
Forest Survey of India (FSI) equation

The correlation value obtained between the field estimated and RANSAC-based stem volume is
0.95. The correlation plot is shown in Figure 24. This represents the potential of RANSAC to
calculate the stem volume by merely using the radius and height of the tree. In FSI volumetric
equations, the stem volume is highly dependent on the species of the tree. In contrast, in RANSAC
the calculation of stem volume was mainly done with the tree structural parameters (radius of the

stem and tree height).
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Figure 24: Relation between RANSAC and field estimated volume

Secondly, the stem volume was estimated using DBH, and height was estimated with the RHT
algorithm in 3D Forest software. A relation between stem volumes was estimated using field-based
volumetric equations and RHT. The statistical analysis found that the R? is 0.99, representing the
high correlation between the stem volume estimated using RHT and the field measured; hence,
RHT can be directly used for estimating stem volume. The correlation plot is depicted in Figure
25.
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4.2.2 A review of point cloud processing software solutions in forest applications

published as: Murtiyoso, A., Cabo, C., Singh, A., Obaya, D. P., Cherlet, W., Stoddart, J., Fol, C.
R., Beloiu Schwenke, M., Rehush, N., Sterenczak, K., Calders, K., Griess, V. C., & Mokros, M.
(2024). A Review of Software Solutions to Process Ground-based Point Clouds in Forest
Applications. Current Forestry Reports. https://doi.org/10.1007/s40725-024-00228-2

Extended summary:

3D point clouds have provided forest practitioners and scientists with a new way of surveying
timber and ecological resources and conducting previously impossible research. As a result, more
and more scientific groups are intensively developing methods and technologies to automate the
surveying of ground plots and the determination of stand characteristics using point clouds.

However, there is a lack of standardization and dynamic comparison focusing on end users, such
as foresters, ecologists, scientists, and similar. There is a need for a joint initiative that will manage

the new findings and based on them, make standards for the above-mentioned end users.

In paper VII, a compiled list of available algorithms that deal with the processing of forest point
clouds was tested and implemented based on certain criteria. From this variety of algorithms
available, it might be challenging for users to decide which one to choose to fulfill their goals to
the best. Within the framework of 3DForEcoTech COST Action, a comprehensive database was
compiled to collect information about existing forest point cloud processing algorithms in one
place. The database currently includes 24 algorithms with special emphasis on point clouds

obtained by close-range techniques and ground-based platforms. Of the 24 solutions identified, 20

78



were open-source, 2 were free software, and 2 were commercial. For each of the algorithms
identified in our database, metadata was collected while installation and test runs were conducted
to assess their applicability for forestry. From these tests, technical guides on installation and
general use were written and will be included in the web platform. The database was also published
as a web-based platform, in which users may consult it easily using a query system. In this way,
the database may serve the community as a single source of information to select a specific

software/algorithm that works for their requirements.
Conclusion:

A comparative analysis of RHT and RANSAC algorithms is done for the estimation of DBH and
tree height. The results showed that DBH and tree height estimated suing RHT is more correlated
with the field measured values. Thereafter, stem volume estimation was also done using RHT and
RANSAC and evaluated with the field measured value. The results showed that the estimated and
observed values of stem volumes are highly correlated and therefore can be used for the estimation

of stem volume by surpassing the volumetric equations prosed by Forest Survey of India.

Thereafter, in subsection 4.2.2 a thorough review was done on point cloud processing software
solutions in forest applications. Installation and testing of all the enlisted algorithms compiled
using the currently and thoroughly used algorithms or software solutions was done. A database
including guidelines on usage and protocol was created and published on the website of

3DForEcotech project.
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Abstract

Forest structure plays a crucial role in maintaining the ecosystem balance. All the biogeochemical cycles need trees for the
successful execution of the processes. Nowadays, one of the most critical concerns is the accurate and precise assessment of
forest biomass. The biomass assessment can be done by knowing the canopy metrics, stem volume, and specific wood grav-
ity. This research used a terrestrial laser scanner (TLS) to retrieve tree parameters, providing point cloud data (PCD). The
parameters derived from PCD are diameter at breast height (DBH) and tree height using randomized Hough transformation
(RHT). With these tree parameters, the stem volume of the tree was calculated and correlated with the Forest Survey of India
(FSI) equation. The radius, DBH, tree height, and stem volume were also obtained using the Random Sample Consensus
(RANSAC) algorithm. The volume calculated using the RANSAC algorithm is statistically analyzed with the volume cal-
culated with the FSI equations available for specific tree species. The R* value obtained for the volume calculated by the
RANSAC and FSI equations is 0.95. In contrast, the correlation value obtained for the volume calculated by RHT and FSI
equations is 0.99. Therefore, it shows that both algorithms are highly correlated and can be used as an alternative method
for stem volume calculation, which will be less time-consuming and more accurate as well as precise. This method tries to
explain the alternative method to calculate tree stem volume without using the species-specific FSI equations, which may
sometimes produce biases and uncertainty in calculating stem volume and biomass.

Keywords Forest - Terrestrial laser scanner (TLS) - Random Sample Consensus (RANSAC) - Randomized Hough
transformation (RHT) - Diameter at breast height (DBH)

Introduction

Forests are the natural entity that is important for sustain-
ing life on the earth. It releases an ample amount of oxygen
and absorbs carbon dioxide. The maintenance and regula-
tion of changes occurring frequently need to be monitored
because these are one of the most sensitive parts of the earth.
Remote sensing brings much potential in this context. The
abrupt changes in biomass of the forests can be monitored
using remote sensing. It also helps to collect information
from the core areas of very dense forests which is inacces-
sible to humans. Remote sensing helps us to monitor some
of the crucial and critical parts of the forest and gives us a
Forestry and Ecology Department, Indian Institute comparative analysis of the area for the preceding years.
of Remotc Sensing (IIRS), Dehradun 248001, Uttarakhiand, Traditionally, destructive techniques were used for biomass
India 5

assessment. Later, these methods were discarded due to
environmental concerns and time taking procedures. Modern
technology leads us toward the non-destructive methodolo-
gies that can be implemented for assessing forest biomass.
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A terrestrial laser scanner (TLS) is a ground-based instru-
ment used nowadays for validation purposes and as a non-
destructive instrument in forest inventory. The parameters
such as diameter at breast height (DBH) and tree height were
retrieved using this instrument data and regressed with the
field-measured values using a measuring tape and a range-
finder. The results show a perfect correlation between the
TLS measured, and field-measured values of the parameters
of the tree (Liang et al. 2016). The application of a TLS is
in a wide range of disciplines (Newnham et al. 2015). Fur-
ther inventory application that has been done using a TLS
to retrieve DBH and height found that the DBH was more
correlated with the biomass than height when compared
with the field-measured values. Besides that, a TLS shows
promising results in the inventory of heterogeneous urban
forests (Moskal et al. 2012). The extended biomass allomet-
ric equation was developed for the mangrove trees using a
TLS (Olagoke 2015). The volume estimation was done using
a 3-D point cloud-based technique, in which the stem was
divided into small cylindrical sections. The diameter of these
cylindrical sections was used to calculate volume (Rudiger
Hildebrandt 2012).

SimpleTree software, which encompasses improved
cylindrical radii and has an optimized approach to correct
the user-given parameters automatically, was developed
using TLS point cloud data (PCD) (Hackenberg et al. 2015).
Two-scale classification methods can also be explored, fol-
lowed by the clustering and direction growing algorithm
developed for dense forests to identify the tree stems and
other fine structures (Shaoba Xia et al. 2015). Detecting
single stems of variable diameters is still challenging, and
the study has conveyed a fruitful methodology. The concep-
tual development of the cylindrical structure of the tree was
stored as hierarchical tree-like data having previous and fore-
head point relations (Hackenberg et al. 2014). A geometrical
model-fitting strategy was developed using the RANSAC
algorithm for tree detection and delineation for LIDAR PCD
(Tittmann et al. 2011). The stem reconstruction technique
was developed using PCD of TLS, a self-adaptive cylinder
growing method (Wang et al. 2016). For the enhanced for-
est monitoring and management, the canopy metrics have
been retrieved using the PCD of the TLS. Once the canopy
metrics are known, the volume and biomass can be assessed
with higher accuracy (Lim et al. 2013). The tree stem diam-
eter and height were retrieved using randomized Hough
transformation (RHT) and RANSAC algorithms (Olofsson
et al. 2014). The RANSAC algorithm was also used to form
primitive structures of PCD obtained by the TLS.

The primitive structures could be cylinders, cones,
squares, rectangles, etc. Models such as computer-aided
design (CAD) were used to automatically represent shape
proxies (Schnabel et al. 2007). The research has been
performed to segment trees into leaf, branch, and stem

@ Springer

using the region growing technique and principle com-
ponent analysis (PCA) (Koma et al. 2018). The TLS can
also be used for the quantification of post-fire effects
by deriving 18 metrics temporally (Gupta et al. 2015).
The crown variables were derived using an airborne laser
scanner (ALS) and a TLS, and the parameters used were
individual tree height, crown base height, crown area,
and crown volume, and showed that ALS and TLS com-
bined can give better results (Jung et al. 2011). One more
essential parameter is leaf area index (LAI), the tech-
nique used to convert 3D PCD into 2D raster images like
hemispherical photographs to estimate LAI (Zheng et al.
2013). It is also possible to find leaf orientation from
TLS data using the total least square fitting approach
(Zheng and Moskal 2012a, b).

TLS was very much exploited for the assessment of
above ground biomass (AGB); the technique used was
quantitative structure models (QSM) and AGB was cal-
culated using species-specific wood density equations
(Tanago et al. 2018). Urban forestry is also a concept for
environmental regulation; a TLS is used to create tree
maps along with mobile laser scanners (MLSs) and ALS
(Holopainen et al. 2013). The stem diameter and volume
were derived by incorporating circle fitting and scan
mode (Pueschel et al. 2013). A circular point cloud slic-
ing technique was evolved to study the spatial variation
of point density in radial and azimuth directions (Zheng
and Moskal 2012a, b). Maximum likelihood (MLE) was
used for better estimation of canopy profile, the direc-
tion of leaf angle, and LAI (Zhao et al. 2015). Different
techniques and methodologies were used to explore PCD
acquired using different platforms. Hence, a TLS can be
used for different purposes for the quantitative and qualita-
tive assessment of trees. The hypothesis of this research is
to investigate the high potential of RHT and RANSAC for
the estimation of stem volume. Also, identification of tree
parameters such as DBH, radius, and tree height correla-
tion with the stem volume is highly significant.

The main aim of this research is to utilize the already
established technique for tree volume estimation to rein-
state the classical tree harvesting technique to modern
non-destructive methods. So, RHT and RANSAC are used
for this purpose. The objective is to find the best algorithm
for stem volume calculation and statistically analyze its
importance for retrieving tree attribute information using
TLS without knowing the species of the tree.

Study area and dataset

The study area used in this research is Barkot Forest, and
the dataset used is PCD of TLS and field-measured data.
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Study area

The Barkot Forest is located between the latitude of 30°03'52”
to 30°10'43” N and longitude of 78°09'49” to 78°17'09” E.
The forest is present along the Dehradun-Rishikesh road, Utta-
rakhand, India. The altitude ranges from 340 to 560 m above
mean sea level (MSL). The total area of the forest is 84.96
km?. The forest type is moist deciduous and dominated by
the Shorea robusta (Sal) species; the understory vegetation
is dominated by Mallotus philippensis (Rohini). The rivers
present in the study area are Song and Ganga, and the nearby
towns are Doiwala and Rishikesh. Forest terrain is flat and
undulating; the study area is at the foot of the Himalayas and
surrounded by the lesser Himalayan Mountains in the north
and the Shivalik range in the south. With the increase in the
depth of the soil, the consistency becomes non-sticky friable to
sticky firm; the lower horizon of the soil profile is moist, firm,
compact, and comparatively hard. The location of the study
area is shown in Fig. 1.

TLS specification

In this research, a TLS is a ground-based static LIDAR
system that produces dense 3D information about the
trees in the forest plot. Riegl VZ 400 TLS was used for
extensive scanning of the 13 plots. This instrument is
of class | laser class. The measurement range varies
between 1.5 and 600 m. The instrument has a laser pulse
reception rate of 100 kHz, and the wavelength used for
scanning is near-infrared (NIR; 1050 nm). The accu-
racy and precision are + 5 mm and + 3 mm, respectively.
The horizontal scan angle range is up to 360°, and the
vertical scan range is 100° (4 60°/—40°). The scanning
mechanism is based on a rotating multifaceted mirror.
The scanner rotating head scans top to bottom in the
vertical scan and anti-clockwise in the horizontal scan.
The maximum angle resolution is 0.0005° (108 arcsec).
More specification details are shown in Table 1.
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Table 1 TLS instrument specification

Parameter

Description

Laser class

Scanner performance
Scan angle range
Scan speed

Scanning mechanism
Angular step width
A0 (vertical)

Ag (horizontal)
Angle resolution
Inclination sensor
Compass

Accuracy

Precision

Effective measurement rate (meas/sec)

Maximum measurement range

Class 1

Vertical scan

Total 100° (+60°/—40°)

3 lines/s to 120 lines/s

Rotating multifaceted mirror

0.0024° < A6 <0.288° between consecutive laser shoots

0.0005° (1.8 arcsec)

Integrated for vertical position

Optional for vertical scanner setup position

5 mm

3 mm

42,000 (long range mode)—122,000 (high speed mode)
600 m

Horizontal scan
Max. 360°

0°/s to 60°/s
Rotating head

0.024°<Ap<0.5°
between consecutive
scan lines

0.0005° (1.8 arcsec)
Scanner setup

Minimum measurement range 1.5m
Laser beam divergence 0.35 mrad
Laser pulse reception rate (PRR) 100 kHz

Laser wavelength

Near-infrared (1050 mm)

Methodology
Field data collection

Total 13 plots of 25 mx 25 m were established in the
Barkot Forest using the traditional forest inventory
method. The sampling of the plots was done using the
stratified random sampling method. The tree structure
measurements considered were tree height and DBH; the
tree height was measured using a hypsometer and DBH
was taken using a measuring tape. The database was pre-
pared for each tree in the 13 plots according to the specific
species of the trees. Later, the stem volume and total tree
biomass were calculated using the National Forest Inven-
tory (NFI) volumetric equations.

TLS data acquisition

The data acquisition is performed using a TLS, and four scans
were performed in each plot, one at the center of the plot and
three at the sides. The multiple scans were done to minimize
the tree occlusion and get maximum point cloud density. The
TLS Riegl VZ-400 works up to the range of 600 m. The hori-
zontal angle taken was 0° to 360°, and vertical angle scan was
set at 30° to 130°, and angular resolution opted was 0.03°.
Before the start of the scanning process, the retro-reflectors
were placed well-distributed and kept constant throughout the
scanning of the plot. Tagging of each tree in the plot was pri-
orly done. So, a total of 13 plots of 25 mx 25 m were scanned
and processed. The positioning of the TLS and the data acqui-
sition scheme are shown in Fig. 2.

Fig.2 TLS scanning scheme A

[ -
® & .. ® A Position of centre scan

® @ ® A Side scan positioning (3)

® A A % Position of side markers (4)
A [ L] ® @ Tree position during scans
@ Circular retro reflectors position (3)
® o e
® ® o9

@ Springer

83



Applied Geomatics

Registration of scans

The registration of scans was done to bring all the scans
to a common coordinate system because all the scans
were in a different local coordinate system The PCD
registration was done in the RiSCAN pro software. The
co-registration was done by considering the key points
and four common features in between two scan positions
using the Iterative Closest Point (ICP) algorithm. One
of the scans was fixed, and the other scans were co-reg-
istered with reference to the fixed scan. For the registra-
tion, a minimum of three tie points were required. After
the co-registration of scans, the merged PCD for each
plot were prepared. To remove the unwanted points (out-
liers) in the PCD, noise filtering was done in CloudCom-
pare software for all the 13 plots. A glimpse of scanned
plot and location of the reflector used while scanning is
shown in Fig. 3.

Extraction of a plot and single trees

Extraction of plots from the merged point cloud data was
done with the reference of reflectors placed at the four cor-
ners of a plot, so that segmentation of a plot would be easier.
After extracting the plot, individual trees were identified and
segmented out from the plot. The extraction of a single tree
out of a plot was also performed in the Cloud Compare soft-
ware and is shown in Fig. 4.

Estimation of tree parameters using the RHT
method

This method involves a coordinate transformation from a
Cartesian to a polar coordinate system and further the para-
metric description of objects. In the first step, DBH subsets
of each tree cloud were projected to a horizontal plane, and
a possible center of the circle was located for every point
of the point cloud. The frequent center will be selected as a
resulting center (Xu and Oja 2009). The implementation of
the RHT algorithm was done in 3D Forest software. RHT

Fig.3 Location of retro-reflector (red dot) in the plot scan

Fig.4 Showing the extracted plot and tree

detects the circle on tree PCD at 1.3 m and 0.65 above the
lowest point of the tree PCD. The tree position allocation
was done by intersection of two vectors from two circles
with the DTM surface of tree PCD. The DBH was esti-
mated based on the sub-section of tree PCD from 1.25 to
1.35m.

Parametrically, the circle is described as:

P =x—-a’+@y-b’
The coordinates x and y can be written as:

X =a—r*cos(a)

y=b—r* cos(a)

where

r = radius

(a, b) = coordinates of the center

(x, ¥) = coordinates of a point on the circle

a = angle

The DBH of the tree stem was calculated using the RHT
algorithm and then, the stem volume of the tree was calcu-
lated using the following equations

V =ar’H

where r is the radius of the tree stem in meters (m). H is the
height of the tree in meters (m), and V represents the stem
volume.

Tree height estimation

Tree height was also calculated in 3D Forest software by
allocating the lowest point of the tree cloud at the base of
a tree. Tree height was calculated as the z coordinate dif-
ference between the highest and lowest (tree base) of the
tree PCD. The display of height is in meters as a vertical
line touching the highest point of the cloud. Similarly,
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Distance: 11.071341
-0.940000
-0.403000
11.024000

1.022746
LYol 11.064004
Al 11.031363

Fig.5 Height of a single tree (m)

height estimation was done for all the trees in the plots.
The height of a single tree is shown in Fig. 5.

Tree parameter retrieval using the RANSAC
algorithm

RANSAC is based on a random sampling of observed data,
and it uses a voting scheme to find the optimal fitting results
based on inliers and outliers in the provided data.

This method encompasses two phases. The first phase is the
hypothesis phase. In this phase, the minimal sampling set (MSS)
of points is formed using all the input points to create a specific

@ Springer

mathematical shape that satisfies some shape parameter. This
phase would help to measure a tree DBH and height propor-
tionally. The second phase deals with the testing of these MSS.
These sampling points were tested against all the dataset points.
The points resembling the MSS points form a net set of points
known as a consensus set (CS) (Tran et al. 2015). The second
step helped in the removal of outliers from the dataset. The algo-
rithm is run multiple times to filter out all the outliers from MSS
and get a probable threshold. The inliers were then selected in a
cylinder shape, as shown in Fig. 6c¢.

Parameters of RANSAC for cylinder primitive
structure

The parameters are used to define a cylindrical primitive
structure. The stem was considered the cylinder, and all the
measurements were done using these parameters:

1) D: Dataset having inliers and outliers, which were fur-
ther characterized and removed using the RANSAC
algorithm.

2) MSS: Also known as minimal sample set of points.
These are formed using random mathematical shape
parameters out of all the points entered as D and finally
gave a model with definite shape parameters.

3) k: It defines the number of points required for the MSS.

4) Theta: Parameters obtained from the MSS points were
height, radius, center, etc.

5) CS: The consensus set of points with less than the
threshold error.

6) &: This is the error threshold, which is responsible for
whether the point belongs to the model or not.

Considering all these parameters, the algorithm decided
on the geometrical shape. After removing all the errors
above the error threshold limit, the surface points were
decided for a mathematical shape. Here, the shape formed
was the cylinder. The parameters required for making a cyl-
inder were radius and height.

The radius of the tree stems was obtained from the
RANSAC algorithm by using the following equation:

d=2r

where d is the DBH of the tree stem point cloud in meters.
The volume of the stems was obtained using the volume
equation of the cylinder.

V = nr’H

where r is the radius of the tree stem in meters (m). H is the
height of the tree in meters (m). The tree stem volumes (V)
were calculated using two algorithms, i.e., RANSAC and
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Fig.6 a Tree point cloud. b
Black encircled area is noise,
which is filtered. ¢ Filtered point
cloud of tree stem at 1.34 m

(a)

RHT. The correlation between the volumes was calculated
with the tree volume calculated using FSI-based species-
specific equations. The overall methodology followed during
this research is depicted in Fig. 7.

Results and discussion
Co-registration of scans

The co-registration of individual scans is performed in
RiScan PRO software for all the 13 plots. The center and

Fig.7 Workflow

Randomized Hough
Transformation (RHT)

Point cloud slicing at
DBH (1.34 m)

+ DBH
* Height

Stem Volume

(b) (c)

scan position 1 for plot 1 were registered with an error of
0.03. The center scan and scan position 2 were registered
with an error of 0.017. The error value of 0.029 is obtained
for the center and scan position 3. The detailed scan pair
information for plot 1 with its RMSE value is mentioned in
Table 2 as a reference.

Relation between tree parameters retrieved using
RHT and field-based measurement

The tree parameters such as DBH and tree height were
retrieved using RHT and field measurement separately.

TLS Data Acquisition

Field inventory

[ Point Cloud Co-registration ]

Stratified Random
Sampling

* DBH

* Height

Calculation of stem
volume based on FSI
equations

Noise filtering

RANSAC (shape
detection)

Correlation between radius
and Field measured stem
volume

PR

Validation
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Table 2 RMSE values of different scan pairs during co-registration

SCAN pair RMSE
Center and scan position 1 0.03
Center and scan position 2 0.017
Center and scan position 3 0.029

The correlation value R*> between DBH obtained using
RHT and field-measured values is 0.99, and 0.93 is
obtained with tree height, which is mentioned in Fig. 8. It
shows a strong relationship between the values obtained
using RHT and field measurement, which is shown in
Fig. 8a. Heights are also calculated using the RHT algo-
rithm and field-based measurement separately. The R*
value obtained for heights calculated using both methods
is 0.93 as shown in Fig. 8b. The DBH calculated using
RHT is based on the concept that the DBH subset is
projected to the tree cloud to find the center of the cloud
(Xu and Oja 2009).

Relation between stem volumes calculated using
the field-based method and RHT

Stem volumes of trees were calculated for 13 plots using
the RHT algorithm. A relation between stem volumes
calculated using field-based volumetric equation and
RHT was estimated. The statistical analysis was done and
found that the R? is 0.99, representing the high correla-
tion between the stem volume calculated using RHT and
the field measured; hence, RHT can be directly used for
estimating stem volume. The correlation plot is depicted
in Fig. 9.

Relation between tree parameters retrieved using
RANSAC and field-based measurement

RANSAC is based on the concept of random sample con-
sensus. The PCD of the tree stem was organized into out-
liers and inliers; the points are aligned based on the axis
of the primitive structure, which is considered a cylinder

y = 1.03x-0.03
R?=0.99

Field calculated stem volume (ton/0.1
h

0 15 2 45 6 75 9
Stem volume calculated using RHT (ton/0.1 ha)

Fig.9 Correlation plot between stem volumes calculated using RHT
and field-based method

here. The points that fit best in the structure are chosen,
and others are discarded (Tran et al. 2015). Tree parame-
ters such as tree height, DBH, and radius were calculated
again using an algorithm known as RANSAC. The corre-
lation value between heights calculated using RANSAC
and the field-based method is obtained as 0.80 which is
shown in Fig. 10b, whereas, for DBH, it is 0.98, depicted
in Fig. 10a. So, it can be anticipated that DBH is more
correlated with the field-based DBH than tree height.
The significance of the radius of the tree circumference
was used to establish a relation between radius and stem
volume. The radius for all the trees was calculated and
statistically analyzed. The R? value obtained for radius
and field-based stem volume is 0.84, which shows a very
significant relation between stem volume and radius; the
relation is depicted in Fig. 11.

Relation between stem volume calculated using
field-based method and RANSAC

The stem volumes for all the trees in 13 plots were cal-
culated using the RANSAC algorithm based on the sta-
tistical analysis with the tree parameters such as radius,
DBH, and tree height. The correlation value obtained
between field estimated and RANSAC-based stem

Fig.8 Correlation between a b by
DBH observed using RHT and 0/ e 099 o . Ri-0.08 s S
field, and b height estimated s 7 0/ i g0 :///
using RHT and field g0 . s 8P ©
0s .
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5 o M 5 15 050 868
? 02 &2 30 W
01 o*M s 56/80
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DBH RHT (m) Height RHT (m)
(a) (b)

@ Springer



Applied Geomatics

Fig.10 Correlation between a 1
DBH observed using RANSAC Ri=098
and field-based measurement, 08
and b height estimated using
RHT and field-based measure-
ment
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Fig.11 Relation between radius calculated using RANSAC and stem
volume calculated using the FSI equation
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Fig.12 Relation between RANSAC-calculated volume and field-esti-
mated volume

volume is 0.95. The correlation plot is shown in Fig. 12.
This represents the potential of RANSAC to calculate
the stem volume by merely using the radius and height
of the tree. In FSI volumetric equations, the stem volume
if highly dependent on the species of the tree, whereas
in RANSAC the calculation of stem volume was mainly
done with the tree structural parameters (radius of the
stem and tree height).

08 1 0 5 10 15 20 25 30 s
Height RANSAC (m)
(b)

Conclusions and recommendations
Conclusions

The research is based on the hypothesis that the stem volume
calculated strongly correlates with the independent varia-
bles such as DBH, radius, and height. The high correlation
between the tree parameters and stem volume proves the
hypothesis correct. Also, there is high potential in the algo-
rithm such as RHT and RANSAC to calculate stem volume.
This is proved that the assumption was correct and found
a strong correlation between all the variables taken into
account, such as DBH, tree height, stem volume, and radius,
using two algorithms and a field-based method. Apart from
this, the second objective was the calculation of stem vol-
umes for all the trees in different plots using these two algo-
rithms and found that the correlation is promising for the
volumes calculated using the RHT, RANSAC algorithm, and
FSI volumetric equations. This research attempted to form
an alternative method for the calculation of stem volume
without using FSI volumetric equations. The intention is to
remove the biases obtained due to species-specific volumet-
ric equations. The alternative method used is the RANSAC
and RHT algorithms for stem volume calculation and was
found to be highly correlated with the values obtained using
field-based volumetric equation calculation. So, this can be a
reliable method for calculating stem volume without know-
ing the species of the trees.

Recommendations and future scope

The future scope of this research is to establish more rela-
tions with other tree parameters and stem volume. The volu-
metric equation could be improved using other parameters
such as canopy cover, crown projection area, and LAIL. The
tree parameter retrieval needs to be 100% assured to mini-
mize the uncertainty in the biomass calculation. This can be
done with the further development of the volumetric equa-
tions, which will be fully automatized and free from any
restrictions and solely based on the structure of the tree.
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There is another possibility in this research to extend with
the experimentation of different combinations of scan posi-
tions in the plot. The tree parameter estimation can be widely
varied with different scan positions which also depend on
the number of tree detection in the plot. Also, apart from
RHT and RANSAC, other algorithms such as treeseg, rITLS
(R software package), and Forest Structural Complexity
Tool (FSCT) algorithm should also be compared to see the
accuracy in the tree parameter retrieval for the estimation
of stem volume.
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Abstract

Purpose of Review In recent years, the use of 3D point clouds in silviculture and forest ecology has seen a large increase in
interest. With the development of novel 3D capture technologies, such as laser scanning, an increasing number of algorithms
have been developed in parallel to process 3D point cloud data into more tangible results for forestry applications. From this
variety of available algorithms, it can be challenging for users to decide which to apply to fulfil their goals best. Here, we
present an extensive overview of point cloud acquisition and processing tools as well as their outputs for precision forestry.
We then provide a comprehensive database of 24 algorithms for processing forest point clouds obtained using close-range
techniques, specifically ground-based platforms.

Recent Findings Of the 24 solutions identified, 20 are open-source, two are free software, and the remaining two are com-
mercial products. The compiled database of solutions, along with the corresponding technical guides on installation and
general use, is accessible on a web-based platform as part of the COST Action 3DForEcoTech. The database may serve the
community as a single source of information to select a specific software/algorithm that works for their requirements.
Summary We conclude that the development of various algorithms for processing point clouds offers powerful tools that can
considerably impact forest inventories in the future, although we note the necessity of creating a standardisation paradigm.

Keywords Forest - Ground-based - Point Cloud - Review - Software - Web Platform

Introduction

Forests are complex terrestrial ecosystems that are dynamic
in time and space. They are home to 80% of the terres-
trial biodiversity of the planet [1]. Since time immemorial,
people have benefited from the numerous functions of the
forest in the form of goods and services provided by for-
est ecosystems, such as the provision of timber, clean water
and air, protection against natural hazards, and many others.
However, forests in Central Europe have not always been
treated with the same care as they are today, and the com-
plexity and interdependence of their functions have only
recently become valued. By the late 14th century, Central
Europe’s forests were severely damaged by over-exploita-
tion, resulting in a timber shortage. This shortage led to the
first attempts at planned reforestation, and the subsequent
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genesis of the fields of forestry and forest sciences [2]. By
the late 18th century, the principle of sustainability was
developed, advocating the creation and conservation of for-
ests and the use of wood in a stable and sustained manner
[3]. Ensuring sustainability required an intimate knowledge
of the current condition and extent of forests, as well as their
development; this need formed the foundation for the field
of forest inventory [4]. Forest inventory is defined as the
systematic collection of data and forest information for their
assessment or analysis. Basic information collected in for-
est inventories includes species, diameter at breast height,
height, age, defects, and site quality. Such detailed inven-
tories are still carried out today both at the national and
local level. However, they are labour intensive and require
trained personnel, making them very costly. In the 20th cen-
tury, new and more efficient methods using 3D mapping
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technology have been developed, but their application has
focused mainly on assessing timber volumes and the poten-
tial for timber harvesting.

With an increasing population and growing resource
demands, managing forests only for the provision of tim-
ber is no longer sufficient. In combination with rising labour
costs and declining timber prices, there is now a clear need
for more affordable yet detailed solutions. Additionally, the
major impact of climate change is leading to initiatives such
as climate-smart forestry [5]. The emphasis is on creating
resilient forest ecosystems where timber is no longer the
main product. That being said, such a forestry approach
will lead to even more demanding forest management and
inventory work.

The development of 3D capture technology has trig-
gered a revolution in the way forest resources are surveyed.
Airborne Laser Scanning (ALS), for example, has made it
possible to map extensive areas of forests and even whole
countries [6-8]. The quantification of point cloud in terms
of different types of statistics has facilitated the develop-
ment of statistical models that make it possible to predict
many biometric features of trees and to characterise forest
areas continuously (wall-to-wall maps) [9].

High-altitude aerial methods, such as ALS and photo-
grammetry, provide a large-scale forest perspective but with
sparse detail. On the other hand, Terrestrial Laser Scanning
(TLS), Mobile Laser Scanning (MLS), and close-range
photogrammetry technologies, deployed in either a ground-
based or a close-range aerial manner via Unmanned Aerial
Vehicles (UAVs), provide a small-scale but very detailed
perspective on forests [10]. This makes ground-based meth-
ods able to map the shape and dimension of individual trees
more precisely than aerial methods and to obtain informa-
tion about the forest understorey and regeneration [11-14].

These 3D mapping technologies may therefore be con-
sidered an alternative to traditional forest measurements
and are often used in forestry and forest ecology studies,
with a trend towards more use of laser scanning [15]. In
the last two decades, many studies have demonstrated the
high accuracy of direct measurements of forest parameters
when using TLS technology [16, 17]. However, its practi-
cal application remains a challenge due to the variety of
devices, the limitations imposed by the cost of implement-
ing these technologies, and, most importantly, the lack of
user know-how and lack of standards regarding data col-
lection and processing. Furthermore, depending on the
scale level of the inventory (national, local, or anything in
between), different 3D technologies may be considered. As
no standard currently exists on the levels of scale and detail,
it may be difficult for users to determine which sensor to use
in which circumstances. In many cases, there is also a need
to develop algorithms for detecting and determining target

@ Springer

characteristics of forest ecosystems, due to the highly frag-
mented processing solutions. However, the intensification
of scientific work and technological developments in recent
years suggest that these technologies will see considerable
use in the near future.

Three-dimensional point clouds have provided forest
practitioners and scientists with a completely new way of
assessing and monitoring forest resources and services, and
of conducting research that was previously impossible. As
a result, more and more scientific groups and practitioners
are intensively developing, often in parallel, methods and
technologies to automate the surveying of ground plots
and the determination of stand characteristics using point
clouds. Here, again, there is a lack of standardisation and
dynamic comparison with a focus on end users, such as for-
esters, ecologists and scientists. There is therefore a need
for a joint initiative to manage the new findings and make
standards for the above-mentioned end users.

In this paper we describe the results of one such initiative,
conducted within the context of the 3DForEcoTech COST
Action. In this initiative, our objectives were: (1) to com-
pile a list of available ready-to-use processing solutions to
derive forest characteristics from ground-based point clouds
based on criteria such as availability, focus and relevance,
and (2) to introduce a web platform with information about
the identified processing solutions, their availability, techni-
cal guides on installation and general use, and benchmark
results. Based on responses to a questionnaire distributed
within the vast network created by the COST Action, we
identified a total of 24 solutions.

In this review, we formulate three main aims: (1) to
explain the use of point clouds in forestry; (2) to summarise
forest point cloud processing and various approaches used
by the different algorithms; and (3) to describe the 24 solu-
tions compiled in the COST action survey. We also provide
an overview of the potentials and limitations of the com-
piled solutions, for use by practitioners and researchers who
would like to process point clouds for forestry applications.
The remaining sections of this paper are organised as fol-
lows. In Sect. 2 we explain the use of point clouds in for-
estry. In Sect. 3 we describe a literature study on the state
of the art in forest point cloud processing and the different
approaches used by the different algorithms. In Sect. 4 we
describe the 24 compiled solutions and discuss some of the
main observations. We finish with concluding remarks in
Sect. 5.
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Point Clouds for Forest Applications
Common Point Cloud Acquisition Techniques

A point cloud describes a collection of points known in a
cartesian tridimensional system and together forming a 3D
object [18]. As such, a point cloud is by nature a geometric
entity. Early conceptions of a point cloud already existed
in traditional land surveying [19]. However, the generation
of dense point clouds -- as the term is commonly under-
stood today -- only started with the advent of lidar [20].
Lidar, or laser scanning, is today one of the techniques
most commonly implemented in generating point clouds of
real-world objects [16, 21, 22*]. As an active range-based
sensor, a lidar device emits laser waves and records the dis-
tance between an object and the origin, along with sweep-
ing angles, thus computing discrete 3D coordinates which
form the backbone of a point cloud. A distinction is gener-
ally made between aerial and ground-based lidar [23, 24].
Aerial lidar, or ALS, may be distinguished according to its
platform, with UAV [25] being pertinent within the context
of close-range sensing. TLS and MLS are the most promi-
nent examples of ground-based lidar [18]. The term “lidar”
refers to the technology used, but is most commonly associ-
ated with and sometimes even considered interchangeable
with ALS, while TLS and MLS are sometimes referred to
as simply “laser scanning” [26]**. For ground-based forest
mapping, TLS may be considered as the reference, due to
the high quality of the data that may be achieved using this
technique [16, 27, 28].

The other major alternative to lidar is photogrammetry.
Photogrammetry is a much older technology, dating back
to the first use of aerial photography [29]. Unlike lidar, it
involves a passive image-based sensor which captures elec-
tromagnetic waves reflected by the surveyed object. Pho-
togrammetry originally relied on empirical principles, and
later on mathematical ones, to infer 3D coordinates from
2D images [30]. It was not until the last few decades that
it managed to rival lidar in the generation of dense point
clouds, thanks to new developments in the field of computer
vision. Automated image orientation was developed in par-
allel with Structure from Motion (SfM) methods [31], while
Multi-View Stereo (MVS) and dense matching principles
[32, 33] truly boosted photogrammetry’s popularity. Recent
developments also saw an increasing interest in learning-
based MVS [34] and novel 3D rendering methods, such
as Neural Radiance Fields (NeRF) [35] and 3D Gaussian
splatting [36]. Similar to its lidar counterpart, photogram-
metry may be implemented both from an aerial and from a
terrestrial perspective. Aerial photogrammetry traditionally
involves the acquisition of nadir images from an aerial plat-
form, which includes drones. However, oblique views are

also common, especially in close-range photogrammetry
[37]. Terrestrial close-range photogrammetry is especially
known to be able to deliver high-precision results with a
relatively low initial investment [38, 39]. However, it is not
applied often in a forestry setting, mainly due to its difficult
set-up in a forest environment. Indeed, traditional pinhole
photogrammetry relies on multiple overlapping images
taken in a convergent network, something which is difficult
to achieve in a heterogeneous and uneven environment [40].

In recent years, novel sensors have been developed with
a focus on portability and low cost, at the expense of preci-
sion. This philosophy of sensor development generally tries
to fill the gap between very high precision, expensive solu-
tions and low cost, generally lower quality ones. An inter-
esting example can be seen in the development of MLS,
which combines lidar technology with Simultaneous Local-
isation and Mapping (SLAM) methods. MLS has recently
seen many applications in forestry, thanks to its portability
[16,41]. While its precision is generally lower than station-
ary TLS, in many cases it is high enough for mapping for-
est attributes. The same reasoning has also pushed the use
of low-cost sensors in forestry, for example, depth cameras
[42], spherical and fish-eye photogrammetry [40, 43], and
the novel Solid-State Lidar (SSL) [44]. Figure 1 summarises
the different categories of close-range point cloud genera-
tion techniques. In this paper, we focus on solutions for pro-
cessing ground-based point clouds.

In terms of visualisation, the increasing availability of
affordable online platforms for processing large 3D point
clouds has facilitated the integration of point cloud data
with cutting-edge visualisation technologies, such as Vir-
tual Reality (VR) [45]. A major challenge in 3D rendering
is related to memory requirements. To overcome this issue,
many methods involve converting point clouds into meshes
to optimise memory usage and ensure smooth visualisation
[46, 47].

Data Types and Formats

The 3D representation of an object may take several forms,
with the point cloud being one of the most common and
the simplest in structure: point clouds are at their geometric
base simple lists of coordinates. Other forms of 3D repre-
sentations, like meshes, as well as volumetric and paramet-
ric models, are also commonly used, depending on the
requirements. 3D meshes often consist of triangles, whose
vertices are extracted from the point cloud. Volumetric and
parametric 3D models can use simple geometric primitives
and are also commonly used in information systems, e.g.
Building Information Models (BIM), or Quantitative Struc-
ture Models (QSM). Despite their geometric simplicity,
point clouds can be stored in various formats: binary files,
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Fig. 1 The different close-range point cloud acquisition techniques
available for forest mapping, categorised according to the type of data
acquired and then further divided into sub-categories according to the

Table 1 Features of some of the most common 3D formats available
for 3D point cloud data

Format  Data type Binary/ASCII  Compression Cus-
tom
fields

LAS Point cloud Binary Optional Yes

with LAZ
extension

PLY Point cloud, Both No Yes

mesh

PCD Point cloud Both Optional Yes

OBIJ Point cloud, ASCII No No

mesh

15,4 Point cloud, ASCII No Yes

volumetric
model

which are usually fast to read/write and allow compact stor-
age; and text files, which are more inefficient but simpler to
use and adapt. Point clouds can also be stored in a structured
or an unstructured manner. Unstructured point clouds are
simply lists of coordinates and attributes that can be concep-
tually pictured as a data table with as many rows as points
and as many columns as dimensions and attributes. All the
points in an unstructured point cloud must be in the same
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* Leaming-based MVS
(Stathopoulou ef al,, 2023)

¢ NeRF (Mildenhdllet al, 2020)
* Gaussian splatting (kerbl etal, 2023)

¢ MLS (Kikenbrink et al., 2022)
¢ SSL (Mokro3 etal. 2021)
* Depthcamerasirol et al, 2022)

sensor and algorithm (for image-based techniques) and hardware type
(for range-based techniques)

coordinate system. Conversely, structured point clouds have
a more complex arrangement: they store the data as they
were gathered in the field, together with all the additional
information needed to generate a coherent point cloud with
a unified coordinate system. Structured point clouds are
frequently generated in ground-based laser scanning (spe-
cifically in TLS) and with depth-cameras but are not so
common in ALS and photogrammetry.

Table 1 lists some of the most common point cloud for-
mats on the market. Additionally, some formats support
mesh and volumetric model representations on top of the
point cloud. LAS is a binary and unstructured format that
is used as a general exchange file format. It was initially
designed for ALS point clouds, but due to its simplicity it
is now used for any point cloud type. Most software for
processing point cloud data includes reading and writing
capabilities for this format. LAZ is a very common variant
of LAS that allows data compression (both with or with-
out information loss). Text files are also frequently used
for point cloud storage and exchange. In most cases, data
are stored in ASCII code and in an unstructured manner,
with one point per line in the text file and the coordinates
and attributes separated with commas, spaces or tabulated
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spaces. However, although there are some predefined text-
file formats for point clouds, there is no clear standard for
extended use, not even for the inclusion of metadata and/or
headings.

Regarding structured point clouds, almost every manu-
facturer of ground-based laser scanners has developed their
own format. These formats may be used for point cloud
registration, denoising, colouring, and initial shape detec-
tions. However, in most cases, especially in forestry, these
formats are only used for pre-processing the point clouds
before transforming them into other exchange formats, such
as LAS/LAZ or text files. E57 is another popular manufac-
turer-agnostic structured point cloud file format with read/
write support in many software solutions and algorithms.
This format is often encountered with TLS in the fields of
engineering, heritage and architecture, but it is not yet popu-
lar in forestry. Very few software solutions related to for-
estry allow the use of this format.

Examples of Point Cloud Applications in Silviculture
and Forest Ecology

Point cloud data obtained through laser scanning or similar
technologies that generate 3D representations have numer-
ous applications in silviculture and forest ecology. Further-
more, 3D data become increasingly important within the
monitoring context of Essential Climate Variables (ECV)
and Essential Biodiversity Variables (EBV) [48, 49]. Some
examples of point cloud applications are:

1. Forest and tree attribute inventory: Point cloud data can
be used to estimate conventional to complex forest attri-
butes, such as tree height, Diameter at Breast Height
(DBH), canopy cover, leaf area distribution, stem vol-
ume and Above Ground Biomass (AGB) [17, 50**, 51].
This information is crucial for forest management and
monitoring purposes. For example, lidar data, combined
with allometric models, can be used to estimate above
ground carbon stocks in forests [52]. This information
may be used to assess the carbon sequestration potential
and to evaluate the effectiveness of climate change miti-
gation strategies.

2. Tree species classification: By analysing the structural
characteristics of point cloud data, such as point den-
sity and canopy shape, we can apply machine learning
algorithms to retrieve information at the individual tree
level, e.g. using semantic and instance segmentation of
point clouds [53].

3. Forest structure analysis: Point cloud data enable the
quantification of forest structural parameters like can-
opy height profiles, vertical vegetation layers, and can-
opy gap distribution [54, 55]. By using lidar data, we

can also provide valuable information on the need fire
modelling, estimate forest canopy fuel parameters, map
fire risk, and evaluate the effectiveness of fire manage-
ment strategies [56].

4. Forest regeneration monitoring: Point cloud data can
help assess the success of forest regeneration efforts by
quantifying sapling density, height and spatial distribu-
tion within a forested area [57, 58]. These data aid in the
evaluation of forest recovery after disturbances such as
logging and fire.

5. Forest visualisation: Recent advancements in 3D scan-
ning technologies and the increasing availability of
affordable online platforms for processing large 3D
point clouds have facilitated the integration of point
cloud data with cutting-edge visualisation technolo-
gies, such as VR [45]. These applications can play a
crucial role in supporting forest management practices
and have the potential to contribute to the education of
future foresters [59].

State of the Art of Processing Algorithms
Point Cloud Processing Pipeline in Forestry

A main goal of the pipeline of point cloud processing for
forestry is to derive or directly measure information about
essential parameters of the forest on an individual tree basis
from captured point clouds. We consider measurements
of tree dimensions, such as DBH, tree height, volume and
selected crown parameters, essential parameters for forestry
and precision forestry. The post-acquisition pipeline can be
divided into general pre-processing and thematic (forest-
specific) processing. The pipeline is specific for each of
the processing solutions that are included in this paper, first
because there are various goals of these solutions and sec-
ond because the developers took different paths, for exam-
ple in the selection of the programming language.

As the first step, general pre-processing is normally
done within the dedicated software of the scanning device,
depending on the acquisition method. For example, manu-
facturers of laser scanners (whether terrestrial or mobile)
provide robust software solutions focusing on pre-pro-
cessing and many additional post-processing options. This
usually covers the registration of multiple scan positions
for TLS or the application of SLAM post-processing for
MLS data, in order to register the point cloud accurately.
Another important process is the georeferencing, filter-
ing and classification of the point clouds. These solutions
are however commercial in nature and is thus unavailable
for users who do not possess a specific license. In the case

@ Springer

94



Current Forestry Reports

of photogrammetry, the 2D images are processed into 3D
point clouds. This task is fully handled by photogrammetric
software. Some of the more popular options include Agi-
soft Metshape (Agisoft LCC, Saint Petersburg, Russia) and
Pix4D (Pix4D S.A., Prilly, Switzerland) [60], both of which
are also commercial solutions. The pre-processing of photo-
grammetric point clouds is more computationally demand-
ing than that for lidar point clouds [61], but it generally has
the major advantage of lower cost.

In general, these methods or even tool-specific software
packages provided by manufacturers do not have tools for
individual tree measurements. They therefore constitute a
first step in the pipeline, whose aim is to prepare the point
cloud for further processing more specifically targeting
individual tree measurements. In this regard, the thematic
processing of the pipeline has the goal of measuring the
parameters of individual trees. The method with which this
is done varies based on the software or algorithm used. It
usually starts with the segmentation or classification of the
point cloud. This can be approached with different levels of
complexity. For example, the FSCT pipeline [62] starts with
semantic segmentation, where the point cloud is segmented
into four categories using deep learning. On the other hand,
simpler approaches that do not use deep learning first focus
on the classification of terrain points. For example, Dendro-
cloud [63] divides the 3D point cloud by raster projection
with a specified cell size, where the minimum z-value is
searched and assigned to that particular cell. 3DForest [64]
on the other hand, uses a voxelisation of the point cloud,

Solid-state lidar & depth cameras
complexity

Close-range photogrammetry
to il complexity

where the minimal z-value is iteratively searched through
neighbouring voxels. Based on these points, digital terrain
is created, which is then used as a normalised surface from
which cross-sections are generated.

The most important parameter to measure is DBH, as
evidenced by the overwhelming availability across the pro-
cessing solutions from the compiled list described in the fol-
lowing sections. In most solutions this is done on spatially
grouped cross sections, often using either circle fitting or
cylinder fitting with the help of the Random Sample Con-
sensus (RANSAC) algorithm. In this regard, individual tree
detection is a prominent functionality which would enable
the solutions to compute the DBH as well as other tree
parameters such as diameter at multiple heights, tree height,
and stem volume.

Notions of Levels of Detail and Scene Scale

Different scenes may require different types of sensors and
various kinds of processing strategies, depending on the
scale of the scene and the requirements of the application.
While a systematic formal definition of levels of detail in
the general use of 3D data, particularly in urban environ-
ments, was presented in e.g., the CityGML paradigm [65],
similar attempts for formal but specific forestry definitions
are lacking in the literature. One such attempt was presented
in [66], summarised in Fig. 2. [67*] also presented an inter-
esting approach to categorise 3D data generation techniques
based on the complexity and size of the scene; this approach

to medium complexity

Fish-eye & spherical photogrammetry

TLS& MLS
to Bl complexity
UAV & ALS
to medium complexity
Satellite imagery
complexity
Micro Small Medium Large Very large
(<1m) (~1to 10m) (~10to 100 m) (~100 mto 1 km) (>1km)
Microhabitats, Single trees, branches, Forest plots Forest stands Forest ecosystem

forest traits tree canopy

Fig.2 Categorisation of the different levels of detail in 3D forests based on their spatial scales and how several 3D reconstruction techniques can

address the requirements of these scale levelsddapted from [66]
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influenced the creation of Fig. 2, in which the levels of detail
are divided according to the spatial scale.

In general, definitions of scales and levels of detail exist
in discussion of forests. While these definitions are not
directly analogous to similar ones used in urban settings, it
is possible to propose a sufficiently descriptive categorisa-
tion example, at least for the purposes of this paper. This
notion of level of detail in forest point clouds is by no means
authoritative, in part because the definitions of forest scale
levels may also be subject to different interpretations. As
can be seen in Fig. 2, five scale levels have been identi-
fied, ranging from very small objects (e.g. microhabitats)
to large scenes. Figure 2 likewise proposed a categorisation
of several 3D techniques in responding to the needs of each
scale level.

Figure 2 refers to five scale levels, namely micro, small,
medium, large, and very large. These levels were identified
based on a purely spatial data point of view; this means that
the levels’ definitions refer to both the area of the forest to
be covered by the 3D mapping and the expected geometric
accuracy of the point cloud. In this context, note that the
measurement of tree parameters such as DBH, tree height,
or tree position are sensor-agnostic in nature since they are
computed as derivatives of the point cloud as the main result
of 3D sensors. However, the precision and accuracy of those
parameters will be highly related to the quality of the point
cloud and therefore choice of sensor; hence the proposal
suggested by Fig. 2 to help future new users of the technol-
ogy decide which sensor is best suited to their needs.

Nevertheless, an important notion in the discussion of
levels of detail is the relationship between the expected
quality (be it in terms of point cloud resolution, precision
or accuracy) and the most appropriate technology to attain
it. This in turn influences the way processing algorithms are
developed. It is worth noting that in Fig. 2 both TLS and
MLS represent a “middle-ground” compromise between
details and scale. This explains their popularity in forest
applications, as highlighted by the identified processing
algorithms. Figure 2 does not, however, take into account
other factors, such as occlusion in the forest.

Heuristic vs. Machine Learning Methods

Point cloud processing algorithms can be roughly split into
two groups: heuristic and machine learning algorithms. Heu-
ristic algorithms represent a set of logical rules that guide
the user step by step toward the target result. In point cloud
processing routines, heuristic approaches usually operate on
the fitting of geometric primitives (lines, circles and cylin-
ders), the calculation of statistics/features per area unit (e.g.
cells) or space unit (e.g. voxels), and feature thresholding.
Due to their logical and understandable nature (hence the

term “knowledge-based™), heuristic approaches often serve
as a starting approach for extracting target information from
a point cloud. They are especially suitable when the amount
of data is limited [68]. Today, in the forest domain, heuristic
approaches dominate point cloud processing routines and
are often used to extract a wide range of forest characteris-
tics, e.g. the identification of individual trees and tree stems
[69-71], DBH and tree height [72-75], forest structure
characteristics [76], and Leaf-Area Index (LAI) [77-79].

A prominent example of the great success of a heuristic
approach to point cloud processing is the QSM, which com-
prise a set of rules to reconstruct tree architecture using cyl-
inder-based models [80, 81]. These models are widely used
to derive the total volume and AGB of the tree, as well as
its components [82—84]. However, heuristic algorithms may
suffer from generality issues (intra- and extra-technological
transferability/scalability). When they are applied to new
data, some processing steps in heuristic algorithms might
need adjustments (e.g. reconsidering thresholds and adding
or removing processing steps), contributing an empirical
aspect to the point cloud processing.

In contrast to heuristic algorithms, Machine Learn-
ing (ML) is generally used to extract forest characteristics
that do not follow a clear geometric pattern and are hardly
describable using a set of logical rules. ML implies super-
vised or unsupervised learning on a variable space, which
is usually compiled using engineered features or real mea-
surements (e.g. XYZ coordinates, spectral response). This
approach previously operated on classic machine learning
algorithms (e.g. Random Forest, Support Vector Machine,
and XGBoost) and a set of engineered features to iden-
tify tree species [85-87] or to separate leaves from wood
[88-90]. Today, however, Deep Learning (DL) is gaining
attention from forest researchers. In other domains, DL has
achieved state-of-the-art performance (sometimes even
outperforming humans) in classification, segmentation and
object detection tasks for both image and point cloud data.
Forest researchers have begun to explore its potential for
individual tree segmentation [91-93], tree species identifi-
cation [94-96], and semantic point cloud segmentation [28,
97, 98]. However, the forest domain is generally a user of
existing DL solutions rather than a developer of new ones.
Thus, it tends to be a few steps behind the current state-of-
the-art. It also suffers from a lack of large and representa-
tive public datasets to develop and calibrate DL models and
fairly benchmark them against other solutions [99].

Within the context of the algorithms identified in this
paper, most use a heuristic-based approach to generate the
output. However, both ML and DL have been used in several
algorithms in varying levels. Indeed, ML is not always used
directly (e.g. for semantic or instance segmentation) but
may be used to support the heuristic process, for example in
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performing individual tree segmentation, before referring to
heuristic methods to generate the output parameters.

Identified State-of-the-Art Algorithms
Methodology

The process of compiling the algorithm list for terrestrial
point cloud processing software solutions was conducted
through a series of structured activities under the 3DForE-
coTech Cost Action project. These activities were widely
publicised within the 3DForEcoTech community and its

Table2 Categories of the identified algorithms according to the sensor,
input, scale and output criteria

Information Availability Free software
and availability Non-commercial
Commercial
Licence
Implementation Package/library
Plugin
Standalone
Download site
Documentation site
Contact (owner/author/distributor)
Notable obstacles and/or requirements
Input point Laser scanning ~ Terrestrial Single scan
cloud Multiscan
technology Mobile
Terrestrial photogrammetry
Input format .LAS/LAZ
files Other file formats
Allows batch processing
Scale of Entire plots
applicability  Single trees

Pre-processing Data fusion of different point clouds

(including Digital terrain model (DTM)

subproduct Height normalisation (over the DTM)

outputs) Voxelisation

Output Per tree Diameter at breast height

parameters (DBH)
Individual tree detection and
location
Diameters along the stem
Total tree height (TH)
Trunk/stem volume
Crown parameters (diameter,
volume, etc.)
Segmentation of the stems
Quantitative structure model
(Q@sM)

Per plot Lead-wood classification
Percolation/empty space
Leaf-area index (LAI)
Total leaf area
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extended networks, and they involved various channels and
platforms accessible to participants. This effort resulted in
an initial list of 65 available software solutions, which was
subsequently refined to 24, based on criteria such as avail-
ability, focus and relevance. The creation of the initial list
involved comprehensive activities conducted within Work-
ing Group 3 (WG3) of the COST Action 3DForEcoTech,
including the distribution of an online questionnaire and
multiple COST Action meetings.

The aim of the questionnaire was to gather preliminary
information about algorithm implementations for point
cloud processing in forestry, focusing on ground-based point
clouds, tree/forest metrics, and publicly available solutions,
regardless of their being free, open-source or even commer-
cial. It was distributed to all 450 participants of 3DForE-
coTech, representing over 50 countries. Participants were
encouraged to share the questionnaire within their profes-
sional networks. Additionally, members of 3DForEcoTech
convened meetings to complement the questionnaire results
by identifying additional software solutions that may not
have been considered in the questionnaire.

Following the collection of questionnaire responses and
additional research from WG3 meetings, the initial software
list comprising 65 solutions was compiled. This list under-
went iterative review processes, facilitated by three Short
Term Scientific Missions (STSM), each involving a differ-
ent researcher. STSMs are funded scientific collaborations
within the framework of COST Actions. The review pro-
cess ensured: (i) compliance with the initial questionnaire
requirements for participant submissions, (ii) functionality
verification of the online-available versions of the software,
(ii) evaluation of the software’s capability to process simple
point clouds, (iii) assessment of the software documenta-
tion, and (iv) specificity for terrestrial point cloud pro-
cessing. Additionally, technical guides on installation and
running instructions, along with relevant supplementary
information, were compiled for each software solution.

To create a comprehensive database and overview of ter-
restrial point cloud processing software solutions, data were
gathered from publicly available documentation provided
by the authors/distributors of the implementations. Insights
obtained during STSMs were also incorporated into the
database. This resource compiles essential information for
each software solution, including inputs, outputs, processes,
and scope of use, and is intended to serve a valuable refer-
ence for understanding the functionalities and applicabil-
ity of each implementation within the context of terrestrial
point cloud processing in forest environments. Table 2 con-
tains all the categories and items assessed in the list and
database, including their basic information, availability,
suitable inputs (point cloud technologies and file formats),
scope of the application, and outputs.
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Identified Software Implementations

Each of the identified software was tested with differ-
ent configuration environments. The software was mainly
tested based on three important requirements, i.e. the ease
and requirements of implementation, the main functionality
of the software, and the possibility of errors occurring dur-
ing the installation procedure. Table 3 presents the names
of the identified solutions and a few important metadata,
including their associated licences. The table also shows
that the majority of the solutions are either open-source (20)
or free (2), with another 2 available as commercial software.
In most cases a relevant scientific publication was identi-
fied from the literature, although some contain explanations
on the algorithmic background while others focus on its
applications. Most of the open-source software solutions
are hosted by the git platform www.github.com. Notably,
the use of the R language is prevalent, although Python is a
close second.

Table 4 presents the characteristics of the identified solu-
tions in more detail. In general, of the 24 solutions identified
in this paper, all are able to process TLS data. While several

solutions do not support SfM and MLS data, most of them
are generally sensor-agnostic. LAS is the most prevalent
point cloud format, while batch processing is not a com-
mon feature. However, it should be noted that most of the
identified solutions are in the form of source code. Batch
processing is therefore theoretically possible, if not directly
available. Note that within Table 4, several cells had either
a “probably yes” (PY) or “probably no” (PN). This implies
that according to our tests the concerned solution includes
respectively availability or non-availability of the criteria
mentioned in the column, sometimes in an indirect manner.
However, we relegated it to “probably™ due to the absence
of a formal indication of such capability or lack thereof in
the software’s official documentation.

It is also interesting to note that while most solutions pro-
vide basic tree parameters, such as DBH (up to 75%) and
tree height (up to 54%), a few are highly specialised. For
example, Crossing3DForest was designed solely to create
QSM models and TLS2trees for stem segmentation. None
of the identified software and algorithms provide a feature
to compute total leaf area. Figure 3 summarises the findings
graphically.

Table3 General informa- Name License Link Relevant
Fion a‘nd a\'ailal?ility of the 24 publication
identified algorithms. Greencells ' package  Allometric (1) https://allometric.org/ [100]
denote open-source, yellow free ’ . ; - ;
software, and blue commercial Crossing3DForest ) https:/gitlab.com/Puletti/crossing3dforest ~ [101]
solutions CspStandSegmentation  (2) https:/fgithub.com/'Jl‘llFrey/' NA
CspStandSegmentation
FORTLS ) https://github.com/Molina-Valero/FORTLS  [102]
ITSMe ?) https:/github.com/ImterrynITSMe [86]
rTLS ) https://github.com/Antguz/iTLS [103]
rTLSDeep ?) https:/github.com/carlos-alberto-silva/ [104]
1TLsDeep
TreeLS 2) https:/github.com/cran/TreeLS [73]
VoxR ) https://github.com/Blecigne/VoxR [105]
C# Forest-taxator N/A https://github.com/maciej-malaszek/ [106]
forest-taxator
Matlab LeWoS (1) https:/github.com/dwang520/LeWoS [90]
Point_Cloud_Tools 3) https://github.com/tuomasyr/ [107]
Point-Cloud-Tools
TreeQSM 2 https://github.com/InverseTampere/ [108]
TreeQSM
Python FSCT 2 https://github.com/SKrisanski/FSCT [62]
OPALS N/A https://opals.geo.tuwien.ac.at/ [109]
TLS2trees 2 https:/github.com/philwilkes/TLS2trees [91]
TLSeparation (1) https://github.com/TLSeparation/source N/A
treetool 2 https://github.com/porteratzo/ TreeTool [110]
Standalone 3DFIN 2 https://github.com/3DFin/3DFin [75]
3DForest ) https://www.3dforest.en/ [64]
Computree “) https://computree.onf. fr/ [111]
dendrocloud N/A https:/gis.tuzvo.sk/dendrocloud/ [63]
AID-FOREST N/A https://dielmo.com/ [112]
Licences: (1) MIT: (2) GPL-3; (3) LiDAR 360 N/A h@s:./,/W\\W\ngreenvalleyintl.cmn/f NA
CC BY 4.0; (4) GPL/LGPL LiDAR360
@ Springer
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. “Y™" denotes availability and “N"" non-availability. “PY™ denotes “probably yes” while “PN™ signifies “prob-
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Fig.3 Polar plot showing the distribution of the identified solutions, classified into the pre-determined categories

Online Dissemination Platform

Based on the identified software list and successful testing,
an online platform was created for the end users. The infor-
mation in Table 4 is reflected in the platform and should help
users in choosing which solution suits their needs best and
meets the required accuracy. As a preliminary system, the
platform contains information from Table 4 in the form of
a web application. The selection criteria in the platform are
based on the categories defined in Table 2 and information
from the columns of Table 4 was thereafter fed into it. In this

way, the web-based platform may serve the community as a
single source of information to select a specific software or
algorithm that works for their requirements. Furthermore,
the online nature of the platform means that it will evolve
in time with regular updates of new algorithms and fea-
tures. In order to further improve the information presented
in the database especially regarding technical capabilities,
a benchmark was also performed on the solutions. This
benchmarking was performed during a hackathon organised
by 3DForEcoTech in September 2023, and its results will be
described in a future publication.
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The platform is currently hosted within the 3DForE-
coTech website (https:/3dforecotech.eu/database/ last
accessed 24 April 2024), where users may perform queries
based on the available categories (represented as columns in
Table 4). From the results of this query request, users may
then choose a specific algorithm and click on it to see more
information on a dedicated page for each algorithm. A con-
ceptual drawing of how the online platform works is given
in Fig. 4, and a concrete example of its implementation,
taken directly from the website, is showcased in Fig. 5. This
information page contains a description of the algorithm,
as well as links to the respective codes and/or implementa-
tion. Furthermore, for each algorithm identified in the data-
base, metadata were collected during installation and test
runs, to assess its applicability for forestry. From these tests,
technical guides on installation and general use were writ-
ten and included in the web platform. These user guides are
provided along with installation steps, basic computational
configuration requirements, contact details of the author of
the tool, and information on how to deal with possible errors
in specific computational configurations.

Comparisons and Discussions

In this review, we leveraged the unique opportunity pre-
sented by a community of 450 researchers and practitioners
from 50 countries dedicated to and/or interested in the appli-
cation of close-range technologies for characterising forest
environments, along with their extensive networks. We
believe there is a pressing need to establish a standardised
dynamic database of processing solutions that are dedicated
to ground-based point clouds and forest measurements.
In this paper we present one option to fulfil this need. It
has already been established in many studies that 3D point

1: Start page 2: Query page

AT 1

clouds are well suited to measure individual tree parameters
with high levels of detail and accuracy that can even exceed
the conventional approaches (e.g. [15, 16]). Furthermore, it
is important to note that this technology provides an option
to measure on a level of detail that was not possible before.
This in turn helps to address questions that previously could
only be answered on a theoretical basis. However, these
technologies are not yet commonly used by the wider com-
munity or relevant stakeholders, such as foresters, forest
ecologists and scientists outside the remote sensing field
[66].

By conducting a questionnaire and creating a database of
processing solutions, we aimed to show what solutions are
available and ready to use. More importantly, in this review
we hoped to identify what has already been solved prop-
erly within the available solutions, thereby aiding the com-
munity in avoiding doing work on the same solution in the
future. On the other hand, we also aimed to identify gaps in
the state of the art to highlight areas where future developers
should focus.

Observed Trends

In the discourse surrounding this review, it became evident
that the landscape of ground-based point cloud processing in
forest environments is primarily oriented towards automat-
ing precision forest inventory at the plot level. This involves
the meticulous measurement of individual trees, encom-
passing parameters such as tree location, DBH and tree
height. Such an approach closely mirrors the methodology
employed in traditional forest inventories, thus establishing
a familiar framework for practitioners transitioning into the
realm of point cloud analysis. However, despite the preva-
lence of these automated inventory solutions, there remains a
notable gap in the exploitation of the full potential offered by

3: Info page

(i]e oo

4: User guide

N\(x|e oo

=

@ /,:‘

Lo

S o

Fig.4 Conceptual representation of how the online platform presents Table 4 as a queriable database
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high resolution data such as Terrestrial Laser Scanner (TLS), Mobile Laser Scanner

Fig.5 A concrete example of how the online query works. In this example, FSCT was queried by the user. The platform provides a description of

the software solution and a link to the user guide

ground-based point clouds. While certain software solutions
delve into more complex metrics and analyses, the broader
utilisation of these datasets has yet to be fully realised.
Ground-based point clouds, by their very nature, offer a spa-
tially explicit and three-dimensional representation of forest
structure. This wealth of data holds considerable promise
for enabling measurements and estimations that surpass the
capabilities of conventional methods, including traditional

inventories reliant on manual tree-by-tree measurements,
aerial lidar surveys, and other forms of remote sensing. It
is imperative to recognise that ground-based point clouds
possess unique attributes that distinguish them from other
data sources. Unlike traditional inventories, which are often
limited by the labour-intensive nature of tree-by-tree assess-
ments, point clouds offer a comprehensive and continuous
dataset that captures the intricacies of forest ecosystems in
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unprecedented detail. Furthermore, their three-dimensional
nature facilitates advanced analyses, such as volumetric
assessments, canopy characterisation, and habitat mapping,
which have the potential to revolutionise our understanding
of forest dynamics and biodiversity.

In addition, advancements in Artificial Intelligence (AI)
methods applied to point clouds are beginning to usher in
algorithms for quantifying and mapping complex variables.
However, as emphasised throughout this work, publicly
available implementations remain scarce. In the specific case
of utilising novel DL methods, additional challenges arise
from creating publicly available implementations, includ-
ing those stemming from the complexity of configuring and
executing processes with specific hardware requirements,
such as the utilisation and management of GPU-based sys-
tems, along with the need for extensive training data and
long processing times to ensure functionality. These com-
plexities underscore the ongoing need for further research
and development to overcome barriers to widespread adop-
tion, to facilitate user-friendly operability, and to maximise
the potential of AI-driven approaches in ground-based point
cloud processing.

In light of these considerations, while existing ground-
based point cloud processing software solutions have made
large strides in automating forest inventory processes, there
exists a compelling opportunity to further innovate and
expand the scope of analysis. By leveraging the spatially
explicit and multidimensional nature of point cloud data,
researchers and practitioners can unlock new avenues for
ecological research, conservation planning, and sustain-
able forest management. As such, future developments in
this field should aim to harness the full potential of ground-
based point clouds, driving forward advancements in forest
science and management.

Identified Gaps

This study represents a unique opportunity to gain a com-
prehensive overview of existing implementations of algo-
rithms aimed at automating forest mensuration, inventory
and mapping. Although algorithms can be identified through
systematic paper searches, compiling a complete repertoire
of available software would require alternative means,
which are not always straightforward -- especially for non-
specialists. Thus, we encourage researchers to share, along
with scientific publications, their point-cloud processing
solutions implemented in a way that is as user-friendly as
possible. This will foster other researchers to not repeat, but
build on existing solutions and develop them further. It is
also worth noting that most of the identified algorithms and
software are usually focused on a particular problem related
to the developer’s needs. Indeed, the solutions are generally

@ Springer

good enough in terms of their main functionality but may
falter when repurposed for other needs. While this is a logi-
cal outcome of the software development process (i.e. to
solve a particular problem), there is a growing need for fully
automated software which includes all the pre-processing
and post-processing steps. The same incoherence can also
be seen by the fact that most solutions work with differ-
ent set-ups in terms of input file format and type (whether
plot level or individual tree level). None of the identified
software solutions has flexibility for the point cloud input
data and file formats, making them quite rigid. Further
challenges are also associated with the configuration and
implementation of each software solution, due to the spe-
cific computational requirements. Furthermore, this ad hoc
approach to software development has also hindered the full
exploitation of 3D data. As such, in real world applications
a 3D mapping mission is often times still accompanied by
in situ measurements (albeit reduced), which in some cases
may increase the cost, complexity, and required expertise
of the mission. This is naturally contrary to the promise
of 3D remote sensing technologies of performing simpler
measurements.

On the other hand, having several processing solutions
that target the same output (e.g. DBH) is natural and wel-
comed, since different algorithms can be used to derive it
and different datasets can be applied while developing the
solution. However, a reasonable and fair comparison of
the performance of such solutions is highly needed. From
this perspective, it is crucial to establish publicly available
benchmark datasets that comprise multi-sensor and multi-
platform point clouds and accurate reference measurements
of forest attributes from various forest ecosystems, optimally
from all over the world. Furthermore, such datasets would
be crucial for solution development, since they would fos-
ter the development of robust, sensor-agnostic and bias-free
approaches. The use of a standard dataset for benchmarking
purposes is already common practice in other domains, such
as computer vision [113, 114] and 3D architecture [115].

Role of a Dynamic and Online Database

The web platform/online database established as a product
of this survey is a step in the direction of knowledge con-
solidation in one place and a groundbreaking opportunity to
provide the scientific community with a curated list of algo-
rithms, supplemented by additional metadata. This resource
will enable users to select the most suitable software for
their needs, circumstances and output data, while simulta-
neously empowering software creators to avoid reinvent-
ing the wheel. By doing so, they can allocate their time and
resources more efficiently, ultimately advancing the field of
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terrestrial point cloud processing and enhancing its acces-
sibility and utility within the scientific community.

The compilation of the list and the database involved
meticulous review and analysis of available documentation,
as well as direct interaction with the software solutions dur-
ing the STSMs. By consolidating this information, the data-
base provides a comprehensive reference for researchers,
practitioners and stakeholders interested in ground-based
point cloud processing. It facilitates informed decision-
making and enables comparison among different software
solutions based on their capabilities and suitability for spe-
cific applications within forestry and related fields.

Conclusions and Outlook

In this paper, we described a review of state of the art point
cloud processing for ground-based forest applications, and
we presented a list of the available algorithms and software
solutions. The aim of the list’s compilation was to collect
the scattered information in one place, which we accom-
plished via the creation of an online searchable database.
The paper thus also summarises the state of 3D technology
in forestry. We then categorised the compiled list of 24 solu-
tions. Most of the identified solutions are open-source or
free, with an observed trend towards the general use of TLS
technology. This is evidenced by the fact that while many of
the solutions are sensor-agnostic, all of them take TLS data
as their default input. Furthermore, a few tree parameters
predominate as the computed output, in particular DBH.
This may be interpreted as the high demand for such values
in forestry applications and, by extension, the ever growing
interest in using 3D technologies for forest applications. It
is, however, an important caveat that variables such as DBH
and tree height are some of the basic tree parameters; it is
therefore only natural that solutions would aim to provide
them, regardless of the general state of the use of 3D tech-
nology in forestry.

On the other hand, the development of software solutions
is steadily progressing. Developers are creating software
solutions based on the most recent challenges for point cloud
processing that they encountered in their work as their prin-
cipal functionality. However, there is increasing demand for
software solutions which can not only carry out a single spe-
cific function but also help to assess basic forest inventory
parameters with appropriate accuracy. Also, there should be
a better solution for the computational requirement of the
specific software or tools. To grow user groups and facili-
tate the use of existing tools by various user types, not just
highly trained professionals, developers should focus on the
user-friendliness and ease of application of their tools.

In the near future, a benchmarking of the identified solu-
tions will be carried out to assess their geometric quality.
This benchmarking is intended to provide future users of the
web platform not only semantic information and metadata
on the solutions, but also tangible values that determine the
applicability of each solution according to the users’ needs.
A standardisation of this nature is also envisaged for other
aspects of ground-based 3D forest mapping, e.g. sensors
and protocols, within the context of the 3DForEcoTech
COST Action.
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4.3 Estimation of occlusion in canopy top points using TLS

4.3.1 Qualitative Analysis of Tree Canopy Top Points Extraction from Different Terrestrial Laser
Scanner Combinations in Forest Plots.

published as: Kushwaha, S. K. P., Singh, A., Jain, K., Vybostok, J., & Mokros, M. (2023).
Qualitative Analysis of Tree Canopy Top Points Extraction from Different Terrestrial Laser
Scanner Combinations in Forest Plots. ISPRS International Journal of Geo-Information, 12(6),
250.

Extended summary:

The effect of occlusion and quantitative analysis of the tree canopy top points was shown in paper
V. Eight plots were considered 25 x 25 m, of which four plots were of medium density and the
other four with high density, see Table 6. Six TLS scan combinations were made from nine scan
positions for each plot, such as Center Scans (CS), Four Corners Scans (FCS), Four Corners with
Centre Scans (FCwCS), Four Sides Centre Scans (FSCS), Four Sides Centre with Centre Scans
(FSCwCS).

Table 6: Shows the number of trees in each subplot for both the TLS plots.

Plot TLS_Plotl Plot TLS_Plot2
Subplots Number of Trees Subplots Number of Trees
TLS_ la 49 TLS_2a 102
TLS 1b 45 TLS 2b 72
TLS_ 1c 32 TLS_2c 78
TLS_1d 33 TLS_2d 76

After merging point clouds obtained from each TLS scan position, noise filtering was done, as the
noise can give false results during canopy top points extraction. Different grid sizes were tested,
and canopy top points were extracted at a 10 cm grid size. If the grid size is less than 10cm, the
number of points being extracted is quite dense in numbers; similarly, if the grid size is more than
10 cm, the number of points being extracted is very few, which would not have served our purpose
of extracting canopy top point at each tree stem position. Canopy top points at each tree stem
position were manually extracted from all the TLS combinations from the canopy top layer points.

The results show that the most significant combination of scans was FSCwCS with respect to ANS.
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The rRMSE obtained for plots TLS_Plotl and TLS_Plot2 ranged from 0.14 % to 2.48 % and 0.096
% to 1.22 %, respectively.

Conclusion:

An experiment was done to estimate and analyze the presence of occlusion in canopy top points.
A methodology was developed to qualitatively analysis the canopy top points extracted from
different combinations of TLS scan positions. Overall, six scan combinations were made and
compared with all nine scan (ANS) combination. The results showed that the FSCwCS scan
combination was most significant to ANS and the canopy top points extracted from the FSCwCS
was close to ANS combination. The CS combination had the highest number of points with the
relative height deviation greater than 10 m as the coverage of the TLS radially decreased towards

the corners and edges of the plots.
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Abstract: In forestry research, for forest inventories or other applications which require accurate 3D
information on the forest structure, a Terrestrial Laser Scanner (TLS) is an efficient tool for vegeta-
tion structure estimation. Light Detection and Ranging (LiDAR) can even provide high-resolution
information in tree canopies due to its high penetration capability. Depending on the forest plot size,
tree density, and structure, multiple TLS scans are acquired to cover the forest plot in all directions
to avoid any voids in the dataset that are generated. However, while increasing the number of
scans, we often tend to increase the data redundancy as we keep acquiring data for the same region
from multiple scan positions. In this research, an extensive qualitative analysis was carried out to
examine the capability and efficiency of TLS to generate canopy top points in six different scanning
combinations. A total of nine scans were acquired for each forest plot, and from these nine scans,
we made six different combinations to evaluate the 3D vegetation structure derived from each scan
combination, such as Center Scans (CS), Four Corners Scans (FCS), Four Corners with Center Scans
(FCw(CS), Four Sides Center Scans (FSCS), Four Sides Center with Center Scans (FSCwCS), and All
Nine Scans (ANS). We considered eight forest plots with dimensions of 25 m x 25 m, of which four
plots were of medium tree density, and the other four had a high tree density. The forest plots are
located in central Slovakia; European beech was the dominant tree species with a mixture of European
oak, Silver fir, Norway spruce, and European hornbeam. Altogether, 487 trees were considered for
this research. The quantification of tree canopy top points obtained from a TLS point cloud is very
crucial as the point cloud is used to derive the Digital Surface Model (DSM) and Canopy Height Model
(CHM). We also performed a statistical evaluation by calculating the differences in the canopy top
points between ANS and the five other combinations and found that the most significantly different
combination was FSCwCS respective to ANS. The Root Mean Squared Error (RMSE) of the deviations
in tree canopy top points obtained for plots TLS_Plot1 and TLS_Plot2 ranged from 0.89 m to 14.98 m
and 0.61 m to 7.78 m, respectively. The relative Root Mean Squared Error (rRMSE) obtained for plots
TLS_Plot1 and TLS_Plot2 ranged from 0.15% to 2.48% and 0.096% to 1.22%, respectively.

Keywords: forest; TLS; scan combinations; top canopy points; vegetation structure

1. Introduction

Forest inventories are essential to understanding tree structure dynamics. To under-
stand the productivity of the forest, a biomass assessment is required, which is dependent
on the Diameter at Breast Height (DBH) and tree height information. Forest ecosystems
play a crucial role in maintaining the natural balance since biogeochemical cycles are also
dependable on the healthy vegetation structure. Due to these reasons, accurate and precise
assessment of forest biomass has become a critical concern. Quantification of forest biomass
by calculating the forest volume is one of the important factors for estimating accurate
forest biomass for the maintenance of the global carbon cycle [1]. Therefore, the estimation
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of individual tree parameters is of utmost importance; the total structural information
of the tree also accounts for the canopy. Thus, out of the whole structure of the tree, the
accurate assessment of the total canopy cover allows us to understand the physiological
behaviors of a tree to the whole forest ecosystem [2].

Canopy cover is a very crucial indicator in forest monitoring and management appli-
cations. Canopy cover is not only important for the measurement of trees, but it can also
predict wildfire. Ladder fuels can bridge the gap between the surface and canopy of the
tree and can be responsible for more severe canopy fires [3]. Treetop points can be referred
to as the highest point of a particular tree, whereas canopy top points are the top points
obtained throughout the entire canopy region. Imagine it as all the points that would come
into contact first if a large blanket was laid from above the forest point cloud. These canopy
top points contribute to the generation of the Digital Surface Model (DSM) and Canopy
Height Model (CHM). However, in this research, only a few of the canopy top points are
considered for evaluation, i.e., canopy top points present at each tree location. Tree canopy
point extraction using a Terrestrial Laser Scanner (TLS) has always been difficult because of
sparse points and higher noise at the treetop during the scans, which can be due to dense
canopies, occlusions, larger tree heights, etc.

When the forest structures are complex with high tree densities, it is quite challenging
and time-consuming to acquire accurate tree attributes [4]. There is also a margin of error
while calculating tree heights through manual measurements in the field as there are
foliage occlusions which makes it difficult to identify the treetop or canopy top points
at a particular location. The rapid modelling of vegetation structures with accurate 3D
geometrical information has been gaining a lot of demand in recent years, especially
when field measurements are very expensive or nearly impossible. This has spurred
the development of the latest technologies. The extraction of forestry parameters (such
as DBH and tree height) is also possible using a multi-platform Light Detection and
Ranging (LiDAR) system [5]. A TLS is a ground-based static LIDAR portable system. TLS
has already shown promising results in acquiring forest metrics, including individual
tree parameters [6] with millimeter-level details [7]. It is also used for capturing the
branch-level information of trees in the forest plots and the local physiological state of the
structure [8]. TLS has shown potential in assessing the canopy fuel properties in terms of
canopy cover, canopy height, fuel strata gap, etc. [9]. TLS not only provides insights into
the tree canopy but also helps to understand the vegetation’s structural complexity and
its relationship with biodiversity. The 3D information has also been utilized to explore
other models and measurements of trees. To this end, the fundamentals of forest ecological
theories have also been tested by the Radiative Transfer (RT) model approach, which
is used to analyze the radiation mechanism in plants for photosynthesis, responses to
stress, and partitioning in energy consumption [10,11]. TLS is used to derive unbiased
and nondestructive estimates of the tree structure and volume and can, therefore, be
used to address key uncertainties in forest Above Ground Biomass (AGB) estimates [12].
A comparative analysis was also performed using TLS and traditional forest inventory
methods, including pixel and pipe methods [13], to evaluate the best and most automated
method for tree parameter extraction.

TLS has also been used for tropical forest structure estimation [14]. Since tropical
forests are the most complicated structure and comprise a large portion of underexplored
forest ecosystems, the relative vegetation profile was generated using a TLS point cloud.
It is also essential to assess the type of structural differences between the various types of
tropical forests [15]. TLS can also help to understand the correlation and cause of Basal
Stem Rot (BSR) and its effects on the oil palm plantation and its canopy architecture [16]. To
correctly estimate tree attributes, a 3D Quantitative Structure Model (QSM) is very useful
for measuring DBH and tree height and estimating AGB [17,18].

In forests, it is always thought that a greater number of TLS scans are required to obtain
more detailed information on the vegetation structure. However, this may not be efficient in
all cases. As the number of scans increases, it also increases the redundancy in the dataset,
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overall data size, and acquisition and processing time of the TLS scans. Therefore, it is very
important to evaluate the TLS approach in different forests and with different constraints. A
study was also carried out to analyze the influence of scan resolution, scanner parameters,
pulse duration, and scan speed on the tree stem diameter and volume extraction using
phase-shift FARO Photon 120 TLS data [19]. The influence of TLS visibility in forest
plots for tree metrics also has an important contribution. The efficiency and effectiveness
of 40 TLS scanning positions were tested, and the results showed that distributing TLS
scanning positions evenly within the forest plot produced good results. Setting similar
distances between each scanning position and edges of the plots produced an accurate
overall visibility of the forest stand [20]. Another study was conducted to test how different
scanner positions and plot sizes affect tree detection and diameter measurements for forest
inventories data collection, which was tested for circular plots with a radius of 20 m [21].

In our previous research [22], we analyzed the efficiency of all six different scanning
combinations for the ground coverage and quality of the Digital Terrain Model (DTM)
produced in different forest plots. It was observed that the Four Sides Center with Center
Scans (FSCwCS) combination was the most suitable scan combination to generate a DTM
similar to that of the All Nine Scans (ANS) combination. This research motivated us
to analyze the effect and efficiency of the TLS combinations at canopy surface points in
forest plots to determine if the FSCwCS combination is also suitable for canopy top points
extraction with respect to the ANS combination.

An extensive qualitative analysis was conducted for eight forest plots, of which four
plots had medium tree densities, and the other four had high tree densities. The main
objective of this research was to extract the tree canopy points in all six TLS scanning
combinations considered and to evaluate their performances in the canopy cover region.
Qualitative analysis of the efficiency of the TLS in canopy penetration and generation of
vegetation structure was evaluated above each tree stem position in all of the eight plots
considered in this research. CHM and DSM are derived from the point cloud dataset, and if
there are noise and occlusions in the point cloud dataset, it will affect the quality of the DSM
or CHM. Therefore, we have focused on the technical aspect of the raw point cloud dataset
itself and evaluated the TLS efficiency in canopy top points in different combinations.

2. Materials and Methods
2.1. Study Area

The forest plots considered for this research are located in central Slovakia within
the Kremnica Mountains. Multiple tree species are present in the study area region. The
dominant tree species is European beech (Fagus sylvatica) with a mixture of European oak
(Quercus robur), Silver fir (Abies alba), Norway spruce (Picea abies) and European hornbeam
(Carpinus betulus). The location information for both study areas (TLS_Plot1 and TLS_Plot2)
is depicted in Figure 1.

For the experiment, we established eight research plots spread within two forest stands
with two levels of densities; four subplots had a medium tree density (TLS_Plot1), and four
subplots had a high tree density (TLS_Plot2) (Figure 1). The number of trees in the medium-
density subplots varied from 32 to 49 trees, and in the high-density subplots, from 72 to
102 trees per plot (Table 1). The forest plots were considered with 25 m x 25 m dimensions.

Table 1. Number of trees in each of the four subplots for both research plots TLS_Plot1 and TLS_Plot2.

TLS_Plot1 TLS_Plot2
Subplots Number of Trees Subplots Number of Trees
TLS_la 49 TLS_2a 102
TLS_1b 45 TLS_2b 72
TLS_1c 32 TLS_2c 78
TLS_1d 33 TLS_2d 76
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Figure 1. Study area map depicting the location of TLS_Plot1 and TLS_Plot2.

2.2. Data Acquisition and Pre-Processing

The forest plots were established through a geodetic survey using the Global Naviga-
tion Satellite System (GNSS) receiver Topocon Hiper SR combined with the total station
Topocon 900. A total of nine TLS scans were performed in each of the eight forest plots
using the Faro Focus s70 laser scanner (FARO Technologies, Inc., Lake Mary, FL, USA).
Eight positions were evenly placed on the border of the plots, and one was placed in the
plot’s center. We used plastic spheres on reference sticks for co-registering the individual
TLS scan point clouds. These spheres were evenly spread around and inside the plots to
ensure that at least four of them would be seen from each TLS scan position. We used a
TLS resolution (point spacing) of 6.14 mm/10 m. Each scan took 2 min and 24 s (2 kpt/s).

All the raw TLS scans were imported into Faroscene software for pre-processing.
Reflectors (plastic spheres) were detected automatically, and false reflectors were manually
deleted. These detected reflectors from each scan position were used to merge the point
clouds obtained from each scan position. Six checkerboards were placed at the center of
the plot so that the checkerboards were visible from the center TLS scan position. These
checkerboards were automatically detected and used for georeferencing the point clouds.

From all the scan positions, a total of six possible combinations were considered for
the data analysis, which is briefly presented in the following section.

2.2.1. CS Combination

In this combination, only one scan position was considered, which was positioned at
the center of the forest plot. As the scan was in the center, the TLS could collect the data in
one complete sphere of influence. The sphere of influence is the imaginary region in which
the TLS is capable of generating a point cloud (Figure 2).

7= Sphere of Influence

@ R

Figure 2. (a) Diagram of a TLS with its 360° Horizontal Field of View (HFOV) and 320° Vertical Field
of View (VFOV), and the region of data generation is its sphere of influence. (b) Image of the TLS
instrument in one of the forest plots.
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2.2.2. FCS Combination

In this combination, four scan positions were considered, which were positioned at the
four corners of the forest plot. The TLS scans were placed at the corners so that the scans
could cover only 90° HFOV of the plot from each corner position, generating a point cloud
in a quarter sphere of influence. Thus, all four scans at the corners could only contribute to
one sphere of influence for the dataset when combined together.

2.2.3. FCwCS Combination

In this combination, five scan positions were considered. Four scans were placed at the
four corners and one at the center of the forest plot. As the scans were placed at the corner
and center, they could cumulatively contribute to two spheres of influence for the dataset.
Four corners scans contribute to one sphere of influence, and the center scan contributes to
one sphere of influence.

2.2.4. FSCS Combination

In this combination, four scan positions were considered. Which were placed at the
center of all four sides. As each scan could cover only a 180° HFOV of the plot, they
contributed to a half sphere of influence for the dataset. Therefore, a total of two spheres of
influence for the dataset could be created in this combination.

2.2.5. FSCwCS Combination

In this combination, five scan positions were considered. Four scans from the center of
each side and one at the center of the forest plot. Each side center scan contribute half of a
sphere of influence, and the center scan contributes one complete sphere of influence. Therefore,
a total of three spheres of influence for the dataset could be created with this combination.

2.2.6. ANS Combination

In this combination, nine scan positions were considered. Four scans were placed at the
four corners, four other scans at the four side centers, and one at the center of the forest plot.
The corner scans contribute to a quarter sphere of influence, the side center scans contribute
half a sphere of influence, and the center scan contributes a complete sphere of influence. A
total of four spheres of influence for the dataset could be created with this combination.

The theoretical representation of the patterns and positions of the TLS combinations
followed for the data acquisition and processing are depicted in Figure 3; However, these
behaved differently because of the standing trees in the forest plots. Hypothetically speak-
ing, based on the theoretical maps from Figure 3, the combination FSCwCS should produce
the most similar canopy top points to those of the ANS combination even with 4 fewer scan
positions, as was observed for terrain points [22]. Further evaluation is needed to support
or reject this hypothesis.

As the ANS scan combination had the highest number of scans and sphere of influence,
the ANS scan combination was used as the reference dataset, which the other scan combi-
nation dataset was evaluated against. For visualization, the ANS scan combination point
cloud datasets obtained for plots TLS_la and TLS_2a are shown in Figure 4ab, respectively.

2.3. Research Methodology

Six different TLS scan combination datasets were generated for each forest plot. Then,
the canopy top points were extracted in each TLS scan combination, and a few canopy top
points at the local grid of each tree stem position were clipped using the clipping tool in
Cloudcompare [23]. Here, a local grid represents an imaginary region bounding the tree
stem above which the canopy top points were extracted (Figure 6).

Multiple top points were extracted within the local grid for each combination. The
highest point among these multiple points was considered the canopy top point for that
particular combination at that local grid of that particular tree stem. These points were used
for further analysis. Using the canopy top points extracted in the ANS scan combination as
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a reference, relative height differences with the canopy top points extracted in the other
five scan combinations were calculated. The spatial analysis of relative height deviation
was performed, and the results are shown in Figures 9 and 11. The research methodology
followed throughout this research is represented as a workflow in Figure 5.

(d) FSCS

(b) FCS

(c) FCwCS

(e) FSCWCS (f) ANS

Radial decrease in point cloud density ——

Figure 3. Theoretical representation of TLS scan positions and their spheres of influence in all six
scan combination patterns. (a) Center Scans (CS), (b) Four Corners Scans (FCS), (c) Four Corners with
Center Scans (FCwCS), (d) Four Sides Center Scans (FSCS), (e) Four Sides Center with Center Scans
(FSCw(CS), and (f) All Nine Scans (ANS)—The ANS combination was used as a reference.

503.11019

(b)

Figure 4. ANS scan combination point cloud datasets for plots (a) TLS_la and (b) TLS_2a.
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Figure 5. Research methodology.

2.3.1. Canopy Top Points Extraction at Each Stem Local Grid Positions

The canopy top points were extracted in all the scan combinations for all eight forest
plots in Dendrocloud [24]. The extract surface tool in the Dendrocloud software Version
1.53 was used to extract all the canopy surface points from the point cloud datasets with
a grid size of 10 cm. The tool basically extracts the highest points within a cuboid region
on the grid size mentioned as the canopy top point. The overall point cloud datasets are
represented in the larger cuboid, and the canopy points extracted in a local cuboid region
are shown in a smaller cuboid (base shown in blue) in Figure 6.

/ Plot Size

e Highest point within the grid

Canopy points within the grid

Grid Size to extract points within it

Figure 6. Diagram showing the grid size with respect to to the plot size in which the highest points
were extracted to identify canopy top points in each TLS scan combination.
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The canopy top points extracted from all the TLS scan combinations are shown for
TLS_la and TLS_2a in Figure 7a,b, respectively.

FCwCS FSCS FSCwCS ANS
(a) TLS_1a

FCwCS FSCS FSCwCS ANS
(b) TLS_2a

Figure 7. Canopy top points obtained in each TLS scan combination for forest plots (a) TLS_1a,
(b) TLS_2a.

All the canopy top points obtained from all six combinations were opened together
along with tree stems, and the point clouds were manually clipped to obtain the highest
canopy point at that tree stem position. Then, the highest point in each canopy top point
cloud at that tree stem position was used to represent the canopy top point at that tree stem
position from all six TLS combinations (Figure 8). The canopy top points extracted at each
stem grid position were used for spatial analysis of the variations in the heights between
all the TLS scan combinations.

607 475473

603.110193

598.74:313

590014333

585.642073

(© (d)

Figure 8. (a) Image representing canopy top points from all six combinations and a tree stem within a
local grid (shown as a green bounding box) in which the canopy top points were extracted corresponding
to the tree stem (top view). Canopy top points extracted above the tree stem for (b) CS shown in white,
(c) FCS shown in pink, (d) FCwCS shown in blue, (e) FSCS shown in yellow, (f) FSCwCS shown in green,
(g) ANS shown in red (front view), and (h) scale bar for points shown in (b-g).
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2.3.2. Data Evaluation

The point cloud data collected using TLS were divided into 6 TLS scan combinations
for the plots in TLS_Plotl and TLS_Plot2. Afterward, the relative elevation deviation
between the canopy top points was calculated for each combination in the plots with
respect to the ANS combination. Using all the combinations, we calculated the errors to
evaluate the data.

The Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and relative Root
Mean Squared Error (rRMSE) were calculated to compare the results obtained from the
different combinations in the plots as shown in Equations (1)—(3), respectively.

1 &
RMSE = |/ Yo, (a-9)? )

1 N 5
MAE = S 30 [Yi-Y

@

N, (-9

rRMSE =
NI Yi

x 100 ®)

where,
Y; is the actual observation (m),

Y is the estimated observation (m), and
N is the total number of observations.

To measure the statistical significance of all the combinations in terms of relative
elevation deviation between the canopy top points and plot combinations, a two-way
Analysis of Variance (ANOVA) was used. To identify the statistical significance of the
difference between combinations, plots, and the relative elevation deviation between the
canopy top points, Tukey post hoc tests were performed. The statistical analysis was
conducted in R software.

3. Results

Spatial analysis and canopy top height differences for forest plot TLS_1a are presented
in Section 3.1, forest plot TLS_2a is presented in Section 3.2, and forest plots TLS_1b, 1c 1d,
2b, 2¢, and 2d are presented in Appendix A section.

3.1. Spatial Analysis for Forest Plot TLS_1a

After the canopy top points extraction at each stem grid position in the forest plots
for all the scan combinations, further analysis was conducted to observe the elevation
deviation between the canopy top points in all the scan combinations with respect to the
ANS scan combination at each tree stem position. The elevation deviations were spatially
plotted to see the observations with reference to the spatial distribution along the plot. The
plotting was based on the relative height deviation in meters; from 0 m to 1 m, 1 m to
2m,2mto5m,5m to 10 m, and greater than 10 m are shown in dark green, light green,
blue, light pink, and red colors, respectively. The maximum number of canopy points
with an elevation difference of less than 1 m was generated with the FSCwCS combination,
whereas the maximum canopy height difference of more than 10 m was observed in the CS
combination. The spatial height deviations for plot TLS_1a are shown in Figure 9.

Canopy Top Height Differences for Forest Plot TLS_la

The deviations in the relative spatial height difference between canopy top points in
CS, FCS, FCwCS, FSCS, and FSCwCS with respect to the ANS scan combination for each
tree in TLS_1a is shown as a graph in Figure 10.
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Figure 9. The spatial height differences between canopy top points obtained at each tree stem position
in each of the TLS scan combinations for forest plot TLS_la with respect to ANS scan combination.
(a) Ah CS and ANS, (b) Ah FCS and ANS, (c) Ah FCwCS and ANS, (d) Ah FSCS and ANS, and (e) Ah

FSCwCS and ANS.

Relative spatial height difference between canopy top points in CS, FCS, FCwCS, FSCS, FSCwCS w.r.t ANS scan combination for TLS la

=——Ah CS & ANS

Elevation Difference (Meter)
B

a

=——Ah FCS & ANS

~—AhFCw(S & ANS  ——Ah FSCS & ANS
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Figure 10. Graph showing relative spatial height differences between canopy top points in CS, FCS,
FCwCS, FSCS, and FSCwCS with respect to ANS scan combination for each tree in TLS_1a.

3.2. Spatial Analysis for Forest Plot TLS_2a

The spatial height difference between canopy top points obtained from each of the
TLS scan combinations for forest plot TLS_2a with respect to the ANS scan combination at
each tree stems position is shown in Figure 11. The maximum number of canopy points
with an elevation difference of less than 1 m was generated with the FSCwCS combination,
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whereas the maximum number of canopy points with an elevation difference of more than
10 m was observed in the CS combination.
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Figure 11. The spatial height differences between canopy top points obtained at each tree stem
position from each of the TLS scan combinations for forest plot TLS_2a with respect to ANS scan
combination. (a) Ah CS and ANS, (b) Ah FCS and ANS, (c) Ah FCwCS and ANS, (d) Ah FSCS and
ANS, and (e) Ah FSCwCS and ANS.

Spatial Canopy Top Height Differences for Forest Plot TLS_2a

The relative spatial height difference between canopy top points in CS, FCS, FCwCS,

FSCS, and FSCwCS with respect to the ANS scan combination for each tree in TLS_2a is
shown as a graph in Figure 12.

Relative spatial height difference between canopy top points in CS, FCS, FCwCS, FSCS, FSCwCS w.r.t ANS scan combination for TLS 2a
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Figure 12. Graph showing relative spatial height differences between canopy top points in CS, FCS,
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FCwCS, FSCS, and FSCwCS with respect to ANS scan combination for TLS_2a.
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3.3. Qualitative Statistical Analysis for the Relative Canopy Heights

The relative elevation deviation between the canopy top points was calculated for
each combination in the plots with respect to the ANS results in all the plots. Using
the observation and analysis results obtained in the previous sections, the rRMSE was
calculated. Statistical analysis was performed on the results obtained from the values
computed from rRMSE. The rRMSE value obtained for TLS_Plot1 ranged from 0.15% to
2.48%. Overall, the combination of Z.FSCwCS and Z.ANS in TLS_la showed the best
results for the elevation deviation of the canopy points of trees in the respective plot.

The statistical error observed for TLS_Plot2 was analyzed. The scan combinations that
came with the lowest error in the elevation difference of canopy points are ZFSCwCS and
Z.ANS for all the plots. The rRMSE values ranged between 0.096% and 1.22%. Overall,
the TLS_2c plot with the combination of FSCwCS and ANS had the lowest error in the
elevation differences of canopy points in all the trees among all the plots.

The rRMSE values obtained from all the relative canopy heights at each tree stem posi-
tion from CS, FCS, FCwCS, FSCS, and FSCwCS with respect to the ANS scan combination
for TLS_Plot1 and TLS_Plot2 are shown in Figure 13a,b.

15 20 25

rRMSE(%)
05 10
1 1
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T . :
o | H
£ 8-
w
n ©
= O T T
x ! :
< | ! —_—
o 1
o~ i
o PR SE—
T T T T
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(b)

Figure 13. Graph plots showing rRMSE for (a) TLS_Plot1 and (b) TLS_Plot2.

Two-way ANOVA was performed considering different scan position combinations as
one group and plots as another group to analyze the significant difference and impact on
the relative elevation deviation of all combinations between the canopy top points among
all the plots. It was performed to see whether there was any significant difference between
the groups and within the group.

Hence, the relative elevation deviation of all combinations between the canopy top
points among all the plots was significant at all tree stem positions. The scan combinations
and their interactions with the plots were significantly impacting the relative elevation devi-
ation of canopy top points. The ANOVA is shown in Table Al. Later, we performed a Tukey
post hoc test to support ANOVA because we found a significant difference between the two
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groups (combinations and plots). So, due to the significant difference between these groups,
the change in combinations of scan positions in the plot significantly affected the difference
in the elevation of canopy points. Moreover, plots and combinations were significantly
different from each other. When only combinations were compared, the Z.FCwCS-Z.ANS,
Z.FSCwCS-Z.ANS, Z.FSCS-Z.FCS, and Z.FSCwCS-Z.FCwCS were not significant. When
the Canopy Top Points Layer (CTPL) obtained from all plots was compared, CTPL_1c-
CTPL_1b, CTP L_1d-CTPL_1c, and CTPL_2c-CTPL_2b were insignificant. To compare
interactions, 1125 pairs were generated, out of which 732 pairs were significantly different
from each other. The differences are depicted in Tables A2 and A3.

4. Discussions
4.1. Noise Removal above the Canopy Regions

After merging the point clouds obtained from each TLS scan position, noise filtering is
an important step, as noise can produce false results during canopy top points extraction.
We have manually removed the noise as best as possible in this research using prior
experience in point cloud data processing. However, we would like to present the situation
of the points obtained at the canopy and above the canopy layer. Some points are too far
from the canopy, which can easily be segmented out as noise, which is shown as sure noise
points within red boundaries in Figure 14. Some points were close to the canopy and very
sparsely dispersed. In this case, it is quite challenging to determine whether they are noise;
they are shown as unsure noise points within violet boundaries in Figure 14. Since we are
evaluating the canopy top points, it was critically important to segment out noise precisely.
This was performed by observing the point cloud in different views and at small chunk
levels to determine if a point is a noise.

O Noise - sure

O Noise - unsure

Figure 14. Shows a close-up front view of the forest point cloud at the canopy level, which shows
sure noise points in red boundaries and unsure noise points in violet boundaries.

4.2. Selection of Grid Size for Canopy Top Points Extraction in Dendrocloud

The canopy top points can be extracted at different grid sizes in Dendrocloud software.
We have tried different grid sizes, and we came to a conclusion to extract the canopy
top points using a 10cm grid size. If the grid size was more than 10 cm, the number of
points being extracted was quite dense; similarly, if the grid size was less than 10 cm, the
number of points being extracted was too low, which would not have served our purpose
of extracting canopy top point at each tree stem position.
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4.3. Highest Point Extraction at Each Tree Stem Position

The canopy top points at each tree stem position were manually extracted from all the
TLS combinations from the canopy top layer points obtained from the process mentioned in
Section 4.2. As the axis of the trees was not perpendicular for all the trees, there were some
trees whose trunks were in between two plots which was a critical situation to consider; for
example, there were some trees whose trunks were in one plot and the top in a different
plot and there were also fallen trees whose branches were perpendicular which were falsely
identified as individual trees, etc. With all these constraints under consideration, analyzing
all eight plots and with six combinations was quite time-consuming. However, the accuracy
of these extracted points was critical for the relative spatial analysis of the canopy top
points at each tree stem position.

4.4. Effect of Number of Scans and Position of Scans on the Point Cloud Generation

In research carried out by Trochta J. et al., they found that the number of trees de-
tected in a forest plot depended on the number of scanners and the close proximity of
the trees to the scanner position. They tested tree detection in four scenarios with one
scan, two scans, three scans, and four scans in different forest sites with different terrain
undulations [25].Wan. P et al. conducted similar research to evaluate the efficiency of tree
detection using TLS. However, they only used single scans in forests with three levels of
densities and concluded that a single scan is only reliable for small forest plots that are less
than 10 m in size [26].

In our research, we observed that the CS combination had the highest number of
points with a relative height deviation greater than 10 m as the coverage of the TLS
radially decreased towards the corners and edges of the plots. The combination of FSCwCS
produced the least difference in canopy top points compared to the ANS combination,
which we had predicted based on our previous work.

5. Conclusions

In this paper, we presented the statistical evaluation of the generation of point clouds
at the top of the tree canopies in eight forest plots with varying tree densities using different
TLS scan combinations. Different TLS scan positions have a varying penetration depth of
the LIDAR beam through the dense canopy regions due to tree occlusions and various other
factors. This aspect was evaluated with respect to the ANS scan combination, which was
considered a reference scan combination for this research. The results in Sections 3.1-3.3
and Appendix A show that the Four Sides Center with Center Scans (FSCwCS) combination
is quite efficient in producing canopy top points above the tree stem positions, similar to
the ANS scan combination, which consists of nine TLS scanning positions. The deviation
of the canopy top points was the lowest in the FSCwCS combination. Hence, the authors
recommend that if the forest plots are around 25m x 25 m in size, the FSCwCS combination
can be considered for the optimum generation of canopy top surface points without
increasing the time, number of scans, or size of the data.

In the future, we would like to test the quality of the DSM or CHM produced using
different TLS scan combinations, as this research was based on point cloud-based analysis
at the top points of the canopy at the location of each tree. It would be interesting to see the
variation in the DSM or CHM surface at each pixel, including canopy top points, points
above branches, and surface points in non-canopy regions.
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Appendix A.
Appendix A.1. Statistical Errors Obtained for Plots TLS_Plot1 and TLS_Plot2
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Figure Al. Graphs plots showing RMSE, MAE, and MSE for (a) TLS_Plot1, (b) TLS_Plot2.
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Appendix A.2. Spatial Analysis for Forest Plot TLS_1b
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Figure A2. The spatial height differences between canopy top points obtained at each tree stem
position in each of the TLS scan combinations for forest plot TLS_1b with respect to ANS scan
combination. (a) Ah CS and ANS; (b) Ah FCS and ANS; (c) Ah FCwCS and ANS; (d) Ah FSCS and
ANS; (e) Ah FSCwCS and ANS.

Spatial Canopy Top Height Differences for Forest Plot TLS_1b

Relative spatial height difference between canopy top points in CS, FCS, FCwCS, FSCS, FSCwCS w.r.t ANS scan combination for TLS_1b
=—Ah CS & ANS

——AhFCS & ANS

Ah FCw(S & ANS

~—ARFSCS & ANS ~ ——Ah FSCwCS & ANS

10011 12 1314 15 16

Figure A3. Graph showing relative spatial height differences between canopy top points in CS, FCS,

17wl 2B

24 25 26|27 2|29 0 31 ¢2|(B M|3F W

Tree position id

37 3 I 40 41 42 43 A 45

FCwCS, FSCS, and FSCwCS with respect to ANS scan combination for TLS_1b.

126



ISPRS Int. ]. Geo-Inf. 2023, 12, 250

17 of 24

lattitude

Appendix A.3. Spatial Analysis for Forest Plot TLS_1c
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Figure A4. The spatial height differences between canopy top points obtained at each tree stem
position in each of the TLS scan combinations for forest plot TLS_lc with respect to ANS scan
combination. (a) Ah CS and ANS, (b) Ah FCS and ANS, (c) Ah FCwCS and ANS, (d) Ah FSCS and
ANS, and (e) Ah FSCwCS and ANS.
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Figure A5. Graph showing relative spatial height differences between canopy top points in CS, FCS,
FCwCS, FSCS, and FSCwCS with respect to ANS scan combination for TLS_1c.
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Appendix A.4. Spatial Analysis for Forest Plot TLS_1d
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Figure A6. The spatial height differences between canopy top points obtained at each tree stem
position in each of the TLS scan combinations for forest plot TLS_1d with respect to ANS scan
combination. (a) Ah CS and ANS, (b) Ah FCS and ANS, (c) Ah FCwCS and ANS, (d) Ah FSCS and
ANS, and (e) Ah FSCwCS and ANS.
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Figure A7. Graph showing relative spatial height differences between canopy top points in CS, FCS,
FCwCS, FSCS, and FSCwCS with respect to ANS scan combination for TLS_1d.
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Appendix A.5. Spatial Analysis for Forest Plot TLS_2b
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Figure A8. The spatial height differences between canopy top points obtained at each tree stem
position in each of the TLS scan combinations for forest plot TLS_2b with respect to ANS scan
combination. (a) Ah CS and ANS, (b) Ah FCS and ANS, (c¢) Ah FCwCS and ANS, (d) Ah FSCS and
ANS, and (e) Ah FSCwCS and ANS.
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Figure A9. Graph showing relative spatial height differences between canopy top points in CS, FCS,
FCwCS, FSCS, and FSCwCS with respect to ANS scan combination for TLS_2b.
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Appendix A.6. Spatial Analysis for Forest Plot TLS_2¢
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Figure A10. The spatial height differences between canopy top points obtained at each tree stem
position in each of the TLS scan combinations for forest plot TLS_2c with respect to ANS scan
combination. (a) Ah CS and ANS, (b) Ah FCS and ANS, (¢) Ah FCwCS and ANS, (d) Ah FSCS and
ANS, and (e) Ah FSCwCS and ANS.
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Figure A11. Graph showing relative spatial height differences between canopy top points in CS, FCS,
FCwCS, FSCS, and FSCwCS with respect to ANS scan combination for TLS_2c.
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Appendix A.7. Spatial Analysis for Forest Plot TLS_2d
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Figure A12. The spatial height differences between canopy top points obtained at each tree stem
position in each of the TLS scan combinations for forest plot TLS_2d with respect to ANS scan
combination. (a) Ah CS and ANS, (b) Ah FCS and ANS, (c) Ah FCwCS and ANS, (d) Ah FSCS and
ANS, and (e) Ah FSCwCS and ANS.
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Figure A13. Graph showing relative spatial height differences between canopy top points in CS, FCS,
FCwCS, FSCS, and FSCwCS with respect to ANS scan combination for TLS_2d.
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Table Al. Analysis of variance results.
S.no. Terms Df SumSq MeanSq  F Value Pr >P)
1 Combination 5 9171 1834 67.015 <2ix 107104
2 Plot 7 577,370 82,481 3013445 <2 x 10716+
3 Combination: Plot 35 3057 87 3.191 1.04 x 1079 #
4 Residuals 2874 78,665 27 NA NA
Signif. codes: 0 “***’;0.001 **;0.01 */;0.05".;0.1"" 1.
Table A2. Tukey post hoc test results for multiple comparisons of means of combinations.
Terms Combination. Diff Combination. Lwr Combination. Upr Combination.P.Adj
Z.CS-Z.ANS 5.321615678 —6.277687548 —4.365543809 0
Z.FCS-Z.ANS —3.110681938 —4.066753807 —2.154610069 0
ZFCwCS-Z.ANS —1.21057849 —2.166650359 —0.25450662 0.004199711
Z.FSCS-Z.ANS —2.217747268 —3.173819137 —1.261675399 0
ZFSCwCS-Z.ANS —0.60999689% —1.566068765 0.346074973 0453265265
ZFCS-Z.CS 2.21093374 1.254861871 3.167005609 0
Z.FCwCS-Z.CS 4.111037189 3.15496532 5.067109058 0
Z.FSCS-Z.CS 3.10386841 2.147796541 4.059940279 0
Z.FSCwCS-Z.CS 4.711618783 3.755546913 5.667690652 0
Z.FCwCS-ZFCS 1.900103449 0.94403158 2.856175318 2.37 x 1077
Z.FSCS-Z.FCS 0.89293467 —0.063137199 1.849006539 0.083054818
Z.FSCwCS-Z.FCS 2.500685043 1.544613173 3.456756912 0
Z.FSCS-ZFCwCS —1.007168779 —1.963240648 —0.05109691 0.032108868
ZFSCwCS-Z.FCwCS 0.600581594 —0.355490275 1.556653463 0471492715
Z.FSCwCS-Z.FSCS 1.607750372 0.651678503 2.563822241 252 x 10~°
Table A3. Tukey post hoc test results for multiple comparisons of means by the plot.

Terms Plot. Diff Plot. Lwr Plot. Upr Plot.P.Adj
CTPL_1b-CTPL_la —1.24421 —2.58179 0.093376 0.090111
CTPL_1c-CTPL_la —-1.50771 —2.98012 —0.03529 0.040289
CTPL_1d-CTPL_la —3.27041 —4.72927 —1.81156 0
CTPL_2a-CTPL_la 30.49071 29.36467 31.61674 0
CTPL_2b-CTPL_la 27.91473 26.71499 29.11448 0
CTPL_2¢-CTPL_la 28.32723 27.14632 29.50814 0
CTPL_2d-CTPL_la 26.54387 25.35698 27.73076 0
CTPL_1c-CTPL_1b —0.2635 —1.76155 1.234545 0.999483
CTPL_1d-CTPL_1b —2.02621 —3.51093 —0.54148 0.000935
CTPL_2a-CTPL_1b 31.73491 30.57557 32.89426 0
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Table A3. Cont.

Terms Plot. Diff Plot. Lwr Plot. Upr Plot.PAdj
CTPL_2b-CTPL_1b 29.15894 2792787 30.39001 0
CTPL_2¢-CTPL_1b 29.57144 28.35872 30.78416 0
CTPL_2d-CTPL_1b 27.78808 26.56953 29.00662 0
CTPL_1d-CTPL_1c —1.7627 —3.36996 —0.15545 0.020074
CTPL_2a-CTPL_1c 31.99841 30.6858 33.31103 0
CTPL_2b-CTPL_1c 29.42244 28.04607 30.79882 0
CTPL_2¢-CTPL_1c 29.83494 28.47495 31.19493 0
CTPL_2d-CTPL_1c 28.05158 26.68639 2941676 0
CTPL_2a-CTPL_1d 33.76112 3246373 35.05851 0
CTPL_2b-CTPL_1d 31.18515 29.82329 32.54701 0
CTPL_2¢-CTPL_1d 31.59764 30.25235 32.94294 0
CTPL_2d-CTPL_1d 29.81428 2846373 31.16483 0
CTPL_2b-CTPL_2a —257597 —3.57314 —1.5788 0
CTPL_2c¢-CTPL_2a —2.16347 —3.1379 —1.18905 0
CTPL_2d-CTPL_2a —3.94684 —4.9285 —2.96517 0
CTPL_2¢-CTPL_2b 0.412498 —0.64625 1.471247 0.937254
CTPL_2d-CTPL_2b —1.37087 —243628 —0.30545 0.002467
CTPL_2d-CTPL_2¢ —1.78336 —2.82752 —0.7392 6.54 x 1076
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4.4 LiDAR data fusion and future perspectives in forestry

4.4.1 Aboveground Forest Biomass Estimation by the Integration of TLS and ALOS PALSAR
Data Using Machine Learning

published as: Singh, A., Kushwaha, S. K. P., Nandy, S., Padalia, H., Ghosh, S., Srivastava, A., &
Kumari, N. (2023). Aboveground forest biomass estimation by the integration of TLS and ALOS
PALSAR data using machine learning. Remote Sensing, 15(4), 1143.

Extended summary:

In this paper, estimation of above ground forest biomass was done by the integration of TLS and
ALOS PALSAR L-band datasets. A total of 13 plots were established and scanned with TLS. 23
parameters were retrieved using TLS and ALOS data for the integration at the LIiDAR footprint.
TLS was used to extract diameter at breast height (DBH) and tree height. The parameters derived
from ALOS PALSAR L-band data are Gray-Level Co-Occurrence Matrix (GLCM) texture
measures, Yamaguchi decomposition components, polarimetric parameters, and backscatter

values of HH and HV band intensity.

The integration was performed using two machine learning approaches, Random Forest (RF) and
Acrtificial Neural Network (ANN). The spatial distribution and uncertainty analysis was done and
mapped using ALOS PALSAR data, shown in Figure 26.
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Figure 26: Visualization of (a) Spatial distribution of AGB(ton/ha). (b) Uncertainty of AGB (ton/ha)

The variable used for the spatial distribution encompasses ALOS PALSAR GLCM textural
variables, polarimetric, and TLS-derived parameters. The predicted biomass range was between
122.46 to 581.89 ton ha-1. The uncertainty of AGB distribution was determined using bootstrap
resampling and the Monte Carlo approach. The range of uncertainty obtained was 15.75 to 85.14
ton ha-1.

The statistical measures for RF were found to be promising as compared to ANN for AGB
estimation. The R? value obtained for the RF is 0.94 with an RMSE of 59.72 ton ha? for the
predicted biomass value; RMSE% is 15.92, and RMSECV is 0.15. The R? value for ANN is 0.77
with an RMSE of 98.46 ton ha', the RMSE% is obtained as 26.0, and the RMSECV is 0.26. RF
performed better to estimate the biomass which ranges from 122.46 to 581.89 ton ha* with the
uncertainty of 15.75 to 85.14 ton ha™, depicted in Table 7. The more detailed conceptual

framework and results are shown in paper IV.
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Table 7: Statistical evaluation of the models

Model R? RMSE RMSE% RMSEcv
RF 0.94 59.72 15.97 0.15
ANN 0.77 98.46 26.32 0.23

4.4.2 LiDAR Data Fusion to Improve Forest Attribute Estimates: A Review

published as Balestra, M., Marselis, S., Sankey, T. T., Cabo, C., Liang, X., Mokro§, M., ... &
Hollaus, M. (2024). LiDAR Data Fusion to Improve Forest Attribute Estimates: A Review. Current
Forestry Reports, 1-17.

Extended summary:

A thorough review of the LIDAR data fusion with other datasets, including hyperspectral,
multispectral, and radar, is done with a panel of experts and reported important information, main
challenges, and future scope. A structured review of the state-of-the-art studies on LIiDAR data
and fusion with other datasets was done to determine the study's main challenges and future

directions. The questions addressed in this review are mentioned below:

1. What are the trends in LiDAR data fusion in the last decade?

2. What are the main motivations and applications of LiDAR data fusion?
3. What are the main methods used to perform data fusion?

4. What are the main gains of LiDAR data fusion?

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach
was used to answer these questions. The keywords used for the search in the Web of Sciences
database: are LIDAR AND fus* (Topic) and forest* OR tree OR canop* (Topic) and structure
OR height OR inventory (Topic). The publications used were with the status of ‘article’ or
‘review article’ with the date range of January 2014 to May 2023. A total of 664 papers were found
on the Web of Science mentioned in Figure 27. Out of these, only 407 papers were considered
based on the review criteria (2014-2023, English, article, or review). The papers were thoroughly
studied by the reviewers for the selection of best-fitted papers based on the criteria (1) all the

papers that were not addressing some aspects of forest or trees or related to forestry applications
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were eliminated, (2) the inclusion of LIiDAR data in the fusion. The focus was also on the term

used for data fusion, whether it should be data fusion, integration, or combination.
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Figure 27: Number of publications on LiDAR data fusion and general publication trend in LiDAR in
forestry applications over the last decade. The shade bars refer to the various LiDAR platforms. Multiple
platforms indicate that LIiDAR data from two (or more) different platforms was fused. Note that 2023
only includes papers published until May.

Extraction of Information from Literature

A coding scheme was developed to organize the information from 151 papers which is shown in
Figure 28 to make the review process more understandable and comprehensive. Five main
categories were considered in this coding scheme: general information, geographic location,
survey area, data characteristics, and survey goals. In the general information category, the most
pertinent information was considered for the later analysis of the papers. In geographic locations,
different continents and countries were included. The survey area consisted of the scale of the
study (global or local), and forest stands. Information on the platform and the LiDAR sensor name
was used in data characteristics. Also, the datasets fused with the LIDAR data. The survey goals
included the information on the application, the motivation for the fusion, and the outputs achieved

with the fusion process.
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Figure 28: Framework of structural literature review and coding scheme

The review concluded that there is an uprising trend in the application of data fusion with both
UAVs and airborne platforms in forestry observations. There is a potential to improve forestry
observations with multi-sensors LIDAR data fusion in a great variety of applications. The term
‘data fusion’ should be considered to avoid confusion among commonly used terms such as ‘data
integration’ and ‘data combinations’. There are, furthermore, challenges in data fusion at the
computational level, costs, processing times, data quality, and expertise in the application domain.
Therefore, practitioners must carefully weigh the potential benefits of LiDAR data fusion in
relation to the actual need for such benefits and the accompanying cost. A more detailed

methodological framework and analysis can be found in the paper I.
Conclusion:

An experimental design and analysis are proposed in subsection 4.4.1. This subsection focused on
the above-ground forest biomass estimation using TLS and ALOS PALSAR data using machine
learning. RF and ANN were used for the prediction of AGB, and it was found that RF is more
efficient and accurate for the prediction of AGB. Later, the AGB predicted values were correlated
with the field-estimated AGB values, and the correlation was found to be high for RF. Then
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prediction of AGB was done with RF. The predicted AGB value (581.89 ton ha') was highly
correlated and close to the field referenced AGB values which is 685 ton ha’. This shows the
potential of fusion of LIDAR with SAR data to combat the biomass saturation issues in highly

matured forest areas.

Moreover, in subsection 4.4.2, a review of LIDAR data fusion was done to improve the forest
attribute estimates. The major focus of the review was the appropriate use of words such as ‘data
combination’, ‘data fusion’, ‘data integration’. Also, the challenges involved in the data fusion at
computational level, costs, processing time, data quality, and expertise in the application domain

was also focused.
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G oR W oN

Abstract: Forest inventory parameters play an important role in understanding various biophysical
processes of forest ecosystems. The present study aims at integrating Terrestrial Laser Scanner (TLS)
and ALOS PALSAR L-band Synthetic Aperture Radar (SAR) data to assess Aboveground Biomass
(AGB) in the Barkot Forest Range, Uttarakhand, India. The integration was performed to overcome
the AGB saturation issue in ALOS PALSAR L-band SAR data for the high biomass density forest of
the study area using 13 plots. Various parameters, namely, Gray-Level Co-Occurrence Matrix (GLCM)
texture measures, Yamaguchi decomposition components, polarimetric parameters, and backscatter
values of HH and HV band intensity, were derived from the ALOS SAR data. However, TLS was
used to obtain the diameter at breast height (dbh) and tree height for the sample plots. A total of
23 parameters was retrieved using TLS and SAR data for integration with the LiDAR footprint. The
integration was performed using Random Forest (RF) and Artificial Neural Network (ANN). The
statistical measures for RF were found to be promising compared with ANN for AGB estimation.
The R2 value obtained for the RF was 0.94, with an RMSE of 59.72 ton ha—! for the predicted biomass
value. The RMSE% was 15.92, while the RMSEcy was 0.15. The R? value for ANN was (.77, with an
RMSE of 98.46 ton ha—!. The RMSE% was 26.0, while the RMSEcy was 0.26. RF performed better in
estimating the biomass, which ranged from 122.46 to 581.89 ton ha~!, while uncertainty ranged from
15.75 to 85.14 ton ha~!. The integration of SAR and LiDAR data using machine learning shows great
potential in overcoming AGB saturation of SAR data.

Keywords: aboveground biomass; Terrestrial Laser Scanner; Light Detection and Ranging; ALOS
PALSAR; Random Forest; Artificial Neural Network

1. Introduction

Forest productivity estimation is important for forest management and ecosystem
services monitoring [1]. Destructive sampling techniques are restricted due to labor inten-
siveness, tedious work, and unsuitability to inaccessible terrain. The emerging techniques
of remote sensing are progressively superseding traditional methods. Dataset products
from Terrestrial Laser Scanners (TLSs), Airborne Laser Scanning (ALS), Unmanned Aerial
Vehicles (UAVs), and other space-borne (GEDI, ICESat-2) platforms, in combination with
various machine learning algorithms, have become the preferred options for assessing
and mapping aboveground biomasses (AGB) [2,3]. Machine learning algorithms, such as
Random Forest (RF) and Artificial Neural Network (ANN) have been used to improve the
saturation of biomass value ranges caused by data restrictions [4,5]. The primary aim is to
reduce uncertainty in biomass assessment using remote sensing.

Remote Sens. 2023, 15,1143, https://doi.org/10.3390/rs15041143
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Data fusion and integration can play a crucial role in mitigating the uncertainty of
biomass [6,7]. Used together, Synthetic Aperture Radar (SAR) and Light Detection and
Ranging (LiDAR) overcome the saturation of biomass, with the specific bands of SAR
data reducing result biases [8]. Previously, biomass was estimated based on empirical
models using Pollnsar and PolSAR techniques, which sometimes produced uncertainty
of the biomass [9,10]. Subsequently, the use of LIDAR became ubiquitous; however, the
occlusion of trees in a plot can occur due to different sets of scanning positions when using
ground-based static LIDAR systems [11]. Thus, the resultant uncertainty is also reflected in
the results. The detection of trees in forests also depends on the type and density of the
forest as well as the scanning positions of the TLS [12].

The estimation of Aboveground Forest Carbon Stocks (AFCS) is always challenging in
tropical regions due to structural complexity and high species diversity. ALOS PALSAR
texture information resolves AFCS estimation issues in tropical regions [13]. Previously,
empirical modeling, such as Extended Water Cloud Models (EWCMs) and Water Cloud
Models (WCMs), showed the best correlation among forest parameters and HV backscatter
values as well as volume scattering values [14]. The integration of different platform
datasets yields promising results as well as complex information. Allometric modeling and
biomass calibration and validation can be done using TLS and SAR data [15].

The aim of this study is to investigate other tree attributes derived with TLS and ALOS
PALSAR and examine tree attribute correlations with biomass using machine learning.
The objective is to overcome biomass saturation over high-density forests using RF and
ANN. RF has been used for the estimation of biomass using airborne LiDAR data in
moderately dense forests, taking into consideration the correlation between canopy cover
and biomass [16-18]. Furthermore, other vegetation indices, such as NDVI, have been
explored and exhausted to find the best possible correlation and prediction of biomass.
Moreover, machine learning algorithms, such as RF and ANN, have been used to predict
biomass using different combinations of tree metrics [19,20].

2. Materials and Methods
2.1. Study Area

The study area selected for this research was the Barkot Forest Range of Dehradun
Forest division, Uttarakhand, India. It lies at a latitude of 30°03’52" to 30°10’43”N and a
longitude of 78°09'49" to 78°17'09"E. The altitude ranges from 340 m to 560 m above Mean
Sea Level (MSL). The study area is in the foothills of the Himalayas and is surrounded by
the lesser Himalayas to the north and the Shivalik range to the south. The total area of
the forest is 84.96 km?. The forest type is tropical, moist, deciduous. It is dominated by
Shorea robusta (Sal), with co-associated tree species such as Mallotus philippensis (Rohini).
The topography of the study area varies from plain to undulating. As the depth of the soil
increases, the consistency changes from non-sticky and friable to sticky and firm. A lower
horizon of the soil profile is sticky, firm, compact, and comparatively hard [21,22]. The
study area is shown in Figure 1.
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Figure 1. Study area [23].

2.2. Above-Ground Biomass Inventory

Tree inventory data were collected by demarcating 13 plots of 31.5 m x 31.5 m. The
instruments used for the field data collection were measuring tape, rangefinders, and
handheld GPSs. Field sampling was done at the LiDAR footprint using a stratified random
sampling method. The sampling locations are shown in Figure 2. Tree parameters, such as
dbh and tree height, were measured and the geo-location of each tree was recorded. The
CBH (Circumference at Breast Height) was converted to dbh using the equation:

CBH
dbbi= (1)
T
78°60E 78100°E 78'120°€ 740E 7816CE 78180
Barkot Forest Range 5

30M100N
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Figure 2. Sampling location of the field data collection.
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The aboveground biomass was calculated using national species-specific volumetric
equations. The tree volume was calculated for all the trees in the plot and then used to
calculate biomass using the following equation:

Biomass =V % S % 1.59 2)

where V is stem volume, S is specific wood gravity, and 1.59 is biomass expansion factor.
The biomass was calculated and regressed with the field estimated biomass for all the
trees [24].

2.3. Terrestrial Lidar Data Acquisition and Processing

The point cloud of trees was generated using a terrestrial static LIDAR system (TLS
Riegl VZ-400), which works in the range of 1.5 m to 600 m. The horizontal and vertical
angles considered were 0° to 360° and 30° to 130°, respectively. The angular resolution
selected for the data acquisition was 0.03°. The TLS data processing was conducted using
RiSCAN Pro software 2.0. The TLS data were acquired using the scheme shown in Figure 3a.
A total of four scans was completed, of which three were side scans and one was a center
scan. Multiple scans were conducted to minimize the occlusion effect in the plots due
to variability in the position and density of trees. Tags and retro-reflectors were used to
identify the trees when segmenting out the plot and individual trees, as shown in Figure 3b.

‘ Position of centre scan
A Side scan positioning (3)
& Position of side reflectors

. Tree position during scans
@ Circular retro reflectors position (3)

(o) (d)

Figure 3. Representation of (a) scheme of the plot scanned with TLS and retro-reflectors; (b) scanned
plot with the location of reflectors (red dot); (c) extracted plot and single tree; and (d) trunk of the tree
with noise, and after the application of a noise filter [23].

For alignment between any two scans, a minimum of three common tie points was
required. Figure 2 shows the scanned plot and the location of the reflectors. Iron rods were
placed at the four corners of the plot as a reference to make extraction of the plot from the
merged point cloud data easier. After extracting the plots, individual trees were identified
and segmented out from the plots, as shown in Figure 3c. Thereafter, noise filtering was
conducted to remove outliers from the dataset, as represented in Figure 3d.
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Retrieval of Tree Parameters Using RANSAC Algorithm

The Random Sample Consensus (RANSAC) shape detection algorithm was used to
estimate the dbh and height of the trees in the plot [25]. The following parameters were
used for this purpose:

(1) D: Dataset with inliers and outliers, which were later characterized and removed
using the RANSAC algorithm.

(2) MSS (Minimal Sample Set) of points: These were formed using random mathematical
shape parameters out of all the points entered as D, finally yielding a model with
definite shape parameters.

(3)  k: The points which are required for the MSS.

(4) Theta: Parameters obtained from the MSS points, such as height, radius, center, etc.

(5) CS: The consensus set of points with an error less than the threshold error.

(6) &: The error threshold, which is responsible for the points that belong to the model
or not.

To obtain the dbh and height of the tree, the tree point clouds were fitted into a
cylinder primitive [24]. A cylinder is defined by its height, axis, and radius. The points
obtained from the MSS were used to form the CS of points. The cylinder was fitted to
ensure no outlier points. The diameter of trees was calculated by the radius, using the
following equation:

d=2r (3)

"o
7

where “r” is the radius and “d” is the diameter of the tree.

The height of the tree was calculated by setting the lowest point of the tree cloud. After
allocating the tree base position, the XY position was defined by computing the median
coordinates of all the points that lay above the lowest tree point cloud to a user-defined
height. The z-coordinate was defined using the points that lay closest to the XY position of
the terrain.

2.4. ALOS PALSAR Data Processing

The PALSAR sensor was launched using the Japan Aerospace Agency (JAXA) and an
onboard ALOS-1 (Advanced Land Observation Satellite) in 2006. This active microwave
sensor has L-band technology and can acquire an image in both Fine Beam Single (FBS)
and Fine Beam Dual (FBD) modes. The range resolution is between 0° and 60°. The image
used in this study was acquired in April 2018 in quad-polarization (HH + HV + VH + VV).
The SAR data was mutilooked to obtain a pixel resolution of 18.42 m.

The pre-processing of the data was conducted, including slant range to ground range
conversion and generation of amplitude image using imagery (Q) and real (I) components
of the image in Equation (4). This was further used in the power image generation in
Equation (5). Speckle filtering was required to improve the visualization of the image,
although this was at the expense of losing some pixel information. The filter used was the
Boxcar filter. Another step was multilooking to obtain a square pixel. The final step was
linear to backscatter image conversion, as shown in Equation (6).

Amplitude = (D% +(Q)? @)
Power = (Amp)2 ©)

1
oV, =1 D\ sin(a; (6)
7 K \G(E,)* ) \Reep ()

where, the pixel intensity of the power image at the ith image line and the jth image column
was DN ;= 2 + Q2. K, keeping absolute calibration constant. ¢ ij Sigma nought at image
line and the column “i, j” [26]. G(H,»J), two-way antenna gain at the distributed target
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look angle corresponding to the pixel at image line and the column “i, j”, as shown in
Equation (7).

G(6;) = 47{% @
where, 6;; is the look angle corresponding to the pixel at the image line and the column
“i,j”. R(;j) is the slant range distance to the pixel at the image line and the column “7, j”.
Rirf) is the reference slant range distance (800 km for all beams and modes). a;j is the
incidence angle at the pixel of the ith row and the jth column. The backscatter cross-section
measures the object’s reflective strength, which is known as sigma (o). This cross-section is
then represented in the logarithmic scale, i.e., a decibel (dB). The backscatter intensity can
be observed in the linear to decibel conversion of the image [27], as shown in Equation (8).

dB = 10g10 ¢0i,j (linear) 8)

Decomposition of Scattering Components

The decomposition of the image was done using the Yamaguchi decomposition algo-
rithm. Initially, the 2 x 2 scattering matrix was generated, while the coherency matrix was
generated by multiplying the scattering matrix to lexicographic basis scattering vectors
with its transpose [28]. The scattering matrix is depicted as follows:

(B8 ES | = [Sun Suv Svu Svv ] [EL EV | ©)
The lexicographic basis scattering vector is represented as follows:
KL= [SHH V2Shv Svv ] (10)

The Pauli format of the scattering vector is represented as follows:
1
Kp = 2 (Suu +Svv Sun — Svv 25un | (11

The Yamaguchi equation is represented as follows:

<[T]) = .f:*‘([T])surface 57 fd<[T]>dnuble—buunce + fv<[T])wlume i+ f5<[T]>heIix (12)

where, <[T]> is the COherency matrix, <[T])5urﬁm'r <[T]>dauble-bomxce/ <[T])zrolunw' <[T]>}wlixr are the
coherency matrices for surface, double-bounce, volume, and helix scattering, respectively.
The s, fa, fo, fc are their respective expansion coefficients. The volume scattering is modeled
using the canopy of the tree, which includes the branches and the leaves. The modeled
equation can be shown as follows:

<[T]>zrulunw = i[z 00010001 ] (13)

The surface scattering component was obtained for backscattered energy emerging
from the ground only, as shown in the matrix below:

<[T])surfnce= [1 B 0p |ﬁ|20000] (14)

where B, is equal to Hl, Ry, is the horizontal polarization and R is the vertical polariza-
TRy

tion coefficient of Fresnel’s reflection. The double-bounce scattering was obtained from the

scattering from the tree trunk and the surface of the ground.

<[T]>duuf7184bouuce = [l“lz a0a”10000 ] (15)
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where & = % and |a| < 1. Finally, the helix scattering component was also considered,

derived from the helical scatter.
1 ; :
([TDhetix = 5000001 £j0 £j1] (16)

The polarimetric parameters used were Biomass Index (BMI), Canopy Structure Index
(CSI), Volume Scattering Index (VSI), Radar Vegetation Index (RVI), cross-pol HH/VYV ratio,
cross-pol VV /VH ratio, and co-pol HH/VV ratio. The GLCM textural parameters were
also used for the regression analysis of the biomass [29].

2.5. Prediction of AGB Using RF and ANN

The RF and neural net package were used in this study. RF was used to generate
training and testing data using multiple decision trees. The model was trained using
training datasets, while the prediction was made using testing datasets. RF and ANN
were implemented in R software. Two input parameters were required, namely, ntree,
the bootstrap samples used for creating several decision trees, and mtry, the number of
variables provided for each tree for random sampling. The neural net was developed with
several neurons, and these neurons were trained using the dataset provided. The hidden
layer helped to learn the nodes from the previous layer and neurons to assign weights. The
workflow is depicted in Figure 4.

Test data (used for
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Figure 4. Workflow of (a) RF approach and (b) ANN approach for biomass prediction.
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2.6. Mapping Spatial Distribution of AGB

The spatial distribution of AGB was based on the integration of TLS and ALOS
PALSAR L-band data regression outputs using RF and ANN. The detailed workflow is

depicted in Figure 5.
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Figure 5. Methodology flowchart.

3. Results
3.1. Co-Registration of Scans

The 13 plots were scanned using TLS at four different scan positions, namely, center
and three side scans. The scans were co-registered using the center scan fixed, while the
remaining three scans were registered to the center scan. The RMSE obtained for the center
to scan positions 1, 2, and 3 was 0.03, 0.017, and 0.029, respectively, for a single plot. The
scan position pattern is depicted in Figure 3a.

3.2. TLS-Derived Parameters and Regression Analysis

Parameters such as dbh, dbh?, and the height of the trees were retrieved using TLS
point cloud. The correlation was established between field-estimated biomass and the TLS-
derived parameters. As can be seen in Figure 6, the R? value obtained between height and
biomass was 0.63; the logarithmic relation between height and biomass was also performed
to improve the R? value to 0.88. The R? value obtained for dbh and biomass was 0.96. This
value was enhanced by transforming the value of dbh. The transformation of dbh to dbh?
changes the relation between dbh and biomass, with an R2 value of 0.98.
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Figure 6. Correlation plots between TLS-derived parameters and biomass. (a) Correlation between
height and biomass; (b) log-transformed correlation between height and biomass; (c) correlation
between dbh and biomass; and (d) correlation between dbh? and biomass.

3.3. ALOS PALSAR L-Band Parameter Retrieval
3.3.1. Yamaguchi Decomposition

The correlation analysis was conducted using all three decomposition components of
Yamaguchi, derived from ALOS PALSAR L-band data. It was observed that the R? value
between double-bounce and biomass was 0.55, while the correlation value obtained for the
surface scattering and biomass was 0.05. The R? value obtained for the volume scattering
and biomass was 0.20. Therefore, a better correlation between the double-bounce and
biomass can be inferred from the observed data. This seems to correlate with the field data
given that the data was acquired in April, which is a leaf off-season in the study area. Thus,
the backscatter was mostly from the woody portion of the trees, whereas less backscatter
was observed from the canopy of the trees. The decomposition map is shown in Figure 7.
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Figure 7. Yamaguchi decomposition of ALOS PALSAR L-band data.
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3.3.2. Regression Analysis with Polarimetric Parameters

The polarimetric parameters used in this study were CSI, RANSAC shape detection,
VSI, BMI, cross-pol HH/HV ratio, co-pol HH/VV ratio, cross-pol VV/VH ratio and, RVL
The R2 value obtained for the CSI and biomass was 0.85, which showed a higher correlation
between the canopy and the biomass. The ecosystem comprises more vertical and woody
structures. The correlation R? obtained between VSI and biomass was 0.49, which clearly
showed that the thickness of the canopy was less; hence, VSI is less significant in the
biomass assessment [30]. The R? value obtained for BMI and biomass was 0.58 and 0.59 for
RVI and biomass. This emphasizes the greater significance of RVI over BMI.

3.3.3. Regression Analysis with Backscatter and Textural Parameters

The biomass correlation was carried out using 7 textural variables, namely, mean,
entropy, correlation, homogeneity, second moment (ASM), contrast, and variance. The
backscatter values for HH and HV intensity were also considered. The regression analysis
showed both a negative and a positive correlation. This is because in the modeling,
both positive and negative correlations were useful in regulating the significance of the
independent variables over the dependent variables. As can be seen in Figure 8, the positive
R? value was obtained with entropy and variance. The R? value for the entropy was 0.21.
The R? value obtained for the variance and biomass was 0.52. The degree of randomness
and variability of the area was more relevant, whereas the negative R? value obtained was
for ASM and mean. Therefore, textural parameters such as ASM, entropy, variance, and
mean were significant in predicting the biomass of a natural forest.

0.49

0.51
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Figure 8. (a-g) Correlation between different SAR variables and the field-measured biomass.

The relation between the backscatter values for HH and HV intensity and the biomass
showed that the R? value obtained for HH intensity and biomass was 0.40, while 0.49
was obtained for HV intensity. Log transformation was then conducted to enhance the
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correlation between the variables HH and HV intensity with the biomass. Thus, the R2
value increased to 0.67 and 0.77 for HH and HV intensity with the biomass, respectively.

3.3.4. Regression between ALOS PALSAR L-Band and TLS-Derived Variables

The double-bounce and volume scattering were regressed with the height obtained
using point cloud. The double-bounce scattering component was found to be more signifi-
cant. As can be seen in Figure 9, the relation was not linear. The regression between height
and volume scattering was log-transformed to better fit with an R? value of 0.40, while the
double-bounce and height were transformed to a higher order to obtain a better correlation
with the R? value of 0.53.
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Figure 9. (a—f) Correlation plots of the ALOS PALSAR and TLS-derived variables.

The double-bounce scattering component showed a correlation of 0.32 with dbh,
which was a high-order relation, while dbh and volume scattering were log-transformed,
yielding an R2 value of 0.44. A linear relation was found between dbh2, double-bounce, and
the volume-scattering components. The correlation value was enhanced to 0.59 with the
high-order polynomial relation for dbh? and double-bounce, while the dbh? and volume
scattering were log transformed to show some relation, yielding an R? value of 0.46. Here,
the double-bounce showed a better correlation with dbh?.

3.3.5. Integration of Outputs of ALOS PALSAR and TLS
RF Regression Approach

Based on the correlation values of the 19 variables, the RF regression approach was
used to integrate the TLS and SAR parameters. The % IncMSE showed the mean square
error in the absence of any independent variables, while the IncNodePurity defined the

purity of nodes at ntree in the presence of any important variables, as shown in Figure 10a.

In Figure 10c, the range of error is shown as per the number of trees. As the number of
trees increased, the error of the graph decreased. Training datasets and RMSE were used to
optimize the parameter (ntree, mtry) values and found values that were used for the best
prediction of the dependent variable (AGB). In Figure 10d, the prediction and observed
biomass values were plotted based on the best RMSE and R2 values, which were 38.95 and
0.94, respectively. Parameters such as ntree and mtry were optimized repeatedly to obtain
the best results and reduce errors.
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Figure 10. Visualization of (a) % IncMSE and IncNodePurity of the variables used to train the model;
(b) out-of-bag (OOB) error while training the data; (c) estimated error based on different no. of trees,
(d) error and RMSE of the number of variables and trees in the RF model; and (e) scatterplot for the
observed and predicted biomass value (ton/ha).

A graph between the RMSE and the number of variables was plotted to obtain the
cross-validation of the number of variables taken for the estimation of the dependent
variable. The forest error rate was calculated using Out-of-Bag (OOB) error analysis. OOB
error was calculated for four mtry values. The mtry value for which OOB fewer errors
were found was 4, while the highest probability of error was found for mtry 16. Using
this method, each tree was tested on 1/3rd of the number of observations and not used in
building the tree, indicating that the high strength of the tree showed a lower error. The
maximum error obtained for mtry was 16 due to the high correlation between trees. The
lowest error was obtained for mtry 4 due to the lesser correlation between the trees.
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ANN Regression Approach

ANN were trained and tested with 23 independent variables. The variables were
divided based on the number of weights assigned to each variable. The hidden layers were
optimized to obtain a better R? and RMSE. The negative weight assigned to any variable
indicated the least contribution of that variable. The predicted and observed values of
biomass are shown in Figure 11. The R? value obtained for the ANN was 0.77. The number
of hidden layers was fitted to ensure maximum accuracy for the prediction. Several hidden
layers were tried to ensure minimum RMSE and maximum accuracy for the model. Figure 3
shows the different number of hidden layers and their accuracy at each level. Based on
the R? and RMSE of the model, an analysis was conducted and spatial distribution of
biomass was carried out. The R? value for RF was 0.94, the RMSE was 59.72 ton ha~!,
and the percentage RMSE was 15.97. The R? value of ANN was 0.77, with an RMSE of
98.46 ton ha~! and a percentage RMSE of 26.32, as shown in Table 1. Based on this analysis,
the RF was found to be the best model for predicting biomass.
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Figure 11. Scatterplot of the predicted Vs observed biomass (ton/ha) based on the ANN model.

Table 1. Statistical parameters for the models.

Sr. No. Model R? RMSE (ton ha—1) RMSE% RMSEcy
i § RF 0.94 59.72 15.97 0.15
2 ANN 0.77 98.46 26.32 023

Spatial Distribution and Uncertainty of Biomass

The spatial distribution of biomass was conducted with RF predictions over the region
of the Barkot Forest Range. The variable used for the spatial distribution encompassed
the ALOS PALSAR GLCM textural variables as well as the polarimetric and TLS-derived
parameters. The predicted biomass range was between 122.46 and 581.89 ton ha~!.

The uncertainty distribution of AGB over the Barkot Forest Range was conducted
using the bootstrap resampling method and the Monte Carlo approach. The uncertainty

ranged from 15.75 to 85.14 ton ha~!. The percentage of uncertainty obtained was 20.54%.

The uncertainty map of the AGB and biomass spatial distribution is shown in Figure 12.
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Figure 12. Visualization of the (a) spatial distribution of AGB (t/ha) and (b) uncertainty of AGB (t/ha).

4. Discussion

In this study, we used terrestrial LIDAR (TLS) and ALOS PALSAR L-band derived
variables to address the biomass saturation problem in forest regions. This method can be
applied mainly in temperate forest zones, but can also be used in other forest-type regions.
The RF and ANN model training was carried out using the calibration data. Previous
research has shown that biomass value improvisation can be achieved by integrating
different datasets or parameters derived from satellite data [19].

It has been shown that machine learning algorithms such as RF and ANN can esti-
mate AGB with considerable accuracy. Overall, the RF showed promising accuracy when
integrated with different RS (Remote Sensing) datasets over linear regression modeling [31].

The use of integrated data has shown great promise in reducing the underestima-
tion of forest biomass values. Using a single RS dataset to predict biomass can result in
considerable uncertainty [32]. SAR data can be used to estimate biomass, but there is a
problem with the saturation of specific bands as forest density increases [33]. It has been
observed that LIiDAR data are more reliable in estimating biomass because they maintain
the precision and accuracy of the predicted biomass. These data have yielded promising
results, with an R? value of 0.98 and an RMSE of 0.08 Mg [34]. The collective information
obtained from both SAR and LiDAR is key in overcoming the biomass saturation problem
in SAR when using machine learning. This is because several machine learning algorithms
have already been proven to yield the best results in estimating forest biomass.

The ALOS PALSAR-derived variables showed an important correlation with biomass.
The GLCM texture variables showed a potential correlation with biomass, improving the
area’s biomass prediction values. In one study, it was shown that textural information
yields good correlation with biomass, improving the AGB estimation [35]. ALOS PALSAR
polarimetric parameters and Yamaguchi decomposition parameters, such as surface scat-
tering, double-bounce, and volume scattering, were used to establish a correlation with
the biomass. The results revealed that the CSI, RVI, and BMI showed a potentially high
correlation with biomass [36].
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The uncertainty prediction was also performed for the RF model since the quantifica-
tion of uncertainty was required to prove the model’s performance. The uncertainty in the
spatially distributed AGB indicated that the pattern of forest distribution plays a crucial
role in modeling biomass. Moreover, the uncertainty value was lower in the high-density
areas of the forest and higher in the low-density areas because of the low correlation of
biomass with tree attributes derived using ALOS.

5. Conclusions

In the current research, biomass was predicted using both ALOS PALSAR L-band and
TLS-derived parameters in the study area of the Barkot Forest Range. Biomass was calcu-
lated using TLS-derived parameters. Correlations were also examined between biomass
and various SAR parameters, such as texture (GCLM co-occurrence), backscattered values,
polarimetric ratios, other SAR indices, and parameters derived using TLS. Thus, the two
models, RF and ANN, were trained with field data. Then, the integration of the above-
mentioned parameters or indices was conducted using two machine learning algorithms,
RF and ANN. The best fit model obtained for the prediction of biomass was RE, with an R2
value of 0.94 and an RMSE of 15.9%. In contrast, the R? obtained for ANN was 0.77, with
an RMSE of 26.3%. It has been concluded that L-band integration with TLS-derived param-
eters shows great potential for the assessment of forest areas with very high biomass. The
uncertainty can be mitigated using different machine learning algorithms and increasing
the number of variables to train the model.
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Abstract

Purpose of the Review Many LiDAR remote sensing studies over the past decade promised data fusion as a potential avenue
to increase accuracy, spatial-temporal resolution, and information extraction in the final data products. Here, we performed
a structured literature review to analyze relevant studies on these topics published in the last decade and the main motiva-
tions and applications for fusion, and the methods used. We discuss the findings with a panel of experts and report important
lessons, main challenges, and future directions.

Recent Findings LiDAR fusion with other datasets, including multispectral, hyperspectral, and radar, is found to be useful
for a variety of applications in the literature, both at individual tree level and at area level, for tree/crown segmentation,
aboveground biomass assessments, canopy height, tree species identification, structural parameters, and fuel load assessments
etc. In most cases, gains are achieved in improving the accuracy (e.g. better tree species classifications), and spatial-temporal
resolution (e.g. for canopy height). However, questions remain regarding whether the marginal improvements reported in
a range of studies are worth the extra investment, specifically from an operational point of view. We also provide a clear
definition of “data fusion” to inform the scientific community on data fusion, combination, and integration.

Summary This review provides a positive outlook for LiDAR fusion applications in the decade to come, while raising ques-
tions about the trade-off between benefits versus the time and effort needed for collecting and combining multiple datasets.

Keywords Laser Scanner - Trees - Forest structure - Multispectral - Hyperspectral and Radar

Introduction

Forest ecosystems are often characterized in terms of struc-
ture, composition, and functions [1]. Light Detection and
Ranging (LiDAR) remote sensing (RS) has substantially
improved our understanding of forest structure around the
world in recent decades [2-5]. LiDAR instruments provide
explicit three-dimensional (3D) data that have enabled
measurements of forest structure parameters such as canopy
height, leaf area index, and diameter at breast height across
different scales with unprecedented accuracy [6-8].
LiDAR data can be collected from a variety of sensors and
platforms, resulting in a range of 3D data types (mostly point
clouds), with different point densities, accuracies, and perspec-
tives. Common LiDAR sensors can be mounted on different
platforms including ground-based, both fixed and mobile
[3, 9], airborne with unoccupied aerial vehicles (UAVs or
drones), helicopters, and airplanes [10, 11], and space-based

Extended author information available on the last page of the article

from satellites or the international space station [7, 12, 13].
The cross-scale LiDAR data collection has enabled many
applications of tree and forest measurements, including forest
inventories and biomass estimates [14, 15], species and habi-
tat classification, biodiversity assessment [16, 17], forest fuel
estimates [18] and detailed 3D reconstruction of trees [19, 20].

While LiDAR instruments have developed rapidly and
extensively, the data continue to have limitations. For exam-
ple, ground-based LiDAR data might not record all trees and
tree tops due to occlusion [21]. Conversely, airborne and spa-
ceborne LiDAR instruments can measure the top of the cano-
pies and, in some cases, forest vertical structure, but rarely
capture stems below canopies [22]. Moreover, LIDAR is spe-
cifically used to gather information on vegetation structure,
but provides limited information on other important drivers
of forest ecosystems, composition, and functioning. These
limitations have resulted in a rapid increase in data fusion
approaches, in which data from various instruments can be
merged together (multi-sensor approach) to enhance the data
and their application potential.

@ Springer
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Various definitions of data fusion have been proposed [23,
24]. Here, we focus on multi-source or multi-sensor LiDAR
data fusion, defined as “the merging of data or derived fea-
tures from different sources (instruments/devices), of which at
least one is LiDAR data, to improve the information content
of the data sources and enable enhanced forest observations".
Multi-sensor data fusion approaches have been deemed useful
in overcoming measurement and sampling limitations from
the original dataset to the final information extraction [25].

This review paper aims to summarize the current state-of-
the-art LIDAR data fusion approaches for forest observations
and identify main challenges that need to be addressed to move
forward. We consider two levels of multi-sensor data fusion in
this review: (1) data-level fusion, and (2) feature-level fusion.
In data-level fusion, raw datasets from various sources are
combined into one dataset or product (e.g. merging of two
LiDAR point clouds, one collected with ground-based LiDAR
and the other with unoccupied vehicle laser scanner (ULS))
[26]. In feature-level fusion, features extracted from various
data sources individually are merged into new features or vec-
tors (e.g. merging of structural parameters from LiDAR with
coincident spectral parameters from hyperspectral (HS) data
to derive a species classification) [27, 28].

This paper includes two major components. The first
component provides a structured literature review on LiDAR
data fusion addressing the following questions:

— What are the trends in LiDAR data fusion in the last decade?

— What are the main motivations and applications of
LiDAR data fusion?

— What are the main methods used to perform data fusion?

— What are the main gains of LiDAR data fusion?

The literature review was then analyzed by a team of 11
international experts to address the following key questions:

— What is ‘data fusion’ and how should this term be used
in our community?

— What are the most important lessons learned about data
fusion in forest observations?

— What are the main challenges in data fusion for opera-
tional applications?

—  What should the community focus on to move data fusion
forward?

The experts in the team were assembled through the EU
COST Action 3DForEcoTech; an EU initiative to bring
together all experts on LiDAR data for forestry within the
EU. An open call was held to solicit scientists interested in
collaborating on this literature review. The final team was
assembled to encompass all expertise required for address-
ing the key questions, including scientists with expertise
on all types of LIDAR (mobile, terrestrial, airborne and

@ Springer

spaceborne) and fusion with all common datasets assessed
here (multispectral, hyperspectral, and radar).

Structured Literature Review Method

We used the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) approach [29, 30]. The follow-
ing search terms were used in the Web of Sciences database:
LiDAR AND fus* (Topic) and forest* OR tree OR canop*
(Topic) and structure OR height OR inventory (Topic). We
included literature from the last decade between January 2014
- May 2023, published in English language, and with a publi-
cation status of ‘article’ or ‘review article’. As defined in the
introduction, we focused on multi-sensor data fusion. We did
not consider studies that included a combination of two datasets
from the same sensor collected at different times or at different
locations. By limiting our search to only include the term ‘data
fusion’ and no alternative search words, such as ‘data integra-
tion’ or ‘data combination’ (that may refer to the same process),
we demonstrate how ‘data fusion’ is specifically used in the last
decade. In the Discussion sub-section Data fusion, we further
discuss the term ‘data fusion’ in relation to other terms with a
potentially similar meaning in the LiDAR context.

Literature Search Results

The Web of Science query resulted in 664 papers (Fig. 1).
Of these, 407 adhered to the eligibility criteria defined above
(2014-2023, English, article or review). The abstracts of
these 407 papers were screened by two independent review-
ers, who decided whether to include or exclude a paper
based on two criteria: (1) some aspect of trees/forest, rel-
evant to forestry applications, was assessed, and all papers
that solely studied crops, infrastructure or buildings were
eliminated, and (2) the fusion must include LiDAR data.

Extracting Information from Literature

We developed a coding scheme to organize the information in
the 151 papers in a comprehensive and understandable fashion
that addressed the four main research questions. The coding
scheme consisted of five main categories: general informa-
tion, geographic location, survey area, data characteristics, and
survey goals (Table 1). In the category ‘general information’,
we included the most pertinent information, so the paper could
be relocated for later analysis. In ‘geographic location’, we
included information on the continent and country/countries
of the study areas. Regarding ‘survey area’, we included survey
scale (i.e. global or local) and forest stand (i.e. type of vegeta-
tion surveyed). In ‘data characteristics’, we included informa-
tion on the LiDAR platform used, as well as the sensor's name
and type. We also recorded the datasets that were fused with
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Fig. 1 Framework of structured
literature review and coding
scheme
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L publications

Table 1 Categories and subjects
included in the coding scheme

General information

Geographic Location

Survey area  Data characteristics Survey goals

for the structured literature

! Authors Continent
review of the 151 selected
Year Country
papers
DOI
Title
Keywords

Survey scale Type of LIDAR
Name of LiDAR sensor

Type of fused sensor(s)

Fusion application
Forest stand Fusion aim
Fusion technique

Name of fused sensor(s) Fusion gain

the LiDAR dataset. Within ‘survey goals’, we included infor-
mation on the application for which the fusion was used, the
motivation (aim) for the fusion (e.g. increasing spatial reso-
lution of data product), the type of method used to fuse the
datasets, and reported gain of the fusion process.

Trends in Data Fusion Literature

The number of publications concerning LiDAR data fusion
for forests demonstrates a slight general upward trend over
the last 10 years, especially in 2022 (Fig. 2). LiDAR data
from airborne platforms were most commonly used. These
airborne platforms include both instruments mounted on
UAVs and occupied aircrafts. Fusion with data from terres-
trial platforms, including terrestrial laser scanners (TLSs)
and mobile laser scanners (MLSs), seems to be emerging
in recent years, starting in 2016. Generally, there has been
a slightly increasing trend in the use of spaceborne LiDAR
sensors, with satellite papers published in 2016 and 2017
employing data from ICESat/GLAS and the papers published
after 2018 with data from ICESat-2 and GEDL

LiDAR data can be fused with data collected from a simi-
lar platform (e.g. airborne-airborne) or a different platform
(e.g. airborne-spaceborne). Fusion of airborne LiDAR and
other airborne data types was the most common type of
fusion encountered (45.4%), followed by fusion of LiDAR
data from airborne and spaceborne devices (29.8%). Space-
borne LiDAR fused with data collected by other spaceborne
sensors and airborne-terrestrial fusion had the same amount
of publications (11.3%), whereas fusion of terrestrial LIDAR
with other data from terrestrial platforms was found to be the
least common (2.1%) (Table 2).

In terms of geographical representation (Fig. 3), studies
from North America (38%), Europe (31%) and Asia (21%)
represent 90% of the publications. The remaining 5% study
Australia, and another 5% focus on Africa and South America
together. In particular, our literature review found very few
LiDAR data fusion studies in the southern hemisphere. This
pattern is consistent with a review of the geographic distri-
bution of authorship in remote sensing publications [31],
documenting that four specific countries, the USA, Italy,
Germany, and China, are over-represented, with almost no
contributions from South America and Africa. Our literature
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Table 2 Number of publications by platform, where at least one of the sensors is LIDAR

Non-LiDAR sensors

LiDAR Airborne Spaceborne UAV Terr Total per

ALS | sts |uLs | 7is |MLs | HLs | BLS | HS | Ms |RGB [sAR | HS | Ms [sar | Hs | ms [RGB | T |7RGB| | LIDARtype
| ALS | 1 3 2 24 21 9 2 31 6 1 1 101
| SLS | 1 9 5 15
& uLs | 7 1 1 4 3 1 1 4 2 4 4 2
=[1s | 1 1
MLS 1 1

[ Total perother type of sensor (non-LiDAR) | 27 21 10

2 4 1 5 2 2 41 2|

LiDAR sensors used for data fusion include: ALS airborne laser scanner, SLS spaceborne laser scanner, ULS unoccupied aerial vehicle laser
scanner, TLS terrestrial laser scanner, MLS mobile laser scanner, HLS handheld laser scanner, BLS backpack laser scanner. Non-LiDAR sensors
used for data fusion with LiDAR include: HS hyperspectral, MS Multispectral, RGB red, green, and blue visible bands, SAR synthetic aperture

radar, T thermal infrared, TRGB RGB+T.

sample demonstrates that most of the fusion studies in Asia
are taking place in China alone, while other countries such
as Iran, India, and Malaysia are studied just one time each.

Main Motivations and Applications of LIDAR
Data Fusion

Motivations

Three main motivations for data fusion were found: (1) fusion of
data across platforms can enhance spatial or temporal resolution

of the data product. (2) two different LIDAR datasets can be fused
to improve data density and/or overcome occlusion. For example,

@ Springer

terrestrial and aerial point clouds are fused to better represent
both the top and the bottom of the canopy, and to subsequently
extract structural parameters more accurately [32, 33]. (3) fusion
from the same platform primarily enriches the existing dataset
with additional information, and these studies seek to add more
information to the LiDAR dataset. For example, spectral data can
be fused with LiDAR data to create a better estimate of above-
ground biomass (AGB) or improve tree segmentation.

Applications
In the LiDAR data fusion literature, we find two main

streams of applications, at the individual tree level (ITA
- Individual Tree Approach) and at the area level (ABA
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- Area-Based Approach). Among all papers reviewed, 27%
focus on ITA, 50% on ABA, 17% on both ITA and ABA, and
6% are review papers. The main applications of LIDAR data
fusion at these two levels are divided into seven categories:

1) Classification (tree species/land cover): 29.5% of the
papers [27, 28, 34-73] encompassed land cover clas-
sification, specifically, forest type classification, classi-
fication of individual tree species or genus, and forest
habitat mapping.

2) Growing stock volume / above-ground biomass: 17.7% of
the papers [74-98] are studies in which data fusion was used
to improve biomass estimates both at ABA and ITA levels.

3) Forest structure: 15.5% of the papers [11, 13, 32, 33,
99-115] include different datasets fused to improve
the extraction of horizontal as well as vertical struc-
ture parameters beyond canopy height. This category
includes individual tree biometric parameters such as
crown diameter, crown length or base height. On an
area-based level, the information derived includes mean
crown length, number of vertical layers, gaps, crown
coverage, stem density, basal area, DBH distribution etc.
This category also includes assessment of post-fire forest
structure and regeneration.

4) Tree height: 12.7% of the papers [116-133] include
canopy height represented by different parameters such
as mean height, quantiles, deviations etc. Data fusion
was applied to generate better estimates of tree height
at a single tree level or a stand level, mainly by fusing
aerial LIDAR data with other LiDAR platforms.

5) Segmentation: 9.2 % of the papers [134—-147] delineate
individual tree crowns and identify locations of individ-
ual trees. In ABA, the segmentation includes delineation
of homogeneous forest patches as well as forest stands.

6) Other: 9.1% of the papers [148-160] include a variety of
applications, such as mapping the pigment distribution
and quantifying taxonomic, functional, and phylogenetic
diversity, tree age estimation etc.

7) Fuel load: 6.3% of the papers [161-169] include applica-
tions that deal with fuel load and forest fire modeling.

Methods for LiDAR Data Fusion

The methods used for LiDAR data fusion can generally be
divided into two main categories. Data-level fusion studies
typically merge datasets from different sensors during the
pre-processing stage and before any formal classification or
feature extraction occur, whereas feature-level fusion stud-
ies merge post-classification outputs and extracted features
from disparate datasets to generate a new dataset. A third
level, namely decision-level fusion, exists in the literature,
but none of the papers in our literature sample fell into this
category [170, 171].

Data-level Fusion

Among all papers we reviewed, 22% performed data-level
fusion. Point cloud-to-cloud fusion can be achieved by com-
bining, for example, airborne and terrestrial LIDAR datasets
using the reference points acquired in both surveys [19].
TLS typically acquires detailed measurements at a plot-
scale, while ULS can obtain measurements across a larger
spatial extent at a landscape-scale [26]. The raw datasets can
be fused using ground control points (GCPs) or by identify-
ing similar features in the datasets [74, 100] using the same
coordinate system acquired through GNSS or total stations.
Other studies [26, 112, 162] used manual co-registration
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by identifying similar features such as the tallest tree, trees
with large crowns, or tree locations. These features were
used to guide the manual shifting process and to correctly
co-register the two datasets. Defining appropriate key points
for co-registration is challenging, especially in forest point
clouds with few distinct objects, and can become even more
complicated in plantation forests where trees share similar
characteristics [32]. Some authors suggest using software
tools to co-register point clouds based on key points [33] or
the Tterative Closest Point (ICP) algorithm [140, 155, 172]
in CloudCompare. The quality of the fused data depends on
the forest conditions and the data characteristics, namely
the number of terrestrial scans and distance of the scanners
from the target [115, 173]. Another type of data-level fusion
included LiDAR data fusion with spectral bands and indi-
ces, where spectral information was projected onto the point
cloud [74, 113, 153] using, for example, CloudCompare [74]
and FUSION software [113]. Reflective targets help the co-
registration of terrestrial images and point clouds, enabling
the merging of RGB pixel colors to point locations through
co-registration [153].

Feature-level Fusion

A total of 78% of the papers performed feature-level fusion
by merging post-classification outputs, rasterized LIDAR-
derived products, extracted features, and spectral bands and
indices to derive a final output. Feature-level fusion in this
context can be broadly categorized into pixel-based fusion
and object-based fusion [174]. Pixel-based fusion primarily
occurs among airborne platforms and between airborne and
satellite platforms, mostly combining LiDAR and spectral
data. Many of these studies rasterized the LiDAR data to
generate canopy height models (CHM) and digital terrain
models (DTM) and layer-stacked these outputs with MS
and HS bands as inputs for subsequent classification algo-
rithms [28, 38, 54, 61, 149]. In most of these pixel-based
fusion cases, the pre-processing takes place separately, after
which they are combined. For example, hyperspectral data
is processed in ENVI, while LiDAR data products are cre-
ated separately. The combined data stack is then used for
classifications often using machine learning methods [28].
Object-based fusion involves direct segmentation at both the
individual tree scale and plot scale, followed by fusion based
on various extracted features for the objects. For example,
LiDAR data can be used to segment individual tree canopies,
often using inverse watershed algorithms, and then features
extracted from spectral data are added to those segments
essentially creating a new vector-format data. The resulting
spatial or vector format outputs were then used, for exam-
ple, to classify tree species with machine learning methods
[47, 66, 75, 102]. Most commonly, feature-level data fusion
takes place in a coding environment, such as R packages to
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segment trees, or python for post-processing the datasets
with machine learning algorithms. Readily available soft-
ware solutions to process different types of data and combine
the resulting features seem to be lagging behind.

Gains of LiDAR Data Fusion

To examine the gains that LIiDAR data fusion brings for each
of the application categories outlined above, we examined
the studies that directly compared the performance of their
methods with and without fusion.

Classification (Tree Species/Land Cover)

Species classification based exclusively on LiDAR data
has proven effective in particular circumstances including
when the set of species to be discriminated have contrast-
ing silhouette or stature [45, 59] or when the segmentation
addresses broad class separation between evergreen and
deciduous species [34]. In our review, when a LiIDAR data-
set was compared to LiIDAR fused with spectral informa-
tion, overall classification accuracy increased by 41%, on
average. Conversely, when they used fused datasets instead
of spectral information alone, overall accuracy increased by
amere 10-14%. A few studies reported a beneficial effect
of the combined use of LiDAR and spectral information
by examining the importance of the various predictors in a
Random Forest classification model [63]. Finally, in some
cases, LiDAR only was used at the segmentation step to
delineate tree crowns or stands [35, 66]. Vegetation height
estimated from LiDAR data fused with MS and HS data
enhances the overall accuracy of species classification [28].
However, this generally benefited object-level classification
more than pixel-level classifications.

Growing Stock Volume and Biomass

Volume and/or AGB assessment requires structural and spe-
cies information. While LiDAR data provide information
about structure, fusion with optical data is often sought for
species-specific estimates. Among the papers in this sec-
tion, data fusion was performed mainly at the ITA (45%)
and ABA (50%) levels, and much less at the landscape level
(5%). Data fusion at tree-level mostly uses fusion of ground-
based and airborne point clouds [77], addressing occlusion
issues and enabling extraction of tree attributes such as DBH
and total height with greater accuracy. For larger acquisi-
tions in complex terrain, fusion of ULS, photogrammetric
point clouds and MS images shows significant improvement
in explained variance and error. For example, [75] fused
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ULS and HS data at the individual tree level, increasing the
R? from 0.75 t0 0.89. In [81] (ABA), by fusing ALS and MS
data, the authors reduced RMSE from 18.4% (LiDAR alone)
and 19% (MS alone) to 16.8%. In [89] (ITA), by fusing RGB
and MS data, the authors increased their R? from 0.77 to
0.81. Plot-level data fusion involved predominantly airborne
or spaceborne data, which allowed larger scale assessment.
While fusion with ALS mostly consists of combining con-
tinuous data over the area of interest [75, 88, 94, 95], appli-
cations with spaceborne data mostly consist of upscaling
approaches [76, 81-83, 87]. In another study [94], fusing
ALS and HS data increased R? from 0.81 to 0.87 for ITA
and 0.65 to 0.84 for ABA. In [77] (ITA), the utilization of
both TLS-based DBH and ULS-based tree height resulted in
areduced RMSE ranging from 8.6% to 12.7%. These RMSE
values compare favorably to the RMSE values of 10.1% to
20.4% when exclusively using TLS and 30.3% to 76.9%
when relying solely on ULS.

Forest Structure

The primary objective in fusing ground-based LiDAR with
ULS and ALS data is to capitalize on the advantages of the
ground-based LiDAR, which effectively capture the lower
part of the trees, in combination with the strengths of air-
borne LiDAR, which accurately represent the crowns. In
[26], fused TLS and ULS were used to measure tree height,
crown projection area (CPA) and crown volume (CV). In
estimating height, the RMSE with TLS and ULS alone was
0.30 m and 0.11 m, respectively, while the fused dataset
RMSE was 0.05 m. In estimating CPA, the RMSE with TLS
and ULS alone was 3.06 m? and 4.61 m?, respectively, while
the fused dataset RMSE was 0.46 m?. Finally, for CV, the
RMSE with TLS and ULS alone was 29.63 m* and 30.23
m?, respectively, while the fused dataset RMSE was 8.30 m°.
Another study [32] that fused ground-based LiDAR and ULS
observed significant R? improvements in tree height (9%),
stem volume (5%), and crown volume estimates (18%). In
[26, 33, 112, 115], there is a strong focus on co-registration
issues before individual tree parameters were extracted. Fur-
thermore, [33] achieved enhanced accuracy for DBH meas-
urements through TLS and ULS data fusion: 2.1% compared
to TLS alone and 20.7% compared to ULS alone for DBH.
[113] fused ALS and MS data and reported improved R?
when compared with ALS alone: quadratic mean diameter
(from 0.5 to 0.64), basal area (from 0.53 to 0.73), tree height
(from 0.92 to 0.94), stem density (from 0.29 to 0.30) and
stand density index (from 0.72 to 0.82). Among the papers
that use ALS and satellite data, [108] derive total volume
and basal area by fusing LiDAR and topographic informa-
tion (TT). Using LiDAR alone the R?is 0.67 for volume and
0.61 for basal area, while fusion with TT increased the R? to

0.74 and 0.69, respectively. MS-ALS-TT fusion increased the
R? further to 0.85 and 0.84, respectively.

Tree Height

For tree height estimates, 50% of the papers focus on ITA, and
50% on ABA. For example, [126] spatial resolution of tree top
height estimates was improved by fusing low-density ALS data
with high resolution optical images by applying k-NN tech-
nique, which allowed tree height estimates for crowns that are
not represented in the LiDAR data. In this paper, it is evident
that a greater number of LiDAR points associated with tree
crowns enhances the accuracy of tree top height estimation.
With the fusion, they detected 97% of the total trees with an
estimated tree-top mean absolute error of 2.45 m (measured
error with LIDAR data alone was 3.70 m). In [122], the benefit
of including LiDAR-derived topographic data for estimation of
canopy heights from Tandem-X InSAR data is demonstrated.
Furthermore, the use of the full-resolution DTM from Land,
Vegetation, and Ice Sensor (LVIS) instead of the simulated
GEDI DTM significantly decreased the RMSE from 4.6 m to
3.5 m, and the bias from 1.8 mto 1.3 m.

Segmentation

In a majority of the literature reviewed, data fusion was
mainly used for single tree segmentation, using airborne
data [135, 138, 143]. Segmentation challenges, especially
for tree-level data, include georeferencing the data products
and balancing data with different spatial resolution [138].
At the single-crown level, raw point clouds or point cloud-
based metrics are easier to fuse than pixel-based informa-
tion [139]. The results presented by [135] show a significant
difference between fused data versus ALS alone: for low-
density forests, the ITA method based on ALS alone cor-
rectly detects only 63% of trees, compared to 92% when fus-
ing data from ALS and HS. For high-density forest, fusion
detects 70% of the trees compared to 62% with ALS alone.
In [137, 143], the authors fused ALS and MS data increas-
ing their segmentation by 2-4% compared to ALS alone. In
[138], fusion of ALS and HS increased their segmentation
by 5% compared to single sensor accuracy.

Other

The ‘other” applications included LiDAR data fusion studies
focused on wetland/marsh areas, boreal forests and a natural
disaster impact assessment [155, 156, 158]. For example,
[158] fused airborne LiDAR with MS imagery to assess forest
loss in a wetland zone. They document that forest/non-forest
classification accuracy improved from 86-87% to 91-93%

@ Springer

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

164



288

Current Forestry Reports (2024) 10:281-297

demonstrating a small ~5% increase in accuracy due to the
inclusion of LiDAR metrics. [155] demonstrated that their
automatic ALS and TLS point cloud co-registration resulted
in a denser point cloud, in which the stems and canopy of
individual trees were better represented than in the single
LiDAR datasets, but provided no quantitative improvement
on retrieval of canopy/forest/tree information in a boreal forest.
[156] developed a method to assess wind damage by fusing
ALS and MS imagery. They conclude that adding the struc-
tural metrics from ALS to the spectral information provides
estimates of structural damages that cannot be retrieved with
spectral data alone.

Fuel Load

At a landscape-scale, multiple studies have documented that
fusing ALS data with Landsat and Sentinel-2 satellite images
improve total fuel estimates [168]. Specifically, [161] dem-
onstrated that 24-32% of the remaining variability in surface
fuels, uncharacterized by ALS data, can be explained by Land-
sat NDVT time-series. Furthermore, ALS data combined with
Landsat time-series achieve both higher classification accuracy
and lower prediction errors in post-fire snag classes, and shrub
cover estimates [165]. Similarly, airborne MS image-derived
NDVI metrics, when fused with ALS, further improved clas-
sification overall accuracy of the post-fire regeneration types at
stand-scale by 10-50% [163]. Similar data fusion studies also
predicted canopy fuel variables, such as canopy fuel load (kg/
m?), and surface fuel layers (including coarse woody debris
biomass) with adjusted R? ranging between 0.55-0.94 [166].
At the ITA scale, post-fire changes in DBH and biomass can
be estimated by fusing MLS data with ULS/ALS, where the
below-canopy measurements are enabled by the MLS data
|162]. However, a fusion of ALS and TLS data for ITA met-
rics was recently documented to offer no particular advantage
over either sensor used alone [169].

Discussion

The information from the structured literature review was dis-
cussed by an international panel of experts in Leiden, the Neth-
erlands, May 11-12, 2023. The panel consisted of 11 scientists
with expertise across all LIDAR platforms and their fusion with
other datasets across the full range of forestry applications.

What is ‘Data Fusion’ and How Should This Term Be
Used?

Through the literature search, it became apparent that there was
confusion regarding what should be considered data fusion.

@ Springer

Specifically, we found that the terms ‘data fusion’, ‘data com-
bination’ and ‘data integration’ are used in a confusing manner.
For example, we recognize that there are studies that perform
data-level or feature-level fusion without calling it as such, but
instead commonly referring to it as data combination [175,
176], data registration [173] or data integration [177, 178].
However, we found that those terms are also commonly used
for instances where data fusion as defined here is not actually
appropriate. These include, for example, instances where one
dataset is used to train a model that makes predictions based on
another dataset, which would be considered calibration/valida-
tion studies [179-181]. We do find a few instances of those
[118, 132] in our data-level and feature-level fusion examples,
although there are very few of these cases.

Based on our literature review of papers that considered
(multi-sensor) ‘LiDAR data fusion’, we define data- and
feature-level data fusion as: the merging of data or derived
features from different sources, (instruments/devices) of
which at least one is LiDAR, to improve the characteris-
tics of the LIDAR dataset and/or enable enhanced forest
observations. The term ‘data integration’ can be reserved
for decision-level data fusion, where datasets are only com-
bined to come to a conclusion (decision), but they are not
used to generate a new dataset or data product as inputs for
classification etc [24, 182]. The term ‘data combination’
can be used to indicate the entire process that includes both
data fusion starting at the pre-processing step through data
integration at the decision-making step (Fig. 4).

It is important to note that we only focused on multi-
source data fusion, while other instances of data fusion
are ignored: multi-temporal data fusion (datasets repeat-
edly collected at different times with the same sensor),
MS-LiDAR (MS data and LiDAR collected at the same
time by the same instrument), and co-registration of data
from the same instrument (e.g. strip adjustment of ALS
data collection and co-registration of TLS point clouds
acquired from various points of view to create a forest
scene). These types of fusion, though beyond the scope
of this review, can still be relevant for monitoring forest
growth, species categorization, identifying tree locations
and could be considered by practitioners.

What are the Most Important Lessons Learned
About Data Fusion in Forest Observations?

Our review indicates that all common applications are
improved using data fusion. Single tree segmentation can be
improved by fusing spectral or 2.5D structural information
from LiDAR data, especially in low-density forests. Results
obtained with canopy height model for ITA were slightly
improved when LiDAR data is fused with MS images. This
application is likely to be more relevant at a local scale, where
detailed information about individual trees is required. In
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Fig.4 Proposed conceptual
framework defining data fusion,
data integration, and data
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combination, which are ambigu-
ously used in the literature
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growing stock volume or above-ground biomass assessments,
data fusion can improve model performance by improving tree
species classification. These applications can be relevant at
local to regional scales. The use of airborne and spaceborne
data fusion expands the study areas to larger extents. Tree
height or canopy height are correctly detected by LIDAR data
alone, and there is no real need for LiDAR data fusion for
further improvements, but data fusion can extend the spatial
and temporal resolution of derived data products. LIDAR
data fusion with spectral information, such as MS or HS data,
improves tree species classification accuracy compared to
using LiDAR data alone. While LiDAR alone can be effec-
tive in certain circumstances, combining LiDAR with spectral
information enhances the accuracy of species classification
models significantly. Fusion of ground-based LiDAR data
with airborne LiDAR data improves the assessment of forest
structure parameters, including tree density, crown diameter,
stem density and stand volume. Fusion of ground-based and
airborne LiDAR data allows the combination of strengths
from both sources, capturing information above and below
the canopy layer. LIDAR data fusion for fuel load estimation
has been used for characterizing canopy and surface fuels. Ata
landscape scale, fusing LIDAR data with MS images enhances
the total fuel estimates, classification accuracy of post-fire snag
classes and prediction of canopy fuel variables. In summary,
data fusion can further improve the accuracy of a resulting data
product or application, and it can improve the spatial and/or
temporal resolution of such data products, providing valuable
information for practitioners. We note, though, that a lot of
these gains are marginal. Therefore, it is important to further
discuss the operationalization of these methods.

What are the Main Challenges in Data Fusion
for Operational Applications?

We identified several challenges with operationalizing data
fusion approaches. One fundamental challenge arises from
the utilization of two distinct RS datasets to develop a par-
ticular solution. This necessitates acquiring multiple datasets,
thereby increasing the overall cost, especially when combining
data from independent acquisition platforms, such as ALS and
HS data, or when dealing with large spatial extents. Although

there are airborne systems available that allow simultaneous
data collection from multiple sensors (e.g. LIDAR and MS
image), data providers must subsequently process the acquired
data, leading to additional costs. Data fusion is also a major
challenge for the data user, as the effort required to process
two or more RS datasets increases significantly. Consequently,
separate processing steps must be developed for each data-
set, increasing the overall processing time. Additionally, each
step must be individually evaluated and quality-checked. To
expedite processing, greater computing power becomes essen-
tial, which may be difficult to achieve, especially in practical
applications. Morcover, the data processing demands specific
expertise to ensure methodological correctness. Analysts may
need to possess additional skills or collaborate with domain
specialists to execute the analysis accurately. Both the process-
ing time and the additional equipment and expertise required
increase the cost of the analyses and can be a barrier. Another
big challenge in data fusion is related to the data itself. Differ-
ent data sources may have differences in resolution, accuracy,
spatial or temporal coverage, which can affect the effectiveness
of fusion techniques. If the quality of the data is low or the
fusion process is not optimized, it might not add substantial
benefits or may introduce additional uncertainties. A preva-
lent challenge in RS applications is the significant time lag
between data collection (e.g., aerial flights) and the delivery
of processed results to end users. The larger the surveyed area
and the number of datasets fused, the longer it takes. IT also
requires more validation and more rigorous accuracy assess-
ment, which often reveals further deficiencies and errors that
need to be addressed. This delay in information provision may
render the data obsolete or limit its effectiveness in addressing
situations with rapidly changing events, such as insect out-
breaks or areas impacted by severe wind/fire damage.

What are the Priorities in Moving Data Fusion
Forward?

We find that the RS community can further advance LiDAR data
fusion enabling a wider range of applications from environmen-
tal monitoring and resource management to disaster responses.
Several key areas should be a priority in propelling the applica-
tions and methodologies of LiDAR data fusion forward. First,
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our structured review shows that more studies on LiDAR data
fusion are needed in the southern hemisphere to better understand
the limitations and advantages of such applications in the exten-
sive rainforests in the global south, which have been relatively
underexplored compared to the northern hemisphere. The under-
representation from the global south has important implications
because these regions include a large majority of the tropical
forests, where LiDAR fusion may have many benefits. For exam-
ple, tropical forests typically include tall trees with several middle
and understory layers of dense canopies, where TLS data fused
with ALS data could fully characterize the forest structure. Sec-
ondly, even though improvements using data fusion for a variety
of applications have been reported, compared to using LiDAR
data alone, it is yet unclear to what extent these could be opera-
tionalized in a forestry setting. More information is required to
properly balance the costs of additional data collection and pro-
cessing, and the required expertise versus the benefits in accuracy
or spatial and temporal resolution. Common data formats with
metadata standards need to be established to develop interoper-
able algorithms among researchers to facilitate collaborations.
As an example, variables that can be extracted from ALS point
clouds are infinite and standardizing these variables is always a
challenge. In [183], the authors suggested a list of 10 standard
variables within 3 main classes (height, vertical variability, and
cover) as a starting point to characterize the vegetation structure.
Moreover, in [184], the authors recommend metrics such as the
skewness or kurtosis or the coefficient of variation of vegetation
height to describe vegetation structures. Both papers proposed
that the data be made available in raster format to standardize
subsequent studies or operations. Addressing sensor-specific
biases, radiometric differences, and geometric distortions across
different data sources is essential to harmonize fused datasets
effectively. Moreover, it is necessary to develop robust methods
to quantify and address uncertainties in data fusion processes,
which will boost confidence in the final products. A rigorous
validation and benchmarking of data fusion approaches with
ground-based accuracy assessment and independent datasets
are crucial. Finally, LiDAR data fusion studies should promote
open data initiatives and foster collaboration among researchers,
institutions, and data providers. This would facilitate access to
diverse datasets and accelerate data fusion research, which will
further enable data fusion methods and solutions that can oper-
ate in real-time especially for applications requiring quick and
up-to-date information.

Conclusion

This paper presents a comprehensive review of LiDAR data
fusion research for forest observations over the last decade. Our
structured review indicates that there has been a slight upward
trend in the number of publications on LiDAR data fusion for

@ Springer

forestry observations and aerial platforms (both UAVs and air-
borne platforms) continue to be the most widely used option. We
conclude that multi-sensor LiDAR data fusion has the potential
to improve forest observations in a great variety of applications.
Our team suggests a clear definition of the term “data fusion” to
avoid confusion among the commonly used terms ‘data fusion’,
‘data combination’, and ‘data integration’. The review further
highlights that data fusion poses several challenges, including
costs, computational effort, and processing times, variability in
data quality, spatial resolution, and a need for specialized exper-
tise. Therefore, practitioners must carefully weigh the potential
benefits of LiDAR data fusion in relation to the actual need for
such benefits and the accompanying cost.
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5. Discussions

5.1 Summary of addressed knowledge gaps and objectives

The mapping of selected forest structural indicators is crucial for assessing forest productivity and

maintaining the ecosystem functioning. The accuracy and precision of mapping these selected

structural indicators vary greatly from different methodological approaches. The thesis addressed

the knowledge gaps in the accuracy and precision of mapping selected structural indicators using

TLS and MLS. The key features and objectives of the thesis are explained as follows:

a)

b)

d)

Objective 1 is addressed as a review based on understanding the use and reliability of TLS
and MLS for mapping selected forest structural indicators (DBH, tree height, Stem
volume, AGB). A thorough review was also done to understand the role of LIiDAR in tree
parameter retrieval and its application in forestry.

Objectives 1 are addressed in paper | as another review focused on LiDAR data fusion
with other data sources. The review addressed the main gains in LIDAR data fusion with
other data. The current trend and opinion on LIiDAR data fusion.

Obijectives 2 and 4 are addressed in papers Il and IV. A study was conducted on the
estimation of AGB using TLS and ALOS PALSAR L-band data to resolve the saturation
of biomass value with L-band. Machine learning algorithms were used to address this
challenge, and it was found that biomass saturation can be resolved with better reference
data training and machine learning approaches with the integration of TLS and ALOS
PALSAR data.

Objective 2 is addressed as in paper Ill and II; an approach of the estimation of tree
parameters (DBH, tree height, and stem volume) using RHT and RANSAC algorithms. A
comparison study was conducted using TLS, MLS, and Photogrammetry to see these
technologies' significant importance and potential in mapping individual tree dimensions,
specifically DBH.

Currently, occlusion is one of the main challenges in LIiDAR data acquisition in the forest
environment, especially processing and analysis of the data, which makes it tricky to get
the best accurate results. So, the investigation was done to propose a methodology to

mitigate this challenge. This was addressed in paper V.
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f) The investigation also focused on the role of revolutionary devices (iPhone 12 Pro and
iPad Pro) in measuring DBH. Moreover, it also aimed at tree species' relevance and
significance with DBH and algorithms. This was addressed in the paper Il and VI.

g) Objective 3 is addressed as a paper VII, the benchmarking study was done on all the
possible software solutions for processing LIDAR data (TLS and MLS). Benchmarking
the point cloud processing software solutions was done to propose the best solution
considering the tree parameters estimation and ease of applicability. A detailed user
manual and documentation were prepared so to provide an overview of the current

software solutions to the end users.
The objectives and thesis are structured based on the hypothesis that is answered as follows:

a) Question: The use of static and mobile laser scanning will significantly advance, mainly
in the field of mapping trees' positions and dimensions. In contrast, mapping a wide range of
tree parameters remains understudied.

Answer: In this context, software solutions were tested and installed considering a wide range
of tree parameters. The mapping of tree parameters was conducted in paper VII during the
testing and installation of the software solutions to benchmark the point cloud processing
solutions. The results showed the potential to map those parameters using one of the
benchmarking algorithms.

b) Question: Options for mapping the parameters can be substantially improved by the fusion
of different data sources (e.g., point clouds with images)

Answer: Several options are available for mapping tree parameters by the fusion of different
data sources; these have been clarified and found in the review conducted in the paper I. The
potential of increasing the accuracy and precision of the tree parameters (AGB) with the
integration of TLS and ALOS PALSAR data is shown in paper IV.

c) Question: Terrestrial laser scanning will provide more accurate and reliable data with
lower estimation errors than mobile laser scanning.

Answer: TLS proved to be a more reliable and efficient device for accurately estimating tree
parameters than MLS. A study was conducted and proved in paper II.

d) Question: Mobile laser scanning will be more efficient during the data acquisition and
provide the required accuracy.
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Answer: Irrespective of accuracy, MLS proved to be the most efficient device for data
acquisition, with satisfactory accuracy for estimating a few tree parameters (especially DBH).

This was examined as part of papers Il and VI.

The thesis objectives were addressed and elaborated in the mentioned papers and explained briefly

in the above sections of the thesis.

5.2 Summary of Used Methodological Approaches

A thorough Literature review on the Web of Science was conducted to understand the current
state-of-the-art application of TLS and MLS in the estimation of tree metrics and forestry. A
systematic review was done on Web of Science and Scopus to find the existing scientific literature
and synthesize the current options for mapping variables of high ecological relevance using TLS
and MLS. In the second review, PRISMA approach was utilized with the most suitable keywords

at Web of Science which are mentioned in table 1.

The literature review was based on the LiDAR data fusion and its prospective role in forestry.
Regarding this, an experiment was done to estimate ABG with the integration of variables derived
from TLS and ALOS PALSAR using machine learning approaches RF and ANN to resolve the
biomass saturation issues in L-band, for which TLS scanning was done on 13 plots. RF and ANN
were trained at the LIDAR footprint using the TLS derived tree parameters and features extracted
from the ALOS data at the LIiDAR footprints

Occlusion is one of the main concerns during the scanning of forest plots. TLS is an efficient
device to give detailed information about the vegetation, especially the canopy of the tree as it can
penetrate deep into the canopy. However, the scanned data could have some voids due to different
plot sizes, tree densities, and tree structure. Multiple scan positions were done to quantify these
voids and analyze the occlusion in the canopy. These scans were combined into different
combinations to get an overview of the number of canopy top points present in each scan
combination. Based on these combinations, the most suitable combination was suggested for the

same forest structure and density.

An experiment was also done on the estimation of tree parameters (DBH, tree height, and Stem
volume) using algorithms such as RANSAC and RHT. Moreover, DBH was also estimated using
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three software tools such as rTLS, RANSAC , and ForestScanner application ,further statistical

evaluation was done to find out the significance of tree species in the estimation of DBH.

A comparative analysis was also done between TLS, MLS, and photogrammetry to assess the
performance and potential in the ease of data collection, tree parameter estimation, tree detection
rate, and time required to collect the data. A cylinder-based algorithm was used to estimate the
DBH.

Later, a benchmarking of 24-point cloud processing algorithms focused on forestry applications
was done. A comprehensive and user-friendly database was prepared for the end users. This
database illustrates the elaborative information on each of the algorithms mentioning different
useful forestry parameters. The identified algorithms were tested, installed and a user manual was
prepared for general use focusing on the user with no or little programming background. This
manual is included in the web platform of the 3DForEcotech Cost Action Project
(https://3dforecotech.eu/database/).

5.2.1 Limitations of the methodological approaches

The methodological approaches for the literature review were only focused on the review and
articles and did not consider the conference proceedings. Some of the instances of data fusion were
ignored during the review. Multi-temporal data fusion, multi-spectral LIDAR data, co-registration
of data from the same instrument (strip adjustment of ALS data collection and co-registration of
TLS point clouds acquired from various points of view to create a forest scene). These can still be

relevant to forest monitoring, species classification, and tree localization.

Another review was conducted on the point cloud processing software solutions to prepare and
avail a list of potential software solutions that focused on forestry application. The current
methodology for review only works for 24 software solutions; however, the point cloud processing
software and algorithms are updated and included every now and then. So, another review needs
to be conducted on these updated versions of software, and other upcoming solutions. The review
procedure only included the point clouds acquired using terrestrial devices; there is a limitation in
the considered point cloud data formats for point clouds. The categories used for the output level

have not mentioned all the features (tree parameters) concerning the forest studies.
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In paper 11, the comparative analysis of close-range technologies (TLS, iPad, PLSh , MultiCam)
has been done. The methodology includes testing these devices on the performance within the
forest stands, focusing on tree detection, DBH estimation, and overall performance. The
methodology did not include other tree parameters or forest metrics. The study area chosen has 8
plots (25 x 25 m). The methodology neither considers different stand structures nor forest
environments. The methodology applies to the same forest stand structure as it is mentioned in the
study, and the results may vary in different forest stand structure environments. Moreover,
depending on the devices used for the scanning of the forest plots, the accuracy and precision of
the final output may vary because there are different ranges of terrestrial laser scanners (TLS) and
mobile laser scanners (MLS) available with different technical features and capability of scanning

are different compared to each other.

Furthermore, tree parameter extraction can be subjective depending on the methodological
approach. In Paper Ill, tree parameters (DBH, tree height) were mainly focused, and RANSAC
and RHT were used to estimate DBH and tree height. However, the conceptual framework did not
consider another potential algorithm to serve the purpose. Other tree parameters were not included
in the methodology. The number of plots established was 13, so the results may vary with the
increase in the number of plots, scanning scheme, and forest type. The scanning scheme and forest
stand structure are highly subjective when estimating tree parameters (especially DBH and tree
height) because of the possibility of occlusion. The accuracy and precision of the DBH and tree
height may change depending on the scanner. For instance, in paper VI, the tree was scanned with
an iPhone 12 Pro to estimate DBH. The software tools that were used for DBH estimation were
RANSAC (CloudCompare plugin), ForestScanner application, and rTLS. The forest stand was
different. So, the DBH estimate achieved different accuracy. The precision and accuracy of these
tree parameters are highly important for further estimation of stem volume and above-ground

biomass.

In paper IV, forest above-ground estimation was used using TLS and ALOS PALSAR data. Two
machine learning algorithms (RF and ANN) were used. The study was done in 13 plots. The
conceptual framework of this study may vary depending on the study location, machine learning
algorithms, and datasets used. This study aimed to mitigate the challenge of biomass saturation
with the L-band of ALOS PALSAR data. The study works well in the tropical forest and was not
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tested in other forest conditions or types. The biomass saturation varies depending on the SAR
data; different bands have different saturation levels. The results may also change with the different

scanning schemes because it highly affects the occlusion rate in the forest plots.

The scanning scheme and position of scanners in the plots can change the entire output of the
study, considering the forest stand structure and density. The number of points acquired in the
forest plots may vary with different scanning schemes and so the estimated tree parameters. The
quantification and assessment of the number of points acquired in the top of tree canopy using
TLS was focused on paper V. The methodology can only work for the same forest stand structure
and has not been tried in other forest types. The scan combinations may vary and will be different
depending on the number and locations of scan positions in the forest plot. The study also does not
consider the variation of DSM at each pixel, including canopy top points, points above branches,

and surface points in non-canopy regions.

5.3 Key findings

The systematic review based on LiDAR data fusion reveals the confusion between the terms ‘data
fusion’, ‘data combination’, and ‘data integration’. For instance, the studies focused on data-level
or feature-level fusion using the term data combination (Arjasakusuma et al., 2020; Machala &
Zejdova, 2014), data registration (Pohjavirta et al., 2022), or data integration (Anderson et al.,
2008; Guan et al., 2013); therefore, to avoid confusion, the definition was set to LIDAR data fusion
as “Enhancement of forest observation and LiDAR characteristics using features derived from
different data sources and merging of data of which at least one dataset is LiDAR”. Data
integration terms should be used when only features and characteristics from the data sources are
used to train and enhance the model's efficiency. They are not used to generating new datasets.
The data combination term should be used when the data fusion is done at the pre-processing steps
and data integration is done at the decision-making step.

This review survey shows that precision forestry is oriented towards automated terrestrial point
cloud processing. The precise measurement of individual trees including diameter, height, and
location, is almost possible and mirrors the meticulous information as compared to traditional
forest inventory. Besides the prevalence of automatic point cloud processing solutions, there is a

gap to exploit the potential of terrestrial point clouds among practitioners fully. However, some
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software solutions utilize some complex metrics to unveil more information about the data;
perhaps a broader utilization is required to thrive the full potential of these datasets. Furthermore,
these datasets have the capability not only to recognize the basic forest structure but also to analyze
some advanced variables such as canopy characterization, volumetric assessment, and habitat

monitoring.

The most important glance from papers 11, 1V, and V1 is the utilization of different conceptual
approaches for the estimation of tree parameters (DBH, tree height, stem volume). Different
datasets were used and tested on different locations mostly to ensure the potential and accuracy of
the outputs. The tree parameters estimation accuracy is highly subjective to the scanner used for
the collection of point cloud, forest type and stand structure, algorithm, or software tools used for
the estimation. The precision error can also be dependent on the operator of the device. However,
the most important finding from papers 111 and VI is the best performance of estimation of DBH
by RANSAC and ForestScanner (iPhone-based application). Also, the iPhone showed the potential
to estimate DBH with an R? of 0.976, equal to the R? of 0.976 achieved using RANSAC. The
RMSE and rRMSE (%) observed were 2.58cm and 7.25 for ForestScanner. Also, The RMSE and
rRMSE calculated for RANSAC were 2.19 and 6.15cm. There are so many tools available for this
purpose, so perhaps benchmarking of the tools is required to get the most robust tool for ease of
estimation of DBH. Other studies focus on the estimation of DBH using MLS with the comparison
of 3 algorithms, namely RANSAC, Monte Carlo, and optimum circle and found good results with
RMSE 5.31 cm and 1.23 cm of bias (Pérez-Martin et al., 2021).The other study on the DBH
estimation was done using the RANSAC algorithm, which tested 71 trees and found a promising
outcome. The RMSE calculated was 0.7 cm, and 2.27 % was the relative error. This shows the
potential application of RANSAC in the estimation of DBH (Zhou et al., 2019).This study showed
that the number of points fitting a circle does not affect the RANSAC algorithm. LiDAR-based
iPad Pro efficiently estimated accurate DBH and distance between each tree. So, these low-cost

technologies can accurately estimate a few tree parameters(Cakir et al., 2021).

Apart from this, statistical analysis was done to determine the significance of these devices on the
estimation of DBH of different tree species and a significant relation was found between tree
species and DBH. In paper IV, the biomass saturation issue was resolved at L-band ALOS
PALSAR data by integrating it with tree parameters estimated using TLS. The R? value obtained
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for predicted biomass using RF is 0.94 and RMSE of 59.72 ton ha*. The RMSEcv and RMSE%
obtained were 0.15 and 15.92, respectively. However, the statistical evaluation reveals the values
obtained for R?, RMSE, %RMSE, and RMSEcv are 0.77, 98.46 ton ha?, 26.0, and 0.26,
respectively. The biomass range improved was 122.46 to 581.89 ton ha using RF with the
uncertainty of 15.75 to 85.14 ton ha. These results were compared with a study and found that
the LIDAR data is more reliable in estimating biomass and significantly improves the biomass
saturation with intact precision and accuracy of the predicted biomass with correlation (R?) value
of 0.98 and RMSE of 0.08 Mg (Beyene et al., 2020; Chowdhury et al., 2013; Liao et al., 2020).

The most important finding in paper 1l was the best performance of TLS in the quality of point
cloud and tree detection rate (90 %) compared to iPad (64.5 -87.5%), PLSnh (55.6-74.3%), and
MultiCam (57.1-74.3%), respectively. TLS achieved the highest accuracy in the estimation of
DBH with an RMSE of 2 cm compared to other devices. Nevertheless, iPad achieved the closest
accuracy to TLS with RMSE 2.6 to 3.4 cm. Furthermore, the time required to complete the scan
of the plot is 40 mins (TLS), 10 mins (PLShn), 15 mins (iPad), and 8 mins (MultiCam). So, PLShn,
the tree detection rate achieved was 57-100% (Balenovic¢ et al., 2021). The highest tree detection
rate (100%) was found with a DBH threshold of 10 cm (Bauwens et al., 2016), and 90.9 % to 95
% for a 5 cm or less DBH threshold; however, on the contrary, 57 % tree detection rate was
achieved with the distance between the scanning strips of 15 m. The rate was increased to 94 %
by changing the distance from 15 to 10 cm (Chen et al., 2019; Gollob et al., 2020; Perugia et al.,
2019).

The top canopy surface point extraction in paper V was statistically evaluated, and it was found
that the most reliable combination of all the 9 scan positions was Four Sides Centre with Centre
Scans (FSCwCS) compared to All Nine Scan (ANS). The rRMSE % obtained for TLS_Plot 1 was
0.14 to 2.48 %, whereas 0.096 to 1.22 % for TLS_Plot2. So, the study showed that using different
scan combinations of TLS scan positions, the quantity assessment of point clouds can be done for
forest plots. This approach will eventually help to assess and detect the probability of occurring

occlusions while scanning a forest plot.
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6. International Collaborations and Achievements

Strong international collaborations were established as a part of this thesis. Papers | and VII were
mainly done in collaboration with scientists from very high university rankings. The collaborations
were part of the 3DForEcoTech Cost Action project. Most of the datasets used in this thesis were

associated with the collaborators.

Virtual mobility was done under the 3DForEcoTech project, and the mobility outcome was paper
VII. A list of 24 algorithms was prepared, installed, and tested, and an intensive guideline and
protocol were developed and made available on the project  website
(https://3dforecotech.eu/database/). The web portal is like in figure 30.

Moreover, the extended achievement of virtual mobility, a hackathon was organized to benchmark
software solutions for processing close-range forest point clouds. It happened on 25-29 September,
2023, at TU Wien (Austria) https://3dforecotech.eu/activities/hackathon-a-benchmark-of-
software-solutions-for-processing-close-range-forest-point-clouds/ . The outcome of hackathon

will further lead to a publication in peer reviewed journal.
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Figure 29: The webpage of the 3DForEcotech Cost Action project
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7. Conclusions and Recommendations

The dissertation mainly focuses on utilizing TLS and MLS for mapping structural indicators in the
forest and the significance of these indicators. The focus was to use the TLS and MLS technology
to estimate tree parameters (structural indicators) using different software solutions or data
integration. The thesis outcome was delivered in the respective studies described in papers I, 11,
I, 1V, V, VI, and VII. The overall conclusion derived from all the papers is that the TLS is the
most precise device for mapping structural indicators. However, in the analysis of the paper, |
highlighted the data fusion technique and the literal meaning of data fusion, data integration, and
data combination. Also, the proper use of these terminologies. The significance of the impact of

the data fusion of the forestry application.

Paper Il mentioned the comparative analysis of close-range technology (TLS, PLShs, iPad,
MultiCam) for the tree detection rate and DBH estimation using different scanning trajectories and
found that the TLS is more precise than other devices, perhaps iPad works closely to TLS, and it
shows more potential in the estimation of DBH and tree detection rate. However, TLS and PLShn
proved to have more potential to acquire point clouds with more range. So, it would be necessary
to use these devices for the estimation of other tree parameters such as tree height. Moreover, the
methodology can also be tested in different forest types and with more tree parameters.

In paper Ill, stem volume estimation was done using TLS point cloud. The stem volume was
estimated and compared using RANSAC and RHT. RANSAC proved to be the best algorithm to
estimate DBH with higher accuracy, and so stem volume. These algorithms have the potential to
do the modeling of stem volume, preferably including more plots and trees. The current
methodology needs to be tested in different forest types as well. The DBH estimation is very fast
and accurate with the iPhone 12 Pro. The statistical analysis found that the in-built algorithm in
the iPhone 12 pro-ForestScanner application is precise and close to RANSAC. So, this can be used
for the estimation of DBH in the mentioned forest type and tree species. A significant relation was
found between the tree species and DBH. More species and different forest types can also be tested

using iPhone 12 pro to test the outcomes of paper VI.

Above-ground forest biomass was estimated using TLS and ALOS PALSAR data. The study
proved that the biomass saturation using L-band SAR data can be mitigated with the integration
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of ALOS and TLS datasets. Also, RF has the potential to predict biomass with the most accuracy.
This kind of study relies on the data source and machine learning algorithms used. This is clearly
described in paper IV. The methodology is also used for the other forest types and different stand
structures. Also, the deep learning approach could also make a significant difference in the biomass

saturation range.

In paper V, DSM was used to extract the canopy top points with nine scan combinations. The most
suitable combination was the Four Sides Centre with Centre Scans (FSCwCS) compared to All
Nine Scan (ANS). However, the scan combinations are highly subjective to the number of scan
positions in the forest plots, and this methodology only works with static LIDAR devices (TLS).
So, for future work, replication of the same methodology on different scan combinations can be
done using TLS in different forest types. Also, benchmarking can be done to establish different
scan combinations of TLS and other devices to establish the most accurate scanning scheme for
tree detection rate and DBH estimation with some more tree parameters relevant to the

understanding of the function of forest ecosystems.

A benchmarking of 24-point cloud processing software solutions was using some selected tree
parameters. These solutions were installed and tested with different computer configurations and
a detailed user guide and technical protocol were prepared for the end users with respect to the
type of analysis they are focused on. For future work, the point cloud processing software solutions
need to be updated, and more solutions need to be tested and updated at the web portal of
3DForEcoTech website. The tree parameters and testing parameters can be elaborated and

diversified to make the outcome of these software solutions more prevalent.

These kinds of studies are important to understand the functionality of the forest ecosystem and
help mitigate several challenges due to environmental crises and climate change. The structural
indicators play a crucial role in understanding the minute level of change in the forest structure.
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