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Objectives of thesis

Objectives of the dissertation thesis:

1) Development and validation of remote sensing methods for early detection and health assessment of
Norway spruce.

2) Spectral analysis and characterization of Norway spruce during different phases of bark beetle
infestation.

3) Evaluation of the synergistic use of satellite remote sensing data and auxiliary data for bark beetle
infestation assessment

Methodology

The methodology of this thesis is based on the utilization of advanced remote sensing (RS) technologies
and the integration of meteorological data to study the susceptibility and response of Norway spruce to
bark beetle infestations.

The causes of bark beetle damage depend on many factors but one of the main hypotheses is that acute
or chronic drought stress predisposes the tree to bark beetle attack. With the use of modern equipment,
such as multispectral sensors and satellite imagery, it becomes possible to make more and more precise
detection of specific trees potentially predisposed to bark beetle attack at the initial stages, as well as to
provide data for further modelling of the process. Many studies (A. Lausch, R. Nasi, R. Jakus) confirm the
effectiveness of using various sensors and vehicles to acquire RS data for identifying potentially predisposed
trees to bark beetle attack.

Experimental plots will be used for the assessment of spectral signatures of spruce exposed to acute and
chronic stress. The obtained signatures will be used for assessment of predisposition to attack in bark beetle
outbreak areas.

To deepen our understanding of the broader environmental context, this study integrates a range of me-
teorological data, including temperature, precipitation, wind speed and duration of solar radiation. These
climate variables are crucial for developing predictive models of tree mortality and understanding its geo-
graphical variations.
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By using RS data, ground truth data and meteorological variables, the research aims to uncover patterns,
detect susceptibility and establish models that can predict mortality more accurately.
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Annotation

This thesis examines the impact of climate-induced drought stress and bark beetle
infestations on European spruce forests, particularly the Eurasian spruce bark beetle (Ips
typographus L.) attacks on Norway and Siberian spruce. Utilizing satellite remote sensing,
ground truth, and meteorological data, the study explores tree health assessment during various
bark beetle infestation phases.

Four scientific publications form the core of this thesis. Two studies (Trubin et al.,
2023; 2024) apply PlanetScope multispectral imagery and ground truth data to identify forest
spectral characteristics before and during early bark beetle attacks. Key findings highlight the
effectiveness of specific spectral vegetation indices (Enhanced Vegetation Index (EVI) and
Visible Atmospherically Resistant Index (VARI)) in early detection of beetle-related tree
decline, offering a novel approach to forest health monitoring.

The other two studies (Trubin et al., 2022 and Pirtskhalava-Karpova et al., 2024) focus
on modeling tree mortality using meteorological variables. These studies identify key climatic
factors influencing annual tree loss in forests with different spruce species. Results enhance
predictive models for bark beetle outbreaks and highlight climatic patterns predictive of
potential infestations.

Overall, this thesis contributes significantly to forest management and conservation
strategies. By integrating satellite imagery with terrestrial and climatic data, it provides a
comprehensive framework for early detection and continuous monitoring of bark beetle
infestations. This proactive methodology aids in identifying vulnerable and affected areas,
enabling timely and targeted interventions to reduce damage. Moreover, the developed
mortality models using climatic variables empower forest managers to better anticipate and

prepare for potential outbreaks, optimizing resource management and response tactics.

Keywords: Ips typographus, Picea abies, bark beetle outbreaks, drought, spectral

vegetation indices.
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1. Introduction and literary analysis

Eurasian spruce bark beetle (Ips typographus L.) is one of Eurasia's most economically
significant forest pests (Wermelinger, 2004), that leads to significant loss of coniferous forests
within the whole Palearctic region (Christiansen and Bakke, 1988) and severe damage to
coniferous forests in the Northern Hemisphere (Raffa et al., 2015). Despite their vital function
in conifer-dominated forest ecosystems in the Northern Hemisphere's regeneration and
succession (Bace et al., 2015; Winter et al., 2015; Zeppenfeld et al., 2015), bark beetle
outbreaks in recent years have significantly exceeded their earlier recorded frequencies and
effects (Winter et al., 2015). Considering the growing threat from the Eurasian spruce bark
beetle, especially in conditions of climate change, it is crucial to explore triggers that global
forests face, especially severe environmental stresses.

In European spruce forests, the primary abiotic elements impacting their health are
typically identified as drought and wind (Karvemo et al., 2014; Komonen et al., 2011; Marini
et al., 2017). These factors are anticipated to escalate due to climate change (Haarsma et al.,
2013; Seidl et al., 2017; Jactel et al., 2019).

1.1 Main drivers of the bark beetle outbreaks

Traditionally, storms have been the primary cause of spruce bark beetle infestations in
Europe, but in recent times, there has been a notable rise in outbreaks induced by drought
conditions (Kérvemo et al., 2023, Hlasny et al., 2021a, Hlasny et al., 2021b).

1.1.1 Wind

In recent decades, European coniferous forests, particularly Norway spruce forests,
have witnessed a surge in windthrow disturbances, intensifying in both regularity and impact
(Nilsson et al., 2004; Seidl et al., 2011). This phenomenon, coupled with the activities of the
Eurasian spruce bark beetle (Ips typographus L.), constitutes a dual threat to these ecosystems.
Upon the proliferation of windthrown spruces, bark beetle populations burgeon, as these trees
become primary hosts, facilitating beetles’ reproduction and, subsequently, attacks on healthier
trees, which typically unfold one to three years post-windthrow (Marini et al., 2013; @kland
and Berryman, 2004; Wermelinger, 2004; Sauvard, 2004). This ecological chain reaction not

13



only threatens protected areas, especially those adhering to a non-intervention management
approach near managed forests (Havasova et al., 2017), but also becomes distinctly challenging
during outbreaks when beetles overcome even robust trees’ defences (Lindman et al., 2023).
While storms, the initial catalysts, usually affect confined geographical spaces (Seidl et al.,
2016; Hlasny et al., 2021b; Wermelinger and Jakoby, 2022), subsequent bark beetle
infestations and their severity have been notably correlated with factors such as wind-felled
spruces, host-tree volumes and age, neighboring infestations, and conditions related to aridity
and temperature (Kadrvemo et al., 2014a; Pasztor et al., 2014; Kdrvemo et al., 2016; Brina et
al., 2013; Stadelmann et al., 2014; Netherer and Nopp-Mayr, 2005; Sproull et al., 2017;
Blomquvist et al., 2018; Mezei et al., 2017; Karvemo et al., 2023).

1.1.2 Drought

Globally, forests are increasingly susceptible to dieback due to physiological stress
caused by heat and drought (McDowell et al., 2008), which is often linked to the accelerated
growth of forest insect pests (Allen et al., 2010; DeRose et al., 2013; Kolb et al., 2016; White,
2015).

Research indicates that wind and drought are the two key non-biological factors
affecting the health of spruce forests in Europe (Komonen et al., 2011; Karvemo et al., 2014;
Marini et al., 2017). Nonetheless, the specific physiological mechanisms that determine conifer
survival and death under drought conditions remain largely unknown (McDowell et al., 2008).
While conifers exhibit varying degrees of drought tolerance, extended periods of water scarcity
can greatly increase their vulnerability to bark beetle attacks (Krokene, 2015). Environmental
elements believed to accelerate bark beetle outbreaks include more frequent droughts and rising
temperatures, which directly influence insect population dynamics as well as the growth and
resistance of host plants (Jactel et al., 2012; Weed et al., 2013; Bentz and Jonsson, 2015;
Meddens et al., 2015; Raffa et al., 2015). For instance, extended droughts coupled with high
temperatures can reduce tree hydration, rendering them more prone to Ips typographus L.
attacks (Wermelinger, 2004; Netherer et al., 2015). It is observed that plant defense chemicals
may increase during moderate droughts but decrease during prolonged, severe droughts (Gely
et al., 2020). Miller et al. (2022) identified that a heightened likelihood of bark beetle
infestations is linked to factors such as high average canopy height, high spruce volume,

reduced soil moisture, proximity to recent clear-cut areas and earlier beetle outbreaks.
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1.2 Remote sensing of bark beetle attack stages

Healthy Susceptible Green attacked Yellow attacked Red attacked Gray attacked

Figure 1- Stages of the development of bark beetle attack

Lots of studies show the great results of using RS imagery to detect the Yellow and Red
attack stages in different locations and landscapes (Wulder et al., 2006; Zabihi et al., 2021,
Marvasti-Zadeh et al., 2023). The promising results of these studies led researchers to
investigate the possibilities of detecting the latest stage of infestation, and even before it.

In terms of the phases of bark beetle attack, the current research focused on the mortality
phase to have a complete understanding of the entire bark beetle outbreak cycle and the early
phase (green attack), to understand forest characteristics before the attack (having signs of
stress) and in the first days and weeks of the attack to be able to detect traceable signs using
remote sensing data (Figure 1).

The latest review on the early detection of Ips typographus was performed by Zabihi et
al., 2021 and Marvasti-Zadeh et al., 2023.

Georgiev et al., 2023 indicated the efficiency of using free Sentinel-2 satellite imagery
for the early detection of Ips typographus infestations in Norway spruce forests in their study
near Smolyan (Bulgaria) around windbreak and windfalls in mountain areas. By analyzing
the Normalized Difference Vegetation Index (NDVI), the research demonstrated that
significant deviations in NDVI values from 2018 (the year of severe windthrow) to 2020
provided evidence of pest attacks before observable symptoms. The study's findings underscore
the potential of NDVI data to facilitate the early identification of bark beetle infestations,
thereby enabling more effective forest management and mitigation strategies.

Advanced approaches to using Machine Learning and Deep Learning in the detection
of bark beetle infestation with remote sensing data are quite advanced, allowing it to cover

large landscapes (Zhang et al., 2022). However, the performance of current ML methods for
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early detection is limited, often achieving less than 80% accuracy. This performance is
influenced by several factors including the type of imagery sensors, resolutions, acquisition
dates, and the features and algorithms used. Deep learning networks and the random forest
algorithm have shown promise, particularly for detecting subtle changes in the visible, thermal,

and short-wave infrared spectral regions (Marvasti-Zadeh et al., 2023).

1.3 Aims of this thesis

This thesis integrates three primary study areas related to the susceptibility, green
attack, and mortality phases of Norway spruce (Picea abies (L.) Karst) trees in response to bark
beetle infestations. It offers an in-depth analysis of these phases and their spectral
characteristics, guided by the following hypotheses.

Susceptibility Phase: The first study aimed to identify the potential for detecting trees
susceptible to beetle attacks early in the growing season. By leveraging spectral bands and/or
spectral vegetation indices (SVIs) derived from individual wavelengths, the goal was to
establish the significant differences between healthy trees and those predisposed to attacks,
developing a robust methodology using remotely sensed and ground-truth data to track the
health status of Norway spruce on a temporal scale, specifically before and during infestation
episodes.

Green Attack Phase: The second study took a closer look at the spectral properties of
forests under green attack, assuming they are significantly different due to the differing levels
of damage caused by bark beetles. Assuming that the spectral signatures of affected trees would
have unique features indicative of the ongoing physiological changes, this research aimed to
identify these meaningful differences among the forest classes. The spectral properties of
healthy forests were used as a reference point, giving insights into the undisturbed state of these
stands.

Mortality Phase: The third and fourth research was aimed primarily at identifying the
most effective models using meteorological variables, such as temperature, precipitation, and
previous-year damage, that accurately represent annual tree-cover loss. The objective was to
investigate how these selected variables might influence annual fluctuations in tree loss, as per
the simplest and most explanatory model. An additional aim was to investigate whether the
variables linked to tree mortality vary according to geographical location, specifically
comparing the northernmost limits of spruce occurrence to lower latitudes. This was achieved

by integrating variables related to solar radiation into the analysis. The main goal of this study
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was to refine our understanding of tree cover loss, particularly in the context of beetle-induced

tree mortality, by leveraging robust predictive models grounded in meteorological data.
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2. Summary of work methodology

2.1 Study area and sites
2.1.1 The School Forest Enterprise

The School Forest Enterprise (SLP) is situated in the vicinity of Kostelec nad Cernymi
Lesy, roughly 50 kilometers southeast of Prague in the Czech Republic. This area, managed by
the Czech University of Life Sciences Prague (CZU), encompasses a forested region of about
5,700 hectares. These forests are situated at the juncture of the Central Bohemia Uplands and
the Polabi lowlands, part of the Ceska kiidové tabule geomorphological area, with elevations
ranging from 300 to 527 meters. The region is classified within the temperate zone,
experiencing mild winters. Historical climatic data indicates average annual temperatures
fluctuating between 7.0 and 7.5 °C, with annual rainfall averaging around 650 mm. The
vegetation period typically spans from 150 to 160 days annually. The forest composition is
diverse: conifers, primarily Norway spruce (Picea abies), which accounts for nearly half of this
category, dominate 70% of the forest cover. Scots pine (Pinus sylvestris) and other coniferous
species also contribute significantly to this percentage. The remaining 30% comprises
broadleaved species, predominantly European beech (Fagus sylvatica) and oak species (genus
Quercus), alongside other varieties. The area's forest health has been increasingly challenged
by recurring drought conditions in recent years. Notably, the severe drought of 2018 led to a
significant bark beetle infestation, primarily caused by I. typographus, with localized
occurrences of I. duplicatus, I. amitinus, and Pityogenes chalcographus. In response, forest
management practices have been geared towards sanitary logging, focusing on the fast
identification and removal of affected trees to mitigate further damage.
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Figure 2 - Overlay of Forest Management Plan of The School Forest Enterprise on
Planet Imagery dated April 23, 2022, cropped to the Area of Interest (AOI).

2.1.2 Dvinsko-Pinegskiy reserve

The Dvinsko-Pinegskiy reserve in Arkhangelsk region, Russia is a state-protected area
between 62°30" and 64°00" N and 42°00" W to 46°00" E, untouched by significant human
activities. Encompassing 300,420 hectares, the study area is predominantly forested (over
90%), with Siberian spruce being the dominant species.

In 2020, as compensation for 150 hectares of illegally felled forest in the Dvinsko-
Pinezhsky nature reserve, a logging company took under voluntary protection an area of taiga

of 1,834 hectares, which was not included in the original configuration.
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Figure 3 - Dvinsko-Pinezhsky natural reserve with Global Forest Watch 2004-2014

dataset with forestry borders.

The spruce stands, originating from past wildfires, naturally decay when reaching 180-
200 years of age, contributing to forest regeneration. The forest landscape is impacted by
localized spruce death, infrequent disturbances, windthrows, insect outbreaks, and fires, with
droughts often exacerbating these events. The Eurasian spruce bark beetle infestation that
started in 1999 is linked to severe drought conditions in 1997 and heavy snowfall damage in
2001-2002 (Trubin et al., 2022).

2.2 Remote sensing data acquisition and processing

The selection of remote sensing data sources is predicated on their unique strengths in
monitoring and analyzing the health of trees affected by bark beetle infestation. In this context,
PlanetScope data have been selected, leveraging the participation in Planet’s Education and
Research (E&R) Program, which provides specialized access to these high-quality satellite data
for academic purposes. This access is particularly beneficial given PlanetScope's exceptional
temporal resolution, offering frequent updates that surpass the capabilities of alternatives like
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Sentinel 2. This high-frequency data acquisition is critical in capturing dynamic changes in
forest health, a task that would be prohibitively expensive and labor-intensive using UAVS,

especially considering the spatial extent of the study area.

Global Forest Watch (GFW), leveraging processed Landsat data, provides a
comprehensive view of forest loss. This platform offers a distinct advantage over developing
custom solutions for forest loss detection, such as training, validation and applying complex
machine learning and Al models, which can be time-consuming and resource-intensive on large
areas. GFW’s data significantly streamline the process, offering accurate and readily available

information on forest changes, essential for quantifying the impact of bark beetle attacks.

These data sources, with their respective strengths, not only enhance the efficiency of
data acquisition but also ensure the reliability and accuracy of the analyses conducted in this
study. In subsequent research endeavors beyond this thesis, the integration of diverse data
sources will be explored to enhance the specificity and accuracy of monitoring bark beetle

impacts on forest health.

2.2.1 Global Forest Watch

Global Forest Watch (GFW) is an online platform that provides data and tools for
monitoring forests worldwide. Launched by the World Resources Institute along with over 40
partners, GFW harnesses the power of satellite technology, open data, and crowdsourcing to
deliver near-real-time information about the state of forests. This initiative aims to increase
transparency and facilitate better management of forest landscapes by enabling policymakers,
researchers, and the general public to access detailed information about forest cover changes.
The GFW's data, which includes metrics like gross forest cover loss, is crucial for
understanding and analyzing global deforestation patterns and trends. This data is particularly
valuable for environmental research, as it offers precise and consistent measurements of forest
change over time, captured through advanced analysis of Landsat satellite imagery. Such
comprehensive and accessible data are important for the development of sustainable forest

management strategies and conservation efforts in different geographical regions.

The gross forest cover loss (lossyear) layers (Marini et al., 2013) were used from 2001
to 2014 derived from Global Forest Watch data (ver. 1.2, Hansen et al., 2013), based on time-

series analysis of Landsat imagery, to create annual maps from 2001 to 2019 at 30 by 30 meters
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spatial resolution. These raster images were derived from the original 10 x 10 granules and
then were vectorized using the Polygonize plugin (GDAL 3.1.4), cut by the polygon of the

reserve’s boundaries in the QGIS environment (ver. 3.16).

2.2.2 PlanetScope

PlanetScope imagery are high-resolution multispectral satellite images captured by the
Dove satellite constellation, operated by Planet Labs. The numerous small satellites that make
up this constellation, known as the "Doves”, combine to cover the Earth's surface
comprehensively and frequently. The primary benefit of PlanetScope imagery is its high
temporal resolution, allowing the ability to monitor changes on the Earth's surface nearly on a
daily basis. Applications requiring regular and up-to-date observations, including disaster
response, agricultural management, and environmental monitoring, would especially benefit
from this capability. With a spatial resolution of three meters, the imagery obtained by the
Dove satellites, especially the Dove Classic (PS2) sensor utilized in this study, offers
comprehensive visual information. In addition, the Dove satellites capture data in a number of
spectral bands, including Red, Green, and Blue (RGB) and Near Infrared (NIR), which offers

insightful information on a range of environmental topics.

Cloud-free PlanetScope imagery (instrument-Dove Classic (PS2)) in the GeoTIFF
format with surface reflectance data type (harmonized to Sentinel-2 for consistent radiometry)

were used from April 2 to 5 September 2020 (22 imageries).

The individual four bands and the SVIs were used to differentiate three defined classes.
These three classes were non-attacked trees during our year of study, assumed and considered
as the “Healthy” class; trees were attacked in the later stages of the growing season, assumed
and considered as the “Susceptible” class; trees that were previously classified as
“Susceptible”, but had since reached the date of bark beetle green attack and, consequently, are
designated as the “Green-attack™ class in Paper 2. For Paper 1, only the first two classes were

selected.
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Figure 4 Stacked multiband data cube containing individual bands and SVI

For each acquisition in the time series, 23 SVIs were calculated using the Raster
Calculator plugin in QGIS version 3.16.16 (QGIS Development Team, 2009). All individual
bands and SVIs were merged into a single GeoTIFF file to make a cube image of 27 bands, for

further statistical analysis (Figure 4).
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2.3 GIS and ground truth data collection and validation
2.3.1 Cross-platform ArcGIS application

The coordinates of the areas of evidence of bark beetle in The School Forest Enterprise
(SLP) in Kostelec nad Cernymi lesy were recorded by employers of the company and CZU
FLD and EXTEMIT-K project using cross-platform ArcGIS application. A cross-platform
ArcGIS application is a set of compatible tools and applications within the ArcGIS system,
intended to perform a variety of GIS tasks on various devices. Esri's ArcGIS is a versatile
mapping and spatial analysis platform which is used in resource management, urban planning,
and environmental research, among other fields of study. The ArcGIS platform makes it
possible for data to be seamlessly integrated and synchronized across various hardware and
software environments via a cross-platform architecture. Since it enables users to perform more
in-depth analysis and visualization on desktop computers, as well as to record and access data
on-the-go via smartphones and tablets, this versatility is especially important for field data

collection and subsequent analysis.

The aim of the application was to have the ability to record, store, analyse and visualize
data on different platforms. ArcGIS Collector was used for smartphones (both iOS and
Android-based) to record points with coordinates of the hotspot and ArcGIS Online portal and
ArcMap 10.8 desktop application were used for storing, analysis, visualising and report

creation.
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Figure 5 - Mobile application (Photo by Roman Modlinger)
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Table 1 - Attributes of layers, used in the application for collecting information about

hotspots
Attribute | Attribute name Description Type and Options
#
1 Date of collection Filled by forest managers and
other users of Collector for
ArcGIS.
2 Number of attacked Filled by forest managers and
trees on the date of other users of Collector for
first collection ArcGIS.
3 Development stage Filled by forest managers and Entry holes, Eggs, 1st instar larvae,
of bark beetles other users of Collector for 2nd instar larvae, 3rd instar larvae,
ArcGIS. pupae, yellow beetle, brown beetle,
There is a list of available emerging holes, dry dead tree
choices (domains).
4 Hot spot state Filled by forest managers and
other users of Collector for
ArcGIS.
There is a list of available
choices (domains).
5 Date, Number of Filled by forest managers and
attacked trees, other users of Collector for
Maximum developed | ArcGIS.
stage of bark beetles
at the first and next
inspections
6 Type of bark beetle Filled by forest managers and Eurasian spruce bark beetle (Ips

other users of Collector for
ArcGIS.
Users are using the list of

choices, which are Yes/No.

typographus), Six-toothed spruce
bark beetle (pityogenes
chalcographus), Double-spined bark
beetle (Iplicatups dus), Small spruce

bark beetle (Polygraphus
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poligraphus)

7 JPRL Forest stand code. Filled by
GIS administrator.

8 Estimated volume Cubic meters of affected trees

at the time of collection.

9 Forest management Filled manually by GIS

area (numeric code) | administrator

Date of collection (implied as date of attack), Number of attacked trees on the date of
first collection, Development stage of bark beetles, Hot spot state, Date, Number of attacked
trees, Maximum developed stage of bark beetles at the first and next inspections, Type of bark
beetle, JPRL, Estimated volume and Forest management area (numeric code) in the day of

inspection were recorded using the ArcGIS Collector app.

Foresters conducted weekly surveys in their assigned regions to identify initial bark
beetle infestations. Simultaneously, EXTEMIT-K project researchers collected similar data
around six experimental plots. They employed visual inspections and sniffer dogs to spot early-
stage infested trees within a 500-meter radius of these plots (Vosvrdova et al., 2023; Trubin et
al., 2023). Each experimental plot was divided into four subplots, which include 8-10
neighbour trees (Ozcelik et al., 2022; Sttibrska et al., 2022).

2.4 Meteorological variables

In the Dvinsko-Pinegskiy reserve study area, the meteorological variables were crucial
for understanding the impact of climate on bark beetle epidemics and tree mortality from 2001
to 2014. The dataset included monthly temperature, precipitation, and duration of solar
radiation, obtained from the Sura meteorological station, and calculated indices - JJA (June,
July, and August average air temperature), DJF (December, January, and February average air
temperature), annual variables and the Selyaninov hydrothermal coefficient, calculated to

assess moisture during the growing season.

The SLP study, focusing on a bark beetle outbreak in Central Europe, also heavily relied
on meteorological variables to understand annual tree cover loss and bark beetle damage from

2012 to 2022. Conducted near Kostelec nad Cernymi Lesy in the Czech Republic, the study
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used data from the nearest weather station (Ondfejov). The meteorological variables analyzed
included the same variables as in the Dvinsko-Pinegskiy study, excluding the Selyaninov

hydrothermal coefficient and adding April to September wind speed

2.5 Statistical analysis
2.5.1 Difference between two and three classes

For each distinct class, mean values of individual spectral bands and Spectral Vegetation
Indices (SVI), compiled in the multilayer spectral data cube, were utilized to identify
significant differences between classes. The suitability of parametric statistical methods was
verified using the Shapiro-Wilk and Levene tests. Shapiro-Wilk test checks for normal
distribution, while Levene's test assesses the equality of variances across groups. To identify
statistically significant differences in spectral values (individual bands and SVIs) for each
image capture date, Welch’s t-test and Linear Discriminant Analysis (LDA) with leave-one-
out cross-validation accuracy (LOOCV) were applied for two categories (“Healthy" and
"Susceptible"). Welch’s t-test is used when data have unequal variances and sample sizes, and
LDA is a method for finding the linear combination of features that best separates two or more
classes of objects. LOOCV is a method of cross-validation for model assessment. In the case
of three categories ("Healthy", "Susceptible”, and "Green-attack™), a One-Way Analysis of
Variance (ANOVA) with Three Factors was conducted. This was followed by the Games-
Howell test for datasets meeting the Levene test’s assumptions, and Tukey’s Honestly
Significant Difference test (Tukey’s HSD) for those that did not. ANOVA is used to compare
mean values between three or more groups. Games-Howell and Tukey’s HSD are post-hoc
tests for multiple comparisons. For datasets not conforming to these assumptions, the
nonparametric Kruskal-Wallis H Test (also known as “one-way ANOVA on ranks”) with
Three Independent Groups, and subsequently Dunn’s post hoc tests, were used.

The extraction of mean values from data cube bands was carried out using QGIS, the OTB
package, and the ZonalStatistics plugin. All statistical analyses were performed in Python,
employing the SciPy library (ver. 1.7.1), scikit-learn (ver. 1.1.2), the statsmodels package (ver.
0.13.5), and scikit-posthocs (ver. 0.7.0).
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2.5.2 Modelling tree mortality using remote sensing and climate data

Prior to analysis, the data was inspected for outliers and collinearity. Data exploration
involved plotting the response variable against each covariate to examine their
interrelationships. Based on this exploration, the correlation between tree mortality and
explanatory variables was investigated using linear regression in Article 3, as well as
Generalised Additive Models (GAMs) and Ridge regression in Article 4. Linear regression is
employed to examine the association between a dependent variable and one or multiple
independent variables. GAMs are a flexible approach to modelling complex data, and Ridge
regression is a technique used to analyze multiple regression data that suffer from
multicollinearity.

A selection of a priori models was predefined for analysis to determine which model best
describes tree infestation by I. typographus in Article 3, and the initiation and spread of spots,
as well as tree infestation in Article 4. These models were developed using known variables
relevant to the dynamics of bark beetle populations, primarily climatic factors.

For linear regression and GAMs, the Information-Theoretic (I-T) method was employed to
evaluate competing models. Models were ranked by the Akaike Information Criterion (AIC)
for small sample datasets, with the delta AIC (AAIC) indicating the AIC difference between a
model and the top-performing model in the candidate set; the model was chosen based on the
lowest AAIC. AIC serves as an indicator of the relative quality of a statistical model in relation
to a specific data set. Models within the AAIC of less than 2 were considered comparable to
the best, while those within the AAIC range of 2—7 were also plausible. Akaike weights were
computed to rank candidate models in terms of parsimony, reflecting the likelihood of each
model being the most suitable given the data and set of candidates (Burnham et al., 2011).

For ridge regression, an error-based assessment method was utilized for model comparison.
Models were evaluated using the Root Mean Square Error (RMSE) criterion, with the most
accurate model identified by the smallest RMSE. RMSE measures the average magnitude of
the error. The alpha parameter, acting as a regularization term, penalizes large coefficients in
the model, thus reducing overfitting risks. A higher alpha value increases regularization
strength, favoring simplicity, while a lower value allows more flexibility but may capture noise.

In Article 4, Annual bark beetle spot initiation (ha), spread (ha), and Annual tree loss
change (the natural logarithm of the ratio between tree mortality in a given year and the
previous year) were used as response variables; in Article 3, only Annual tree loss change.
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To address the issue of high correlations among variables, we implemented a criterion
where variables were selected based on a correlation coefficient threshold of 0.7. The
relationship between yearly fluctuations in tree cover loss and its previous years' changes was
examined by computing the autocorrelation function (ACF). Additionally, the cross-correlation
functions (CCFs) were employed to analyze the relationship between the predictor time series
and the variables identified in the most effective model.

In the context of Article 3, all computational and statistical analyses were performed using
R (Version 3.6.1) within RStudio (Version 1.3.1093, R Development Core Team 2018).
Conversely, for Article 4, the analyses were carried out in VSCode 1.73.1 using the Jupyter
Notebook and Python (Version 3.11.1). The Python environment included various libraries
such as pandas (Version 1.5.0), Matplotlib (Version 3.6.0), statsmodels (Version 0.15.0),
pygam (Version 0.5.5), and scikit-learn (Version 1.3.0).
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3. Results

The PhD dissertation thesis consists of three first-author articles (one as a manuscript) and
one second-author article. The first part of the results focuses on the detection of susceptible
Norway spruce trees to I. typographus attack (section 3.1.1). The second part demonstrates
spectral differences of Norway spruce forests before and during green attack in comparison
with healthy forests (section 3.1.2). The third part (section 3.2.1) examines a study that models
annual changes in tree cover loss (mortality) using climate variables in the northernmost mass
Eurasian spruce bark beetle outbreak. The fourth part (section 3.2.2) describes the results of
modelling the bark beetle-driven spot initialisation, spot spreading and annual tree loss change
using meteorological variables in central Europe.

Article I (Trubin et al., 2023) shows that using PlanetScope satellite imagery and field data,
spectral vegetation indices (SVIs), specifically the Enhanced Vegetation Index (EVI) and
Visible Atmospherically Resistant Index (VARI), can successfully distinguish healthy trees
from those susceptible to infestations early in the growing season in central Europe's Norway
spruce-dominated forests. This article responds to Objectives 1, 2 and partly 3.

Article 1l (Trubin et al., 2024) expands on the approach outlined in Article I, applying
PlanetScope satellite imagery and field data to not only distinguish healthy Norway spruce
trees from those susceptible to infestations in central Europe but also to identify trees under
green attack. The study utilized the Enhanced Vegetation Index (EVI) and Visible
Atmospherically Resistant Index (VARI) to differentiate these three classes, employing a
variety of statistical methods to increase the accuracy and robustness of the classification
process. This article responds to Objectives 1, 2 and partly 3.

Article 111 (Trubin et al., 2022) reports that Siberian spruce forests in the Arkhangelsk
region, Russia, have experienced unprecedented tree cover loss over the past two decades due
to the Eurasian spruce bark beetle, marking the first recorded outbreak of this kind at higher
latitudes. Utilizing remote sensing and climate data, we modelled annual tree-loss changes over
a 14-year period, pinpointing a combination of average annual temperature and precipitation,
temperature and precipitation in June, as key factors driving these changes. This article
responds to Objective 3.

Article 1V (Pirtskhalava-Karpova et al., 2024) expands on the approach outlined in
Article TII for the different study area (The School Forest Enterprise, Kostelec nad Cernymi
Lesy, the Czech Republic), with new statistical approaches (GAM and ridge regression),
periods division (initialization, spread and annual total tree cover loss change) and adding new
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variable - wind speed. Applying the same GFW tree cover loss dataset and meteorological data,
we found that spot initialization was strongly related to April's solar radiation from the previous
year; spot spreading - with the current year's average air temperature and annual tree loss with
solar radiation in June and September (and the previous year's average precipitation, using

ridge regression). This article responds to Objective 3.
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3.1 Assessment of the predisposition of trees to bark beetle
3.1.1 Detection of susceptible Norway spruce to bark beetle attack using PlanetScope

multispectral imagery
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Extended summary

Introduction

Global forests, particularly coniferous ones, are becoming increasingly vulnerable to
dieback due to physiological stress caused by heat, drought, and increased pest growth, with
the European spruce bark beetle (. typographus) being a key economic pest in Eurasia. The
bark beetle's life cycle, its impact on trees, and how it can lead to infestations are affected by
environmental factors, tree age, and density. Recent outbreaks have been significant, driven by
climate change, leading to increased tree mortality, particularly in spruce forests. Gathering
precise, up-to-date spatial information on infestations can help create effective plans for
removal and sanitation, though this remains challenging due to limited access in large areas.
Remote sensing (RS) data, using active and passive sensors, has proven to be an effective
method for tracking vegetation stress and infestations. The use of PlanetScope satellite imagery
has allowed for better tracking of small changes in land cover within broad areas. Individual
bandwidths and Spectral Vegetation Indices (SVIs) can be used to detect changes in needle
pigments, chlorophyll content, and water content due to bark beetle attacks. This study seeks
to investigate if trees susceptible to beetle attacks can be detected before or early in the growing
season and to develop a methodology for using remotely sensed and ground-truth data to
characterize the health status of Norway spruce before and during infestations.

Materials and methods

The research was conducted in forests southeast of Prague, Czech Republic, managed
by the Czech University of Life Sciences (CULS). The forests, located in a temperate climate
zone, experienced a bark beetle outbreak in 2018 due to severe drought. The vegetation mainly
consists of spruce, pine, beech, and oak. We utilized 22 cloud-free PlanetScope (instrument
Dove Classic (PS2)) images from April to September 2020 for our study. Each image consisted
of Red, Green, Blue (RGB), and Near Infrared (NIR) bands. Using QGIS software, we
calculated 23 Spectral Vegetation Indices (SVIs) for each image. These were used to
distinguish between non-attacked (*'Healthy™) and those that were attacked in the later stages
of the growing season ("Susceptible™) trees. The positions of attacked trees were recorded using
the ArcGIS Collector application on smartphones, along with the date of the attack, the bark
beetle species involved, and the number of trees attacked each day. For the "Susceptible™ class,
we excluded samples showing signs of later logging, which led to a reduction in sample size
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and the exclusion of the last five dates of imagery from the time-series datasets. Statistical
analyses involved the use of Welch’s t-test to identify if there were significant differences in
the means of spectral reflectance between the "Healthy" and "Susceptible” classes. Linear
Discriminant Analysis (LDA) was employed to evaluate the separability of the individual

bands and SVIs for differentiating the two classes.

Results

The study revealed two peak periods of bark beetle swarming and infestations during
the growing season: mid-June and mid-July to early August. Susceptible trees had a higher
mean value for individual bands than healthy trees, especially during the first half of the
growing season. However, the top-ranked Spectral Vegetation Indices (SVIs), EVI and VARI,
showed the opposite trend, with healthy trees generally having higher values. Individual bands
demonstrated significant differences between healthy and susceptible trees, particularly
between days 93 to 114. However, these bands could not sufficiently distinguish between the
healthy and susceptible classes, as classification accuracy from the Linear Discriminant
Analysis (LDA) did not meet the 70% threshold. SVIs showed significant differences between
the two classes, especially from days 93 to 129. However, only EVI and VARI displayed
significant differences at other dates during the first half of the growing season. Accuracy from
the LDA test only passed or almost reached the 70% threshold for VARI and EV/I, respectively,
at days 93 to 114. The study determined that the most effective SVIs for differentiating between
the classes were EVI on days 114 and 183, and VARI on days 93, 100, 108, 114, and 183.

Discussion

The study found that all four PlanetScope wavebands (Red, Green, Blue, and NIR) have
the potential to detect trees susceptible to bark beetle attacks, with the NIR being the most
reliable spectral reflectance for susceptible trees during the first half of a growing season.
Among spectral vegetation indices, EVI and VARI were most effective in detecting susceptible
trees, with EVI showing potential as a key index for predicting bark beetle attacks and
managing forest pests. Seasonal SVI patterns revealed an increase until late July without
significant declines, and the mean EVI values for predisposed trees were significantly lower
than those for non-attacked trees. The study, however, had limitations such as the spectral
resolution, limited by the choice of sensor with 4 bands due to the period of observation in
2020. Future research should consider data sets with additional bands such as SWIR to track

early stressed trees more effectively, potentially using products from third-generation
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PlanetScope sensors, available from mid-March 2020, or other satellites like Sentinel-2.
Additional coefficients not connected with band values could be integrated into vegetation
indices to improve performance if accurate ground truth data are collected. The infestation
causes weren't determined, and the process by which drought conditions cause bark beetle-
induced Norway spruce mortality remains to be fully understood. Despite these limitations, the
findings of EVI and VARI as significant spectral vegetation indices offer insights into detecting
water-stressed trees, thus facilitating changes in the physiological and biochemical processes
in trees. Further research is recommended to enhance these methods.

Conclusions

Amidst a warming climate, the increased severity of droughts and associated bark beetle
outbreaks necessitates proactive forest management and policy measures, including continuous
monitoring of forest health and timely sanitation procedures. Utilizing vegetation indices like
EVI and VARI can help detect water-stressed trees susceptible to attacks early in the growing
season, thus allowing a proactive response. The ability to discern different phases of attack—
from initial attacks on stressed trees to the spreading of infestations to neighbouring trees—has
been noted. The complexity of these patterns can influence the ability to detect susceptible trees
using a single Spectral Vegetation Index (SVI). Hence, an integrated approach using multiple
SVIs sensitive to both healthy and susceptible trees and different attack phases is
recommended. Furthermore, establishing thresholds for these indices can aid in creating
classified maps, serving as practical tools for predicting vulnerable trees and potential
infestation hotspots. Future research should explore additional bands from new generations of
PlanetScope satellites and formulate new SVIs for better detection of water-stressed trees. A
spectral difference based on SVI could be used to preemptively identify stress and

predisposition to bark beetle infestations.
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Climate change-related acute or long-term drought stress can weaken forest
ecosystems and result in widespread bark beetle infestations. Eurasian spruce
bark beetle (Ips typographus L.) infestations have been occurring in Norway
spruce [Picea abies (L) Karst.]-dominated forests in central Europe including
the Czechia. These infestations appear regularly, especially in homogeneous
spruce stands, and the impact varies with the climate-induced water stress
conditions. The removal of infected trees before the beetles leave the bark is
an important step in forest pest management. Early identification of susceptible
trees to infestations is also very important but quite challenging since stressed
tree-tops show no sign of discolouration in the visible spectrum. We investigated
if individual spectral bandwidths or developed spectral vegetation indices (SVIs),
can be used to differentiate non-attacked trees, assumed to be healthy, from
trees susceptible to attacks in the later stages of a growing season. And, how the
temporal-scale patterns of individual bands and developed SVIs of susceptible
trees to attacks, driven by changes in spectral characteristics of trees, behave
differently than those patterns observed for healthy trees. The multispectral
imagery from the PlanetScope satellite coupled with field data were used to
statistically test the competency of the individual band and/or developed SVIs
to differentiate two designated classes of healthy and susceptible trees. We found
significant differences between SVIs of the susceptible and healthy spruce forests
using the Enhanced Vegetation Index (EVI) and Visible Atmospherically Resistant
Index (VARI). The accuracy for both indices ranged from 0.7 to 0.78; the highest
among all examined indices. The results indicated that the spectral differences
between the healthy and susceptible trees were present at the beginning of
the growing season before the attacks. The existing spectral differences, likely
caused by water-stress stimuli such as droughts, may be a key to detecting forests
susceptible to early infestations. Our introduced methodology can also be applied
in future research, using new generations of the PlanetScope imagery, to assess
forests susceptibility to bark beetle infestations early in the growing season.
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1. Introduction

Forests worldwide are becoming increasingly more sensitive
to dieback due to physiological stress driven by heat and drought
(McDowell et al., 2008), which is frequently coupled with increased
growth of forest insect pests (Allen et al., 2010; DeRose et al., 2013).
Several studies found two most significant abiotic factors, wind
and drought, have been impacting the health of spruce forests in
Europe, (e.g., Komonen et al., 2011; Kiarvemo et al., 2014; Marini
et al, 2017). However, the physiological processes underlying
conifer survival and mortality under drought conditions are
yet to be fully understood (McDowell et al, 2008). Conifers
have a wide range of drought tolerance; however, prolonged
water deficit frequency in trees may significantly increase their
susceptibility to bark beetle infestation (Krokene, 2015). Critical
environmental factors thought to expedite bark beetle outbreaks
are the combination of more frequent droughts and warmer
temperatures, directly impacting insect population dynamics and
host plant development and resistance (Jactel et al, 2012; Weed
et al., 2013; Bentz and Jénsson, 2015; Meddens et al., 2015; Raffa
et al, 2015). For example, prolonged dry periods accompanied by
high temperatures might decrease tree water supplies and make
them more vulnerable to Ips typographus L. attacks (Wermelinger,
2004; Netherer et al, 2015). Plant defense chemicals may rise
during periods of moderate drought whereas these chemicals may
decrease during prolonged severe drought (Gely et al., 2020).

One of Eurasias most economically significant forest
pests (Wermelinger, 2004) is the European spruce bark beetle
(I. typographus), which is severely damaging coniferous forests in
the Palearctic region (Christiansen and Bakke, 1988).

For most bark beetle species, the females deposit their eggs
inside the bark and intracortical layer of trees, consisting of
phloem and cambium zone tissues, where larvae develop (Keeling,
2016). The first generation of bark beetle exits the bark when
the accumulated thermal sum on average passes a threshold for
several weeks (Ohrn et al, 2014), highly variable on regional- and
continental-scales, starting from the early growing season (May to
October; Zabihi et al., 2021b).

Factors such as tree aging and density, and drought effects were
found to be important in weakening trees’ resistance to bark beetle
attacks (Christiansen and Bakke, 1988; Raffa, 1988; Fettig et al.,
2007; Bentz et al., 2010). The tree- and stand-level factors such as
tree vigor and size and stand density are critical in the endemic
level of infestation at which infestation occurs locally (Raffa and
Berryman, 1983; Simard et al., 2012). However, landscape-level
factors facilitate the transition of infestation from a local eruption
toward regional outbreaks (Wallin and Raffa, 2004; Raffa et al,
2008; Simard et al, 2012). Some of the influential landscape-level
variables on beetle outbreaks were found to be favorable climatic
conditions, adjacency to the incipient populations, surface terrain,
an abundance of mature host trees, and former disturbances,
such as fire and outbreaks (Aukema et al, 2006). The spread of
outbreaks was also found to be autocorrelated within the spatial-
and temporal-scales despite the host tree vigor (Aukema et al., 2006,
2008; Simard et al., 2012).

Recent bark beetle outbreaks in spruce-dominated forests
have significantly outperformed previously known frequencies and
consequences, despite their crucial role in forest regeneration and
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succession (Bace et al., 2015; Zeppenfeld et al., 2015; Zabihi et al.,
20212). The number of I. typographus generations per year may
increase due to climate change (i.e., increased temperature) which
could also drive further outbreaks than previously documented
(Hlasny et al,, 2011; Marini et al., 2013). For example, at least
two generations and sister broods were found to occur in central
European forests due to favorable summer temperatures (Netherer
et al, 2019). The most devastating I typographus outbreak in
Central Europe to date was found to be in the Czechia from 2014
to 2015, which was initialized and led mainly by climatic factors
(Hldsny et al, 2021). Due to the shift of climatic conditions in
Europe, with more extreme weather anomalies, such as severe
droughts, storms, floods (Lindner et al,, 2010), and intense heat,
mortality for most tree species in forests, including spruce, is
expected to rise (Hlasny et al,, 2022).

Precise up-to-date spatial information on the presence and
dynamics of infestations is essential to make an efficient plan for
the removal and sanitation of infested trees, aiming to keep the
remaining forest intact. Gathering such data in large areas with
limited access is still challenging (Sterericzak et al, 2019). The
spatio-temporal dynamics of the bark beetle population have been
investigated in Europe, (e.g., Kdrvemo et al., 2014; Havadovi et al.,
2017; Mezei et al., 2017), and in North America, (e.g., Meddens and
Hicke, 2014; Senf et al,, 2015). However, the success in detecting
and mapping tree mortality related to bark beetle infestations
highly depends on the forest composition and structure (Koontz
etal, 2021). For example, the detection and monitoring of infested
forest stands composed only of coniferous host species are rather
straightforward. Tn such stands or forests, newly infested trees
appear mostly in large and easily definable groups as bark beetles
continue to attack mostly nearby infested trees (Lausch etal., 2011).
One of the most effective ways to track vegetation stress is using
remote sensing (RS) data (Lawley et al., 2016). Multispectral aerial
and satellite imagery has been successfully used for mapping insect
outbreaks and other forest disturbances (Viisinen and Heliovaara,
1994; White et al., 2007; Long and Lawrence, 2016). To characterize
tree health status, the integrated approach of using RS data from
different sources, such as imagery acquired by active (e.g., synthetic
aperture radar; SAR) and passive sensors (e.g., multi- and hyper-
spectral imagery) could be applied (Niemann et al., 2015). For
example, Ortiz et al. (2013), Abdullah et al. (2019a), and Ali et al.
(2021) used satellite imagery, and Ortiz et al. (2013) used X-band
SAR, to detect early infestations.

The availability of RS data at various spectral, temporal, and
spatial resolutions plays an important role in detecting forest
infestation phenomena (Zabihi et al,, 2021b). For example, coarse-
resolution Landsat imagery (Meddens et al., 2013), medium-
resolution SPOT-5 and Sentinel-2 imagery (Abdullah et al, 2019a),
and fine-resolution aerial photography (Minaiik and Langhammer,
2016; Brovkina et al., 2018; Kloucek et al., 2019; Abdollahnejad
and Panagiotidis, 2020) have been used to map infested trees.
PlanetScope imagery with a spatial resolution of 3.7 meters (Planet
Labs, Inc, 2022), allows better tracking of small changes in the land
cover within a relatively broad area. The daily image acquisition
of the PlanetScope (at the nadir) allows prompt monitoring
of forests susceptible to beetle attacks. All these specifications
of the PlanetScope help to avoid or minimize labor-intensive
visual surveys and/or costly UAVs- or aircrafts-use to detect
susceptible- or already attacked trees. The PlanetScope satellite
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FIGURE 1
The study area, located in The School Fo Enterprise in Kos'
border of the study area, is marked in purple on the RGB t

initially launched in 2014, and its second generation that we
used, known as Dove-R or PS2.SD, provides imagery at four
spectral bands, including Blue, Green, Red, and near-infrared (NIR)
wavelengths (Planet Labs, Inc, 2022).

Most individual bandwidths [e. g., visible, red-edge, NIR, and
shortwave-infrared (SWIR)] and several SVIs that were developed,
were found to be useful for detecting changes in needle pigments,
including chlorophyll content, degree of greenness, and water
content due to bark beetle attacks (Zabihi et al., 2021b). In general,
beetle-induced water-stressed trees reflect a higher amount of
visible light than healthy trees (Ortiz il., 2013). The severe
stress in infested trees causes chlorophyll loss that consequently
reduces the absorpuon rate of visible light by photosymhulcally
actlveplgments( kburn, 1998, 2006; Carter and Knapp, 2001;
Mullen, 2016; Mu 20 ) Similarly, water-stressed trees
reflect more red- edge light than healthy trees due to a decrease
in chlorophyll a contents (Orti 2013), and changes in
the structure of spongy mesophyll (Mullen et al, 2018). The
changes in the structure of spongy mesophyll, so-called foliage
desiccation, also reduce the dbsorpnon rate of NIR wavelengths
in water-stressed infested trees (Ortiz et al., 2013; Mullen ¢
2018), and a snmllar pattern was observed for SWIR wavelengths
(Immi 16).

Some of the top-ranked indices used to represent changes

ze1

in needle pigments and greenness were found to be Red-Edge
NDVI (RENDVI or NDVI705; Ortiz et al., 2013), and Normalized
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Difference Red-Edge (NDRE 2 and 3; Abdullah et al., 2019a,b).

Disease-Water Stress Index (DWSI), Normalized Difference Water
Index (NDWI), Leaf Water Content Index (LWCI), Ratio Drought
and Moisture Stress Index (MSI) were found to

Index (RDI),
be top -ranked mdlces, used in former research (Abc €
019a,b; Yang, 9) to detect changes in 1eaf water contents
due to bark beetle attacks (7: et a Ib). A normalized
distance red and shortwave lnfrared (NDRS; Huo et al.,, 2021),
developed based on red and SWIR wavelengths, was found to
be a useful index to estimate forest susceptibility to bark beetle
attacks in April, or to detect infested trees during the attacks
from May to October. However, changes in forest parameters affect
the reflectance of longer wavelengths such as SWIR, greater than
shorter wavelengths such as visible lights in healthy coniferous

forests (Rautiainen et al., 2018). Those forest parameters include
forest structure, needle age and intracellular structure of air-to-
cell wall interfaces, moisture content of forest floors, and tree
physiological changes over the growing seasons (Rautiainen et al
2018; Zabih 11, 2021b). Thus, SWIR-dependent indices may
propagate uncertainty to some extent in the model developments
and validations (7 2021b). In a recent review by Zab
I. (2021b), using visible bands such as RGB and red-edge (a
bandwidth close to NIR) were recommended to develop SVIs
in order to map the early stage of bark beetle infestations. We

based our study on the assumption that some trees may be more
susceptible to I typographus attacks, than others, in uninfested
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TABLE 1 Day number in 2020 with the associated dates of planet images
used; imagery after July 14 were removed at the later stage of analyses
because of having clearcuts due to bark beetle attacks.

# Day number in 2020 Date

1 93 2 April 2020

2 100 9 April, 2020
|3 108 17 April 2020

4 114 23 April 2020
5 129 8 May 2020

6 139 18 May 2020

VA 153 1 June 2020

8 180 28 June 2020

9 183 1 July 2020

10 194 12 July 2020

11 ‘ 196 14 July 2020

12 | 204 22 July 2020

13 214 1 August 2020
14 218 5 August 2020
15 226 13 August 2020
16 229 16 August 2020
‘ 17 246 2 September 2020
18 249 5 September 2020
19 257 13 September 2020
120 ‘ 259 15 September 2020
21 | 266 22 September 2020

forests. And, those trees can be detected/predicted using SVIs
derived from high spatial and multispectral resolution imagery
acquired by PlanetScope satellite. We also assumed non-attacked
trees, within the vicinity of attacked trees, as healthy trees over
a growing season.

We proposed to investigate if trees susceptible to beetle attacks
can be detected before or early in the growing season. If so,
what spectral bands and/or SVIs, developed using individual
wavelengths, could be used to indicate significant differences
between healthy trees and those susceptible to attacks. We
eventually aim to develop a methodology for using remotely-
sensed and ground-truth data to characterize the health status of
Norway spruce on a temporal scale before and during the course
of infestations.

2. Materials and methods

2.1. Study area

The study was conducted in forests, approximately 50 km
southeast of Prague (Czechia or the Czech Republic) (Figure 1),
owned and managed by the Czech University of Life Sciences
(CULS). The CULS forests cover a total area of ~ 5,700 ha, lie in
the temperate climate zone. The mean annual temperature and sum
of precipitation ranged 7-7.5°C and 600-650 mm, respectively,
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with a vegetation period lasts 150-160 days (Tolasz ct al., 2007).
In recent years, periodic droughts negatively affected the vitality
of forests (Remes, 2017). The forest stands consist of 70% conifers,
mainly spruce (50%) followed by pine (16%), and the rest for other

species. In terms of broadleaved trees (the remaining 30% cover),
beech covers the most, 14%, followed by oak at 10%, and the
rest for other species. If the area was not managed by the CULS,
beech and oak may have been dominated, followed by pine and
spruce trees, similar to nearby unmanaged forest composition. The
CULS forests are managed using a clearcutting silvicultural system
in a combination with the shelterwood system (Remes, 2017).
Due to the extreme drought in 2018, the whole area was affected
by the bark beetle outbreak, mainly by L typographus; however,
other species such as I. duplicatus, I. amitinus, and Pityogenes
chalcographus may have been infesting some local spots (Hldsny
et al, 2021). The forest management strategy has been recently
focusing on sanitary logging to promptly remove infested trees, as
soon as observed.

2.2. Satellite data acquisition and
processing

We used 22 PlanetScope imagery [instrument-Dove Classic
(PS2)] from April 2 to 5 September 2020 (Table 1). Only cloud-
free images were used for further analysis; the image acquired on
Day 145 was excluded due to having cloud cover. All imageries
were downloaded in the GeoTIFF format and surface reflectance
data type (harmonized to Sentinel-2 for consistent radiometry) was
selected as the initial product option. Every image had four bands
including Red, Green, Blue (RGB), and Near Infrared (NIR) with a
spatial resolution of 3 m.

For each acquisition in the time series (Table 1), we calculated
23 SVIs (Table 2) using the Raster Calculator plugin in QGIS
version 3.16.16 (QGIS Development Team, 2009).

The individual four bands and the SVIs computed from Table 2
were used to differentiate two defined classes. These two classes
were non-attacked trees during our year of study, assumed and
considered as the “Healthy” class, and trees were attacked in the
later stages of the growing season, assumed and considered as the
“Susceptible” class.

All individual bands and SVIs (Table 2) developed using
individual bands, were merged into a single GeoTIFF file to make a
cube image of 27-bands, for further statistical analysis.

2.3. GIS data collection and validation

The spatial position (X- and Y-coordinates) of attacked trees,
named as susceptible trees, were recorded by foresters and
researchers using the ArcGIS Collector application developed and
installed on smartphones. The date of the attack, the name of
the bark beetle species, and the number of attacked trees per
day were also recorded using the ArcGIS Collector app. Foresters
have been detecting early infestations on a weekly basis in their
designated areas. Researchers from the EXTEMIT-K project were
also recording the same datasets around six experimental plots
designed and established by the EXTEMIT-K project. Researchers
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TABLE 2 Spectral vegetation indices (SVIs), their acronyms, equations, and publishers, used to detect trees susceptible to bark beetle attack.

Spectral vegetation index Acron: References
Difference Vegetation Index DVI Tucker, 1979
Enhanced Vegetation Index EVI 25% % Huete et al., 2002
Green Chlorophyll Index GCI (MR) Gitelson et al., 2003
Green Difference Vegetation Index GDVI NIR—-G Sripada, 2005
Global Environmental Monitoring Index GEMI eta (1 —0.25 % eta) — 3% Pinty and Verstracte, 1992
_ 2(NIR'—R®) + 15 NIR+ 05 £ R
ety = NR=E+05
Green Normalized Difference Vegetation Index GNDVI ;,‘?,f _fg Gitelson et al., 1996
Green Optimized Soil Adjusted Vegetation Index GOSAVI e Sripada, 2005
Green Ratio Vegetation Index GRVI N?If‘ Sripada etal., 2006
Green Soil Adjusted Vegetation Index GSAVI L5#% (J\,B?\{Z’%’E)U 5 Sripada, 2005
Infrared Percentage Vegetation Index PVI ity Crippen, 1990
Modified Soil Adjusted Vegetation Index MSAVI2 w Qietal, 1994
N
Modified Simple Ratio MSR ()1 Chen, 1996
NEOES
Normalized Difference Vegetation Index NDVI Al Rouse et al., 1973
Normalized Difference Water Index NDWI r':‘;;“‘;fﬁ Gao, 1995
Non-Lincar Index NLI ﬁ;% Goel and Qin, 1994
Optimized Soil Adjusted Vegetation Index OSAVI i R Rondeaux et al., 1996
Perpendicular Vegetation Index PVI W[—%‘/%{}h Rlih.m'd son and Wiegand,
a—slope of the soil line, b—gradient of the soil line 1977
Renormalized Difference Vegetation [ndex RDVI Lt Roujean and Breon, 1995
NIR+ R
Soil Adjusted Vegetation Index |savI B T Huete, 1988
Simple Ratio SR s Birth and McVey, 1968
Transformed Soil Adjusted Vegetation Index TSAVIL e T Baret and Guyot, 1991
s—aslope of the soil line, a— the soil line intercept, X - the
adjustment factor that is set to minimize soil noise.
Visible Atmospherically Resistant Index VARI % Gitelson et al., 2002
Wide Dynamic Range Vegetation Index WDRVI e Gitelson, 2004
a - the weighting coefficient

TABLE 3 List of sampling (training) and ancillary data used, with their types, stage and method of collection, application or software used to drive data
from, required for further steps in the statistical analyses and classifications.

pe Stage of
collection

Infested trees  Vectorand |Mid-growing season

categorical |and later on
Non-attacked ~ Vectorand |N/A
trees categorical
Forest Vectorand NfA
management categorical
units

Collection Application/ Additional

Data derived |Number Final purposes

method software data used from of plots
used
Field survey/ ArcGIS$ collector | UAV imagery, used | Creating polygons of 61 Training data for the
sampling app as base imagery in  |susceptible class “Susceptible” class
callector app

Random QGIS PlanetScope Imagery | Creating polygons of 61 Training data for the

sampling points Healthy class “Healthy” class

Provided by the |QGIS N/A Average area, age, 2,541 | Area for the “Healthy”

Forestry and percent category class, with similar

Department of Norway Spruce characteristics found for
the “Susceptible” class

used both visual observations and detection by a sniffer dog to
detect early-attacked trees within the 500-m zone around the
experimental plots (Vosvrdovi et al, 2023).

The EXTEMIT-K project was proposed to conduct research
experiments aiming to provide potential science-based approaches
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to be the core

05

the research team.

to deal with current and future challenges of protecting forest
ecosystems in the Czechia. The bark beetle infestations and

drought effects on spruce trees and beetle activities were found

challenges, and have been investigated by
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The frequency of bark beetle infestation

bserved throughout the 2(

Every experimental plot consisted of four subplots, with 8-10 The spatial positions of total sample points of 61 areas with
neighbor trees selected within (Ozgelik ef 22 attacked trees, at the later stages of the growing season, were

2). All the field survey data were stored and visualized in the  used to create polygons/boundaries of these trees, which were
Online Web version of ArcGIS. This allowed us to export field  assumed as susceptible to attacks before and during the first half
survey data for further analyses in QGIS at the end of the season. of the growing season.
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Behavior of the single bands (mean and standard error) before and during the first half of the growing season for healthy trees and trees predicted to
be attacked by bark beetles. Solid vertical lines on the trend lines represent the standard error of the mean and dashed vertical lines represent the

monthly division

On the last PlanetScope imagery in the dataset (September
22), the K-means clustering algorithm was performed to detect
unbiased, square-like (pixelated) borders of 61 objects, based
on the clear-cut year in 2020 detection cluster (which has
different spectral features, comparing to forest stand) and
points locations of areas with attacked trees using the open-
source Orfeo ToolBox (OTB) package (version 7.2.0; Grizonnet
et al, 2017). Sizes and shapes of the 61 areas, identified
as clear-cuts on the last imagery in the dataset were used
for further analysis on the other imageries. We overlaid each
PlanetScope image with very high spatial resolutions (20-cm)
UAV orthophotos to ensure the accurate spatial positioning of
target objects. The vectorization of 61 boundaries was visually
validated to avoid any error in tree positions, collected by
the ArcGIS collector app, in addition to potential misclassified
areas among trees such as bare soil, using the Poligonize
(GDAL) plugin.

We generated a random sampling for the class “Healthy”
with similar characteristics found for the class “Susceptible”
(Table 3). For example, similarity in the age ranges, percentage
of Norway spruce (based on forest management data), sample
size, and average area (Table 3). Sixty-one circle-shaped samples
with an area of 0.165 ha each in forest management units at
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the age ranging from 78 to 130 years were randomly selected
within the forest management units with 80-100% Norway spruce
cover. Based on forest inventory data, spruce cover in the
forest management units is more than 80%, therefore we assume
that the sample polygons and related spectral signal represent
spruce stands.

2.4. Data cleaning

The sample size of the “Healthy” class (61 trees) was the
same for every image, with no need for any data cleaning. For
the “Susceptible” class, we initially removed samples with traces
of later on logging found on any date of imagery, and thus, we
only kept those samples not reaching the start date of the green-
attack phase during our temporal-scale analyses. The criteria of
having a balanced sample size between two classes of “Healthy” and
“Susceptible” trees caused us to exclude the last five dates of imagery
from the time-series datasets (all imagery after July 14; Figure 2).
However, we kept imagery from days no. 180 to 196, to complete
our proposed temporal-scale analyses, even though the sample size
for the “Susceptible” class decreased more than twice that of the
earlier dates. The data cleaning and plotting were performed in
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The behavior of the spectral vegetation indices of the Enhanced Vegetation Index (EVI) and Visible Atmospherically Resistant Index (VARI) before and
during the first half of the growing season for healthy trees, and trees predicted to be attacked by bark beetles. Solid vertical lines on the trend lines
represent the standard error of the mean and dashed vertical lines represent the monthly division
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The overall classification accuracy (CA), using leave-one-out cross-validation on the LDA test for individual bands, to differentiate two classes of
healthy and susceptible trees to attacks, on different days before and during the first half of the growing season.

VSCode 1.73.1 in Jupiter Notebook using, Python programming
language (ver. 3.8.5; Van Rossum and Drake, 2010), and pandas
1.5.0 and Matplotlib 3.6.0, respectively.

2.5. Statistical analyses

We extracted the mean value for 4 bands of spectral reflectance
and the proposed 23 SVIs (Table 2) for every polygon of the
“Healthy” and “Susceptible” class, using the Zonal Statistics-plugin
from the OTB package in QGIS.

The Welch’s t-test was used to determine if the means of
spectral reflectance of individual bands and developed SVTs for the
“Healthy” and “Susceptible” classes were statistically different for
each date of imagery, using the SciPy library (ver. 1.7.1; Virtanen
et al., 2020).

Linear discriminant analysis (LDA) was used to evaluate
the separability of individual bands and/or SVIs to differentiate
two classes, using the scikit-learn library (ver. 1.1.2; Pedregosa
et al, 2011). The LDA is a supervised classification that uses a
linear classifiers algorithm based on the distribution of features
(Hastie et al., 2009).

The LDA maximizes the distance among classes and minimizes
the variance within classes, and was performed on every band
of the 27-bands-cube imagery. The leave-one-out cross-validation
accuracy (LOOCV) was performed to examine the overall
classification accuracy (CA) of the performed LDA on either
individual bands or SVIs of two designated classes.

3. Results

Based on the frequency plot of daily attacks, using the datasets
from the ArcGIS Collector app., the emergence and initial attacks
of bark beetles on trees were found to be from April 27 to 4 May
2020 (Figure 3). There seemed to be two peaks of beetle swarming
and infestations during the growing seasons; the first peak occurred
around mid-June and the second peak seemed to be around mid-
July to early-August (Figure 3).

The class of trees susceptible to attacks generally revealed a
higher mean value, for individual bands, than the class of healthy
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trees, before and during the first half of the growing season (early
April to late July; Figure 4 and Supplementary Table 1).

For the top-ranked SVIs, EVI and VARI, the observed patterns
between the two classes were opposite to that observed in individual
bands; the “Healthy” class generally revealed higher values than the
“Susceptible” class (Figure 5 and Supplementary Table 1).

The differentiation between the mean value for the polygons of
the two classes followed a more steady pattern for the EVI, similar
to the NIR, whereas the values sometimes overlapped for the VARI,
mostly after May 18 (Figure 5 and Supplementary Table 1).

3.1. Individual bands

Individual bands showed statistically significant differences
between the two classes of healthy and susceptible trees, mostly for
Days 93 to 114 (p < 0.05 for the Welch's t-test; Figure 6).

Results for the linear discriminant analysis, LDA, showed
high accuracy for individual bands on only days 194 and
196 (CA 64-76%; Figure 7). However, we may not be able
to validate these results as the sample size of the susceptible
class for these days dropped more than twice that for earlier
dates. Therefore, “Healthy” and “Susceptible” classes may not be
sufficiently distinguished using only individual bands (Figure 7)
as the CA values from the LDA test did not reach the 70%
threshold for any bands.

3.2. Spectral vegetation indices (SVIs)

Spectral vegetation indices, such as DVI, EVI, MSAVI, NDVI,
PVI, SAVI, TSAVI, VARI, and WDRVI, showed statistically
significant differences between two classes of healthy and
susceptible trees, mostly for Days 93 to 129, at a different rate of
type I error for the Welch’s t-test (Figure 8). However, the EVI
and VARI were the only two indices showed significant differences
between classes at other dates during the first half of the growing
season (Figure 8).

Results for the linear discriminant analysis, LDA, were showing
high accuracy for the most of SVIs on days 194 and 196 (CA

09 frontiersin.org

46



Trubin et al.

10.3389/ffgc.2023.1130721

DVI 0.015 | 0.376 | 0.087 | 0.016

EVI 0.04 ]0.255[0.089

0.146 | 0.123 1 0.096 | 0.232
oo i ~

GCI14 0.088 | 0.088 | 0.088 | 0.117 | 0.022 | 0.595 | 0.637

0.707 1 0.207 | 0.016 | 0.131

GDVI{ 0.018 | 0.018 | 0.018 | 0.031 | 0.506 | 0.099 | 0.024

-p>0.05
0.138 ] 0.141 | 0.094 | 0.246 P00

GEMI0.021 | 0.021 | 0.021 | 0.051 | 0.41 | 0.107 | 0.074

0.32410.417 0.106 | 0.625

GNDVI { 0.084 | 0.084 | 0.084 | 0.094 | 0.018 | 0.694 | 0.537

0.768 | 0.139 ] 0.035 | 0.082

GOSAVI{ 0.084 | 0.084 | 0.084 | 0.094 | 0.018 | 0.694 | 0.537

0.768 | 0.139 1 0.035 | 0.082

GRVI{ 0.088 | 0.088 | 0.088 | 0.117 | 0.022 | 0.595 | 0.637

0.707 | 0.207 | 0.016 | 0.131

GSAVIA 0.084 | 0.084 | 0.084 | 0.094 | 0.018 | 0.694 | 0.538

0.767 | 0.139 | 0.035 | 0.082

1PVI{0.246 | 0.246 | 0.246 | 0.173 | 0.035 | 0.689 | 0.621

0.667 | 0.054 [[00lep=0.03

0.8170.255

0.813 ] 0.088

MSAVI | 0.717 | 0.443
0039 [0 [ 0565
NDVI 0 0.726 | 0.465

0.535] 0.257

NDWI - 0.084 | 0.084 | 0.084 | 0.094 | 0.018 | 0.694 | 0.537

0.768 | 0.139 | 0.035 | 0.082

NLI4 0.806 | 0.806 | 0.806 | 0.859 | 0.177 | 0.353 | 0.106

0.214 | 0.04 |0.052 | 0.039 0.001 <p<0.01

OSAVI{ 0.247 | 0.247 | 0.247 | 0.173 | 0.035 | 0.689 | 0.621

0.667 | 0.054 - 0.023

0.321] 025 | 0.151 | 0.445

0.064 | 0.066 | 0.05 | 0.11

0.53510.25810.237 | 0.21

0.645 ] 0.108

0.379 p<0.001

PVI 0.013 | 0.245 | 0.087 | 0.018
RDVI{ 0.064 | 0.064 | 0.064 | 0.079 | 0.936 | 0.126 | 0.031
SAVI 0.726 | 0.465

SR {0.328 ] 0.328 | 0.328 | 0.277 | 0.053 | 0.597 | 0.545
TSAVI 0.738
VARI 0.034 ] 0.307
WDRVI 0.088 | 0.07 |0.015
4\& ‘\e° A@* S ‘Q? & ‘\‘?’
N & & P & & ¢

FIGURE 8

Welch's t-test p-values between two classes of healthy and susceptible trees to attacks, on different days before and during the first half of the

growing season, using different spectral vegetation indices

68-83%; Figure 9). However, we may not be able to validate
these results as the sample size of the susceptible class for these
days decreased more than twice that for earlier dates, similar to
individual bands. Beyond these dates, the accuracy of the LDA test
passed or almost reached the 70% threshold only for the VARI and
EVI, respectively, at days 93 to 114 (Figure 9).

3.2.1. Evaluations of SVIs using combined Welch's
t-test and LDA

The two classes were found to be differentiated at most using
two SVIs based on combined evaluations of using Welch’s t-test and
LDA; the EVI on Days 114 and 183, and the VARI on Days 93, 100,
108, 114, and 183 resulted in the LDA accuracy greater than 0.7 and
p-value for the Weltch’s ¢-test less than 0.05 (Figures 8, 9).

4. Discussion

4.1. Wavelengths and spectral vegetation
indices suitable for prediction of bark
beetle attack

Our results show that all four wavebands of PlantScope,

including Red, Green, Blue, and NIR, have the potential to detect
susceptible trees and thus predict the occurrences of bark beetle
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attacks (Welchs t-test; Figure 6). Nevertheless, the CA for none
of them passed the defined 70% threshold. Considering the overall
temporal patterns from early April to late July, the differentiation
between the two classes of healthy and susceptible trees followed a
more steady pattern for NIR than other visible bands (Figure 4).
This may indicate that the NIR could be a more reliable spectral
reflectance than other visible lights to detect susceptible trees,
before and during the first half of a growing season (Figure 4).
Among all spectral vegetation indices we investigated, EVIand
VARI were found to be the best indices to detect trees susceptible
to attacks (Figures 8, 9; the lowest Welch's {-test p-value and the
highest CA), similar to Huo et al. (2021). The VARI Index on
Day 183 was significantly different between healthy and susceptible
trees (significant Welch's ¢-test and LDA with the CA higher than
70%) so the values for the susceptible trees were much higher
than the healthy/control trees. However, the EVI shows the best
performance during the entire season. In contrast to the VARI,
susceptible trees were always showing lower values for the EVI
than healthy trees. The observed patterns may indicate that the
EVI could be the best index for the prediction of bark beetle attack
occurrences within a forest, which could also be used for general
applications in forest pest management to detect water-stressed
trees. For example, Kim (2013) found EVI sensitive to drought and
rising temperatures in the ecosystems of northern Arizona, USA.
In addition, Scots pine (Pinus sylvestris L.), a sensitive species to
drought effects (Seidel et al., 2016), showed early signs of vitality
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decline in Italy, which may be remotely detected using the EVI
(Vacchiano et al., 2012).

4.2. Seasonal changes of spectral
characteristics of susceptible trees to
attacks

The overall patterns of the SVIs behavior before and during
the first half of the growing season were found to be increasing,
without any significant declines from early April to mid-season.
However, the patterns slowed down by late July and early August.
Most of the SVIs, even the most significant (for both classes), had
declines as well.

Generally, the value of SVIs has been showing a seasonal trend
(Karkauskai 7; Yar 7). We found all the
mean values of EVI of the predisposed trees were significantly
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lower than for non-attacked trees (Figure 5), and thus, suggesting

the EVI as a potential spectral vegetation index to predict bark
beetle-infestation occurrences.

4.3. Limitations of the study

The spectral resolution of the available remote sensing products
that we used was limited by the choice of the sensor with 4 bands
due to the year of our observation, a period in 2020. For future
research, it is preferable to use datasets with SWIR band in addition
to NIR, visible, and red-edge spectral reflectances due to their
effectiveness in tracking early stressed trees, though with different
)). This could
be achieved with the PlanetScope products of the 3rd generation

levels of detection uncertainty (Zabih

sensors, known as SuperDove or PSB.SDafter, available from mid-
March 2020. The 3rd generation sensors acquire imagery at eight
bands, including Coastal Blue, Green I, Yellow, and Red Edge plus
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the four bands we have already used (Planct Labs, Inc, 2022). The
specified 8-bands allow computing more spectral vegetation indices
than we were able to. In addition to the PlanetScope imagery, there
are other satellites, e.g., Sentinel-2, which acquires imagery in the
SWIR band even though its spatial resolution is coarser than the
PlanetScope. Given this very important advantage, we recommend
comparing products, e.g., SVIs, developed on imagery acquired
from Sentinel-2 and the 3rd generation of PlanetScope, for future
research investigations. Vegetation indices such as PVI, TSAVI
and WDRVI have additional coefficients, which are not connected
with band values. Those coefficients, such as slope, gradient, and
intercept of the soil line and others, were set as recommended
(default) values due to limitations in GIS data collection campaigns.
More precise ground truth data with these additional parameter
records could improve index performances.

Ground truth data with the locations of all bark beetle
infestations were identified by foresters and researchers on a weekly
frequency. Nevertheless, the cause of the infestation has not been
determined. Each bark beetle infestation area potentially could be
triggered by the internal and/or neighboring tree(s), attacked but
not harvested in 2019.

The mechanism of bark beetle-induced Norway spruce
mortality under drought conditions, such as changes in the
physiological and biochemical processes of trees susceptible to
attacks, is yet to be fully understood (Netherer et al, 2021).
However, our findings of two spectral vegetation indices, EVI
and VARI, may offer key indices to detect trees that are under
water-stressed conditions, causing changes in the physiological and
biochemical processes in trees. For example, Wei et al. (2023) found
a positive correlation between spatial and temporal variations of
tree-ring width (TRW) and the Enhanced Vegetation Index (EVI).
The relationship between the TRW and EVI became stronger in
more arid regions where trees were under more drought and
subsequent water-stress conditions (Wei et al., 2023).

5. Conclusion

In the warming climate, drought and drought-induced bark
beetle outbreaks may become more severe. Therefore, forest
managers and policymakers need to provide monitoring of
forest health status on a continuous, e.g., bidaily to weekly
basis with subsequent sanitation measures, which otherwise may
result in further bark beetle infestations with its ongoing rapid
developments (Zabihi et al,, 2021b). Our study was conducted to
examine and thus offer the best indices, EVI and possibly VARI,
to detect trees susceptible to attacks, likely due to water-stress
conditions, before and/or during the first half of the growing
season. Thus, a proactive management strategy can be practiced at
this stage to better suppress or control the infestations.

We may still be able to distinguish the phase of attack from
the spot initialization, at which very few trees are attacked, toward
spot spreading, when the attacked area includes several adjacent
trees (Colombari et al,, 2013). In the phase of spot initialization,
bark beetles attack stressed trees, while in the phase of spot
spreading, the infestation spreads to neighbor trees regardless
of their resistance to attack, considered as spatial and temporal
autocorrelation of attacks (Aukema et al., 2006, 2008; Jakus et al.,
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2011; Simard et al, 2012). These spatial and temporal patterns
of attack likely result in different spectral signatures observed
during different phases of attacks in addition to different spectral
signatures observed from non-attacked trees but highly susceptible.
This complexity may impact the level of uncertainty in detecting
susceptible trees, using a single SVI, during the period of beetle
flight activities at which different phases of attacks may co-
occur. Therefore, we recommend using an integrated approach of
employing several SVIs, e.g., sensitive to healthy vs. susceptible
trees, and different phases of attacks, simultaneously.

We finally recommend defining thresholds for these two
vegetation indices, EVI and VARI, to provide a classified map
for practical applications in forestry. The classified map would
be used as a spatial tool to predict trees vulnerable to attacks
and thus, to highlight hotspots regions with a high probability
of infestation occurrences. Our proposed methodology offers
an approach for future research to replicate using additional
bands coming from new generations of PlantScope satellites.
Further investigations of formulating and developing new
SVIs, more sensitive to water-stressed- and thus susceptible-
trees to attacks, are also recommended to improve the
mapping accuracy.

The spectral difference based on SVI could be used to detect
stress before attacks using the methods proposed in the present
paper. Also, the new broadband SVI formula should be researched
for more precise identification of predisposition to the bark
beetle infestations.
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Extended summary

Introduction

Recent studies have highlighted the escalating vulnerability of global coniferous forests
to the Eurasian spruce bark beetle (I. typographus), a significant economic pest in Eurasia.
These forests are increasingly susceptible to dieback due to physiological stress from factors
like heat, drought, and pest spreading. Environmental factors, tree aging, and density
significantly influence the life cycle of bark beetles, their impact on trees, and the resultant
infestations. Notably, climate change has driven substantial outbreaks, leading to heightened
mortality rates in spruce forests. The task of accurately mapping these hotspots is critical to
developing effective removal and sanitation strategies but is often challenged by the vastness
and inaccessibility of the affected areas. In this context, remote sensing (RS) data has emerged
as a valuable tool for monitoring vegetation stress and pest infestations. Specifically, the use
of PlanetScope satellite imagery has enhanced the ability to detect subtle changes in land cover
over extensive areas. This study focuses on the application of individual bands and Spectral
Vegetation Indices (SVIs) to identify alterations in spectral signatures in trees attacked by bark
beetles. The main objective is to determine whether trees at risk of beetle attack can be
identified before or at the beginning of the growing season. In addition, this study aims to
develop a methodology that combines remote sensing data with ground-based observations to
assess the health status of Norway spruce before and during bark beetle infestation.

Materials and methods

This research was conducted in a 5,700-hectare forest near Prague, Czech Republic,
primarily composed of conifers, among which spruce is the most common. The area, managed
by the Czech University of Life Sciences Prague, has experienced recent droughts,
exacerbating bark beetle infestations, particularly by I. typographus. The study utilized cloud-
free PlanetScope satellite imagery captured between April and September 2020. These images,
with RGB and NIR bands, were processed to compute 23 Spectral Vegetation Indices (SVIs)
for each image. The study identified three tree classes: Healthy (unattacked trees), Susceptible
(trees attacked later in the season but before green-attack phase), and Green-attack (trees that
had reached the green-attack phase). GIS data on attacked trees were collected weekly using
the ArcGIS Collector app, and 61 locations were identified for the study. The data was

validated and cleaned, with adjustments made for logged trees and changes in attack stages.
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Statistical analysis of spectral reflectance and SVIs was conducted using Python, including
ANOVA and Kruskal-Wallis tests with relevant post-hoc tests to assess differences among the

three classes.

Results

In this study, 122 forest polygons, split evenly between 61 “Healthy” and 61 attacked
samples (further classified as “Susceptible” or “Green-attack’), were analyzed. Each polygon
averaged 0.165 hectares, with the total area for attacked and healthy samples being
approximately 10.089 ha and 10.065 ha respectively. Statistical analysis of individual bands
across 72 datasets revealed non-normal distribution in 32 datasets. Additionally, 11 of the 24
datasets in individual bands showed unequal variances. Regarding the Spectral Vegetation
Indices (SVIs), out of 414 datasets, 188 did not follow a normal distribution, broken down as
105 in “Healthy,” 22 in “Susceptible,” and 61 in “Green-attack.” In SVIs, 33/138 datasets
showed unequal variances. Significant differences were identified between at least two classes
using individual bands, particularly noted in the Green band on Days 153 and 183, and the Red
band on Day 194. In the case of Spectral Vegetation Indices (SVIs), out of the 23 Vegetation
Indices (VIs) studied, 17 showed significant differences between at least two classes.
Particularly, marked differences were observed between two pairs of classes for the Enhanced
Vegetation Index (EVI) and Visible Atmospherically Resistant Index (VARI) on Day 196, as
well as for the Infrared Percentage Vegetation Index (IPVI1), Modified Soil-Adjusted
Vegetation Index (MSR), Optimized Soil-Adjusted Vegetation Index (OSAVI), and Simple
Ratio (SR) on Day 194.

Discussion

This study reveals that while PlanetScope's four wavebands and several vegetation
indices are capable of detecting trees vulnerable to bark beetle infestation and green-attack
phases, no single waveband or vegetation index could consistently distinguish between healthy,
susceptible, and green-attacked trees. Key wavebands showed potential in identifying Norway
spruce trees at risk of infestation and during green-attack phases, particularly on specific days
within the vegetation season. The Green waveband was most effective in differentiating
between healthy and green-attacked trees in May and July. The Red waveband was also
effective, particularly towards the study's end, correlating with a decrease in chlorophyll

content leading to higher reflectance. The NIR waveband was less significant for spectral
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separability. Spectral vegetation indices provided significant results mainly in the study's latter
half. The Enhanced Vegetation Index (EVI) and Visible Atmospherically Resistant Index
(VARI) emerged as the most promising indices for detecting susceptible and green-attacked
trees. These indices, particularly EVI, consistently distinguished between healthy and
susceptible trees throughout the season. The study also noted that different sets of Spectral
Vegetation Indices might be needed for different halves of the growing season. Moreover,
individual wavebands like Blue, Green, and Red could be prioritized for differentiating the
three classes of trees across the season. Additionally, the study observed seasonal spectral
separations between susceptible and green-attacked areas starting from July, supporting the
theory that abiotic stress and initial bark beetle infestation affect trees' spectral signatures
similarly. The study faced limitations due to the spectral resolution of the sensor and the
challenge of determining the exact cause of infestations. Advancing to an individual tree level
could enhance detection accuracy but requires additional data collection and preprocessing. In
terms of management implications, large-scale bark beetle outbreaks are expected in the future,
and satellite data with high-frequency scanning, such as PlanetScope products, could be crucial
for early detection. Combining this with field surveys and phenology models can help
determine optimal times for airborne sensing. The study suggests that drone imagery may offer
better spatial resolution for early attack detection, but the challenge lies in covering extensive

outbreak areas and ensuring early tree removal to prevent further spread.

Conclusions

This study highlights the effectiveness of PlanetScope imagery and spectral analysis in
distinguishing healthy, susceptible, and green-attacked trees, with the Green and Red
wavebands proving particularly useful. Additionally, EVI and VARI indices emerged as
significant in detecting trees prone to bark beetle infestation. These findings enhance
understanding of bark beetle infestation dynamics and tree predisposition, suggesting the need
for further research and the potential of integrated high-resolution satellite systems for early

detection.
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Abstract

The detection of susceptible and attacked trees is a key factor in the
management of bark beetle infestations. Early detection remains a challenge because
there are no visible changes in the canopy during the early stages, making it difficult to
detect outbreaks in a timely manner. The green-attack phase, which occurs without

discernible needle discoloration, further complicates early detection. While studies
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have examined spectral characteristics during green-attack, few have focused on pre-
infestation spectral responses alongside accurate field identification of attack timing.
Our paper investigates the spectral differences among three classes of forest areas:
healthy, susceptible to bark beetle attacks, and green-attacked trees. The study aims to
differentiate these classes using individual wavebands or spectral vegetation indices
(SVIs). The research is based on the assumption that the spectral characteristics of
these forests vary significantly due to differing levels of damage caused by the bark
beetle. The study utilises satellite data acquired from 16 PlanetScope images, that were
captured between 2 April and 5 September 2020. Various SVIs and four individual
bands are used to differentiate the three tree classes. The spatial position of attacked
trees is recorded using GIS data collection, and data cleaning is performed. Statistical
analyses are conducted to assess the separability among the tree classes. The findings
indicate that the Green and Red wavebands show promise in distinguishing between
healthy, susceptible, and green-attacked trees. The study also reveals spectral
differences between healthy and susceptible trees before bark beetle attacks,
suggesting the presence of abiotic stress and initial infestation processes. Multiple
wavebands and spectral indices are found to be important for accurate detection. The
EVI and VARI indices demonstrate potential in detecting susceptible trees and their

predisposition to infestation.

Keywords: Picea abies, Ips typographus, spectral vegetation indices, bark
beetle infestations, green attack, Enhanced Vegetation Index, Visible Atmospherically

Resistant Index
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1 INTRODUCTION

Among several bark beetle species, the outbreaks of Ips typographus (L.) have
been severely damaging the central European forests, especially in the Czech
Republic, during the 2018-2019 period, and they are thought to be associated with
drought (Hlasny et al., 2021). The population growth of forest insects, including the
bark beetles, and the consequent infestations, have been exacerbated by water-stress
conditions in trees, due to heat and drought effects (McDowell et al., 2008; Allen et
al., 2010; Trubin et al, 2022). Further, wind and drought effects have been
deteriorating spruce forest health in Europe (Komonen et al., 2011; Kirvemo et al.,
2014; Marini et al.,, 2017). Although conifers have a high tolerance capacity for
drought effects, a long-term high frequency of droughts can surpass the limits of their
tolerance and thus make conifers, e.g., Norway spruce (Picea abies (L.) Karst),
susceptible to bark beetle infestations (Krokene, 2015). For example, trees were found
to be more vulnerable to I typographus attacks after long-term dry periods
accompanied by high-temperature regimes (Wermelinger, 2004; Netherer et al., 2015)
due to a significant decrease in their defence chemicals (Gely et al., 2020). The high-
temperature regimes not only deteriorate tree defence capability, but also they may
influence the breeding behaviour of bark beetles, which would increase the number of
their yearly generations (Netherer et al., 2019).

Remotely sensed imagery and the associated techniques, with which to process

the data, offer a tool to monitor infestations over continuous spatial and temporal
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scales (Fernandez-Carrillo et al., 2020; Zabihi et al., 2021, Trubin et al., 2023). The
spatio-temporal patterns of bark beetle infestations and population dynamics have been
investigated in different parts of the world. For example, there are studies by Kérvemo
et al., 2014, HavaSova et al., 2017, Mezei et al., 2017, Abdullah et al., 2019a, Abdullah
et al.,, 2019b, Abdollahnejad, and Panagiotidis, 2020 in Europe, and Meddens and
Hicke, 2014, Senf et al., 2015, and Mullen et al., 2018 in North America. Among
several sources of available remotely sensed imagery, multispectral aerial and satellite
imagery have been promising resources, with which to map forest disturbances, such
as insect outbreaks (Viisdnen and Heliovaara, 1994; White et al., 2007; Long and
Lawrence, 2016). As bark beetle attacks are spatially and temporally autocorrelated
(Aukema et al., 2006; Aukema et al., 2008; Simard et al., 2011), the availability of
remote sensing data with diverse spectral, spatial, and temporal resolutions enables
mapping the infestation dynamics/patterns (Zabihi et al., 2021; Marvasti-Zadeh et al.,
2023). For example, Meddens et al. (2013) and Abdullah et al. (2019a) used coarse-
resolution Landsat imagery and medium-resolution SPOT-5 & Sentinel-2 imagery to
map early infestations, respectively. In addition, fine-resolution aerial photography has
been used to detect infested trees (e.g., Minafik and Langhammer, 2016; Brovkina et
al., 2018; Kloucek et al., 2019; Abdollahnejad and Panagiotidis, 2020; Barta et al.,
2022).

Detecting susceptible trees and infested trees is crucial for practical bark beetle
control. However, early detection is challenging due to the lack of visible changes in
tree crowns during the initial stages. The absence of colouration alterations hampers

identifying attacks (Niemann and Visintini, 2005; Zabihi et al., 2021). The green-
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attack stage, without needle discolouration, occurs initially when beetles colonise host
trees (Niemann and Visintini, 2005; Zabihi et al., 2021). The challenge of early
detection arises from the intricate integration of multiple factors, including the
dynamic interplay of bark beetle life cycles, site-specific conditions, and tree vitality,
alongside the concurrent temporal evolution of weather elements, such as temperature
and precipitation within the local ecosystem (Wulder et al., 2009; Barta et al., 2022).

Locating and removing infested trees before new beetle generations emerge is
critical to suppress the spread of an attack (Zabihi et al., 2021). Determining whether
remote sensing can detect green-attacks is a crucial research question, that seeks to
enhance forest monitoring and early warning techniques (Huo et al., 2023).

Studies on European spruce bark beetles have consistently reported low
accuracy in identifying ‘green-attacks’ (Abdullah et al., 2019; Huo et al., 2021;
Dalponte et al., 2023). These ‘green-attacks’ exhibit variations in timing among
individual trees, and are influenced by the initial attack timing and the climate zone
(Huo et al., 2021). While several studies have investigated the spectral characteristics
during ‘green-attacks’, only a few studies have focused on the pre-infestation spectral
responses, combined with precise field identification of the time of bark beetle attack
(Huo et al., 2021, 2023; Trubin et al., 2023). Huo et al. (2021) conducted a study
which examined the differences in spectral signals between healthy trees and trees
attacked by spruce bark beetles. Their findings revealed that these signal differences
were present before the attacks, and did not show significant changes during the early-
stage infestation. However, these differences became more pronounced during the late-

stage infestation in autumn. It is important to emphasise that spectral differences
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between healthy and stressed trees exist, even before the attacks occur (Huo et al.,
2021; Trubin et al., 2023). Therefore, it is incorrect to solely attribute these differences
as a response to infestation. In that, simply demonstrating spectral differences between
healthy and attacked samples is insufficient evidence for effectively detecting ‘green-
attacks’.

The existence of spectral differences prior to attacks suggests a relationship
between these differences, the weakness and stress of trees, and the susceptibility of
trees to infestation by bark beetles. The significance of this hypothesis is underscored
by the preference of bark beetles for weaker trees, with lower defence mechanisms, as
the first target for attack (Wermelinger, 2004; Korolyova et al., 2022). After the
successful colonisation of the first target trees, the remaining beetles attack
neighbouring trees independently from their vitality. Furthermore, topographic-related
data, such as potential solar radiation, have proven valuable in bark beetle attack
prediction models, significantly enhancing their predictive capability (Duradiova et al.,
2020). Considering these factors, in conjunction with spectral analysis, can further
improve the accuracy of detecting bark beetle infestations.

According to Barta et al. (2022), with the use of aerial hyperspectral imagery, it
is possible to distinguish between healthy and bark beetle-attacked trees within 23
days after infestation. Huo et al. (2023) performed an experiment with an artificial /.
typographus attack on trees, with no significant spectral differences before
infestations. They used commercial pheromones to induce attack, and they did not see
any indication that infested trees can be detected sufficiently enough during the first 5

weeks of infestation.
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Recent works have been focusing on SVIs to detect trees that are susceptible to
bark beetle attacks, which enables resource managers and policy-makers to establish
proactive forest pest management. For example, Huo et al. (2021) developed a
normalized distance red and shortwave infrared (NDRS) index using Red and Short-
wave infrared (SWIR) wavebands. The NDRS index was found to be a promising
index with which to estimate forest susceptibility to bark beetle infestations in April,
or to detect infested trees during the growing season from May to October (Huo et al.,
2021). In addition, Trubin et al. (2023) found significant differences between
susceptible and healthy trees using the Enhanced Vegetation Index (EVI) and the
Visible Atmospherically Resistant Index (VARI) on a temporal scale from April to
mid-growing season. Trubin et al. (2023) used visible light wavebands from the 2nd
generation of PlanetScope satellite (Planet Labs, Inc., San Francisco, CA) to
differentiate healthy trees and trees that are susceptible to bark beetle attacks.

Although numerous studies have been using satellite imagery, such as Landsat,
SPOT-5, and Sentinel-2 to map bark beetle infestations, limited studies have been
using PlanetScope imagery to map the green-attack stage of infestations. As an
advantage, PlanetScope acquires imagery at high spatial resolution (3.7 m) at a short
temporal scale on a daily basis. The second generation of PlanetScope, named Dove-R
or PS2.SD, which we used in the present study, provides imagery at four spectral
wavebands, including Blue, Green, Red, and near-infrared (NIR). Recently, Dalponte
et al. (2023) successfully used the second generation of PlanetScope imagery in a

spectral separability study of healthy, green-attack, and red-attack stages.
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Most individual wavebands, such as visible, Red-edge, NIR, and Shortwave-
infrared (SWIR), and SVIs, that have been developed from these bands have, to date,
been successful in detecting beetle-induced changes in needle pigments, such as
chlorophyll contents, greenness, and water contents (Zabihi et al., 2021). For example,
the loss of chlorophyll contents in highly water-stressed trees reduces the absorption of
visible lights, e.g., Blue, Green, and Red, by photosynthetically active pigments in
infested trees (Blackburn, 1998, 2007; Carter and Knapp, 2001; Mullen, 2016; Mullen
et al., 2018). Similarly, the loss of chlorophyll a contents in beetle-induced water-
stressed trees causes more reflection in red-edge light than in healthy trees (Ortiz et al.,
2013). The severe water stress conditions cause foliage desiccation due to changes in
the structure of spongy mesophyll and, thus, reduce the absorption of red-edge and
NIR wavebands (Oritz et al., 2013; Mullen et al., 2018). Similarly, SWIR wavebands
have been reflected more in water-stressed trees than in healthy trees (Immitzer et al.,
2016).

Among several investigated SVIs to detect changes in needle pigments and
greenness, Red-Edge NDVI (Ortiz et al., 2013) and Normalized Difference Red-Edge
(NDRE 2 and 3; Abdullah et al., 2019a; Abdullah et al., 2019b) were found to be
promising indices. The top-ranked indices for detecting beetle-induced water-stressed
needles were found to be the Disease-Water Stress Index (DWSI), the Normalized
Difference Water Index (NDWI), the Leaf Water Content Index (LWCI), and the Ratio

Drought Index (RDI; Abdullah et al., 2019a; Abdullah et al., 2019b).

64



182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

The use of visible lights and Red-edge (a bandwidth close to NIR) to develop
SVIs was recommended, in order to minimise the mapping uncertainty of the green-

attack stage of bark beetle infestations (Zabihi et al., 2021).

Based on patterns of differences in spectral characteristics in predisposed and
bark beetle attacked trees described by Huo et al. (2021, 2023) and Trubin et al.
(2022), we investigated the spectral differences among three distinct classes of forest
areas in relation to /. fypographus attacks during the growing season. The first class
included forest areas that were attacked during the growing season and were assumed
to be susceptible to I typographus attacks. Within this class, when the green-attack
stage of bark beetle infestations occurred for different areas at different times of the
growing season, these trees were excluded from the class that was susceptible to 1.
typographus attacks and was assumed to be the class of green-attacked trees (Figure
3). The third class was areas that were not attacked during the year of observations
and, thus, were assumed to be healthy. We aim to differentiate among these classes,
using either individual wavebands or SVIs, that have been developed from individual

wavebands.

Firstly, we assumed that the spectral characteristics of these forests would vary
significantly, due to the differing levels of damage caused by the bark beetle.
Additionally, we presumed that the spectral signatures of trees under a green-attack
would exhibit unique features, reflecting the ongoing physiological changes within the
affected vegetation. Finally, we expected that the spectral properties of healthy forests
would serve as a baseline for comparison, providing valuable insights into the normal

state of unaffected stands. These assumptions guided our research and helped us
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uncover meaningful distinctions among the forest classes, thus contributing to a deeper
understanding of the impacts of I typographus on forest ecosystems. The present
paper is a continuation of previous work that is focused on tree predisposition to bark
beetle attacks (Trubin et al., 2023). In contrast to Dalponte et al. 2023, we were
focused also on predisposition to bark beetle attack. We were also not able to analyse
later stages of attack due to sanitary felling.

We have used PlanetScope multispectral data. In the study period, it was the
only satellite service providing data every day in reasonable resolution enabling the

identification of bark beetle-caused tree mortality on a relatively small scale.

2 MATERIALS AND METHODS

2.1 Study area

The study was conducted in forests that are located about 50 km southeast of
Prague (in Czechia or the Czech Republic) (Figures 1 and 2), and owned and managed

by the Czech University of Life Sciences Prague (CULS; CZU is the Czech acronym).
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FIGURE 1 | The study area location in the CULS forests, to the southeast of
Prague.

Spanning an area of approximately 5,700 hectares, the CULS forests are located
in a temperate climatic region. Historically, the mean annual temperature of this area
has been in the range of 7 to 7.5 °C, and the annual sum of precipitation has been
measured in the range of 600 to 650 mm (Tolasz et al., 2007). In recent times, the
region has been experiencing recurrent droughts, which have adversely impacted
forest health (Remes, 2017). The majority of the tree species in the forests are conifers,
constituting about 70% of the total vegetation. Spruce is the predominant species
among conifers, making up 50%, while pines account for 16%, with other species
comprising the remainder. Broadleaved trees make up the remaining 30% of the
woodland, with beech being the most common at 14%, followed by oak which
constitutes around 10%, and other species making up the rest. In 2018, the forests
experienced a severe drought, which led to a significant bark beetle outbreak. [.

typographus was the primary species behind the infestation, but there were also
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indications of localised infestations by other species, including Ips duplicatus

(Sahlberg), Ips amitinus (Eichhoff), and Pityogenes chalcographus (L.) (Hlasny et al.,

2021). Recent forest management efforts have been oriented towards sanitary logging,

in order to expedite the removal of trees that have been affected by these infestations,

as they are identified (Trubin et al., 2023; Pirtskhalava-Karpova et al., 2024).
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FIGURE 2 | The School Forest Enterprise in Kostelec nad Cernymi lesy (town

in the Czech Republic), with forest management layer, clipped by the border of the

study area on the EVI vegetation index of Planet Imagery (14 July 2020).

2.2 Satellite data acquisition and processing

For satellite data acquisition and processing, GIS data collection and validation,

and data cleaning, we have used the methodology described by Trubin et al. (2023).

For our analysis, we used 16 PlanetScope images that were captured between 2 April
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and 5 September 2020. Only cloud-free images were selected for further processing.
All images were downloaded in the GeoTIFF format, and surface reflectance data type
was selected. Every image had four bands, including Red, Green, Blue (RGB), and
Near Infrared (NIR), with a spatial resolution of 3 m. We computed 23 Spectral

Vegetation Indices for each image in the time series.

To differentiate between three classes of trees, we utilised the individual bands

and the SVIs (Table 1; formulas are provided in Supplementary Materials).

TABLE 1 Spectral Vegetation Indices, their acronyms and publishers, used in the study. The
sclection of SVI was aimed to capture a wide range of vegetative health indicators but limited with

number of available bands.

Spectral Vegetation Index Acronym Reference
Difference Vegetation Index DVI Tucker, 1979
Enhanced Vegetation Index EVI Huete et al., 2002
Green Chlorophyll Index GCI Gitelson et al., 2003
Green Difference Vegetation Index GDVI Sripada et al., 2005
Pinty and Verstracte,
Global Environmental Monitoring Index GEMI
1992
Green Normalized Difference Vegetation Index GNDVI Gitelson ct al., 1996
Green Optimized Soil Adjusted Vegetation Index GOSAVI Sripada ct al., 2005
Green Ratio Vegetation Index GRVI Sripada ct al., 2006
Green Soil Adjusted Vegetation Index GSAVI Sripada et al., 2005
Infrared Percentage Vegetation Index IPVI Crippen, 1990
Modified Soil Adjusted Vegetation Index MSAVI2 Qictal., 1994
Modified Simple Ratio MSR Chen, 1996
Normalized Difference Vegetation Index NDVI Rouse et al., 1974
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Normalized Difference Water Index NDWI Gao, 1995
Non-Lincar Index NLI Gocl and Qin, 1994
Optimized Soil Adjusted Vegetation Index OSAVI Rondeaux et al., 1996
Richardson and
Perpendicular Vegetation Index PVI
Wiegard, 1977
Roujean and Breon,
Renormalized Difference Vegetation Index RDVI
1995
Soil Adjusted Vegetation Index SAVI Huete, 1988
Birth and McVey,
Simple Ratio SR
1968
Baret and Guyot,
Transformed Soil Adjusted Vegetation Index TSAVI
1991
Visible Atmospherically Resistant Index VARI Gitelson et al., 2002
Wide Dynamic Range Vegetation Index WDRVI Gitelson et al., 1996
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FIGURE 3 - Progression of sample class status from

attack” and subsequent removal.
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The first class consisted of trees that did not exhibit any signs of attack during
our study year and are, therefore, labelled as the “Healthy” class. The second class is
comprised of trees that were attacked later in the growing season, but before the green-
attack phase, and they are referred to as the “Susceptible” class. The third class
consists of trees that were previously classified as “Susceptible”, but had since reached
the date of bark beetle green-attack and, consequently, are designated as the “Green-

attack” class.

2.3 GIS data collection and validation

Foresters and researchers from the EXTEMIT-K project (partly with the help of
a detection dog (i.e., sniffer dog), Vosvrdova et al., 2023) logged the spatial
coordinates (X and Y) of trees under attack, as well as the date of the attack, the
species of the bark beetle, and the number of trees attacked, using the ArcGIS

Collector smartphone app on a weekly basis in their designated areas.

For this study, the spatial coordinates of a total of 61 locations, that were
attacked in the growing season, were used to construct polygons of these forest areas.
To ensure accuracy, the vectorised boundaries of the trees were visually validated to
avoid any spatial error. We also created a random sample of the “Healthy” class, with
similar attributes found for attacked areas (Table 2). Sixty-one (61) circular polygons,
each encompassing an area of 0.165 hectares, were randomly chosen within forest
management units, aged between 78 to 130 years, and having 80-100% Norway spruce

coverage (Trubin et al., 2023).
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TABLE 2 Summary of GIS dataset used including sampling (training) datasets
collected in the field and from satellite imagery, and ancillary datasets of forest
management units. The type of datasets, e.g., vector vs. raster, and categorical vs.
binary, and the stage of collection during the growing season and later on, the

collection method, and the application or software used to extract data from them are

provided.
Data Type Stage | Collection Application/ | Additional Data Num | Final
of method software data used derived ber | purposes
collect used from of
ion plots
Infested Vector | Mid- Field ArcGIS UAV Creating | 61 Data for the
trees and growin | survey/samp | Collector imagery, polygons “Susceptibl
categor | g ling app used as base | of e” and
ical scason imagery in | "Suscepti "Green
and app and the | blc" and attack" class
later datc of the | "Green
on attack attack"
classes
based on
the date
of the
attack
Non- Vector | N/A Random QGIS PlanetScope | Creating | 61 Training
attacked | and sampling Imagery polygons data for the
trees categor points of “Healthy”
ical Healthy class
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N/A
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Department

QGIS

N/A

Average
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percent
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Norway

Spruce

2541

Area for the
“Healthy”
class, with
similar
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cs found for
the
“Susceptibl
¢” and
“Green-
attack”
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2.4 Data cleaning

The sample size of the “Healthy” class remained constant at 61 trees across all
images, requiring no data cleaning. However, for the “Susceptible” and “Green-attack”
classes, we removed samples that exhibited evidence of logging during any of the
imaging dates. We also excluded samples from the “Susceptible” class that had not
reached the green-attack phase, by the time of our temporal-scale analyses, and
transferred them to the “Green-attack™ class once they had reached that phase. In order
to maintain a balanced sample size across all classes, we decided to exclude the first

and last five dates of imagery from our time-series datasets, specifically, all imagery

captured before 18 May and after 14 July (as shown in Figure 4).
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310 2.5 Statistics

311 The mean value of bands of spectral reflectance and SVIs for each polygon of

312 the “Healthy”, “Susceptible”, and “Green-attack” classes were extracted using the
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ZonalStatistics-plugin from the OTB package in QGIS (Open Source Geographic
Information System).

Assumptions for the use of parametric statistics were tested (Shapiro-Wilk test
and Levene test; Underwood, 2001). For the data that complied with the assumptions,
a One-Way Analysis of Variance (ANOVA) with Three Factors was performed,
followed by the Games-Howell test for the data that complied with the assumptions of
the Levene test, and Tukey’s honestly significant difference test (Tukey’s HSD) for
the data that did not comply. For the data that did not comply with the assumptions,
the nonparametric Kruskal-Wallis H Test (also termed as “one-way ANOVA on

ranks”) with Three Independent Groups, and then Dunn’s post hoc tests, were used

(Figure 5).
Data Collection and Pre-processing
Assumption Checks
Shapiro-Wilk Test (for normality)
Levene Test (for homogeneity of
Assumptions are met; i’ Assumptions are not met:
ParametricAnalysis /\Noml’aramem‘c Analysis
One-Way ANOVA with Kruskal-Wallis H Test
Three Factors (one-way ANOVA on ranks)
Levene's test is SiMﬂ'els testisnot daticant
Games-Howell Tukey’s HSD Dunn’s
Post-Hoc Test Post-Hoc Test Post Hoc Test

Figure 5 Description of statistics
All statistical calculations were done in Python programming language, using
the SciPy library (ver. 1.7.1; Virtanen et al., 2020), statsmodels package (ver. 0.13.5;

Seabold and Perktold, 2010), scikit-posthocs (ver. 0.7.0; Terpilovskii, 2019).
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3 RESULTS

We analysed a total of 122 polygons, comprising 61 “Healthy” class and 61
attacked samples, which were further categorised into either “Susceptible” or “Green-
attack™ classes, based on the date of imagery and attack. The average area covered by
the forest polygons in each sample was 0.165 hectares (ha), for both the “Healthy”
class and attacked categories. Cumulatively, the total area spanned by the 61 attacked

polygons was 10.089 ha, while the “Healthy” polygons covered an area of 10.065 ha.

Focusing on individual bands, it was observed that out of the 72 datasets, 32 did
not conform to a normal distribution. When broken down by class, the “Susceptible”
class had 8 out of 24 datasets that were not normally distributed, the “Green attack”

class had 10 out of 24, and the “Healthy” class had 14 out of 24.

In addition, 11 of the 24 datasets in individual bands exhibited unequal
variances. Notably, all individual bands displayed unequal variances on Day 139.
Furthermore, all datasets, with the exception of the data on Day 180 in the Red band,

exhibited unequal variances.

Regarding the Spectral vegetation indices, of the 414 datasets, 188 did not
follow a normal distribution. Within the classes, the “Healthy” class had 105 datasets
that were not normally distributed, the “Susceptible” class had 22, and the “Green-

attack™ class had 61.

Finally, in the SVIs, 33 out of the 138 datasets analysed showed unequal

variances.
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3.1 Individual bands

One pair of classes were found to be significantly different using all individual
bands, based on combined evaluations of using One-Way ANOVA with Three Factors
or Kruskal-Wallis H Test with Three Independent Groups, and Tukey’s honestly
significant difference test (Tukey’s HSD), or Games-Howell, or Dunn’s post hoc tests.
However, two pairs of classes were found to be significantly different, using the Green

band on Days 153 and 183, and the Red band on Day 194 ( Table 3 and Table 4).

For all single bands, we found significant differences, at least between the two
classes (Table 3). The significant differences between the two couples of classes were
found for the Green band on Day 153 and 183 and the Red band on Day 194 (Table 4,
Figure 6).

TABLE 3 Test results for One-Way ANOVA with Three Factors or Kruskal-Wallis H Test

with Three Independent Groups: P-values for each day, using individual bands. In the table, *

represents p < 0.05, ** represents p < 0.01, and *** represents p < 0.001.

Band  Day 139 Day 153 Day I80 Day 183 Day 194 Day 196

Blue 0.237 0.053 0.979 | 0.002%* 0.696 | 0.004%*

Green 0.336 | 0.001%** | 0977 0.022%* 0.24 0.033*

Red 0.263 0.068 0.928 0.109 0.002%* 0.139

NIR 0.279 0.044* 0.742 0.454 0.312 0.533

TABLE 4 | The results for Tukey’s honestly significant difference test (Tukey’s HSD),

Games-Howell and Dunn’s post hoc tests between two classes afler significant One-Way ANOVA
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with Three Factors, or Kruskal-Wallis H Test with Three Independent Groups: P-values for each day,

using individual bands. In the table, * represents p < 0.05, ** represents p < 0.01, and *** represents p

<0.001.
Healthy versus Healthy versus Green Susceptible versus Green
Band Day
Susceptible attack attack

Blue | 183 0.15 0.0021** 0.28

Blue | 196 0.17 0.0043** 0.66
Green | 153 0.0023** 0.016* 0.8
Green | 183 1 0.038%* 0.035%

Red | 194 0.01* 0.81 0.0023%*

NIR | 153 0.034* 0.67 0.76
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3.2 Spectral Vegetation Indices

One pair of classes was found to be significantly different at most of the SVIs,
based on combined evaluations of using One-Way ANOVA with Three Factors, or
Kruskal-Wallis H Test with Three Independent Groups and Tukey’s honestly
significant difference test (Tukey’s HSD), or Games-Howell, or Dunn’s post hoc tests.
However, the two pairs of classes were found to be differentiated, at most, using two
SVIs; the EVI and VARI on Day 196 resulted in the p-value of post hoc test being less
than 0.001 or between 0.01 and 0.01, and the p-value for One-Way ANOVA with
Three Factors or Kruskal-Wallis H Test with Three Independent Groups being less

than 0.001 (Table 5 and Table 6).

For SVI 17 of 23 VI, we found significant differences, at least between the two
classes (Table 5). The significant differences between the two couples of classes were
found for EVI and VARI on Day 196 and IPVI, MSR, OSAVI, and SR on Day 194

(Table 6, Figure 7).

TABLE 5 - Test results for One-Way ANOVA with Three Factors or Kruskal-Wallis H Test
with Three Independent Groups: P-values for cach day, using different spectral vegetation indices. In

the table, * represents p < 0.05, ** represents p < 0.01, and *** represents p < 0.001.

Day Day Day Day
Index Day 183  Day 194
139 153 180 196
DVI 025 | 0.059 | 0.39 0.26 0.16 0.44
9.10E- 1.20E-
EVI 0.48 0.23 | 0.019* 0.038*
05*** 05***
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GCI 0.45 0.16 0.92 0.027* 0.014* 0.063

GDVI 0.27 0.088 0.37 0.22 0.17 0.46

GEMI 0.28 0.19 0.66 0.51 0.2 0.87

GNDVI | 0.34 0.1 0.97 0.015* 0.037* 0.038*

GOSAVI | 0.34 0.1 0.97 0.015* 0.037* 0.038*

GRVI 0.45 0.16 0.92 0.027%* 0.014%* 0.063

GSAVI 0.34 0.1 0.97 0.015% 0.037* 0.038*

IPVI 0.27 0.18 0.95 0.033%* 0.0021** 0.05*

MSAVI | 041 0.31 0.8 | 0.0069** 0.43 0.028*

MSR 0.4 0.15 0.95 0.053 | 0.00072%** | 0.078

NDVI 0.45 0.3 0.6 | 0.0073** 0.39 0.029*

NDWI 0.34 0.1 0.97 0.015% 0.037%* 0.038*

NLI 0.17 0.11 0.6 0.04* 0.033* 0.091

OSAVI | 0.27 0.18 0.95 0.033* 0.0021** 0.05%*

PVI 0.28 0.067 0.67 0.49 0.28 0.64

RDVI 0.21 0.083 0.23 0.11 0.064 0.24

SAVI 0.45 0.3 0.6 | 0.0073%* 0.39 0.029*

SR 0.45 0.15 0.91 0.065 | 0.00051%** | 0.095

TSAVI 0.48 0.31 0.48 | 0.0078*%* 0.36 0.03*
1.30E- 1.10E-
VARI 0.49 0.22 | 0.01** 0.47
()§%k** 6***
WDRVI | 0.23 0.054 0.89 0.46 0.29 0.61
398
399 TABLE 6 The results for Tukey’s honestly significant difference test (Tukey’s HSD), Games-

400  Howell and Dunn’s post hoc tests between two classes after significant Onec-Way ANOVA with Three

401  Factors or Kruskal-Wallis H Test with Three Independent Groups: P-values for each day, using



402

403

different spectral vegetation indices. In the table, * represents p < 0.05, ** represents p <0.01, and ***

represents p < 0.001.

Healthy versus

Healthy versus Green

Susceptible versus Green

Index  Day Susceptible attack attack
180 0.16 0.025%* 0.77
183 0.0001#%** 0.2 0.097
194 0.12 0.38 0.012*
EVI 196 0.001** 0.27 0.0025%*
183 0.37 0.089 0.011*
GNDVI | 196 0.19 0.27 0.016*
183 0.49 0.0048* 0.14
MSAVI | 196 0.44 0.023* 0.61
183 0.5 0.0051%** 0.15
NDVI | 196 0.44 0.024* 0.61
183 0.37 0.089 0.011*
NDWI 196 0.19 0.27 0.016*
183 0.5 0.0051%** 0.15
SAVI | 196 0.44 0.024* 0.61
183 0.5 0.0054** 0.15
TSAVI | 196 0.45 0.025* 0.62
180 0.0055%* 0.092 0.9
183 Ok 0.054 0.15
VARI 196 Oxx 0.06 0.0056**
183 0.49 0.11 0.021*
GCI 194 0.041%* 0.69 0.35
GOSAVI | 183 0.37 0.089 0.011*
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196 0.19 0.27 0.016*
183 0.49 0.11 0.021*
GRVI 194 0.041* 0.69 0.35
183 0.37 0.089 0.011*
GSAVI | 196 0.19 027 0.016*
183 0.2 0.33 0.026*
194 0.006%* 0.71 0.004**
IPVI 196 0.059 0.57 0.017*
MSR 194 0.0017%* 082 0.0023%*
183 0.14 0.53 0.038%*
NLI 194 0.067 0.77 0.042*
183 0.2 033 0.026*
194 0.006%* 0.71 0.004%*
OSAVI | 196 0.059 0.57 0.017*
SR 194 0.0011%* 0.86 0.002%*
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4. DISCUSSION

Our results show that all four wavebands of PlanetScope and several vegetation
indices allow to detect trees that are susceptible to bark beetle infestation and green-
attack phases. However, the studied wavebands and spectral vegetation indices had
relatively high variability and seasonal dynamics (Figures 6 and 7). We have not found
a single waveband or vegetation index that would be able to distinguish between
healthy, susceptible, and green-attacked trees, even on a single date, with statistically

significant results.

4.1 Wavebands with potential for the detection of Norway spruce trees

susceptible to bark beetle infestation and green-attack.

All four wavebands allow to detect trees that are susceptible to bark beetle
infestation and green-attack phases (Table 3, Table 4, Figure 6) on specific days (Blue
—days 183 and 196; Green — days 153 and 183; Red — day 194, NIR — day 153) during
vegetation season. However, the Red and especially Green wavebands have shown the
best results. Green waveband has shown the best results in distinguishing between
healthy and green-attacked trees in May and July (Figure 6). In May, there were
statistically significant differences between healthy and jointly susceptible and green-
attacked trees. However, in July, there was the strongest difference between green-
attacked and susceptible trees. In the case of days with statistically significant results,
Green waveband was consistent in distinguishing between healthy and green-attacked

trees, and green-attacked trees had higher reflectance than healthy trees. The results
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that are connected with the green reflectance performance in the second half of the

season are in agreement with the findings of Huo et al. (2023).

Red waveband was able to distinguish between healthy and green-attacked trees
at the end of the study period. This finding is in agreement with the results of Huo et
al. (2021), Barta et al. (2022), and Dalponte et al. (2023). The decrease in chlorophyll
content leads to a reduction in spectral absorption in the visible region, resulting in

higher reflectance, particularly in the Red band (Carter and Knapp, 2001).

The NIR waveband was the least important for spectral separability. It is also in
agreement with the works of Huo et al. (2021), Barta et al. (2022), and Dalponte et al.

(2023).

4.2 Spectral vegetation indices that are suitable for the detection of Norway

spruce trees, which are susceptible to bark beetle infestation and green-attack phases

Spectral vegetation indices show statistically significant results only in the
second half of the study period (Table 5, Table 6, Figure 7). Similar to the results of a
single-result-set analysis, this finding is in agreement with the results of Dalponte et al.
(2023). Only GNDVI and NDVI were used in our study, and in the study by Dalponte
et al. (2023), with similar performances in both studies. However, both indexes did not
achieve the best results in our study. Among all spectral vegetation indices we
investigated, EVI and VARI were found to be the indices with the best potential to,

simultaneously, detect trees that are susceptible to bark beetle infestation and green-
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attack phases (Table 6; the lowest p-value), similar to the works of Huo et al. (2021)
and Trubin et al. (2023). The VARI Index on Day 196 was significantly different
between healthy trees, and trees that are susceptible to bark beetle infestation, and
green-attack (significant post hoc test for two pairs); hence, the values for the
susceptible trees were much higher than for the healthy/control trees; and green-attack
values were the lowest. However, the EVI shows better performance during the entire
season (post hoc test for two pairs appeared four times, Table 6), and results are
consistent for distinguishing between healthy and susceptible trees. In contrast to the
VARI, susceptible and green-attack (excluding Day 194) trees were always showing
lower values for the EVI than healthy trees, during the days of significant differences,
at least for one pair of classes. The observed patterns may indicate that the EVI could
be the best index for the detection of Norway spruce trees that are susceptible to bark

beetle infestation and green-attack phases.

Interestingly, IPVI and SAVI show the most consistent results in the second
half of the study period. Trees with green-attacks have the lowest values. Healthy trees

have higher values, and trees with green-attack have the highest values.

Therefore, we may be required to use a different set of SVIs, e.g., EVI and
VARI vs. IPVI and SAVI, over the course of a growing season as trees are less likely
water-stressed in the first half of a growing season than the second half. Similarly,
individual wavebands, e.g., Blue, Green, and Red, can be prioritized to differentiate
our proposed three classes, healthy, susceptible, and green-attacked trees, in the first

and second half of the growing season.
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4.3 Assessment of statistical methods

In our previous paper (Trubin et al., 2023), we used Welch’s -test, followed by
Linear Discriminant Analysis (LDA) with leave-one-out cross-validation accuracy
(LOOCY), in order to examine the overall classification accuracy (CA) and to evaluate
the separability between forests that are susceptible to attacks, and healthy forests. The
significant results (LDA accuracy greater than 0.7 and p-value for the Welch’s (-test
less than 0.05) of the separability between forests that are susceptible to attacks, and
healthy forests of the previous paper, and the current statistical approach were
archived on Day 183 with EVI and VARI. In the current paper, we also found
significant results for the separability between forests that are susceptible to attacks
and healthy forests on Day 194 (GCI, GRVL IPVI, MSR, OSAVI, SR), Day 196 (EVI,

VARI), and Day 180 (VARI).

These additional findings reinforce the robustness of the separability between
trees that are susceptible to attack and healthy trees, providing further evidence of the
reliability and consistency of the classification accuracy results. The collective
findings from our previous and current studies contribute to a comprehensive
understanding of the separability dynamics, and highlight the potential of utilising
different statistical approaches to evaluate forest health and susceptibility to attacks,

using EVI and VARI SVIs.

4.4 Spectral separation between 3 groups of trees in relation to the mechanism

to bark beetle attack.
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An important point in the present study, is that our results (Figures 6 and 7)
show certain spectral separations in single wavebands or vegetation indices, between
susceptible and green-attacked forest areas, only since July. We can see the seasonal
switch in the green waveband (Figure 6). In May, susceptible and green-attacked trees
exhibit higher reflectance compared to healthy trees. However, in July, there is no
statistical difference between healthy and susceptible trees. Green- attacked trees still
show higher reflectance than susceptible trees. Stressed trees should show higher
reflectance than healthy trees in the visible part of the spectrum (Carter and Knapp,
2001). In the Red waveband, there is no statistically significant difference between
green-attacked and healthy trees. However, susceptible trees have lower reflectance,

and this difference is statistically significant.

The EVI spectral vegetation index shows consistently lower values for
susceptible trees, rather than the healthy trees, during the whole study period (Figure
7). There are no statistical differences between susceptible and green-attacked trees
until the beginning of June. However, in June, green-attacked trees showed statistically

significant higher values.

In the first half of the study period, no differences in spectral signatures
between susceptible and green-attacked trees were observed, as described by Huo et al.
(2021). However, spectral differences between healthy and susceptible trees were
observed prior to the bark beetle attacks, as also noted by Huo et al. (2021) and Trubin
et al. (2023). A similar pattern, spectral differences between healthy trees and trees

that were attacked later, were also shown by Minaiik and Langhammer (2016) and
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Abdullah et al. (2019). Lausch et al. (2013) have shown these differences in the year

before attacks occurred.

The spectral difference existing before attacks may be related to acute thermal
stress of fresh forest edges (Kautz et al., 2013) or drought stress (Netherer et al., 2014),
which predispose trees to bark beetle attacks. Another point is a temporal and spatial
autocorrelation between current and previous bark beetle attacks (Aukema et al., 2006;
Aukema et al., 2008; Wulder et al., 2009; Simard et al., 2011; Kaminska, 2022). It
means that the newly attacked trees in our study area should be located near clearcut
areas caused by salvage cutting in the previous or current year. Forest edges also show

spectral signatures that are different to those in forest interiors (Buras et al., 2018).

It seems that abiotic stress related to bark beetle attack, and physiological
processes related to initial bark beetle infestation in the first half of vegetation season,
affect the spectral signatures of trees in similar ways, especially in studied spectral
ranges, or where the effect of bark beetle attack on leaf spectral reflectance has a
delayed effect. According to Abdullah et al. (2019), the earliest period in which the
spectral difference between infested and healthy trees can be visible is in the

differences in spectral signatures from mid-June to the beginning of July.

The switch between ‘green reflectance’ and ‘no difference in spectral
reflectance’ between healthy and susceptible trees in July (Figure 6) and, partially, also
the pattern in the Red waveband, can also be explained by the mechanism of host

selection. . typographus, the first target, at the beginning of the season, represents
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physiologically weak trees. Later, by a pheromone-based switching mechanism,

relatively healthy trees can be attacked (Korolyova et al., 2022).

4.5. Limitations of the study

In line with the limitations highlighted in our previous study (Trubin et al.,
2023), there are certain constraints and considerations that should be acknowledged in
relation to the present study. The spectral resolution was limited by the choice of the
sensor with 4 bands, due to the year of our observation, and it is preferable to use
datasets with Red Edge (which could be achieved with the PlanetScope products of the
3rd generation sensors, known as SuperDove or PSB.SDafter) and SWIR (which could
be achieved with the Sentinel-2, with coarser spatial resolution) bands. Huo et al.
(2023) show that the Red Edge waveband has good potential for distinguishing
between healthy and green-attacked trees. The additional coefficients in vegetation
indices like PVI, TSAVI, and WDRVI, which are unrelated to band values, were set as
recommended default values due to limitations in GIS data collection campaigns, but
more precise ground truth data, including these parameters, could enhance the
performance of the indices. However, Dalponte et al. (2023) achieved similar results in
their research, as we did in the present study with the SuperDove data. Significant
improvement could, possibly, be achieved with the use of the SWIR waveband, and

also by the possible use of the NDRS vegetation index of Huo et al. (2021).

Weekly identification of ground truth data revealed the locations of all bark

beetle infestations; however, the cause of the infestations remains undetermined, with
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each infestation area potentially being triggered by unharvested internal and/or

neighbouring trees from 2019.

Transitioning to an individual tree level has the potential to enhance the
accuracy of detection of the separability between classes, but requires additional data
collection (such as high-resolution airborne LiDAR data) and preprocessing, geometric
correction, fusion, and validation, to ensure compatibility and accurate alignment

(Dalponte et al., 2023).

4.6 Management implications

We can expect relatively large bark beetle outbreaks in extensive areas in the
future (Hlasny et al., 2021). Airborne detection encounters inherent difficulties in
achieving precise timing(s) for aircraft flights. The need for a substantial number of
images adds to the complexity of image processing, including tasks like
georeferencing, mosaicing, and absolute reflectance correction. Consequently, this also
increases the associated costs. Additionally, since the spectral conditions often differ
from one scene to another, normalisation becomes necessary, in order to ensure
consistency across images. However, this normalisation process reduces the overall
variability of spectral values, which in turn affects the effectiveness of detection
algorithms (Wulder et al., 2009). Consequently, the combination of local field surveys
and phenology models can serve as a valuable strategy to determine the most suitable
timing for conducting airborne sensing activities (Barta et al., 2022). The timely
generation of image processing and information regarding green-attack is crucial, as it

needs to be swiftly provided to forest managers. Otherwise, if the information is not

92



584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

provided promptly, forest managers may (inaccurately) continue relying on existing
field surveys (Kautz et al., 2022). An important point is the detection delay of remote
sensing methods (Marvasti-Zadeh et al., 2023). Terrestrial methods can detect bark
beetle attached trees almost immediately (Kautz et al., 2022, Vosvrdova et al., 2023).
Detection delay, in case of the use of remote sensing methods for the detection of bark

beetle attack, can be 23 days (Barta et al. 2022).

In order to detect bark beetle attacks in large areas, the use of satellite data with
a high frequency of scanning, such as PlanetScope products would, possibly, be the
best approach (Zahibi et al., 2021). The possibility to detect predisposition could,
possibly, be an advantage in the case where we can use the detection in the bark beetle
attack prediction model, involving spatial autocorrelation of bark beetle attack
(Dura¢iova et al., 2020). Optimally, it should be an online web map application
suggesting to foresters to physically detect bark beetle-attacked trees. Field detection
can be further enhanced by the use of the aforementioned sniffer dogs (Vosvrdova et

al., 2023).

Huo et al. (2023) assume that drone imagery with better spatial resolution
should be a better methodology in early attack detection than satellite imagery.
However, the differences are probably not so large. The main issue is the necessity for
covering the whole area of the bark beetle outbreak, and arranging the early removal
of attacked trees in all areas. Otherwise, we could have a mosaic of areas with a
different system of management. Such a situation would cause extensive additional

damage in buffer zones (Mezei et al., 2017).
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5 CONCLUSIONS

The findings of this study provide insights into the separability between
healthy, susceptible, and green-attacked trees using PlanetScope imagery and spectral
analysis. The Green and Red wavebands emerged as promising indicators for
distinguishing between these three categories. Green-attacked trees had higher
reflectance than healthy trees in the second half of the season. Towards the end of the
study period, the Red waveband showed significant differences, with susceptible trees

displaying lower reflectance compared to healthy trees.

The observed spectral differences between healthy and susceptible trees before
bark beetle attacks suggest the presence of abiotic stress and physiological processes
related to initial infestation. It is likely that physiologically weak trees, which exhibit
higher reflectance in the Green waveband, are initially targeted by the bark beetles.
However, as the infestation progresses, the bark beetles employ a host selection
mechanism that enables them to also attack relatively healthy trees. This mechanism
may explain the switch in green reflectance, and the absence of spectral differences

between healthy and susceptible trees in July.

Furthermore, the findings underscore the importance of considering multiple
wavebands and spectral indices. The EVI and VARI spectral vegetation indices
demonstrated potential in detecting trees that are susceptible to bark beetle infestation
and green-attack phases. The consistently lower values of EVI for susceptible trees
throughout the study period suggest a spectral signature that is associated with their

predisposition to infestation.
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These insights into the spectral separability between healthy, susceptible, and
green-attacked trees contribute to our understanding of the dynamics of bark beetle
infestations, and the potential influence of the predisposition factors. Further research
is needed to refine and validate these findings, enhance the accuracy of detection
methods, and gain a deeper understanding of the underlying mechanisms behind the

predisposition.

To optimize early detection of bark beetle-attacked trees, an integrated system
employing high-resolution satellite platforms like PlanetScope, equipped with sensors
finely tuned to the Green and Red wavebands and capable of computing indices such
as EVI and VARI, is recommended for its precision in capturing the spectral
signatures indicative of tree susceptibility and early infestation stages with high spatial

and temporal resolution.
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Supplementary Material

Supplementary material

Supplementary table 1 | Day number and corresponding datces of the Planct images utilized in 2020.
Imagery captured before May 18 and after July 14 were excluded during the later stage of

analyses due to the low sample size in one of the classes.

# 2020 Date

] 93 April 2, 2020
2 100 April 9, 2020
3 108 April 17, 2020
4 114 April 23,2020
5 129 May 8, 2020

6 139 May 18, 2020
7 153 June 1, 2020

8 180 June 28, 2020
9 183 July 1, 2020
10 194 July 12, 2020
11 196 July 14, 2020
12 204 July 22, 2020
13 214 August 1, 2020
14 218 August 5, 2020
15 226 August 13, 2020
16 229 August 16, 2020
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Supplementary table 2 | Normality test results using Shapiro-Wilk W test:
P-values for cach class and day, using individual bands.

Band Day Healthy Susceptible | Green attack
139 0.571558177 | 0.045561921 | 0.074746802
153 0.001461527 | 0.23313874 | 0.11675977
180 1.43E-16 0.949291706 | 0.000567416
183 0.131985798 | 0.026162921 | 0.85139513
194 1.77E-05 0.04050941 | 0.033069607
Blue 196 0.131985798 | 0.099250175 | 0.47949037
139 0.549032748 | 0.359176815 | 0.065942056
153 0.562062681 | 0.355298609 | 0.667787313
180 1.55E-16 0.831372023 | 0.109469414
183 2.43E-05 0.023698358 | 0.012739294
194 2.32E-05 0.062834479 | 0.007477043
Green 196 2.43E-05 0.024715327 | 0.005485932
139 0.337320924 | 0.316230565 | 0.043953005
153 0.15338318 [ 0.974345088 | 0.807996035
180 9.50E-17 0.497832894 | 0.01433232
183 3.05E-05 0.009566276 | 0.009102435
194 0.001538837 | 0.002532137 1.25E-05
Red 196 3.05E-05 0.015111554 | 0.003155117
139 0.073019862 | 0.523856223 | 0.100783497
153 0.006787768 | 0.281152517 | 0.958840311
180 2.63E-12 0.634528756 | 0.223738134
183 0.380494624 | 0.867751539 | 0.124060914
194 0.019461125 | 0.331248373 | 0.109592035
NIR 196 0.380494624 | 0.553638577 | 0.251807094
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Supplementary table 3 | Homogeneity of variances test results using Levene test:
P-valucs for cach day, using individual bands.

Band Day p-value
139 4.57E-07
153 1.06E-06
180 0.726388734
183 0.889696205
194 0.306923828

Blue 196 0.906835937
139 4.90E-07
153 0.28331022
180 0.666498674
183 0.004641489
194 0.054842745

Green 196 0.00092536
139 1.48E-06
153 0.002129506
180 0.706581946
183 0.007425201
194 0.011408946

Red 196 0.00140756

139 0.024497864
153 0.613262335
180 0.353725786
183 0.85934646
194 0.369464161

NIR 196 0.77068533

118



Supplementary table 4 | Normality test results using Shapiro-Wilk W test:

P-values for each class and day, using different spectral vegetation indices.

SVI Date Healthy Susceptible | Green attack
139 0.026619174 | 0.590636253 | 0.024212651

153 0.010454412 | 0.326360494 | 0.966519594

180 6.42E-06 | 0.571104646 | 0.102542639

183 0.076487482 | 0.722168088 | 0.059257559

194 0.056853335 | 0.286667764 | 0.121066563

DVI 196 0.076487482 | 0.504210353 | 0.108256012
139 0.258673608 | 0.00036954 | 0.251695096

153 0.240178481 | 0.010032518 | 0.099430501

180 8.70E-10 [ 0.427261293 | 0.009620276

183 0.657138824 | 0.009661673 | 0.981076539

194 0.002592299 | 0.041678771 | 0.283092052

EVI 196 0.657138824 | 0.033635102 | 0.92935282
139 0.232403174 | 0.122342654 | 0.662403166

153 1.60E-05 0.051104404 | 0.165722504

180 7.82E-09 | 0.283169597 | 0.000367545

183 0.006451089 | 0.928213954 | 0.002342299

194 0.286889434 | 0.93195194 | 0.003147005

GCl 196 0.006451089 [ 0.758946896 | 0.001557304
139 0.02373339 | 0.624701381 | 0.015886648

153 0.002109102 | 0.258394122 | 0.914086103

180 0.000429861 | 0.454879642 | 0.066491663

183 0.038086943 [ 0.786596417 | 0.071856543

194 0.061836924 | 0.300533623 | 0.106627718

GDVI 196 0.038086943 | 0.576191008 | 0.14763625
139 0.000488652 | 0.695830584 | 0.051378205

153 0.000440945 | 0.050488383 | 0.71341455

180 5.15E-06 | 0.293138564 | 0.006862936

183 0.00188005 | 0.627306998 | 0.013534959

194 1.44E-05 0.289763868 | 0.033817336

GEMI 196 0.00188005 [ 0.404191196 [ 0.055339403
139 0.015678739 | 0.327255785 | 0.878314495

153 0.016752031 [ 0.54294914 | 0.146265507

180 4.96E-14 | 0.659560561 | 0.003402534

183 0.006734798 | 0.491093516 | 0.010527485

194 0.439264476 | 0.200047553 | 0.30170539

GNDVI 196 0.006734798 | 0.17313306 | 0.008979202
139 0.015709789 | 0.327158749 | 0.878696799

153 0.016727844 | 0.542970598 | 0.146277308

180 4.97E-14 0.659470618 | 0.003407296

183 0.006748586 | 0.491230756 | 0.010537285

194 0.439147651 | 0.200104594 | 0.30177775

GOSAVI 196 0.006748586 | 0.17324172 | 0.008987094
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139 0.232410878 | 0.12233381 | 0.662403166

153 1.60E-05 0.051104404 | 0.165723547

180 7.82E-09 0.283169597 | 0.000367543

183 0.006451089 | 0.928217232 | 0.002342299

194 0.28690064 | 0.93194896 [ 0.003147037

GRVI 196 0.006451089 | 0.758947015 | 0.001557304
139 0.015773663 | 0.326962382 | 0.879494429

153 0.016681265 | 0.543071389 | 0.146299258

180 4.98E-14 0.659242034 | 0.003417297

183 0.006777999 | 0.491517961 | 0.010558328

194 0.43888846 | 0.200227082 | 0.301927239

GSAVI 196 0.006777999 | 0.173463821 | 0.009004026
139 0.019716784 | 0.604304075 | 0.154236123

153 0.041448966 | 0.035186008 | 0.319314241

180 4.20E-15 0.378483921 | 0.006684294

183 0.000832334 | 0.228841051 | 0.004281236

194 0.047899295 | 0.007129219 | 0.208460778

IPVI 196 0.000832334 | 0.050552499 | 0.004763432
139 0.027074603 | 0.830852032 | 0.325108796

153 0.00566523 | 0.001276142 [ 0.009203746

180 2.24E-15 0.8138358 | 0.000610064

183 0.004439739 | 0.151333272 | 0.021067763

194 0.007663554 | 0.008136318 | 0.521788061

MSAVI 196 0.004439739 | 0.184935153 | 0.062761679
139 0.316954553 | 0.600068212 | 0.120123059

153 0.002055708 | 0.001569665 | 0.581651509

180 7.55E-11 0.284012556 | 0.001945555

183 0.001755075 | 0.76821208 | 0.001447818

194 0.014418311 | 0.386554956 | 0.01706011

MSR 196 0.001755075 | 0.313570201 | 0.001344494
139 0.090583868 | 0.710776091 | 0.306531221

153 0.002302207 | 0.000686767 | 0.009653499

180 1.96E-14 0.802382886 | 0.002020447

183 0.004351516 | 0.138928592 | 0.016330287

194 0.020136172 | 0.009841945 | 0.558378994

NDVI 196 0.004351516 | 0.170629233 | 0.047532894
139 0.015679002 | 0.327260166 | 0.878319263

153 0.016751364 | 0.542936921 | 0.146265507

180 4.96E-14 0.659560561 | 0.003402534

183 0.006734798 | 0.491089016 | 0.010527419

194 0.439285576 | 0.200047553 | 0.30170539

NDWI 196 0.006734798 | 0.173133925 | 0.00897907
139 0.037362326 | 0.072571747 | 0.000538301

153 0.341914386 | 0.955720067 | 0.096468702

180 4.63E-07 0.637118638 | 0.177006602

183 0.105749682 | 0.580803216 | 0.106851257

194 0.056326162 8.61E-05 0.588697731
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NLI 196 0.105749682 | 0.135481969 | 0.137023509
139 0.019736284 | 0.604002535 | 0.154355809
153 0.041502383 | 0.035212401 | 0.319861323
180 4.20E-15 0.378215641 | 0.006693599
183 0.000834577 | 0.229118049 | 0.00428624
194 0.047974497 | 0.007130565 | 0.208365232
OSAVI 196 0.000834577 | 0.050604489 | 0.004767759
139 0.041500147 | 0.523062706 | 0.057605408
153 0.007420359 | 0.225789547 | 0.983492315
180 9.74E-11 0.575727403 | 0.126388669
183 0.249560609 | 0.849588156 | 0.101108916
194 0.021784615 | 0.354060322 | 0.101087809
PVI 196 0.249560609 | 0.601140916 | 0.222554252
139 0.079376929 | 0.384983987 | 0.005958814
153 0.047787331 | 0.518702209 | 0.962099075
180 0.079349868 | 0.664864242 | 0.025423851
183 0.108190812 [ 0.848788142 | 0.047465183
194 0.871610045 | 0.068283111 | 0.165035322
RDVI 196 0.108190812 | 0.660367846 | 0.135529682
139 0.090361312 | 0.71068728 | 0.306096524
153 0.002300156 | 0.000686537 | 0.009620148
180 1.96E-14 0.8026613 | 0.002020321
183 0.004340342 | 0.139584467 | 0.016324617
194 0.020204389 | 0.009811868 | 0.559378982
SAVI 196 0.004340342 | 0.171681225 | 0.047558051
139 0.415124953 | 0.38476181 | 0.103506252
153 0.00043646 | 0.000446312 [ 0.608055174
180 7.04E-09 0.216098189 | 0.000701527
183 0.001872124 | 0.891575098 | 0.000926242
194 0.006872626 | 0.733020782 | 0.004614815
SR 196 0.001872124 | 0.494847447 | 0.000791305
139 0.190339386 | 0.589342713 | 0.287172467
153 0.001081442 | 0.000422327 | 0.009737883
180 1.19E-13 0.788262963 [ 0.004808481
183 0.004184213 | 0.132041126 | 0.0132882
194 0.04231048 | 0.01106848 | 0.566079736
TSAVI 196 0.004184213 | 0.166041628 | 0.037953157
139 0.339646518 | 0.043608479 | 0.378246039
153 1.70E-06 4.08E-06 0.043168273
180 1.77E-07 0.242500514 | 0.079029322
183 0.01721666 | 0.07335484 [ 0.401809573
194 0.022019593 | 0.192349762 | 0.630911052
VARI 196 0.01721666 | 0.229611576 [ 0.0799881
139 0.004786405 | 0.647272348 | 0.284608662
153 0.00059276 [ 0.299163461 [ 0.99961561
180 1.72E-13 0.454040766 | 0.091265246
183 0.01018656 | 0.536944032 [ 0.041954733
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WDRVI

194

3.08E-05

0.335952431

0.066110164

196

0.01018656

0.251641005

0.120914258
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Supplementary table 5 | Homogeneity of variances test results using Levene test:

P-valucs for cach day, using different spectral vegetation indices.

139 153 180 183 194 196

DVI 0.188835052 [ 0.806442703 | 0.160182291 | 0.965010968 | 0.302528612 | 0.834433499
EVI 0.054574925 | 0.000234224 | 0.093534578 | 0.319249023 [ 0.037792704 | 0.040642904
GCI 0.090984657 [ 0.064355221 | 0.638463871 | 0.120514809 | 0.005046034 | 0.09241796
GDVI 0.216380514 | 0.591224754 | 0.180521331 | 0.981944674 | 0.15511169 [ 0.864656952
GEMI 0.477879913 | 0.744040509 | 0.167767561 | 0.94498846 [ 0.10628429 | 0.873564415
GNDVI 0.050986514 | 0.0047734 | 0.660162785 | 0.092501165 | 0.038162148 | 0.048676895
GOSAVI 0.051049724 | 0.004781955 | 0.660162151 | 0.092574429 | 0.038178411 | 0.048727301
GRVI 0.090984657 | 0.064355221 | 0.638463871 | 0.120514809 | 0.005046034 | 0.09241796
GSAVI 0.051184319 | 0.004800252 | 0.66016061 | 0.092730039 | 0.038212758 | 0.048834516
IPVI 0.039948588 [ 0.411757211 | 0.705819497 | 0.050071454 | 0.923882466 | 0.020916954
MSAVI 0.006382985 [ 0.006477768 | 0.612143923 [ 0.561806828 | 0.101812124 0.689325

MSR 0.08160143 | 0.335903391 | 0.606041052 | 0.07435999 | 0.533705962 | 0.03941057
NDVI 0.006965723 [ 0.006936448 | 0.494179976 | 0.508519687 | 0.078647001 | 0.660773283
NDWI 0.050986514 | 0.0047734 | 0.660162785 | 0.092501165 [ 0.038162148 | 0.048676895
NLI 0.395922071 | 0.952364385 | 0.296580979 | 0.277803639 [ 0.717041237 | 0.206690422
OSAVI 0.039997295 | 0.412103822 | 0.705779794 | 0.05010508 | 0.923768609 [ 0.02093433
PVI 0.058330605 | 0.694757829 | 0.294398465 | 0.882785019 | 0.254649043 | 0.7628799

RDVI 0.393949869 [ 0.860291685 | 0.081530465 | 0.937884462 | 0.369870136 | 0.990982039
SAVI 0.007056062 | 0.006977267 | 0.494214011 | 0.508514588 | 0.078448157 | 0.661716295
SR 0.108891207 [ 0.317510068 | 0.556383477 | 0.090667462 | 0.365104866 | 0.052798129
TSAVI 0.008394781 [ 0.007625898 | 0.415165813 | 0.466266784 | 0.061675169 | 0.643474982
VARI 0.001151481 [ 0.014597618 | 0.027595423 | 0.092427397 | 0.524397084 | 0.395182715
WDRVI 0.072684347 [ 0.70336804 | 0.457737667 | 0.922074144 | 0.393331438 [ 0.825708281
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Supplementary table 6 | Spectral Vegetation Indices (SVIs), their acronyms, equations,

and publishers, used to detect trees susceptible to bark beetle attack.

Specteal Vegetaticn Acronym Equation Reference
Index
Difference Tucker
NIR — R ’
Vegetation Index DT 1979
ok (NIR-R)
5%
Enhanced S (NIR+6xR—-75=B+1) Huete et
Vegetation Index al.,, 2002
Green Chlorophyll . & Kiibelita
Tl GCI G ctal.,
2003
Green Difference NIR — G Sripada et
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Vegetation Index 1996
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Vegetation Index
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Vegetation Index
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Extended summary

Introduction

Worldwide forests are becoming increasingly susceptible to dieback, largely due to heat
and drought stress, with these conditions often encouraging the development of destructive
forest insect species (Allen et al., 2010, DeRose et al., 2013, Kolb et al., 2016, McDowell et
al., 2008, White, 2015). European spruce forests are particularly vulnerable, with drought and
wind being the leading abiotic stressors (Karvemo et al., 2014, Komonen et al., 2011, Marini
et al., 2017). While the physiological mechanisms of drought survival in conifers are not well
understood (McDowell et al., 2008), it's known that species adapted to fluctuating water
conditions are more susceptible to bark beetle attacks in conditions of severe and constant water
shortages (Netherer et al., 2015, Wermelinger, 2004). Climate change, resulting in increasing
droughts and higher temperatures, is seen as a major factor for bark beetle outbreaks, which
directly affect insect population dynamics and indirectly impact host plant growth and defence
(Romashkin et al., 2020, Schroeder and Dalin, 2017). The Eurasian spruce bark beetle, I.
typographus, has become a significant pest, causing considerable damage to coniferous forests
in the Northern Hemisphere (Raffa et al., 2015). The intensification of these outbreaks is
connected to latitude (Maslov, 2010, Romashkin et al., 2020) in the European part of Russia,
causing mass forest dieback. This study aims to determine the most influential predictive
variables such as temperature, precipitation, and previous-year damage to explain annual tree-
cover loss, understand their effects, and establish whether factors related to tree mortality in

the northern border of spruce occurrence differ from those in lower latitudes.

Materials and methods

This study investigates tree mortality in the Dvinsko-Pinegskiy reserve in the
Arkhangelsk region, Russia, where Siberian spruce dominates the preserved taiga ecosystem.
Annual tree cover loss data from 2001-2014 and meteorological variables from the Sura station
were used to understand the effect of climate on bark beetle outbreaks, a key factor in tree
mortality. Particular focus was on the April-June bark beetle season, considering factors such
as average monthly temperature, precipitation, and the Selyaninov hydrothermal coefficient for
moisture assessment. Using linear regression to analyze tree loss and explanatory variables,
multiple models were constructed based on factors known to impact bark beetle population
dynamics, with the most suitable model selected using the Akaike information criterion (AIC)

129



and Akaike weights. Further analyses were performed using the autocorrelation function (ACF)

and cross-correlation functions (CCF), with all calculations conducted in R software.

Results

The total tree cover loss in the Dvinsko-Pinegskiy reserve from 2001 to 2014 was 160
kmz, with varying mortality rates across years. Autocorrelation analysis showed no patterns in
tree mortality rates between consecutive years. Linear regression was applied to explore the
relationship between tree mortality and meteorological variables, such as different monthly and
yearly average air temperatures, precipitation, and total solar radiation. The most suitable
model indicated that the average annual air temperature of the previous year had a positive
effect on tree mortality, while June temperatures had a negative effect. Other models, although
less parsimonious, suggested that variations in monthly or yearly temperatures and June

precipitation could also have significant explanatory power regarding tree loss changes.

Discussion

This study investigated the complex interplay between temperature, bark beetle
population dynamics, and host tree physiology in the Arkhangelsk region's forests. The results
show a nuanced relationship where tree loss decreased slightly with an increase in June
temperatures but increased during years with overall higher temperatures. Despite some
limitations, including reliance on a single meteorological station's data, the findings highlight
the influence of temperature on bark beetle-caused tree mortality. The most significant factors
were found to be the average June temperature and the previous year's temperatures. The study
also suggests that high temperatures during dry summers and the duration of solar radiation
play pivotal roles in bark beetle population dynamics. Moreover, increased temperatures can
enhance tree defences, and drought stress can significantly affect spruce trees' susceptibility to
infestations. With climate change, the threat of drought-induced bark beetle outbreaks may
escalate, potentially affecting northern Russian forests where such outbreaks are currently not
significant. This emphasizes the need for urgent protective measures against such future

disturbances.

Conclusions

This research concluded that the temperature of the current and preceding years is a
critical determinant of tree mortality from bark beetle outbreaks in the Arkhangelsk region.
Other significant factors include the duration of solar radiation in April and May and June
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precipitation. The study suggests that two groups of variables may influence these outbreaks.
The first group links rising temperature sums to increased bark beetle aggressiveness, while
the second ties drought to reduced spruce defence abilities. However, the flight behaviour of I.
typographus and its other biological aspects at high latitudes, as well as their correlation with

climatic changes, are not entirely understood and warrant further research.
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Acute or chronic drought stress caused by climate change can contribute to the ing of forest ecosys

and lead to extensive bark beetle infestations. Siberian spruce (Picea obovata Ledeb.) forests of the Dvinsko-
Pinegskiy, a natural reserve in the Arkhangelsk region, Russia, have been subject to unprecedented tree cover
loss caused by the Furasian spruce bark beetle (Ips typographus 1..) in the last two decades. This is the first
recorded case of such an extensive outbreak of Ips typographus occurring at higher latitudes. We used remote
sensing and climate data to model and compute annual tree-loss change due to natural factors, with a focus on
bark beetle outbreaks, over a 14-year period (2001-2014). Using lincar regression models, we found a combi-
nation of average annual temperature and precipitation, temperature and precipitation in June, to be the most

important drivers of annual tree-loss.

1. Introduction

Forests worldwide are becoming increasingly vulnerable to dieback
caused by heat- and drought-induced physiological stress, which is often
associated with enhanced development of forest insect pest species
(Allen et al., 2010; DeRose et al., 2013; Kolb et al., 2016; Mcdowell et al.,
2008; White, 2015). Drought and wind are generally recognized as the
two most important abiotic factors affecting the condition of spruce
forests in Europe (Karvemo et al., 2014; Komonen et al., 2011; Marini
etal.,, 2017). In accordance with Manion’s theory, the decline of spruce
forests is a result of predisposing factors, such as low soil pH, nutrient
deficiency, and water deficit, and factors that directly kill trees. For
example, trees in areas of drought have their limited water supply
further reduced by roots breaking in the drying soil, imposing additional
stress on the trees (Holusa and Liska, 2002).

The physiological mechanisms underlying drought survival and
mortality in conifers are poorly understood (Mcdowell et al., 2008).
Conifers vary greatly in their ability to cope with drought, but species
adapted to highly variable water regimes are predisposed to bark beetles
attacks under conditions of extreme and constant water deficits (Chris-
tiansen et al., 1987; Miller and Keen, 1960; Worrell, 1983). The com-
bination of increasingly frequent droughts and higher temperatures is

considered to be an important predisposing factor for bark beetle out-
breaks, directly affecting insect population dynamics and indirectly
altering host plant growth and defence (Bentz and Jonsson, 2015; Hart
et al., 2017; Jactel et al., 2012; Meddens et al., 2015; Raffa et al., 2015;
Weed et al., 2013). For example, severe droughts combined with warm
temperatures can reduce the water supply to trees and increase their
susceptibility to Ips typographus L. attacks (Netherer et al., 2015; Wer-
melinger, 2004). Moderate drought can result in increases of plant
chemical defences, whereas long, severe drought events can result in
decreases in defence compounds (Gely et al., 2020). In wind-damaged
areas, windblown trees exposed to high temperatures or solar radia-
tion may be not suitable for bark beetle attacks (Hrosso et al., 2020).
The European spruce bark beetle, I. typographus, is one of the most
economically important forest pests in Eurasia (Wermelinger, 2004),
causing severe damage to coniferous forests in the Northern Hemisphere
(Raffa et al,, 2015). Despite their essential role in forest regeneration and
succession in conifer-dominated forest ecosystems in the Northern
Hemisphere (Bace et al., 2015; Winter et al., 2015; Zeppenfeld et al.,
2015), recent outbreaks of bark beetles have noticeably exceeded pre-
viously documented frequencies and impacts (Winter et al., 2015).
Climate change may cause I typographus to develop additional genera-
tions per year and facilitate mass outbreaks further north than
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previously observed (Romashkin et al., 2020; Schroeder and Dalin,
2017).

In the European part of Russia, the intensity of bark beetle outbreaks,
in particular I typographus, are related to latitude (Maslov, 2010;
Romashkin et al., 2020). Based on the occurrence of bark outbreaks
since 1993 in the European territory of the Russian Federation and
neighbouring countries, Maslov (2010) has suggested a division into
classes of bark beetle-driven mass-mortality and micro-hotspots on a
landscape level. In particular; the interfluve of Northern Dvina and
Pinega (marked III on Fig. 1) is also driven by climate and the older age
classes of the tree stands. Tree mortality in the Moscow region was most
intense from 2011 to 2013 and the bark beetle damage on 74,000 ha of
forest land was classified as epidemic, but even from 2013 to 2015
micro-hotspots continued to appear.

The mass forest dieback in the Arkhangelsk region, which has been
observed since 1997, has attracted the most attention and is likely the
most extensive natural disturbance in Russia. From the beginning of
2004 to the end of 2005, the area of spruce forest mortality increased by
about 50% and is estimated today at more than 2 million hectares
(Zhigunov et al., 2007). According to Romashkin et al. (2020); there was
anotable increase in temperature sums for I. typographus development in
the Northern part of European Russia after the year 2000 and it has been
hypothesized that with increasing summer temperatures, the frequency
and number of recorded outbreaks increased.

Publicly available disturbances database — Global Forest Watch
(Hansen et al., 2013) provides annual tree cover percentage, gain, and
loss from 2000 to 2019 on a global scale at 30 m spatial resolution. In
this study, we present a an approach that demonstrates high resolution
global maps of forest cover change from Hansen et al. (2013) to acquire
annual forest loss change maps over the period 2000-2019 for the
reserve studied.

We based our study on the assumption that seasonal temperature and

Fig. 1. Areas of drought-driven spruce tree mortality in 1993-2005.
adapted from Maslov (2010)
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precipitation conditions that affect bark beetle development and the
stress level of the host trees play an important role in tree cover loss due
to infestations caused by I. typographus in the Dvinsko-Pinegskiy reserve.

The objectives of this study were to: (1) determine what combina-
tions of predictive variables, such as temperature, precipitation, and
previous-year damage, best explain the annual tree-cover loss, (2) un-
derstand possible effects of the selected variables, by the most-
parsimonious model, on annual changes of tree loss, and (3) deter-
mine whether factors connected to tree mortality in the northern border
of spruce occurrence are different than factors in lower latitudes (by
using variables related to solar radiation).

2. Material and methods
2.1. Study area

The present study was conducted in the area between the Northern
Dvina and Pinega rivers in the Dvinsko-Pinegskiy reserve, Arkhangelsk
region, Russian Federation, located in five forestry divisions (Fig. 2),
between 62°30' and 64°00' N and 42°00' W to 46°00' E. The whole
outbreak area of the site is approximately 1,045,000 ha. Dvinsko-
Pinegskiy is a state natural reserve of regional significance, established
on October 1, 2019. The study site is a highly preserved taiga area with
no significant traces of anthropogenic impacts. Forest management and
logging activities are fully restricted by the regime of the reserve, with
no logging activities taking place during both the entire 20th century
and the study period. The reserve was established for the preservation of
natural ecosystems that have not been exposed to anthropogenic im-
pacts to maintain their biological diversity and serves as a habitat to rare
and endangered species of plants, animals, and other organisms (Gov-
ernment of the Arkhangelsk Region, 2019).

The total area of the studied reserve (study area) is 300,420 ha.

&\\\BM
A

Areas of spruce mortality
B 1, 111 - Arcas of mass mortality of spruce before 2000
[0 11, V - Areas of micro-hotspot mortality of spruce
[ 1V - Areas of spruce mortality in 1891-1901

B Study arca
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—— Dvinsko-Pinejsky reserve boundaries
B Tree cover loss for 2000-2019

o 40 80 km

Fig. 2. Study area located in the Dvinsko-Pinegskiy reserve, Arkhangelsk region, Russian Federation. Tree cover loss from 2000 to 2019 is marked in black.

According to forest inventory data, the area has over 90% forest cover
and approximately 5% swamp cover, with the remaining area covered
by water bodies, hayfields, roads, and glades. The dominant forest-
forming species in the area is Siberian spruce (pure forms of Siberian
spruce Picea obovata Ledeb. and hybrid forms of spruce P. obovata x
fennica with predominance of Siberian spruce that covers 82.3% of the
forested area (Procjuk et al., 2019; Zagidullina and Mirin, 2013).

The spruce stands of the Northern Dvina and Pinega rivers are mostly
in older age categories with one dominant generation, all of which have
a post-fire origin. Spruce stands of different ages are rare. The dieback of
spruce stands is associated with older ages (180-200 years and more)
and occurs naturally to renew the taiga forests in a pyrogenic way. The
phenomena of higher-age spruce stand degradations are natural and last
for many centuries, repeating themselves periodically (Nevolin et al.,
2007).

The structure and dynamics of the studied primeval forest landscape
are driven by the combined impact of small-scale spruce mortality and
infrequent episodes of patchy, intermediate severity and large-scale
disturbances (Khakimulina et al., 2016; Kuuluvainen et al., 2014;
Nevolin et al., 2005). The main natural disturbances are windthrows and
insect outbreaks (Aakala et al., 2011; Aakala et al., 2009; Khakimulina
etal., 2016; Nevolin et al., 2007). Forest susceptibility to these agents is
usually mediated by summer droughts (Aakala and Kuuluvainen, 2011).
Fires are also an important disturbance factor in forests of this region
(Nevolin et al., 2005), yet the return intervals appear to be quite long
(Khakimulina et al., 2016; Nevolin et al., 2005). The tree mortality
episode observed since 1999 is associated with an outbreak of European
spruce bark beetle Ips typographus (IKhakimulina et al., 2016; Nevolin
et al., 2005). Drought stress, especially the extremely dry year of 1997

(Nevolin et al., 2005) was likely an inciting factor for the recent bark
beetle outbreak (Aakala and Kuuluvainen, 2011; Allen et al., 2010;
Khakimulina et al., 2016; Kuuluvainen et al., 2014). The second inciting
factor was likely intensive breakage of treetops by snow in the winter of
2001-2002 (Nevolin et al., 2005).

2.2. Annual Norway spruce tree cover loss acquisition

We used the annual tree cover loss (sensu Marini et al., 2013) maps
from 2001 to 2014 derived from Global Forest Watch data (http://www.
globalforestwatch.org/, (Hansen et al.,, 2013), based on time-series
analysis of Landsat imagery, to create annual maps from 2001 to 2019
at 30 x 30 m? spatial resolution. These maps are a set of vectorized data
from the original 10 x 10°granules raster layer, cut by the polygon of the
reserve’s boundaries. Vectorization was performed in the QGIS (Version
3.16) environment, using the GDAL polygonise utility plugin (Version
3.1.4). The area of the polygons for each year were calculated with a
field calculator in QGIS.

For the actual assessment, we used a tree cover loss dataset for
2001-2014 for homogeneity of the algorithm used for the assessment of
the time-series analysis of Landsat images, which was changed in
Version 1.7 (Ceccherini et al., 2020), as well as information from the
Arkhangelsk Region Forest Protection Centre data that the massive tree
mortality process in the study area had stopped. The information from
the Forest Protection Centre was confirmed with the dataset from
(Hansen et al., 2013).
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2.3. Meteorological variables

To understand the effects of climate on bark beetle epidemics and
subsequent tree mortality, we obtained meteorological data previously
identified as important for insect populations (Faccoli, 2009; Marini
et al., 2013) comprising temperature, precipitation, and three different
indices (JJA, Selyaninov, and DJF, for explanations, see Table 1). We
introduced a new variable which we hypothesized may influence tree
mortality because of its effect on bark beetle population dynamics - the
total monthly duration of solar radiation.

Meteorological data were acquired for the years 2001-2014 from the
Sura meteorological station (Platform ID 22676, Latitude 63.58 Longi-
tude 45.63) of the Roshydromet network from specialized arrays for
climate research. Data sampling was provided by Web-technology Aisori
(Veselov et al., 2000).

We consider the temporal window of April-June as the main season
for bark beetles in our study area; outside this period, temperatures are
frequently beyond the developmental threshold of I. typographus pop-
ulations. We collected data on average monthly temperature and pre-
cipitation (April-June), as well as the Selyaninov coefficient. To assess
moisture during the growing season, the Selyaninov hydrothermal co-
efficient (K) is calculated according to the formula: K = R*10/)"t, where
R is the sum of precipitation in mm for the period with the temperatures
higher than 10 °C and t is the temperatures in degrees Celsius for the
same time. According to the handbook Methods for Monitoring Forest
Pests and Diseases (Tuzova, 2004), the values of Selyaninov’s hydro-
thermal coefficient for the growing season indicate the following con-
ditions: 2 = excessive moisture; 1.5 = adequate moisture; 1.0 = on the
verge of drought, and 0.5 = severe drought. Our newly introduced
variable, duration of solar radiation, was used as the total monthly
duration of solar radiation from April to June.

Table 1
Variables used in the study of changes in tree cover loss. Meteorological data
were collected from the nearest weather station to the study area for the

2001-2014 period.

Name in model Variable

TCL Tree cover loss in a given year

TLC ‘Iree loss change in a given year

AvelempYear Average yearly air temperature in a given year

AveTempYear(l- Average yearly air temperature in the previous year
n

AvePrecYear Average yearly adjusted precipitation in a given year

AprT April average monthly air temperature in a given year
MayT May average monthly air temperature in a given year
JuneT June average monthly air temperature in a given year
AprP April amount of adjusted precipitation in a given year

MayP May amount of adjusted precipitation in a given year
JuneP June amount of adjusted precipitation in a given year
lyani lyani hyd mal coefficient in a given year
lyaninov(t 1) lyaninov hydrotl I cocfficient in the previous year

DJF December, January, and February average air temperature in a
given year

DJF(1-1) December, January, and February average air lemperature in
the previous year

JIA June, July, and August average air temperature in a given year

JIA(-1) June, July, and August average air temperature in the previous
year

S Apr April monthly total duration of solar radiation in a given year

S May May monthly total duration of solar radiation in a given year

S_June June monthly total duration of solar radiation in a given year

S Apr(t-1) April monthly total duration of solar radiation in the previous
year

S May(t-1) May monthly total duration of solar radiation in the previous
year

S June(t-1) June monthly total duration of solar radiation in the previous
year

“ The monthly precipitation amount after elimination of systematic errors of
gauge instruments.
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2.4. Statistical analyses and model selection

Before the analysis, data were checked for outliers and collinearity.
During data exploration, we plotted the response variable with each
covariate to check the relationship between them. Based on the data
exploration, the relationship between tree loss and explanatory vari-
ables was analysed using linear regression (Zuur et al., 2010). A set of a
priori models (Dochtermann and Jenkins, 2011; Rosen, 2016) was
selected prior to analysis (Table 2) in order to test which model would
best explain the infestation of trees by I typographus. These models were
constructed using previously known variables identified as important
for bark beetle population dynamics, mainly climatic variables. The
information-theory (I-T) approach was used to assess competing models.
Models were ranked according to the Akaike information criterion
(AIC); the most parsimonious model was selected based on the lowest
AIC value. We also calculated Akaike weights to arrange candidate
models in order of parsimony, where Akaike weight is a number from
0 to 1, providing a measure of the relative likelihood of each model,
given the data and candidate model set (Burnham et al., 2011).

Total tree mortality (km? per year) was used as the response variable.
As some of the variables were highly correlated, we used the threshold of
r = 0.7 to select variables. We tested the correlation between changes in
annual tree cover losses in a particular year and changes in annual tree
cover losses in previous years by calculating the autocorrelation func-
tion (ACF). We assessed also the cross-correlation functions (CCF) of the
predictor time series and variables in the best model. Because we used
previous year tree mortality as an explanatory variable in our analysis,
the sample size changed from 14 (2001-2014) to 13 years (2002-2014).
All calculations and statistical analysis were conducted in R (Version
3.6.1) in RStudio Version 1.3.1093 (R Development Core Team 2018).

3. Results
3.1. Tree cover loss due to disturbance events
Total tree cover loss, considering all 14 years from 2001 to 2014,

amounted to 160 km? (Fig. 3). Tree mortality was above zero for all
years, with the lowest mortality of 3.37 km?® in 2013.

Table 2
Proposed models to study annual changes of tree cover loss for a 14-year period.

Model  Variables

1 Annual tree cover loss change = JuneT + AveTempYear(t 1) + €

2 Annual tree cover loss change = AveTempYear + JuneP + €

3 Annual tree cover loss change = June'l' + AvelTempYear - AvelempYear(t-
1)+€

4 Amnual tree cover loss change = AveTempYear(1-1) + AveTempYear +
JuneT + JuneP + €

5 Annual tree cover loss change = DJF + AveTempYear + €

6 Annual tree cover loss change = AvelempYear | €

7 Annual tree cover loss change — JuneT + DJT + AveTempYear(t-1) + €

8 Annual tree cover loss change = JuneT + AveTempYear(t-1) + MayT + €

9 Annual tree cover loss change = AveTempYear + JuneT + €

10 Annual tree cover loss change = JuneT + AprT + AveTempYear(t-1) + €

11 Annual tree cover loss change = JuneT + JJA + AveTempYear(t 1) - €

12 Annual tree cover loss change = AveTempYear + JuneT + DJF + JuncP + €

13 Annual tree cover loss change — AveTempYear + S_June + €

14 Annual tree cover loss change = AveTempYear — AveTempYear(t-1) -+ DJF
+ JuneP ~ €

15 Amnual tree cover loss change = S June + S May(t 1) — €

16 Annual tree cover loss change = AveTempYear + AveTempYear(t 1) + €

17 Annual tree cover loss change = AvelempYear | S_Apr | €

Notes: Annual tree cover loss change is the yearly change in the area of damage
sensu (Marini et al., 2013); For the explanation of variables used, we refer to
Table 1. € is random error.
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Tree cover loss from 2002 to 2014
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Fig. 3. Annual tree cover loss (km?) of Picea obovata caused by L typographus.

3.2. Annual tree loss change

We tested the data on tree mortality throughout our study period for
autocorrelation; the ACF function did not reveal trends between tree
mortality caused by I. typographus in a given year and the previous year.
The CCF also did not show any patterns. Linear regression was used to
further investigate the relationships between tree mortality and mete-
orological variables, including average annual air temperature in a
given and the previous year; December, January, and February average
air temperatures in a given year; June, July, and August average air
temperatures in a given year; April, May, and June average air tem-
peratures in a given year; June adjusted precipitation in a given year;
April, May, and June total duration of solar radiation in a given year.
The a priori set of competing models that differ by a combination of
predictor variables is given in Table 2.

The most parsimonious model according to AICc was Model 1
(Table 3). Our model revealed that June average air temperature in a
given year (JuneT) and average annual air temperature in the last year
(L_AveTempYear) had an effect on tree loss change from 2001 to 2014
(Table 4 and Fig. 4). Higher previous year temperatures had a positive
effect on tree mortality, i.e. the higher were the temperatures the higher
were tree losses. On the other hand, June temperatures had a negative
effect on tree loss, higher June temperatures resulted in less tree loss.
Based on the results gained from Model 1, the course of the annual tree
mortality and the daily maximum air temperature sums from the pre-
vious year is illustrated in Fig. 5.

The rest of the explanatory variables (Table 1) were not included in
the most parsimonious models, although according to AAIC, Model 2 and
Model 3 can also have strong explanatory power, because of their AAIC
< 2. These two models contain variables related to average monthly or
yearly temperatures and June precipitation. The rest of the models
tested, in the range of AAIC 2-7, may have biological meaning, although
they are not considered the most parsimonial in our study period and
area. These models represent different combinations of various tem-
peratures and underscore the effect of temperature on tree loss change,
although they have a much smaller probability of being the best model

Table 3

Akaike’s information criterion (AICc) values for a small sample dataset, AAIC
values and Akaike weights (AIC weight) for the competing models are listed in
Table 1. The model with the lowest AAIC is the most parsimonious, given the
data. Models with AAIC < 2 may be considered as good as the best, while models
in the AAIC range of 2-7 are also plausible. The AIC weight is a value between
0 and 1, with the sum of all models in the candidate set being 1. This weight can
be considered the probability that a given model is the best-approximating
model.

Model AlCe AAIC AIC weight

1 33.23052 0.0000000 0.187543982
2 33.54445 0.3139293 0.160300273
3 34.26863 1.0381106 0.111604134
4 36.45356 3.2230384 0.037430811
5 36.72677 3.14962541 0.03265135

6 37.91086 1.7103427 0.017793657
7 38.147268 5.2421605 0.013638997
8 38.55823 5.3277082 0.013067906
9 38.62106 5.3905444 0.01266372

10 38.71484 5.4843209 0.012083646
11 38.74466 5.514145 0.011904791
12 38.85633 5.6258154 0.011258301
13 39.13043 5.8999067 0.009816455
11 39.64515 6.4146355 0.007588968
15 40.1558 6.925283 0.005878913
16 40.17695 6.9464299 0.00581708

17 40.28942 7.0588963 0.005498994

(AIC weight). For example, models 12 and 14 comprises June pre-
cipitations, model 13, 15 and 17 comprises solar radiation.

4. Discussion

In recent decades, forests of the Arkhangelsk region have been sub-
jected to large-scale bark beetle outbreaks. Our study examined bark
beetle infestations in an area where no sanitary or salvage logging was
applied from 2001 to 2014. A total of 160 km? of forests was lost during
the study period, mainly due to the L. typographus outbreak. This is one of
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Table 4

Lincar model equation estimating the alteration in Picea obovata annual tree loss
change (see Eq. 1) by L typographus as a function of the temperature in June
(June') in the given year and the previous-year average temperature by year
(L. AveTempYear) from 2001 to 2014 in the Dvinsko-Pinegskiy reserve,
Arkhangelsk region, Russian Federation.

Parameter Estimate pvalue Model values

Intercept 3.2972 0.0154 *

JuneT -0.2911 0.0093 ** Adjusted R-squared: 0.4856
L_AveTempYear 0.56911 0.0167 *

the first studies on the effects of temperature on host tree mortality and
their natural bark beetles in the European region of Russia. The natural
process of the active phase of the tree mortality finished in 2014, as well
as above mentioned change in the algorithm of the Global Forest Watch
data (Hansen et al., 2013).

Our results show that the dynamic of bark beetle-induced tree
mortality was mainly associated with temperature. We found that tree-
loss changes slightly decreased with increasing temperature in June

TLC | others

T I I T T

-10 -05 00 05 1.0

L_AveTempYear | others
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while tree-loss increased after years with higher temperatures (Table 4).
Similarly, a decrease in aggressive bark beetle population density with
increased temperature was found by Wermelinger et al. (2021). Tem-
peratures were used in modelling future bark beetle populations by
Berec et al. (2013).

The contradicting results suggest that tree mortality by bark beetles
depends not only on bark beetle population dynamics but also on the
physiological status of host trees. These relationships are often non-
linear, and both very high and low rates of temperature can slow
down insect development (Wermelinger and Seifert, 1998). A study
conducted in the Bohemian Forest showed that if the climate is projected
to continue to change in the future, the number of extreme events will
also change, and we, therefore, may expect only a small change in the
development time of beetles (Berec et al., 2013).

4.1. Limitations of the study

We assume that almost all tree mortality in the period of bark beetle
outbreak was related to bark beetle attacks. Some tree mortality may be

13

1.0

TLC | others

JuneT | others

Fig. 4. The result of fitting the most parsimonious model (Tab.4) for the relation between the annual tree cover loss change and average temperatures in the previous

year (L_AveTempYear) and average June temperatures (JuneT) in a 14-year study in the Dvinsko-Pinegskiy reserve, Arkh

1k

region, Russian Federation. The

graphs show the association between the predictor variable and the response variable while holding the value of all other predictor variables constant.
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Fig. 5. Time series of yearly tree cover loss change in P. abies caused by I typographiis and average temperatures in the previous year and their linear trends.
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caused by wind damage or by fires; however, there were no records of
forest fire activity in the area. We have excluded values of tree mortality
after 2014 from the dataset due to a change in the algorithm of Global
Forest Watch (Ceccherini et al., 2020). One limitation is that we used
only one meteorological station in the study area, despite the relatively
large size of the study area. No stand volume data were used in the study
and only publicly available data with a spatial resolution of approxi-
mately 30 m per pixel were used. For the study area of 350,000 ha, we
consider such spatial resolution satisfactory.

During the modelling process, we also tested combinations of
generalized additive models (GAM) models in order to investigate the
relationships between tree mortality and meteorological variables more
correctly, based on expectations of non-linear relationships between tree
mortality and temperature, discovered before (Mezei et al., 2017). The
best GAM model of the set remained the same as it was during LM
modelling, with a negative coefficient for June's temperature in a given
year with linear graphical representation.

4.2. Factors influencing bark beetle population

Our results show that the bark beetle-caused tree mortality was
mainly related to the average June temperature and the previous year’s
temperatures. In our best model (Table 4), the annual changes of tree
cover loss were dependent on the average temperature in June and the
average temperature in the previous year.

Temperature is generally related to insect development; usually, the
higher the temperature the higher the developmental rate of bark beetle
offspring under the bark, but only to a limited extend. There is an upper-
temperature developmental threshold (Baier et al., 2007; Wermelinger
and Seifert, 1998). Most studies have shown positive relationships be-
tween summer temperatures and bark beetle populations with some
exceptions, e.g., Faccoli (2009), Marini et al. (2013) and Wermelinger
et al. (2021). For example, Marini et al. (2013)) found temperature-
related variables did not show any effect on I. typographus population
dynamics; whereas summer rainfall revealed associations with the
population dynamics. Similarly, Faccoli (2009) found that spruce mor-
tality caused by bark beetles was negatively associated with precipita-
tion from March to July; and temperature played no role in that
association. In another study from Central Europe, tree mortality caused
by bark beetles had a bell-shaped curve with lower and upper thresholds
of suitable temperature sums (Mezei et al., 2017). The inhibitory effects
of extreme high and low temperatures on bark beetles are relatively
well-known and have been used in phenological modelling of bark
beetles (Baier et al., 2007; Wermelinger and Seifert, 1998).

As with our findings, Nevolin et al. (2005) found high temperatures
during dry summers an important factor influencing the bark beetle
population dynamic in their study area; with very high summer tem-
peratures likely limiting bark beetle population growth. June may also
be the main month of I. typographus flight activity in northern Europe
(Ohrn et al., 2014). Flight activity of L typographus depends on air
temperature as beetles do not fly at air temperatures outside the range of
16.5-30 °C (Lobinger, 1994). Temperatures above 30 °C can also limit
bark beetle swarming.

Previous year temperatures, especially temperature for the month of
May, were important variables in several of our other models and studies
conducted by other researchers (Mezei et al., 2017).

The average temperatures in December, January, February, April,
May, and July have also shown some degree of importance. In the case of
winter months in eastern European Russia, the effect of warmer winters
on I. typographus mortality remains controversial. Lower winter tem-
peratures may increase mortality of larvae and pupae overwintering
above the snow layer (Romashkin et al., 2020). However, higher tem-
peratures during hibernation and thinner snow cover may increase
beetle mortality due to increased metabolic rates (Annila, 1969;
Romashkin et al., 2020).

The duration of solar radiation in June was selected as one of the
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biologically viable variable while the duration of solar radiation in April
was an important factor in one model (model no. 17.). Interestingly, the
duration of solar radiation in May of the previous year was also note-
worthy. I. typographus flight behaviour is strongly influenced by light,
with a strong preference for sunny conditions (Lobinger and Skatulla,
1996) since this means a longer day for flight and reproductive activity.
However, the daily rhythm of I. typographus flight in high longitudes has
not been studied so far. Longer solar radiation duration should also
cause higher increases in temperature sum per day at high latitudes
compared to low latitudes, due to the increasing day length towards the
north.

4.3. Factors influencing spruce defence abilities and drought stress

A more recent study by Wermelinger et al. 2021) found that
increased temperatures led to a decrease in aggressive bark beetles and
an improvement in the resin flow of trees. Increased resin flow leads to
an improved defence of trees against bark beetle attacks.

After temperature, the June precipitation was an important variable
in our study in models 2, 4, 12, and 14 (Table 2). The effect of summer
temperatures and precipitation in our study can also be related to the
reactions of spruce to drought stress (Aakala and Kuuluvainen, 2011).
Certain levels of drought stress decrease spruce defence abilities
(Netherer et al., 2015); however, severely drought-stressed trees may
survive due to reduced host acceptance (Kolb et al., 2019).

The importance of drought as a factor influencing tree susceptibility
is not only in the initialization of the outbreak. Bark beetle population
dynamics can be deduced from the diffuse pattern of bark beetle in-
festations (the size distribution of disturbance patches was strongly
weighted toward small ones) on relatively large portions of the study
area (Kuuluvainen et al., 2014; Nevolin et al., 2005). This pattern is
different from the landscape pattern of wind and bark beetle driven
disturbances in the middle European mountains (Havasova et al., 2017;
Potterf et al., 2019). One possible explanation for this is that stands on
mineral soils appeared to be more influenced by drought than paludified
sites (Kuuluvainen et al., 2014). Nevolin et al. (2005) noted that fluc-
tuation of groundwater level is another key factor that influences bark
beetle populations.

Recently, extensive I. typographus outbreaks have occurred in the
southern part of European boreal forests (Jonsson et al., 2012; Marini
et al., 2013; Maslov, 2010; Romashkin et al., 2020) when windstorms
coincided with periods of temperature extremes causing drought stress
on spruce forests. Drought is an important factor predisposing conifers
to bark beetle attack in a broad range of geographical locations (Marini
et al.,, 2017; Obladen et al., 2021).

4.4. Longitudinal shift of bark beetle outbreak distribution

Based on Maslov (2010) findings; there is a possibility that bark
beetle outbreaks have been shifting towards the northern limit of spruce
distribution across the landscape. Blomqvist et al. (2018) stated that
I typographus L. abundance and outbreak frequency in Finland have
significantly increased during the last decade. However; Romashkin
et al. (2020) analysed the latitudinal and longitudinal distribution of
L typographus outbreaks in the European part of Russia in the period
1960-2019 and found no statistically significant changes in the average
distribution of the outbreaks.

4.5. Management implications

In the warming climate, drought and drought-induced bark beetle
outbreaks may become more severe even at the northern limits of a
spruce occurrence (Jonsson et al., 2012; Kuuluvainen et al., 2014;
Venalainen et al., 2020). It is likely that infestations will spread towards
northern forests in Russia where no bark beetle outbreaks have been
reported in significant intensity. Therefore, forest managers and
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policymakers need to provide immediate protection measures against
future anthropogenic disturbances in the northern forests that otherwise
may result in further bark beetle infestations (Zabihi et al., 2021)

5. Si

y and cc

Our results show that tree mortality caused by the bark beetle
outbreak in the Arkhangelsk region was related mainly to temperature
in current and previous years. Other factors like June precipitation and
April and May duration of solar radiation were also important. The bark
beetle outbreak in the study areas was probably influenced by two
groups of factors. The first group of factors relates to the increasing
temperature sums and connected increase of aggressiveness of bark
beetle populations, while the second group of factors relates to drought
and a connected decrease of spruce defence abilities. So far, we do not
fully understand the I typographus flight behaviour and other biological
aspects at high latitudes, as well as their connections with climatic
changes, so further study in this area is needed.
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Extended summary

Introduction

The Eurasian spruce bark beetle (Ips typographus L.), a destructive pest, thrives in
weakened trees under climate-induced stress. Climate change, marked by extreme events like
storms and droughts, creates ideal conditions for these beetles, leading to significant outbreaks
(Raffa et al., 2008; Jonsson et al., 2012; Mezei et al., 2014; Bentz and Jonsson, 2015). Rising
temperatures enhance beetle activity and reproduction, while drought weakens tree defences,
fueling infestations (Huang et al., 2020; Hlasny et al., 2021; Netherer et al., 2021). This has
been evidenced by correlations between increased temperatures, prolonged droughts, and
severe beetle outbreaks across Europe (Nowakowska et al., 2020; Abdollahnejad et al., 2021;
Korolyova et al., 2022). Key studies highlight the role of specific climatic factors like June
temperatures, annual precipitation, and summer drought in influencing these outbreaks (Seidl
etal., 2011; Mezei et al., 2017; Trubin et al., 2022). The Czech Republic, particularly affected
by these outbreaks, witnessed a major one in the 1990s and a catastrophic event following the
2018 drought, leading to widespread forest damage (KniZek and Liska, 2020; Korolyova et al.,
2022; Hlasny et al., 2021). Our study leverages the Global Forest Watch database to analyze
the relationship between meteorological variables and bark beetle outbreaks in the Czech
Republic. Using data from 2000 to 2022, we focus on annual forest loss patterns, particularly
in the Kostelec nad Cernymi Lesy area. Prior research has shown the importance of tree
characteristics and environmental factors like solar radiation and elevation in beetle infestation
patterns (Jakus et al., 2003; Mezei et al., 2014; Potterf et al., 2019; Kadrvemo et al., 2023). This
study aims to identify meteorological variables influencing annual tree cover loss, spot
initiation, and spreading, and to assess how these factors affect bark beetle outbreak patterns.
We hypothesize that temperature and precipitation conditions significantly impact bark beetle
development, flight activity, and host tree stress, thereby shaping the spatial dynamics of
outbreaks.

Materials and methods

Our study focused on the School Forest Enterprise area near Kostelec nad Cernymi
Lesy in the Czech Republic's Central Bohemian region, covering about 5700 ha of forest land.
To assess tree cover loss, we utilized the Global Forest Change dataset with Landsat images
from 2011 to 2022, refining this data with a spruce forest mask based on forest management
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data. Bark beetle spot initialisation and growth were analyzed by distinguishing new
infestations from expansions of existing ones, using a 30-metre rule for identification.
Meteorological data was sourced from a weather station in Ondiejov, near the study area.
Statistical analyses were conducted using Generalised Additive Models (GAMs) and Ridge
regression, focusing on the initialisation and spread of bark beetle spots and tree mortality.
Models were selected based on the Akaike information criterion and Root Mean Square Error,
respectively. Our study employed various variables, including tree cover loss changes and
weather parameters, processed through Python with pandas, matplotlib, and scikit-learn

libraries.

Results

In our 10-year study, total tree cover loss reached 845.4 ha, largely due to a bark beetle
outbreak initiated by a decrease in precipitation and a rise in average temperature in 2018. The
peak of this loss occurred in 2020. Our analysis showed that initial spot areas were most
extensive during the early and epidemic phases, with a significant reduction in tree loss rates
and an increase in spot spread area post-peak. By 2022, the outbreak entered the post-epidemic
phase, yet tree cover loss hadn't returned to pre-outbreak levels. For bark beetle spot
initialisation, the GAM regression pinpointed the previous year's April solar radiation sum and
August wind speed as influential factors in tree loss. Ridge regression identified the current
year's May air temperature, the previous year's average precipitation, and the current year's
June wind speed as significant variables. In the case of bark beetle spot spreading, GAM
regression indicated the current year's average air temperature and the previous year's June
wind speed as crucial factors. Ridge regression, however, highlighted the previous year's
average yearly precipitation and solar radiation sum in April and June as key variables. In the
case of Annual tree loss change, the GAM regression revealed that the June and September
solar radiation sum in the current year significantly influenced tree loss. Ridge regression
showed that the previous year's average yearly precipitation, the current year's May
precipitation, and May wind speed were significant factors. These findings underscore the
complex interplay of meteorological conditions in influencing bark beetle activity and

subsequent tree cover loss.

Discussion
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In the current investigation of forest dynamics within a 5700 ha area, a substantial 15%
forest loss was attributed primarily to an I. typographus outbreak, catalyzed by the severe
drought conditions of 2018. It is important to note that this study operates under the assumption
that the majority of tree mortality during the outbreak period was a direct result of bark beetle
activity, albeit acknowledging some contribution from wind damage. Also, the limitation of
this research stems from its dependence on a single meteorological station to represent the
entire study area, coupled with the utilization of version 1.10 of Global Forest Watch data,
whose accuracy was criticized (Ceccherini et al., 2020). Despite these constraints, the study's
findings offer meaningful insights into the dynamics of bark beetle outbreaks, particularly in
relation to meteorological conditions. The results of regression analyses identified several key
factors influencing the initiation and spread of bark beetle spots. The initiation phase was
predominantly affected by the previous year's April solar radiation duration and June wind
speed, while the spreading phase was most influenced by the current year's average air
temperature, along with the previous year's average yearly precipitation. Additionally, the April
duration of solar radiation in the previous year emerged as a significant factor. These findings
align with existing literature on the subject and contribute to a deeper understanding of bark
beetle behaviour in response to climatic variables. In terms of practical implications, the
insights derived from this study are particularly relevant for the development of predictive
models for spruce bark beetle outbreaks. Understanding the climatic triggers and patterns of
outbreak development is crucial for forest management, especially in the context of climate
change and its impact on forestry economics. This research, conducted in the relatively flat
terrains of Czech forests, provides valuable data that could enhance forest management

strategies in Central Europe and other regions with similar ecological characteristics.

Conclusions

The 2018 bark beetle outbreak, triggered by severe drought, led to notable tree cover
loss through the initialization and spread of beetle spots, influenced by distinct meteorological
factors. Initially, spot initialisation was the key process, closely linked to April's solar radiation
from the previous year. As the infestation advanced, spot spreading became more significant,
influenced by the current year's average air temperature. Overall, the change in annual tree loss
was primarily driven by solar radiation in June and September, as well as the previous year's

average precipitation (using ridge regression) emerging as a significant factor.
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Extreme events, such as extreme droughts and intense temperatures, have become more frequent and severe,
contributing to increased mortality rates in Norway spruce (Picea abies) due to bark beetle attacks. In particular,
the most devastating outbreak of the spruce bark beetle in Central Europe began after the extreme drought year
of 2018. This drought event also corresponds to the peak of the outbreak of the Eurasian spruce bark beetle (Ips
typographus 1.) in the study area - the School Forest Enterprise in the area surrounding the town of Kostelee nad
Cernymi Lesy (Czech Republic). The study covers the period from 2012 to 2022, when there was a significant tree
cover loss of 845.4 ha (15% of the spruce dominated area) that was caused by bark beetle. The primary objectives
of the study were to identify the key meteorological variables affecting annual tree cover loss, bark beetle
damage spot initiation, and spreading. We used the Global Forest Change dataset and meteorological data from
the nearest weather station. The predictor variables were modelled in two ways: Generalised Additive Models
(GAMs) regression and ridge regression. The study found that different climatic variables influenced the initi-
alisation and spreading of bark beetle infestations. The most important climatic factor for initialisation is the
duration of solar radiation in April of the previous year. The average annual air temperature in the current year
plays an important role in the spreading of bark beetle spots. The higher area of spot initialisation occurred in the
initial beetle outbreak phase, while the area of spreading of bark beetle spots started to increase at the peak, and
was higher in later phases. Regarding annual tree cover loss, the most important factors are the duration of solar
radiation in June and September of the current year, as well as the average annual precipitation of the previous
year.

1. Introduction

The Eurasian spruce bark beetle (Ips typographus L.) is a destructive
insect that attacks weakened, stressed trees in endemic-level conditions.
Climate change is leading to an increase in extreme events. Storm winds
lead to windfall and windthrow, while low precipitation induces severe
drought. These conditions result in fallen and weakened trees, thereby
providing perfect breeding conditions for bark beetles (Raffa et al.,
2008; Jonsson et al., 2012; Mezei et al., 2014; Bentz et al., 2015).

Climate change significantly impacts the reproduction rate of the
Eurasian spruce bark beetle and the resistance of spruce forests to bark
beetle outbreaks in Europe. Rising temperatures stimulate the beetle’s
activity and oviposition rate, thus accelerating the development from
larva to adult, and facilitating multiple generations within a year
(Wermelinger, 2004; Jonsson et al., 2012; Bentz et al., 2015). Both

* Corresponding author.
E-mail address: pirtskhalava-karpova@fld.czu.cz (N. Pirtskhalava-Karpova).

https://doi.org/10.1016/j.foreco.2023.121666

reduced precipitation and intensified droughts, often exacerbated by
gale winds, induce water stress in trees, weakening their defences
against infestations (Huang et al., 2020; Hlasny et al., 2021; Netherer
et al., 2021). This combination of conditions creates an ideal environ-
ment for beetle outbreaks. Numerous studies indicate the influence of
increasing temperature, its frequency, and prolonged periods of drought
on the devastating consequences of Eurasian spruce bark beetle out-
breaks (Nowakowska et al., 2020; Abdollahnejad et al., 2021; Korolyova
et al., 2022).

These studies identified the mean June temperature of the current
year, the sum of daily maximum temperatures of the previous year,
temperatures in May-June for both the previous and current years, and
the mean annual temperature of the previous year (Seidl et al., 2011;
Mezei et al., 2017; Trubin et al., 2022). Precipitation in March-July of
the previous year and the summer precipitation sum of the current and
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previous year were also found to be important climatic factors influ-
encing outbreak development (Faccoli, 2009; Seidl et al., 2011; Marini
et al., 2012, 2017). This growing vulnerability of spruce forests to bark
beetle infestations underscores the escalating problem confronted by
Europe, particularly the Czech Republic.

The Czech Republic has experienced multiple outbreaks of the spruce
bark beetle over the years (Knizek, 2021). Notably, there was a major
outbreak during the 1990 s when extensive damage occurred across vast
forested areas in the Bohemia and Moravia regions (Knizek and Liska,
2020; Korolyova et al., 2022). The most recent outbreak in the Czech
Republic started after the extreme drought year of 2018. The outbreak
was predominantly driven by climatic factors, and stands as the most
catastrophic spruce bark beetle outbreak in Central Europe, eclipsing
records observed over the previous two centuries (Hlasny et al., 2021).
More frequent and severe extreme events, such as drastic droughts and
intense heat, create favourable conditions for the spread of the bark
beetle. A significant shift in climatic conditions is observed in the Czech
Republic, leading to an escalating trend in mortality rates for most forest
tree species, including spruce (Hlasny et al., 2022). To predict the effect
of natural factors on bark beetle outbreaks in the Czech Republic, it's
crucial to understand the specific climatic characteristics that influence
trends. For this purpose, the Global Forest Watch database was used to
analyse the relationship between meteorological variables and bark
beetle outbreaks.

The Global Forest Watch database, which provides comprehensive
data on annual tree cover percentage, gain, and loss from 2000 to 2022
at a spatial resolution of 30 m, serves as the basis for our study (Hansen
et al., 2013). Leveraging this database, we integrated high-resolution
global maps of forest cover change to acquire annual forest loss maps
from 2011 to 2022 for the study area. We used spatial analysis to un-
derstand the complex relationships within the ecosystem, focusing in
particular on patterns of bark beetle infestations. Previous studies have
examined the spatial distribution of bark beetle spot initialisation and
spreading, initiation, and severity of infestations (Jakus et al., 2003;
Mezei et al., 2014; Potterf et al., 2019; Karvemo et al., 2023).

Potterf et al. (2019) recently discovered that the number of initiali-
sation spots is highest during the initiation phase of an outbreak, fol-
lowed by a gradual decrease as the outbreak progresses to the decline
phase. It was also found that during the initiation phase, host charac-
teristics, such as diameter at breast height of trees, have the most pro-
nounced effects and significantly influence the initiation of new
initialisation sites. This is consistent with the idea that specific host tree
characteristics play an important role in the early stages of an outbreak,
as also suggested by Mezei et al. (2014). As the outbreak developed,
environmental factors such as solar radiation and elevation became
increasingly influential. Mezei et al. (2014) also reported that these
factors have a constant influence throughout the outbreak, affecting the
growth of beetle populations, and thus their ability to colonise new
areas.

This study focuses on patterns of spot initialisation and spreading in
relation to meteorological factors. Our study was based on the
assumption that seasonal temperature and precipitation conditions,
which influence bark beetle development and flight activity and host
tree stress levels, have a significant role in determining tree cover loss
and the spatial pattern of outbreaks. In this study, we analysed the
I typographus outbreak in the area surrounding the town of Kostelec nad
Cernymi Lesy.

The objectives of this study included the following: (1) identifying
combinations of meteorological predictor variables, such as tempera-
ture, precipitation, solar radiation, and wind, that best explain the
annual tree-cover loss change, (2) initialisation of spot area, (3)
spreading of spot area, and (4) examining the possible effects of the
selected variables, as determined by the most parsimonious models, on
the annual changes in tree loss and bark beetle spread patterns.

Forest Ecology and Management 554 (2024) 121666

2. Material and methods
2.1. Study area

The study area is located within the School Forest Enterprise (SLP)
area surrounding the town of Kostelec nad Cernymi Lesy, in the Central
Bohemian region of the Czech Republic (Fig. 1). The SLP oversees
approximately 5700 ha of forest land and it is managed by the Czech
University of Life Sciences Prague (CZU). The forest area is located on
the border of the lowland of Polabi in the north, which is a part of the
Ceska kiidova tabule (a geomorphological subprovince). The majority of
the forests are located within the natural forest region Stredoceska
pahorkatina (Central Bohemia Uplands), while a small portion in the
north belongs to the natural forest region Polabi (Central Bohemia
Lowlands). The elevation of the study area varies between 300 and 527
m (Remes, 2019).

The region has an average annual temperature ranging from 7.0 to
7.5 °C and experiences mild winters. The average annual precipitation is
650 mm, and the vegetation season lasts approximately 150 to 160 days
(Podrdzsky et al., 2009; Remes, 2019; D'Andrea et al.,, 2023; Trubin
et al., 2023 a,b). The most prominent tree species that are present in the
area are Norway spruce (Picea abies) (49.7%), Scots pine (Pinus sylvestris)
(18.1%), European beech (Fagus sylvatica) (11.6%), and oak species
(genera Quercus) (8.8%). Tree cover loss in the study area was caused
mostly by wind damage and regular silvicultural activities until the
drought of 2018. The drought conditions initiated a subsequent bark
beetle outbreak, which became the main cause of mortality in Norway
spruce-dominated forest areas.

2.2. Annual Norway spruce tree cover loss, area of initialisation, and
growing spots acquisition

We used the gross forest cover loss (lossyear) layers derived from the
Global Forest Change dataset Version 1.10 (Hansen et al., 2013). These
maps were produced using a time-series analysis of Landsat satellite
images, allowing us to generate annual maps from 2011 to 2022, withan
approximate spatial resolution of 30 by 30 m. Each year’s layers have
been converted into vector format from the original raster layers, which
‘were composed of 10 x 10 degree tiles. Additionally, these vector layers
were clipped to fit the spruce forest mask boundaries (based on forest
management data) of the area under study. Using forest inventory data
from 2011, we constructed a spruce forest mask based on the criteria of
units containing over 10% of Norway spruce aged more than 25 years.
Combining this mask with the Global Forest Change dataset, we delin-
eate alterations in spruce forest cover from 2011 to 2022 with increased
precision.

oOur study includes the calculation of the area of the bark beetle spot
initialisation and spot growth. Spots initialisation was defined as a new
infestation in undisturbed forests, and spot growth as infestations
adjacent to spots from the previous year (Coulsen et al., 1985; Havasova
et al,, 2017). We used the rule for identifying initialisation spots as an
infestation if they were more than 30 m (one pixel) away from the
previous year's infestation, while spots within this 30-metre distance
were recognised as growth spots. The distance from the previous to the
current year's spots infestation was measured by the dispersal distances
as the nearest edge-to-edge distance, using the ‘generate near table’
distances tool in ArcGIS v. 10.6 (Esri, 2017). We created a 500-metre
buffer around the perimeter of the study area, and filled this buffer
with data from the CORINE land cover dataset (EEA, Eurcpean Envi-
ronment Agency), which provided coniferous forest boundary data from
2012. This dataset served as an additional forest mask, and was used to
minimise potential inaccuracies in the identification of initialisation and
growing spots along the study area. This approach improved the accu-
racy of initiation and growth spot determination along the boundaries of
the study area.
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Fig. 1. Study area: School Forest Enterprise surrounding Kostelec nad Cernymi Lesy.

. The map of the study area shows the main layers of the spruce mask in green,

the forest cover loss from 2011 to 2022 in red, the location of the weather station as a blue triangle and topographical data to understand the location of the

study area.
2.3. Meteorological variables

The weather station is located in the village of Ondrejov (id
P30ONDRO1, CHMU) at an elevation of 491 m above sea level, approxi-
mately 1 km from the nearest edge and 7 km from the centre of our
study area.

2.4. Statistical analyses and model selection

Before the analysis, the data were checked for outliers and collin-
earity. During data exploration, we plotted the response variable with
each covariate to check the relationship between them. Based on the
data exploration, the relationship between tree loss and the explanatory
variables was analysed using Generalised Additive Models (GAMs) and
Ridge regression. A set of a priori models (Dochtermann and Jenkins,
2011; Rosen, 2016) were selected prior to analysis (Tables 2, 4, 5, 7, 8,
10) in order to test which model would best explain the initialisation and
spreading of spots, and infestation of trees by I typographus. These
models were constructed using previously known variables that were
identified as important for bark beetle population dynamics, mainly
climatic variables and this is consistent with previous work from Trubin
et al. (2022) and Mezei et al., (2014, 2017).

For the GAMs, the Information-Theoretic (I-T) approach was used to
assess competing models. Models were ranked according to the Akaike
information criterion (AIC) for a small sample dataset. The delta AIC
(AAIC) represents the difference in the AIC between a given model and
the best-performing model in a set of candidate models; the most
parsimonious model was selected based on the lowest AAIC value.
Models with AAIC< 2 can be considered as good as the best, while
models in the AAIC range of 2-7 are also plausible. We also calculated
Akaike weights to arrange candidate models in order of parsimony,

where the Akaike weight is a number from 0 to 1, thus providing a
measure of the relative likelihood of each model, given the data and the
candidate model set. This weight can be considered the probability that
a given model is the best-approximating model (Burnham et al., 2011).

For ridge regression, the error-based evaluation method was applied
in order to scrutinise competing models. Models were compared using
the Root Mean Square Error (RMSE) criteria; the best fitting model was
chosen based on the smallest RMSE value. The alpha parameter serves as
a regularisation term that penalises large coefficients in the model,
thereby mitigating the risk of overfitting the training data. A higher
value of alpha increases the strength of the regularisation, pushing the
model towards simplicity, while a lower value makes the model more
flexible, but susceptible to capturing noise.

We used Annual bark beetle spots initialisation (ha), Annual bark
beetle spots spreading (ha), and Annual tree loss change (TLC, the nat-
ural logarithm of the ratio between tree mortality in the current year and
tree mortality in the previous year) as the response variables.

TCL

TLC = In(o
G-

) @

where In is the natural logarithm, TCL is the Tree cover loss in the cur-
rent year, TCL(t —1) is the Tree cover loss in a previous year.

As some of the variables were highly correlated, we used the
threshold of r = 0.7 to select variables. We tested the correlation be-
tween changes in annual tree cover losses in a particular year, and
changes in annual tree cover losses in previous years, by calculating the
autocorrelation function (ACF). We also assessed the cross-correlation
functions (CCFs) of the predictor time series and variables in the best
model. Because we used the previous year’s tree mortality as an
explanatory variable in our analysis, the sample size changed from 11
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years (2011-2022) to 10 years (2012-2022). All data manipulations,
plotting, calculations, and statistical analysis were performed in VSCode
1.73.1 in Jupiter Notebook using Python programming language (ver.
3.11.1; Rossum and Drake, 2010) with pandas 1.5.0, Matplotlib 3.6.0,
statsmodels 0.15.0, pygam 0.5.5, scikit-learn 1.3.0.

3. Results
3.1. Tree cover loss due to disturbance events

Total tree cover loss, considering all 10 years from 2012 to 2022,
amounted to 845.4 ha (Fig. 2). The trigger for the bark beetle outbreak
was a dramatic reduction in annual precipitation of around 250 mm,
and an increase in average annual temperature of 2 °C in 2018 (Fig. 3).
The amount of tree cover loss peaked in 2020, marking the culmination
of the bark beetle outbreak. The spot initialisation area was at the
maximum from the incipient to the epidemic phase of the bark beetle
outbreak. After the peak in tree cover loss, there was a significant
decrease in tree loss rates and an increase in the area of spot spread. The
bark beetle outbreak is in the post-epidemic phase in 2022, but annual
tree cover loss has not yet reached pre-outbreak levels (Fig. 2). We also
hypothesise that the decrease in tree cover loss observed in 2018 was
influenced by the relatively cold, wet conditions experienced in 2017.

3.2. Bark beetle spot initialisation

We tested the data on tree mortality in bark beetle spot initialisation
throughout our study period for autocorrelation; the ACF function did
not reveal trends between tree mortality in bark beetle spot initialisation
caused by I. typographus.

3.2.1. Generalised additive models regression

GAM regression was used to further investigate the relationships
between tree mortality in bark beetle spot initialisation and meteoro-
logical variables (Table 1). The a priori set of competing models that
differ by a combination of predictor variables is given in Table 2.

As per the Akaike’s information criterion, Model 1 emerged as the
most significant (see Table 2). Insights extracted from our model
(Table 3), suggest that the April sum duration of solar radiation in the
previous year, along with the August wind speed in the previous year,
played a role in shaping the changes in tree loss from 2012 to 2022
(Fig. 3). An increase in any of the aforementioned variables corresponds
to an escalation in tree loss.
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3.2.2. Ridge regression

Ridge regression was used to further investigate the relationships
between tree mortality in bark beetle spots initialisation and meteoro-
logical variables (Table 1). The a priori set of competing models that
differ by a combination of predictor variables is given in Table 4.

Model 1 emerged as the most significant model (Table 4). Insights
extracted from our model (Table 4) suggest that the May average
monthly air temperature in the current year, Average yearly precipita-
tion in the previous year, and June wind speed in the current year,
played a role in shaping the changes in tree loss from 2012 to 2022
(Fig. S1).

3.3. Bark beetle spot spreading

We tested the data on tree mortality in conditions of bark beetle spots
spreading throughout our study period for autocorrelation; the ACF
function did not reveal the trends between tree mortality caused by
I typographus.

3.3.1. Generalised additive models regression

GAM regression was used to further investigate the relationships
between tree mortality in conditions of bark beetle spot spreading and
meteorological variables (Table 1). The a priori set of competing models
that differ by a combination of predictor variables is given in Table 5.

As per the Akaike’s information criterion, Model 1 emerged as the
most significant model (Table 5). Insights extracted from our model
(Table 6), suggest that the Average yearly air temperature in the current
year, along with the June wind speed in the previous year, played a role
in shaping the changes in tree loss from 2012 to 2022 (Fig. 4). An in-
crease in any of the aforementioned variables corresponded to an
escalation in tree loss.

In the analysis of the bark beetle spots spreading area, we identified
one more model that exhibited a AAIC of less than 7, indicating a sub-
stantial level of support relative to the best model. This model contained
one variable - the April wind speed in the current year (AprW).

The remaining explanatory variables, as detailed in Table 1, did not
find a place in the most parsimonious models; however, they might
possess biological significance, despite not being deemed optimal within
the temporal and spatial confines of our study. The models in question
are constituted of an assortment of different combinations involving
temperature, wind speed, and precipitation. This highlights the role that
temperature, wind, and precipitation play in influencing alterations in
tree loss, even though these models carry a considerably diminished
likelihood of being the best fit, as indicated by their AIC weights.

Bark Beetle Dynamics & Tree Cover Loss
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Fig. 2. Annual bark beetle spot initialisation, spreading, and tree cover loss (ha) of Picea abies caused by Ips typographus.

148



N. Pirtskhalava-Karpova et al.

Forest Ecology and Management 554 (2024) 121666

225
10.0
200
#
2 95 175
g
£ 150 @
o
3 90 =
% .
3 125 8
> 8
s 85 100 @
o @
>
& 75 .
g 8.0
Z 50
7.5 -
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
225
800 200
g 750 175
= |
a
£ 700 150
o o
B T
E_ 650 1259
] S
S 600 100.9
2 =
©
£ 550 75
50
500
25

2012 2013 2014 2015 2016

2017 2018 2019 2020 2021 2022
Year

Fig. 3. Tree cover loss of Picea abies caused by Ips typographus from 2012 to 2022, with average yearly air temperature (red) and yearly precipitation sum (blue) in

the current year.

3.3.2. Ridge regression

Ridge regression was used to further investigate the relationships
between the spot spreading and meteorological variables (Table 1). The
a priori set of competing models that differ by a combination of pre-
dictor variables is given in Table 7.

Model 1 emerged as the most significant model (Table 7). Insights
extracted from our model, suggest that the Average yearly precipitation
in the previous year, the sum duration of solar radiation in the previous
year in April and June, played a role in shaping the changes in tree loss
from 2012 to 2022 (Fig. S2).

3.4. Annual tree loss change

Throughout our study, we tested the data on tree mortality period for
autocorrelation; the ACF function did not reveal trends between tree
mortality caused by I typographus in the current year and the previous
year.

3.4.1. Generalised additive models regression

GAM regression was used to further investigate the relationships
between tree mortality and meteorological variables (Table 1). The a
priori set of competing models that differ by a combination of predictor
variables is given in Table 8.

Based on Akaike’s information criterion, Model 1 emerged as the
most parsimonious model (Table 8). The insights gleaned from our
model (Table 9) indicate that the June sum duration of solar radiation in
the current year, and September sum duration of solar radiation in the

current year, exerted an influence on the changes in tree loss from 2012
to 2022 (Fig. 5). Both higher June and September sum duration of solar
radiation in a current year resulted in more tree loss.

In the analysis of the annual tree loss change, we identified a total of
102 models (Table S1) that exhibited a AAIC of less than 7, indicating a
substantial level of support relative to the best model. Each of these
models incorporated two explanatory variables. When assessing the
prevalence of variables within these models, April wind speed in the
current year (AprW) emerged as the most recurrent, featuring 20
models. This was followed by September sum duration of solar radiation
in the current year (SepS), which was present in 16 models. September
sum duration of solar radiation in the previous year (SepS(t-1)) was
included in each of the fifteen models. There was also June sum duration
of solar radiation in the current year (JunS) included in 13 models;
December, January, and February average air temperature in the cur-
rent year (DJF) in 12 models; and June sum duration of solar radiation in
the previous year (JunS(t-1)); June wind speed in the current year
(JunW) in 9 models; April wind speed in the previous year (AprW(t-1))
in 8 models; April sum duration of solar radiation in the previous year
(AprS(t-1)), December, January, and February average air temperature
in the previous year (DJF(t-1)), June amount of precipitation in the
current year (JunP), and July amount of precipitation in the current year
(JulP) in 7 models. The sorting of these variables, from the most
frequently used to the least, provides insights into their relative
importance in the models, based on the criterion that we applied.

The remaining explanatory variables (detailed in Table 1), did not
find a place in the most parsimonious models; however, they might
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Table 1

Variables used in the study of changes in tree cover loss. Meteorological data
were collected from Ondrejov weather station, adjacent to the study area, for the

2012-2022 period.

Name in model Variable Unit of
measure
TCL Tree cover loss in the current year Hectares
TLC Tree loss change in the current year
AveTempYear Average yearly air temperature in the current  degrees
year Celsius
AveTempYear Average yearly air temperature in the previous degrees
(t-1) year Celsius
AprT April average monthly air temperature in the degrees
current year Celsius
MayT May average monthly air temperature in the degrees
current year Celsius
JunT June average monthly air temperature in the degrees
current year Celsius
JulT July average monthly air temperature in the degrees
current year Celsius
AugT August average monthly air temperature in degrees
the current year Celsius
SepT September average monthly air temperature degrees
in the current year Celsius
AvePrecYear Average yearly precipitation in the current millimetres
year
AvePrecYear(t- Average yearly precipitation in the previous millimetres
1 year
AprP April amount of precipitation in the current millimetres
year
MayP May amount of precipitation in the current millimetres
year
JunP June amount of precipitation in the current millimetres
year
Julp July amount of precipitation in the current millimetres
year
AugP August amount of precipitation in the current  millimetres
year
SepP September amount of precipitation in the millimetres
current year
AprS April sum of duration of solar radiation in the ~ hours
current year
MayS May sum of duration of solar radiation in the ~ hours
current year
JunS June sum of duration of solar radiation in the  hours
current year
Juls July sum of duration of solar radiation in the hours
current year
AugS August sum of duration of solar radiation in hours
the current year
SepS September sum of duration of solar radiation hours
in the current year
AprS(t-1) April sum of duration of solar radiation in the  hours
previous year
MayS(t-1) May sum of duration of solar radiation in the hours
previous year
JunS(t-1) June sum of duration of solar radiation in the hours
previous year
Juls(t-1) July sum of duration of solar radiation in the hours
previous year
AugS(t-1) August sum of duration of solar radiation in hours
the previous year
SepS(t-1) September sum of duration of solar radiation hours
in the previous year
DJF December, January, and February average air ~ degrees
temperature in the current year Celsius
DJF(t-1) December, January, and February average air ~ degrees
temperature in the previous year Celsius
JIA June, July, and August average air degrees
temperature in the current year Celsius
JIA(E-1) June, July, and August average air degrees
temperature in the previous year Celsius
AprW April wind speed in the current year metres per
second
MayW May wind speed in the current year metres per
second
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Table 1 (continued)

Name in model Variable Unit of
measure
JunW June wind speed in the current year metres per
second
Julw July wind speed in the current year metres per
second
AugW August wind speed in the current year metres per
second
SepW September wind speed in the current year metres per
second
AprW(t-1) April wind speed in the previous year metres per
second
MayW(t-1) May wind speed in the previous year metres per
second
JunW(t-1) June wind speed in the previous year metres per
second
Julw(t-1) July wind speed in the previous year metres per
second
AugW(t-1) August wind speed in the previous year metres per
second
SepW(t-1) September wind speed in the previous year metres per
second
AveWindYear Average yearly wind speed in the current year — metres per
second
AveWindYear(t-  Average yearly wind speed in the previous metres per
1) year second
Table 2

Proposed three best GAM regression models used to study annual bark beetle
spots initialisation for a 10-year period.

Model  Combination AIC AAIC AIC
weight
1 INIT = s(AprS(t-1)) + s(AugW(t 74.25664 0 0.950966
1) +€
2 INTT = s(AprS(t-1)) + € 80.19412  5.93748 0.048849
3 INIT = s(MayT) + s(AprS(t-1)) 93.47902 19.22238  6.37E-05
+&

Notes: For the explanation of variables used, refer to Table 1. All models include
an intercept. € is a random error.

possess biological significance, despite not being deemed optimal within
the temporal and spatial confines of our study. The models in question
are constituted of an assortment of different combinations involving
temperature, wind speed, and precipitation. This highlights the role that
temperature, wind, and precipitation play in influencing alterations in
tree loss, even though these models carry a considerably diminished
likelihood of being the best fit, as indicated by their AIC weights.

3.4.2. Ridge regression

Ridge regression was used to further investigate the relationships
between annual tree loss change and meteorological variables (Table 1).
The a priori set of competing models that differ by a combination of
predictor variables is given in Table 10.

Model 1 emerged as the most significant model (Table 10). Insights
extracted from our model, suggest that the Average yearly precipitation
in the previous year, the May amount of precipitation in the current
year, and the May wind speed in the current year, played a role in
shaping the changes in tree loss from 2012 to 2022 (Fig. S3).

4. Discussion

During the study period, we observed a forest loss of nearly 15%
within the 5700 ha study area, mainly due to an I. typographus outbreak.
The bark beetle outbreak was triggered by the drought in 2018. GAM
and ridge regression were used to model the predictor variables. The
selection of the best GAM was based on the Akaike Information Criterion
(AIC) value, AIC weight and AAIC, while the ridge regression models
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Table 3
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GAM model equation estimating the variation in annual bark beetle spots initialisation of I. typographus as a function of April sum of duration of solar radiation in the
current year and August wind speed in the previous year, over the period of 2012 to 2022 within the study area.

Parameter Estimate p-value Model values
Intercept -83.39317961915626 0.560759915547079 Adjusted R-squared: 1.0000088409108
AprS(t-1) 0.3198121836687413 0.08296271101229276
AugW(t 1) 38.5290344215266 0.6927743030810429
4.1. Limitations of the study
Table 4

Proposed 10 best models to study bark beetle spots initialisation for a 10-year
period using ridge regression.

Model  Variables Alpha  RMSE

1 INIT = bO + bl * MayT + b2 * AvePrecYear(t-1) 0.1 21.55238
+ b3 * JunW + €

2 INIT = bO + bl * MayT + b2 * AvePrecYear(t-1) 0.5 2260772
+ b3 * JunW + €

3 INIT = b0 + b1 * MayT + b2 * AugP + b3 * JJA(t 0.1 23.10516
1)+€

4 INIT = b0 + bl * MayT + b2 * MayS + b3 * JJA(t 0.1 23.16889
1)+€

5 INIT = b0 + bl * MayT + b2 * MayS + b3 * JJA(t 0.5 23.32635
n+€

6 INIT = b0 + bl * MayT + b2 * AugP + b3 * JJA(t- 0.5 23.52982
D+E

7 INIT = b0 + bl * MayT + b2 * May$ + b3 * JJA(t- 1 23.61171
D+E

8 INIT = b0 + bl * MayT + b2 * AvePrecYear(t 1) 1 23.84964
+ b3 * JunW + €

9 INIT = b0 + b1 * MayT + b2 * AugP + b3 * JJA(t 1 23.90161
D+€

10 INIT = b0 + bl * MayT + b2 * JulS(t-1) 0.1 23.91198
+ b3 * JJA(LD) + €

Notes: For the explanation of variables used, refer to Table 1. All models include

an intercept. € is a random error.

Table 5
Proposed best GAM regression models used to study annual bark beetle spots
spreading for a 10-year period.

Model  Combination AIC AAIC AIC
weight

1 SPREAD = s(AveTempYear) + s 82.48321 0 0.9102
(JunW(t-1)) + €

2 SPREAD = s(AprW) + € 87.71957  5.236358  0.066386

3 SPREAD = s(AveTempYear) + s 89.86587 7.382666 0.022699
Julw(1) + €

Notes: For the explanation of variables used, refer to Table 1. All models include

an intercept. € is a random error.

were evaluated using the RMSE value. In the results section, we pre-
sented the top three models for GAM, and ten models for ridge regres-
sion in order to model bark beetle spots initialisation (Tables 2, 4) and
spots spreading (Tables 5, 7). Ten GAM and ten ridge regression models
are specified for the annual change in tree loss (Tables 8, 10); never-
theless, 102 GAM models pass the best model selection condition
(Table 81). In the following subsections, the variables of the best models
for bark beetle initialisation, spreading, and annual change in tree loss
were analysed for their biological significance, based on a review of
scientific articles from the body of literature.

Table 6

We make the assumption that the tree mortality in the period of the
bark beetle outbreak was almost fully related to the bark beetle attacks.
Wind damage caused a certain level of tree mortality. The data used in
our analysis, version 1.10 of the Global Forest Watch data, differs from
the original algorithm, and accuracy has been contested in some
research, for example, in the study by Ceccherini et al. (2020). A limi-
tation of our study is the reliance on a single meteorological station with
which to represent the study area; although, it is noteworthy that the
area in question is relatively compact, thus minimising spatial varia-
tions. We used the only publicly available data with a spatial resolution
of approximately 30 m per pixel.

Our study is focused on meteorological factors. The role of previous
tree mortality or other factors was not analysed.

4.2. Drought initialised bark beetle outbreak

The bark beetle outbreak was initialised by extreme drought in 2018
(Fig. 3). Prior to this year, tree cover loss was caused mostly by wind
damage and regular silvicultural operations in the study area. Meteo-
rological conditions since 2019 have remained within historical norms.
Later, the outbreak passed all typical stages (progradation, gradation,
retrogradation). The course of the outbreak and proportion of spot ini-
tialisation and spreading had similar characteristics to those in the case
of bark beetle outbreak initialised by the wind in mountainous condi-
tions (Jakus et al., 2003; Mezei et al., 2017; Potterf et al., 2019).
Interestingly, the course of the bark beetle outbreak in our study area
differed from that at a relatively low elevation, which was affected by
Armillaria sp. which was responsible for diseases, and chronic bark
beetle outbreak (Jakus et al., 2001). Furthermore, Karvemo et al. (2023)
indicate that there are distinct variations in the patterns of spruce bark
beetle outbreaks resulting from windthrow and drought. The spatial
distribution of susceptible trees seems to be the main reason for this
difference. There was a greater increase in storm-induced infestations in
territories with higher volumes of spruce and in non-forest management
forests. Conversely, drought-induced infestations increased in frequency
and size with clear-cuts throughout the landscape.

4.3. Factors influencing bark beetle spots initialisation

Spots initialisation was the dominant process before the beginning of
the bark beetle outbreak, and in the progradation phase (Fig. 2). This is
in agreement with the findings of Jakus et al. (2003). The bark beetle
outbreak started after the drought year of 2018. Almost all of the tree
cover loss before 2018 was caused by wind damage or regular forest
management operations. Forests in the study area are under the influ-
ence of wind-bark beetle disturbance systems (Mezei et al., 2014). The

GAM model equation estimating the variation in annual bark beetle spots spreading of I typographus as a function of Average yearly air temperature in the current year
and June wind speed in the previous year over the period from 2012 to 2022 within the study area.

Parameter Estimate p-value Model values

Intercept -203.8065991221044 0.28109334513119316 Adjusted R-squared: 1.00000575664109
AveTempYear 7.1428577837285664 0.6139552343349576

JunW(t-1) 93.30653631670484 0.10290621263503584
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Actual and Predicted area of bark beetle spot initialization

vs
April sum duration of solar radiation in the previous year
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Actual and Predicted area of bark beetle spot initialization

vs
August speed of wind in the previous year
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Fig. 4. The result of fitting the most parsimonious model (Table 3) for the relation between the bark beetle spots initialisation, April sum duration of solar radiation
in the previous year, and the August wind speed in the previous year over a 10-year span in the study area. The graphs illustrate the association between each
predictor variable and the response variable with Locally Weighted Scatterplot Smoothing (LOWESS, blue line) with 95% confidence intervals (marked grey) and

actnal values (red dots).

Table 7
Proposed 10 best models used to study annual bark beetle spots spreading for a
10-year period using ridge regression.

Table 8

Proposed 10 best GAM regression models used to study annual changes of tree
cover loss for a 10-year period. All plausible models are presented in Supple-
mentary Materials (Table S1).

Model  Variables AIC AAIC AlC
weight

1 TLC = s(JunS) -+ s(SepS) + € 12105 0 0.019177

2 TLC = s(DJE) + s(AprW) + £ 11200282 0.076793  0.047325

3 TLC = s(SepS(t-1)) + s(DJF) + € -11.8986 0206114  0.014355

4 TLC = sCAprS(t 1)) + s(Aprw) 11572 0533046  0.037672
+ &

5 TLC = s(SepS) + s(TulS(r 1) € 113643 0.740738  0.033956

6 TLC = s(JunS(t-1)) + s(SepS(t- -11.1823  0.922723  0.031002
m+e

7 TLC = 5(SepS) + s(DJF) + € -11.1413  0.96376 0.030373

8 TLC = s(JJA(-1)) + s(AprW) + € -10.9138 1.191198 0.027108

9 TLC = s(MayS) -+ s(JunS) + € -10.8578 1.247222 0.026359

10 TLC = s(DJF(t-1)) + s(AprW(t- -10.6673 1.437702 0.023965

Model  Variables Alpha  RMSE

1 SPREAD = b0 + b1 * AvePrecYear(t-1) 100 21.68994
+ b2 * AprS(t-1) + b3 * JunS(t-1) + €

2 SPREAD = b0 + bl * AvePrecYear(t-1) 50 21.72945
+ b2 * AprS(t-1) + b3 * JunS(t-1) + &

3 SPREAD = b0 + b1 * AvePrecYear(t-1) 10 21.76529
+ b2 * AprS(t-1) + b3 * JunS(t-1) + £

4 SPREAD = b0 + bl * AvePrecYear(t-1) 5 21.77004
+ b2 * AprS(t-1) + b3 * JunS(t-1) + £

5 SPREAD = b0 + bl * AvePrecYear(t-1) 1 21.77389
+ b2 * AprS(t-1) + b3 * JunS(t-1) + €

6 SPREAD = b0 + bl * AvePrecYear(t-1) 0.5 21.77437
+ b2 * AprS(t 1) + b3 * JunS(t 1) + £

7 SPREAD = b0 + b1 * AvePrecYear(t-1) 0.1 21.77476
+ b2 * AprS(t 1) + b3 * Juns(t 1) + &

8 SPREAD = b0 + b1 * AvePrecYear(t-1) 0.1 26.59901
+ b2 * AprS(t-1) + b3 * AugW + £

9 SPREAD = b0 + b1 * AvePrecYear(t-1) + b2 * DJF 01 26.99088
(t-1) + b3 * JunW(t-1) + €

10 SPREAD = b0 + bl * AvePrecYear(t-1) 1 27.23683

+ b2 * AprS(t-1) + b3 * JJA(t1) + €

Notes: For the explanation of variables used, refer to lable 1. All models include
an intercept. € is a random error.

areas affected by wind damage and harvesting activities were the initial
spots of the bark beetle outbreak. Part of the bark beetle spots were,
possibly, also initiated by drought (Netherer et al., 2015).

GAM regression analysis (Tables 2, 3, Fig. 3) has shown that the most
important factor influencing spots initialisation was the April duration
of solar radiation in the previous year. The second important factor was
the June wind speed in the previous year. The results of the ridge
regression (Table 4) have shown the current year May temperatures as
the most important factor. The wind speed in the previous year was also
important.

In the case of spots initialisation, meteorological characteristics from
the previous year were important. Mezei et al. (2017) and Trubin et al.
(2022) have shown the importance of average temperature in the pre-
vious year for predicting tree mortality. Faccoli (2009) has shown the
importance of precipitation in the period from March to July of the
previous year. Bakke (1992) has reported good correlations of May-June
temperatures from the previous year with actual beetle catches in
pheromone traps. To the best of our knowledge, above-mentioned works

1 +€

Notes: Annual tree cover loss change is the yearly change in the area of damage
sensu Marini ef al. (2013); For the explanation of variables used, refer to Table 1.
All models include an intercept. € is a random error.

Table 9

GAM model equation estimating the variation in annual tree loss change of Picea
abies by I. typographus as a function of the sum duration of solar radiation in June
and September in the eurrent year over the period from 2012 to 2022 within the
study area.

Parameter  Estimate pvalue Model values
Intercept 1.90448710103119 0.3182143402348817 Adjusted R
Jun$ 0.005618101280442977  0.27095011181516995 squared:
SepS 0.004177419235052129  0.5091506524662619 1.000005

have tended to ignore the variables that are related to the duration of
solar radiation, Trubin et al. (2022) have used the duration of solar ra-
diation; however, it was not an important factor in their analysis. We can
assume a certain correlation among the duration of solar radiation,
temperature, and rainfall. We can also conclude that our results are in
agreement with the previous works. Faccoli (2009) suggests that,
generally, a spring drought increases the bark beetle damage in the
following year.

Logically, high wind speed is related to wind damage. Wind damage
usually predisposes to bark beetle spread in the following years (Marini
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Fig. 5. The result of fitting the most parsimonious model (Table 6) for the relation between the bark beetle spots spreading and Average yearly air temperature in the
current year, along with the June wind speed in the previous year over a 10-year span in the study area. The graphs illustrate the association between each predictor
variable and the response variable with Locally Weighted Scatterplot Smoothing (LOWESS, blue line) with 95% confidence intervals (marked grey) and actual values

(red dots).
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Fig. 6. The result of fitting the most parsimonious model (Table 9) for the relation between the annual tree cover loss change and sum duration of solar radiation in
the current year in June and September over a 10-year span in the study area. The graphs illustrate the association between each predictor variable and the response
variable with Locally Weighted Scatterplot Smoothing (LOWESS, blue line) with 95% confidence intervals (marked grey) and actual values (red dots).

etal., 2017). An important point is that wind damage creates new gaps
and fresh forest edges, which predispose the remaining spruce stands to
bark beetle attacks (Kautz et al., 2013; Maresova et al., 2020).

Researchers have found that the flight distance of the overwintered
generation of spruce bark beetle exceeds the flight distance of subse-
quent generations. Dolezal et al. (2016) examined flight distances of the
spruce bark beetles in the Sumava National Park. They found that the
spring overwintered generation had a longer flight distance than the
summer generation. A model based on dispersal data suggests that 10%
of the overwintered beetles fly more than 55 m in spring, whereas only
4 m was observed for the first filial generation in summer. Similar ob-
servations on the increased flight distances of overwintered beetles were
made by Furuta et al. (1996). Weslien et al. (1990)) found that spring
swarming bark beetles had a recapture rate of around 8% in traps
located 100 m away. Similar results were found by Lindelow et al.
(2012).

The enhanced migration tendency of the overwintered generation
can be attributed to their need to resume direct development post-
overwintering, replenish energy reserves, and locate new breeding
sites. This behaviour is consistent with many other insect species
(Kostal, 2006). Based on these studies, it can be assumed that the first

generation of bark beetles has greater influence on the initialisation of
infested spots. From a biological point of view, the most important
variables for the spring bark beetle population in our study are the
temperatures of the previous summer, the winter temperatures of the
current year, and the temperatures of April of the current year. In seven
of the top ten models, the average air temperature of the summer
months of the previous year is a variable in the ridge regression models.
Additionally, the top two models include the variable average annual air
temperature in the previous year, which might influence the first gen-
eration bark beetle population in the following year (Table 4).

4.4. Factors influencing the spreading of bark beetle spots

The spreading of bark beetle spots was a dominant process in the
later phases of gradation (Fig. 2). This is also in agreement with the
findings of Jakus et al. (2003). GAM regression analysis (Tables 5, 6,
Fig. 4) has shown that the most important factor influencing spot
spreading was the average yearly air temperature in the current year.
Wind speeds in two summer months (June and July) in previous years
were also important factors. Marini et al. (2017) also found a positive
effect of current summer temperatures for the rate of timber loss due to
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Table 10

Proposed 10 best models used to study annual changes of tree cover loss for a 10-
year period using ridge regression. The model with the lowest RMSE is the most
parsimonious.

Model  Variables Alpha  RMSE

1 TLC = b0 + b1 * AvePrecYear(t-1) + b2 * MayP 0.1 0.419127
+ b3 * MayWw + €

2 TLC = b0 + b1 * AveTempYear + b2 * MayT 0.1 0.421982
+ b3 * AvePrecYear(t-1) + €

3 TLC = b0 + b1 * AveTempYear + b2 * MayT 0.5 0.425943
+ b3 * AvePrecYear(t 1) + €

4 TLC = b0 + b1 * AveTempYear -+ b2 * MayT 1 0.433299
+ b3 * AvePrecYear(t-1) + €

5 TLC = b0 + b1 * AvePrecYear(t-1) + b2 * MayS 0.1 0.450437
+ b3 * MayW + €

6 TLC = b0 + b1 * MayT + b2 * AvePrecYear(t-1) 0.1 0.456736
+ b3 * JunW(t-1) + €

7 TLC = b0 + b1 * MayT -+ b2 * AugS + b3 * JJA(t- 0.1 0.459826
1)+€&

8 TLC = b0 + bl * AvePrecYear(t-1) + b2 * JunP 0.1 0.463782
+ b3 * MayS + €

9 TLC = b0 + b1 * AvePrecYear(t-1) + b2 * JunP 0.5 0.463785
+ b3 * MayS + €

10 TLC = b0 + b1 * AvePrecYear(t-1) + b2 * JunP 1 0.463788
+ b3 * MayS + €

Notes: For the explanation of variables used, refer to Table 1. All models include
an intercept. € is a random error.

I typographus.

The ridge regression (Table 8) has shown the average yearly pre-
cipitation in the previous year as the most important factor. This is in
agreement with the results of Marini et al. (2012). The April duration of
solar radiation in the previous year was the second important factor in
our results.

4.5. Factors influencing annual tree loss change

GAM regression analysis (Tables 8, 9, Fig. 5) has shown that the most
important factors influencing the annual tree loss change were the sums
of duration of solar radiation in June and September of the current year.
Trubin et al. (2022) have also shown the relation of June weather to tree
loss change caused by the bark beetle outbreak. The best 102 GAM
models (Table S1) include 81 solar radiation duration predictors for the
months of the current year and the previous year. The study by Yu et al.
(2022) shows that longer periods of solar radiation, particularly in May,
are positively correlated with the area infested by pine shoot beetles
(Tomicus spp.), and they also accelerate beetle flight behaviour. The
relationship between the duration of solar radiation often coincides with
warm temperatures and drought conditions. According to Lobinger and
Skatulla (1996), spruce bark beetles show a strong preference for con-
ditions with high solar activity, which facilitates their flight and
reproductive activity; longer durations of solar radiation also contribute
to higher daily temperature sums.

The ridge regression (Table 10) has shown the average yearly pre-
cipitation in the previous year as the most important factor. This result
corresponds to the findings of Faccoli (2009) and Marini et al. (2012) in
the south-eastern Italian Alps. Marini et al. (2012) observed that pre-
cipitation deficit has a more pronounced effect in mountainous condi-
tions and is related to the upward shifts in the altitudinal outbreak range
of bark beetles. Those authors also note a greater susceptibility to
climate-induced tree cover loss in sites where spruce is planted on the
warmer side of its natural range.

The importance of precipitation is consistent with the comprehensive
study of 21 European countries by Seidl et al. (2011), who concluded
that a combination of summer and spring precipitation in the current
year, together with the average annual temperature of the previous year,
was the most predictive marker of the bark beetle outbreaks. This agrees
well with our ridge regression models, seven of which include variables
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such as the average yearly air temperature, and the amount of precipi-
tation in May and June in the current year. Notably, all of the best ten
models included precipitation variables from the previous year, but
temperature variables were not consistently included, highlighting the
potentially more robust role of precipitation in influencing tree loss.
Table S1 in Supplementary Materials shows that the parsimony GAM
models include approximately the same number of variables related to
temperature (25 predictors) and precipitation variables (21 predictors).

Winter temperatures also play a pivotal role in the life cycle of
L typographus, traditionally inducing a state of diapause or dormancy
(Faccoli, 2009). Winter temperatures affect the survival of the spruce
bark beetle, and winter mortality can reach up to 50% (Biermann, 1977;
Faccoli, 2002). Research by Stefkova et al. (2017) suggests that beetles
are able to complete their development during the winter, especially at
temperatures above zero, contradicting previous assumptions (Lom-
bardero et al., 2000; Faccoli, 2002). These immature stages of the beetle
were able to survive and may contribute significantly to spring in-
festations (Dworschak et al., 2014). This is reflected in the GAM list of
best models, which includes models with 19 predictors, using the
average temperature of the winter months in the given and previous
year.

Several studies, including those by Mezei et al. (2017) and Trubin
et al. (2022), have highlighted the relationship between temperature
variables — average temperatures of both past and current years and
tree cover losses. Higher temperatures not only diminish the resistance
of trees to bark beetle infestations but also positively influence bark
beetle populations, as noted by Bakke (1992).

Another noteworthy aspect is the role of wind-damaged wood as a
driver of increased tree loss by bark beetles. Mezei et al. (2017) and
Marini et al. (2017) highlighted the importance of the volume of
wind-damaged trees in the previous year as a predictive variable. Our
best ridge regression model reflects this, including variables such as May
wind speed in the current year, which may be related to the occurrence
of gale winds. The GAM models also include 51 variables related to wind
speed in a particular month in a given or previous year from the 102 best
models (Table S1). This supports the claim of Marini et al. (2017) that a
surplus of breeding material allows spruce bark beetles to reproduce,
eventually colonising and killing healthy trees, independent of other
climatic triggers.

4.6. Practical implementation

In response to the increasing threat of spruce bark beetle outbreaks,
particularly in the context of climate change, this finding can improve
spruce bark beetle prediction models. Understanding the key climatic
factors that can trigger and influence the pattern of outbreak develop-
ment is crucial for predicting potential mass bark beetle outbreaks.
These outbreaks can cause significant economic damage to the forestry
sector. By analysing specific climatic variables, such as temperature and
precipitation patterns, forest managers can better anticipate and prepare
for these events.

This study, conducted in the relatively flat areas of Czech forests,
provides valuable insights that can be applied to areas with similar
landscape and climatic conditions, mainly in Central Europe. The
transferability of these findings to other regions with comparable
ecological characteristics could improve forest management strategies
on a wider geographical scale.

5. Conclusions

The analysed bark beetle outbreak was initiated by the extremely
drought-ridden year of 2018. The tree cover loss in the study area was
characterized by the processes of spot initialization and bark beetle spot
spreading. Both processes were influenced by different meteorological
variables.

Spots initialisation was the dominant process before the beginning of
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the bark beetle outbreak, and in the progradation phase. The extension
of tree cover loss in this process was strongly related to the total duration
of solar radiation in April of the previous year. Bark beetle spots
spreading was the dominant process in later phases of outbreak grada-
tion. The most important factor influencing spots spreading was the
average yearly air temperature in the current year.

The total Annual Tree Loss Change was driven mainly by the sums of
duration of solar radiation in June and in September of the current year.
The ridge regression has shown the average yearly precipitation in the
previous year as the most important factor.
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4. Discussion

4.1 Data collection of forest and climate data

Monitoring forests at risk of bark beetle infestations necessitates the expertise of
seasoned professionals, such as foresters and researchers, who are trained to discern subtle
changes in the canopy and detect the presence of bark beetle boreholes. Given the high degree
of precision required for detection and the often inconspicuous signs of an early-stage attack
on the tree, this task presents substantial challenges. These complexities underscore the
importance of a skilled workforce in effectively managing the threat of bark beetle infestations,
highlighting the need for rigorous training and a nuanced understanding of the early indicators
of infestation (Trubin et al., 2023; Hlasny et al., 2019).

Trained detection dogs offer considerable advantages in promptly identifying bark
beetle infestations due to their acute sense of smell and their capacity to survey large areas
more quickly than humans. Conventional human detection methods require close inspection
and are time-consuming, expensive, and not always feasible, often leading to delayed detection.
As a result, infestations are typically identified 2-3 months post-infestation in northern Europe,
by which time most bark beetles have moved on to infest other trees. The presence of specific
beetle pheromone components and other semiochemicals for several weeks after an initial
attack makes detection dogs a potentially more effective alternative (Johansson et al., 2019).
Dogs trained to recognize bark beetle pheromones are significantly more efficient than human
experts in detecting bark beetle infestations, with the ability to locate infested trees up to a
distance of 150 meters (VoSvrdova et al., 2023). The use of sniffer dogs, therefore, greatly
expands the window for the detection and removal of infested trees, thereby potentially
averting the development of larger infestations. These factors underscore the potential of
trained detection dogs as a valuable asset in the timely management of bark beetle infestations
(Singh et al., 2024).

In the context of rapidly evolving bark beetle infestations, the utility of mobile
applications for prompt and accurate data collection regarding emerging hotspots cannot be
overstated. These applications provide critical real-time geospatial data, enabling timely and
effective responses to unfolding infestation events. As such, the ability to quickly collect,
analyze, and act upon data related to infestation hotspots is crucial in the management and
mitigation of bark beetle outbreaks, reinforcing the significant role these mobile applications

play in contemporary forest health management. There exists a diverse array of platforms
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designed to facilitate the collection of data pertaining to emerging hotspots of bark beetle
infestations. ArcGIS Field Maps is an all-in-one app that uses data from ArcGIS to deliver
easy-to-use maps to the field. It integrates with ArcGIS Online and ArcGIS Enterprise,
enabling users to capture and update data in real-time. Its capabilities extend to high-accuracy
data collection, tracking the location of mobile workers, and the capacity to perform map
viewing, markups, and measurements. Survey123 for ArcGIS is an application geared towards
form-centric data collection. This design aspect may be particularly useful for the structured
collection and categorization of data regarding different stages and aspects of bark beetle
infestations. QField, an open-source application, enables users to transfer their QGIS projects
to the field, making it an effective tool for individuals already working with QGIS for their GIS
needs. Mappt is a robust, intuitive, and cost-efficient mobile GIS and data collection
application. It provides the capacity to gather, view, and scrutinize geospatial data offline or
online, thereby making it a valuable tool for real-time data collection and analysis of bark beetle
infestations. Fulcrum is a mobile data collection platform that allows for the creation of custom
apps for field data collection. Its ability to capture location-specific data renders it particularly
useful in the geographical mapping of infestations. Input is another open-source app designed
to bring QGIS projects to mobile devices, reinforcing field data collection capabilities for QGIS
users. Finally, OpenDataKit (ODK) provides a free and open-source suite of tools that facilitate
data collection using Android mobile devices, even in the absence of internet or mobile carrier
service. These platforms, each with its unique functionalities and strengths, offer valuable tools
for the systematic collection of data related to emerging hotspots of bark beetle infestations.
Future research could benefit from utilizing these tools, allowing for more accurate, prompt,
and comprehensive data collection and thereby enhancing our understanding and management
of bark beetle infestations.

Another critical data source for monitoring both bark beetle activity and tree responses
involves sap flow measurements. These are captured through installed sensors, enabling us to
track fluctuations in sap flow dynamics. Such data provide key insights into the physiological
state of trees, including stress-induced patterns. Climate and meteorological datasets, when
analyzed in conjunction with sap flow data, offer a comprehensive understanding of both the
environmental conditions and tree behaviors. As such, sap flow monitoring emerges as an
indispensable tool in the evaluation and prediction of tree responses to bark beetle infestations,

thereby contributing significantly to our holistic understanding of forest health dynamics.
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4.2 Data processing

The calculations for the Spectral Vegetation Index (SVI) were conducted using the
ArcGIS Image Analysis module (arcpy.ia) and QGIS (QGIS Development Team, 2009) Raster
Calculator. These tools, although effective, are primarily suited for single calculations. When
multiple SVI calculations are required, particularly with extensive time-series remote sensing
datasets, these methods can prove to be highly time-consuming. For efficiency and speed in
processing, the application of programming languages, such as Python, can be considered. The
use of Python (Van Rossum and Drake, 2010), specifically with the spyndex library (Montero
et al., 2023), can facilitate rapid and efficient solutions, allowing for the generation of multiple
outputs simultaneously. This has the potential to significantly expedite the computational

processes involved in SVI calculations.

4.3 Mortality analysis

In this section, we discuss and compare two studies on bark beetle outbreaks in diverse
climatic and geographical settings. The study, conducted in the Dvinsko-Pinegskiy reserve in
Russia, examines tree mortality in a largely untouched taiga ecosystem. The second, set in the
School Forest Enterprise (SLP) near Kostelec nad Cernymi Lesy in the Czech Republic,
focuses on a bark beetle outbreak in a Central European forest landscape. These studies, while
centered on the same insect species — the Eurasian spruce bark beetle (Ips typographus) —
provide insights into how different climatic conditions, forest management practices, and
statistical models can influence and explain tree mortality dynamics.

The core of both studies is the analysis of climate variables in relation to bark beetle-
induced tree mortality. While both studies emphasize temperature and precipitation, they differ
in specific variables and approaches. The Dvinsko-Pinegskiy study highlights the significance
of the previous year’s temperatures and June temperatures, using linear regression. On the other
hand, the Czech study employs Generalised Additive Models (GAMSs) and Ridge regression,
and using wind speeds in addition to temperature, precipitation and solar radiation. These
differences underscore the importance of selecting appropriate climatic variables based on
regional climate characteristics when analyzing bark beetle outbreaks.

The geographical setting of each study area plays a crucial role in understanding the
differing dynamics of bark beetle outbreaks. The Dvinsko-Pinegskiy reserve, located in a
colder, more northerly latitude, experiences distinct climatic conditions compared to the

temperate climate of the Czech Republic's SLP. This geographic distinction likely influences
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the lifecycle and behavior of Ips typographus, affecting how climate variables impact tree
mortality.

The two areas also differ significantly in their forest management practices and
disturbance regimes. The SLP area in the Czech Republic has seen active forest management,
including sanitary logging in response to bark beetle infestations. In contrast, the Dvinsko-
Pinegskiy reserve is a protected area with minimal human intervention, allowing for a more
natural progression of forest dynamics and beetle outbreaks. This contrast provides a valuable
comparison for understanding how management practices can influence the severity and
dynamics of bark beetle outbreaks.

Both studies leverage the Global Forest Watch (GFW) data, highlighting its utility in
monitoring forest cover loss and disturbances. The high-resolution, time-series data from GFW
allows for precise tracking of tree mortality and forest changes, if a particular type of
disturbance is confirmed, making it an indispensable tool for studies focusing on forest health
and dynamics.

The findings from these studies have significant implications for forest management,
especially in the context of climate change. Understanding the climatic drivers of bark beetle
outbreaks and their interaction with forest ecosystems is crucial for developing effective
management strategies. The differing methodologies and findings of these studies also
highlight the need for further research, particularly in exploring the effects of climate variables

on bark beetle dynamics across various geographical settings.

4.4 Limitations of this research

The findings of this thesis predominantly pertain to the susceptibility, green attack, and
mortality phases of bark beetle infestations. The red attack phase was not a focal point of this
research, given its comprehensive coverage in existing studies (Wulder et al., 2006; Zabihi et
al., 2021; Marvasti-Zadeh et al., 2023). Instead, this research placed a greater emphasis on the
early stages of infestation, even prior to the outbreak, due to the substantial challenges
associated with gaining meaningful insights during these initial stages. The primary constraint
in identifying these early stages is establishing a reliable system for ground truth data collection
and validation. The process of obtaining accurate and reliable ground truth data for these initial
infestation stages can be labor-intensive (Zabihi et al., 2021), which may limit the scope and

frequency of such data collection efforts. This has the potential to impact the validation of
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models and tools designed for early detection, presenting a notable limitation of the current

study.

When dealing with the susceptibility and green attack phases of bark beetle infestations,
a key challenge lies in accurately identifying the appropriate vegetation index at the right
temporal point. This is a significant limitation given the specific nature and time dependence
of such invasions. Additionally, geographical location could have a significant impact on
susceptibility. For example, mountainous regions may exhibit unique patterns of infestation,
and our understanding of these patterns is currently limited. Thus, the interaction between
geographical variables and bark beetle susceptibility remains an area requiring further
exploration and constitutes a potential limitation of the current study.

In the case of forest mortality resulting from bark beetle infestations, a major limiting
factor lies in leveraging historical data to gain a better understanding of the dynamics of bark
beetle spread under varying conditions. Using methods such as Generalized Additive Models
(GAM), non-linear models, and Machine Learning (ML) models could potentially reveal
significant insights regarding the drivers of forest mortality. However, the application of these
complex modelling techniques requires comprehensive and accurately recorded historical data,
and the absence or insufficiency of such data could limit the depth and accuracy of these
analyses (Pirtskhalava-Karpova et al., 2024). Hence, while these models promise new and
meaningful insights, their efficacy is contingent on the availability and quality of historical
data, representing a significant limitation in studying forest mortality due to bark beetle
infestations.

4.5 Future studies

There is a noticeable deficit in the development of models and platforms specifically
tailored towards monitoring bark beetle infestations within the season and making accurate
forecasts based on our current knowledge. The existing TANABBO model (Duraciova et al.,
2020; Pirtskhalava-Karpova et al., 2024), although effective, leaves room for enhancements
and adjustments. For future studies, it would be advantageous to explore the integration of
various data sources, including climate variables, bark beetle-related ground truth data, and
remote sensing information. The amalgamation of these diverse and rich data types could pave

the way for a comprehensive and effective tool. This would significantly aid in the timely
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detection of infestations, potentially preventing extensive forest losses. An innovative, data-
integrated approach like this has the potential to transform our understanding of bark beetle
infestations, enhancing our ability to predict, monitor, and manage these events within a forest

management context.

It would be beneficial to explore and test a broader range of spectral indices beyond
just vegetation. Investigating soil indices, for instance, might provide valuable insights and
further enhance our ability to differentiate between stressed and healthy forests. Once
established indices have been thoroughly tested, another promising way of research could be
the development of novel indices. These new indices could be tailored to achieve clear
separability throughout the vegetation season, with a particular emphasis on its early stages.
By evolving and diversifying our approach to spectral indices, we can potentially refine our
ability to monitor and respond to forest health and infestation risks in a timely and effective

manner.

For the green attack phase of bark beetle infestations, the principal challenge in
formulating effective management strategies is the ability to promptly respond to emergent
hotspots within the ongoing season. This challenge is further compounded by constraints
related to human capacity, and the need for rapid, informed decision-making in the face of an
active infestation. A thorough analysis of the dynamics of the previous season's hotspots could
provide valuable insights to inform the development of proactive management strategies.
However, the time-sensitive nature of this phase and the need for an immediate response
present significant obstacles.

4.5.1 Satellites with multi and hyperspectral sensors

With the advent of increasingly advanced satellite systems, researchers are equipped
with newer datasets to better comprehend and manage bark beetle infestations. Notably, the
emergence of multispectral and hyperspectral satellites offers promising prospects for
insightful and detailed data. Hyperspectral satellites, in particular, hold significant potential in
providing deeper insights into forest health. Existing systems such as PRISMA and DESIS
(Aneece and Thenkabail, 2021; Giacomo et al., 2020; Alonso et al., 2019) are already in
operation, offering substantial data resources. Moreover, further advancements are on the
horizon, with more systems, such as the European Copernicus Next Generation Hyperspectral
Satellite CHIME (Nieke and Rast, 2018), being planned for future deployment. Notably, the
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German system ENMAP (Storch et al., 2023) was successfully launched into space on April
1st, 2022, marking a significant milestone in remote sensing capabilities. The forthcoming
Global Hyperspectral Observation Satellite (GHOSt, launch date - April 15, 2023) further
underlines the dynamic progression in this field. These burgeoning developments in satellite
technology offer increasingly refined datasets for the surveillance and management of bark
beetle infestations. The implementation of these new technologies can potentially revolutionize
our understanding and response to these infestations, thereby marking a pivotal shift in the field
of forest health management.
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5. Conclusions

The progression of this research underlines several key conclusions and directions for
future exploration in the monitoring and management of bark beetle infestations.

Rapid Data Collection and Monitoring: Mobile applications and sensor technology
have emerged as vital tools, used by skilled specialists, for prompt and accurate data collection
on emerging hotspots of infestation. The use of trained detection dogs also presents a promising
alternative for the fast and efficient detection of infestations, amplifying the window of
opportunity for effective management.

Integrating Diverse Data Sources: The integration of diverse datasets, such as climate
and meteorological data, sap flow measurements, and remote sensing data, can offer a
comprehensive understanding of the factors influencing bark beetle infestations and tree
responses. The advent of advanced satellite systems, particularly hyperspectral satellites,
presents immense potential for detailed and insightful data on forest health.

Focus on Early Detection: While monitoring the green attack phase is important,
catching the early symptoms of susceptible trees to future bark beetle attacks is crucial. The
development and application of systems based on thresholds of EVI/VARI or new indices
could provide timely indications of potential infestations.

Evaluating Mortality Patterns: Yearly mortality data can provide valuable insights
into the history and dynamics of infestations. Such data can be transformed into actionable
metrics for real-time assessment, aiding in the creation of effective mitigation strategies.

In conclusion, the management of bark beetle infestations is a complex, multi-faceted
task that necessitates rapid data collection, integration of diverse data sources, a focus on early
detection, and a skilled workforce. The advent of new technologies and methods promises to
enhance our understanding and response to these infestations, setting the stage for effective

and sustainable forest health management strategies.
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7. Supplementary material

Supplementary materials are included in the electronic version of this PhD thesis and
comprise the supplementary data from the three published papers discussed. The first two

papers contain supplementary data. The supplementary content is as follows:

7.1 Article I (chapter 3.1)

Supplemental table 1 | Mean and standard deviations of Susceptible and Healthy
samples of individual bands and SVI for all imagery

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/ffqc.2023.1130721/full#supplementary-material

7.2 Article IV (chapter 3.4)

Table S1 - Proposed 102 best GAM regression models with which to study annual
changes of tree cover loss for a 10-year period.

Figure S1. The result of fitting the most parsimonious model (Table 4) for the relation
between the bark beetle spots initialisation and May average monthly air temperature in the
current year, average yearly precipitation in the previous year, and June wind speed in the
current year over a 10-year span in the study area.

Figure S2. The result of fitting the most parsimonious model (Table 7) for the relation
between the bark beetle spot spreading and Average yearly precipitation in the previous year,
sum duration of solar radiation in the previous year in April and June over a 10-year span in
the study area.

Figure S3. The result of fitting the most parsimonious model (Table 10) for the relation
between the annual tree cover loss change and Average yearly precipitation in the previous
year, May amount of precipitation in the current year, and May wind speed in the current year
over a 10-year span in the study area.

The Supplementary Material for this article can be found online at:
https://ars.els-cdn.com/content/image/1-s2.0-S0378112723009003-mmcl.docx
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