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 Popular Science Summary 

How do bark beetles use their sense of smell to find and attack trees?  

Bark beetles are small wood-boring insects that play a natural role in forest ecosystems, 

helping to recycle and decompose dead trees. However, they can become aggressive 

pests under certain conditions, causing widespread damage to conifer forests. In recent 

years, bark beetle infestations have become increasingly problematic. Climate change, 

particularly rising temperatures and prolonged droughts, has made these forests more 

vulnerable by weakening tree defenses, creating ideal conditions for beetle outbreaks. 

While much research has focused on Ips typographus, and other species, such as Ips 

duplicatus, Ips acuminatus, and Ips cembrae, also contribute to forest damage. Yet, much 

less is known about their peripheral olfactory system. Like many insects, bark beetles 

rely on their sense of smell to find suitable hosts and communicate with each other. Their 

antennae are covered with sensilla, specialized hair-like structures that detect chemical 

signals in the environment. These sensilla house olfactory sensory neurons (OSNs) that 

recognize and respond to different volatile compounds. Bark beetles use this system to 

detect stress-related compounds released by weakened trees, indicating suitable 

colonizing trees. Once a tree is selected, aggregation pheromones are released, attracting 

more beetles to the site and leading to a mass attack that can overwhelm the tree’s 

defenses. This study investigates how different Ips species with diverse hosts and 

ecology respond to host, non-host tree, and microbial volatiles, by comparing their 

antennal morphology and OSN function. It also explores whether body size influences 

olfactory detection, particularly in Ips typographus females, where larger and smaller 

individuals may detect these semiochemicals differently. Using scanning electron 

microscopy (SEM), electrophysiological recordings, and field experiments, this research 

aims to map the antennal sensilla and neuronal responses involved in olfactory detection 

across these species. Understanding the olfactory adaptations of bark beetles is crucial 

for developing better pest management strategies. Identifying the specific compounds 

that attract or repel these beetles can help to improve semiochemical-based control 

methods, such as traps and repellents, to protect forests more effectively. By expanding 

knowledge beyond  Ips typographus and considering species-specific and size-dependent 

olfactory responses, this research provides a broader perspective on how bark beetles 

locate and infest trees, helping to manage future outbreaks. 
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Popular science summary (in Czech) 

Jak kůrovci využívají čich k nalezení a napadení stromů?  

Kůrovci jsou drobní dřevokazní brouci, kteří hrají přirozenou roli v lesních 

ekosystémech, zejména tím, že se podílejí na rozkladu a recyklaci odumřelých stromů. 

Za určitých podmínek se však mohou stát závažnými škůdci, kteří způsobují rozsáhlé 

poškození, zejména v porostech jehličnatých dřevin. V posledních letech představují 

gradace kůrovců čím dál větší problém. Klimatická změna, zejména rostoucí teploty a 

prodlužující se období sucha, vede ke snižující se obranyschopnosti lesních porostů, čímž 

vznikají optimální podmínky pro gradace populací kůrovců. Zatímco velké množství 

výzkumů se zaměřilo na lýkožrouta smrkového (Ips typographus), další druhy, jako Ips 

duplicatus, Ips acuminatus a Ips cembrae, rovněž významně přispívají k narušování 

lesních porostů. O jejich periferním čichovém ústrojí však zatím víme podstatně méně. 

 Stejně jako mnoho jiných druhů hmyzu spoléhají i kůrovci na čichové vjemy při 

lokalizaci vhodného hostitele a při vzájemné komunikaci. Jejich tykadla jsou pokryta 

senzilami, specializovanými chloupkovitými strukturami sloužícími k detekci 

chemických signálů v prostředí. Tyto senzily obsahují čichové smyslové neurony 

(OSNs), které rozpoznávají a reagují na různé těkavé sloučeniny. Kůrovci využívají tento 

systém k detekci stresových látek uvolňovaných oslabenými stromy, jež signalizují 

vhodné jedince k napadení a kolonizaci. Po výběru hostitelského stromu samci začnou 

produkovat agregační feromon, který přiláká více jedinců a vedou k hromadnému útoku, 

pomocí něhož jsou kůrovci schopni překonat obranné mechanismy stromu. 

Tato studie zkoumá, jak různé druhy z rodu Ips s odlišnou ekologickou specializací 

reagují na těkavé látky hostitelských, nehostitelských a mikrobiálních původů, pomocí 

porovnání morfologie tykadel a funkce OSN. Součástí výzkumu je i posouzení vlivu 

tělesné velikosti na schopnost detekce pachových podnětů, zejména u samic kůrovce Ips 

typographus, kde mohou existovat rozdíly mezi menšími a většími jedinci ve vnímání 

specifických semiochemikálií. Za využití rastrovací elektronové mikroskopie (SEM), 

elektrofyziologických měření a terénních experimentů se tato práce zaměřuje na 

mapování tykadlových senzil a neuronální aktivity spojené s čichovým vnímáním u 

vybraných druhů. Pochopení čichových adaptací kůrovců je zásadní pro vývoj 

efektivnějších metod ochrany lesů. Identifikace specifických těkavých látek, které 

kůrovce přitahují nebo odpuzují, může přispět k optimalizaci využití semiochemikálií 
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v kontrolních metodách ochrany lesa, jako jsou lapače, lapáky či různé repelenty, s cílem 

lépe chránit lesní ekosystémy. Rozšířením výzkumu i na další druhy rodu Ips mimo Ips 

typographus a zahrnutím druhově specifických i velikostně podmíněných čichových 

odezev nabízí tato práce komplexnější pohled na to, jak kůrovci vyhledávají a napadají 

hostitelské stromy, což v konečném důsledku přispívá k účinnějšímu zvládání budoucích 

gradací populací kůrovců. 
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लोकप्रिय प्रिज्ञान साराांश (मराठी अनुिाद). 

झाडाांना शोधण्यासाठी आप्रि त्ाांच्यािर हल्ला करण्यासाठी साल भुांगे त्ाांच्या गांधाच्या 

भािनेचा कसा िापर करतात?  

साल बीटल हे लहान लाकूड-भोके पाडणारे कीटक आहेत जे वन पररसंस्ांमधे्य नैसर्गिक भूर्मका 

बजावतात, मृत झाडांचा पुनवािपर आर्ण र्वघटन करण्यास मदत करतात. तथार्प, र्वर्िष्ट पररस्थस्तीत, ते आक्रमक 

कीटक बनू िकतात, ज्यामुळे िंकुधारी जंगलांचे मोठ्या प्रमाणात नुकसान होते. अलीकडच्या वर्ाांत, साल बीटलचा 

प्रादुभािव र्दवसेंर्दवस समस्याग्रस्त बनला आहे. हवामान बदल, र्विेर्त: वाढते तापमान आर्ण प्रदीघि दुष्काळ यामुळे 

झाडांचे संरक्षण कमकुवत होऊन ही जंगले अर्धक असुरर्क्षत झाली आहेत, ज्यामुळे बीटलच्या उदे्रकासाठी आदिि 

पररस्थस्ती र्नमािण झाली आहे. बरेच संिोधन Ips typographus) वर कें र्द्रत केले गेले आहे, परंतु इतर प्रजाती, जसे 

की Ips duplicatus, Ips acuminatus, आर्ण Ips cembrae देखील जंगलाच्या ऱ्हासाची हातभार लावतात. तरीही 

त्ांच्या पररघीय घ्राण प्रणालीबद्दल फारच कमी मार्हती उपलब्ध आहे. इतर बऱ्याच कीटकां प्रमाणे, साल बीटल योग्य 

यजमान िोधण्यासाठी आर्ण एकमेकांिी संवाद साधण्यासाठी त्ांच्या गंधज्ञानावर (olfactory sense) अवलंबून 

असतात. त्ांच्या अँटेना सेस्थिला, र्विेर् केसांसारख्या रचनांनी झाकलेले असतात, जे वातावरणातील रासायर्नक 

र्सग्नल िोधतात.  हे सेस्थिला घ्राण संवेदी नू्यरॉि (ओएसएन) ठेवतात जे वेगवेगळ्या अस्थस्र संयुगे ओळखतात आर्ण 

प्रर्तसाद देतात. साल बीटल कमकुवत झाडांनी सोडलेल्या तणाव-संबंर्धत संयुगे िोधण्यासाठी या प्रणालीचा वापर 

करतात, जे वसाहतीसाठी योग्य झाडाचे संकेत म्हणून काम करतात. एकदा झाड र्नवडले की, एकत्रीकरण फेरोमोन 

(aggregation pheromone) सोडले जातात, ज्यामुळे साइटवर अर्धक बीटल आकर्र्ित होतात आर्ण मोठ्या 

प्रमाणात एकर्त्रत हल्ला होतो ज्यामुळे झाडाच्या संरक्षणावर पररणाम होऊ िकतो.  हा अभ्यास त्ांच्या अँटेनल 

मॉफोलॉजी आर्ण ओएसएन फंक्शनची तुलना करून, र्वर्वध यजमान आर्ण पाररस्थस्र्तकी असलेल्या वेगवेगळ्या Ips 

प्रजाती यजमान, नॉन-होस्ट वृक्ष आर्ण मायक्रोर्बयल वाष्पिीलांना कसा प्रर्तसाद देतात याची तपासणी करतो. 

र्विेर्त: Ips typographus स्थियांमधे्य आकार घ्राण धारणेवर पररणाम करतो की नाही हे देखील िोधते, कारण 

मोठ्या व लहान व्यक्ीमंधे्य सेर्मओकेर्मकल्स ओळखण्याच्या क्षमतेत फरक असू िकतो. सॅ्कर्नंग इलेक्ट्र ॉन 

मायक्रोस्कोपी (एसईएम), इलेक्ट्र ोर्फर्जओलॉर्जकल रेकॉर्डांग आर्ण फील्ड प्रयोगांचा वापर करून, या संिोधनाचे 

उद्दीष्ट या प्रजातीमंधे्य घ्राण िोधण्यात गंुतलेल्या संवेदी संरचना आर्ण नू्यरोनल प्रर्तर्क्रयांचा नकािा तयार करणे आहे.  

चांगल्या कीड व्यवस्ापन रणनीती र्वकर्सत करण्यासाठी साल बीटलचे घ्राण अनुकूलन समजून घेणे महत्वाचे आहे. 

जर आपण या भंुगेंना आकर्र्ित करणारी र्कंवा मागे हटर्वणारी र्वर्िष्ट संयुगे ओळखू िकलो तर आपण जंगलांचे 

अर्धक प्रभावीपणे संरक्षण करण्यासाठी सापळे आर्ण प्रर्तकारक यासारख्या सेर्मओकेर्मकल-आधाररत र्नयंत्रण 

पद्धती पररषृ्कत करण्यास सक्षम होऊ िकतो. आयपीएस टायपोग्राफसच्या पलीकडे ज्ञानाचा र्वस्तार करून आर्ण 

प्रजाती-र्वर्िष्ट आर्ण आकार-अवलंबून घ्राण प्रर्तर्क्रयांचा र्वचार करून, हे संिोधन साल बीटल झाडांना कसे 

िोधतात आर्ण संक्रर्मत करतात याबद्दल र्वसृ्तत दृष्टीकोन प्रदान करतात आर्ण िेवटी भर्वष्यातील उदे्रक 

व्यवस्ार्पत करण्यास मदत करतात. 
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Annotation 

Bark beetles (Coleoptera: Curculionidae: Scolytinae) are key components of forest 

ecosystems but can also cause severe economic and ecological damage during population 

outbreaks. Climate change has worsened bark beetle infestations, resulting in extensive 

tree mortality. These beetles rely predominantly on their olfactory system to detect 

suitable host trees, locate conspecifics, and coordinate mass infestations. Their antennae, 

which serve as the primary olfactory organs, are densely covered with hair-like sensilla 

that house olfactory sensory neurons (OSNs) responsible for detecting environmental 

chemical cues. While Ips typographus has been extensively studied, little is known about 

the olfactory adaptations of Ips duplicatus, Ips acuminatus, and Ips cembrae despite their 

ecological and economic significance. This thesis investigates olfactory coding in Ips 

bark beetles, focusing on antennal morphology, size-dependent olfactory detection, and 

OSN function. Using scanning electron microscopy (SEM), the antennae of I. duplicatus, 

I. acuminatus, and I. cembrae were visualized to observe the general morphology and 

distribution of sensilla types. We observed six main types of antennal sensilla in I. 

duplicatus. Although males are the pioneers in colonization, females play a critical role 

in selecting suitable oviposition sites, which directly influences offspring fitness. 

Electrophysiological experiments in I. typographus females also investigated how body 

size influences semiochemical olfactory detection and host preferences in field. 

Electrophysiological recordings of OSNs in I. acuminatus and I. cembrae compared their 

frequency and responses to beetle-produced compounds, host-, non-host trees, and 

microbial volatiles with that of existing data from I. typographus. Results indicate that 

the distribution of antennal sensilla is largely conserved across the studied species, 

suggesting that olfactory adaptations primarily occur at the neuronal level rather than at 

the morphological level. In I. typographus, larger females exhibited stronger responses 

to synergist compounds. 

In contrast, smaller females strongly responded to repellent compounds, revealing a 

contrasting size-dependent olfactory strategy for host tree choice. OSN characterization 

in I. cembrae and I. acuminatus identified shared and species-specific responses, 

reflecting conserved olfactory strategies related to their host specialization. This research 

enhances our understanding of bark beetle olfactory coding by integrating 
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morphological, electrophysiological, and behavioral approaches, offering novel insights 

for developing semiochemical-based pest management strategies.  

Keywords: bark beetles, olfaction, chemical communication, semiochemicals, 

pheromones, olfactory sensory neurons, host selection 
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Chapter 1. Introduction  

1.1. Research background 

Forests cover nearly one-third of Europe’s landmass, with coniferous species playing a 

dominant ecological and economic role across many regions. In Central and Northern 

Europe, Norway spruce (Picea abies), Scots pine (Pinus sylvestris), and European larch 

(Larix decidua) constitute the backbone of conifer-dominated forest ecosystems. 

However, large-scale planting of spruce monocultures outside their natural range forced 

by historical economic forestry has reduced ecosystem resistance. Combined with 

climate change-induced stressors such as drought and warming, these simplified stands 

have become highly susceptible to bark beetle outbreaks. This interaction between past 

management practices and climate extremes is a key driver of the unprecedented bark 

beetle epidemics observed in recent decades. 

Bark beetles (Coleoptera: Curculionidae: Scolytinae) are diverse wood-boring weevils, 

comprising around 220 genera and 6000 species distributed worldwide. Many bark 

beetles contribute positively to forest health by facilitating dead wood's decomposition 

and nutrient recycling, primarily through their mutualistic associations with wood-

degrading fungi that colonize host trees. However, several conifer-infesting species have 

emerged as serious pests, particularly under climate-driven stress. Trees already 

weakened by climate-induced stress are particularly vulnerable to beetle infestation. The 

Eurasian spruce bark beetle, Ips typographus, stands out as the most destructive species, 

especially in mature spruce trees at higher elevations. Other species such as the glossy 

bark beetle, Pityogenes chalcographus, and the double-spined bark beetle, Ips 

duplicatus, also target spruce but are considered less aggressive. In contrast, the pine 

bark beetle, Ips acuminatus, and the larch bark beetle, Ips cembrae primarily infest 

stressed pine and larch trees and are often regarded as secondary pests. The latter species 

have been less extensively studied, mainly because the damage they cause is typically 

less severe than that of I. typographus. Nonetheless, they often coexist with other bark 

beetles during infestations, particularly in disturbed or weakened forest stands. 

A key feature of bark beetle ecology is their reliance on chemical communication to 

mediate host selection, aggregation, and reproduction. Volatile organic compounds 

(VOCs) released by host trees provide crucial information on species identity, 

physiological condition, and defense status. These chemical cues, in combination with 
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beetle-produced aggregation pheromones, coordinate mass-attacking behavior which is 

a critical strategy for overcoming tree defenses. Bark beetles rely on a highly evolved 

chemosensory system to detect and interpret these complex olfactory environments. 

Their primary sensory organ for odor detection is the club-shaped antennae, which are 

densely packed with specialized cuticular sensilla. These sensilla house olfactory sensory 

neurons (OSNs) within a lymph-filled cavity. Odor molecules first pass through porous 

sensillum walls, bind to odorant-binding proteins (OBPs), and subsequently interact with 

specific receptors on the dendritic membrane of OSNs. Individual OSNs can be narrowly 

or broadly tuned to ecological cues such as host volatiles, pheromones, or inhibitory cues 

from non-hosts or microbes. 

Electrophysiological studies on I. typographus have identified at least 26 OSN classes, 

each with distinct response spectra and distribution patterns on antennae. These findings 

have deepened our understanding of how chemical information is processed at the 

peripheral level. Furthermore, detailed morphological studies of antennal sensilla in I. 

typographus and other Ips species have also revealed structural diversity, likely reflecting 

ecological specializations. Although these species coexist within the same forest 

ecosystems, they typically prefer different conifer host trees. For example, I. typographus 

and I. duplicatus primarily target spruce, I. acuminatus prefers pine, and I. cembrae 

specializes in larch trees. 

Despite their overlapping distributions and potential ecological interactions in conifer 

forests, most research have been focused on I. typographus, leaving significant 

knowledge gaps in understanding the olfactory adaptations and sensory ecology of the 

other Ips species. Understanding how these species detect and respond to chemical cues 

is key to uncovering host adaptation mechanisms and the dynamics of tritrophic 

interactions involving beetles, host trees, and microbial associates. In addition to 

interspecific differences, individual-level traits such as body size may influence olfactory 

sensitivity and host preference, potentially shaping ecological strategies. While I. 

typographus have been intensively studied due to its high economic impact, extending 

investigations to I. acuminatus and I. cembrae, and incorporating individual variation, 

offers valuable opportunities to uncover overlooked sensory adaptations. Such insights 

are increasingly important as climate change influences host availability, beetle behavior, 

and pest management challenges. 
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1.2. Research aims and objectives. 

Peripheral olfactory mechanisms are fundamental to key behaviours in bark beetles, such 

as host recognition and communication. These processes are mediated by OSNs housed 

within antennal olfactory sensilla, enabling detection of behaviorally relevant chemical 

cues such as host tree volatiles and aggregation pheromones. Although Ips typographus 

have been extensively studied, the olfactory systems of other Ips species, namely I. 

duplicatus, I. acuminatus, and I. cembrae, remain poorly characterized, despite their 

differing host preferences and ecological roles. 

This thesis adopts a comparative, multi-method approach integrating scanning electron 

microscopy, electrophysiology, and behavioral assays to address these gaps. The study 

focuses on mapping antennal morphology, assessing intraspecific factors such as body 

size in olfactory-mediated behavior, and functionally classifying OSN responses to 

ecologically relevant chemical cues. The study system consists of four closely related 

conifer-feeding bark beetles, including the Eurasian spruce bark beetle (Ips 

typographus), the double-spined bark beetle (Ips duplicatus), the pine bark beetle (Ips 

acuminatus), and the larch bark beetle (Ips cembrae).  

1.2.1. Research aims: 

The following broad research aims serve as the foundation for this thesis: 

1. To broaden understanding of species-specific olfactory adaptations in the studied 

conifer-feeding bark beetles. 

2. To provide insights into the structural and functional organization of the peripheral 

olfactory system with ecological and behavioral traits in the studied Ips species. 

 

1.2.2. Research hypothesis: 

Given that these Ips species inhabit similar coniferous environments and encounter 

overlapping chemical landscapes, we hypothesize that these species share similar 

morphological and functional olfactory systems. Specifically, we expect conserved 

patterns in antennal morphology, olfactory detection mechanisms, and OSN profiles, 

with low species-specific differentiation. 
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1.2.3. Research objectives: 

This thesis employed a combination of various techniques, such as scanning electron 

microscopy and electrophysiological recordings, and literature analysis; this thesis aimed 

to achieve the following specific objectives:  

1) To investigate the antennal morphology and distribution of sensilla types in I. 

duplicatus, I. acuminatus, and I. cembrae (Papers II and III)  

2) To examine the influence of body size on the olfactory behavior of I. typographus 

females, particularly focusing on responses to stress-related oxygenated host 

monoterpenes (Paper IV) 

3) To identify and classify olfactory sensory neuron (OSN) classes in Ips 

acuminatus (pine host) and Ips cembrae (larch host) and compare their response 

profiles with those of Ips typographus (spruce host) (Paper V) 

1.3. Scope of the thesis  

This thesis builds upon both established literature and recent advances to explore 

comparative functional aspects of olfactory coding in Ips bark beetles. The research 

specifically investigates whether variations exist in antennal morphology, sensilla 

diversity, and the functional profiles of olfactory sensory neurons (OSNs) among I. 

duplicatus, I. acuminatus, and I. cembrae. In addition, it examines the presence of size-

dependent olfactory perception within populations of I. typographus females, with a 

focus on their antennal responses to oxygenated host monoterpenes. Taken together, 

these investigations aim to enhance our understanding of peripheral olfactory processing 

in conifer-specialist bark beetles and contribute to the broader field of insect 

chemosensory biology. 

To establish a strong scientific foundation, the thesis is organized into the following 

structure: 

• Chapter 2 presents a comprehensive literature review summarizing the current 

state of knowledge regarding bark beetle pheromone communication, peripheral 

olfactory mechanisms, and OSN functional organization. This chapter also 

identifies key research gaps that form the basis for the experimental objectives 

pursued in the subsequent chapters. 
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• Chapter 3 describes the methodological approaches used across the studies, 

including scanning electron microscopy (SEM) for morphological analysis, 

single sensillum recordings (SSR) and electroantennography (EAG) for 

electrophysiological profiling, and gas chromatography–electroantennographic 

detection (GC-EAD) for chemical stimulus identification. It details the 

techniques employed to investigate antennal structure, sensilla types, and 

functional neuronal responses across the target species. 

• Chapter 4 is the results section, organized into five sub-chapters, each addressing 

specific research questions derived from the literature review in Subchapter 4.1 

(corresponding to Paper I): 

o Subchapter 4.2 focuses on the antennal morphology and spatial 

distribution of sensilla in I. duplicatus (Paper II). 

o Subchapter 4.3 presents a preliminary morphological analysis of 

antennal sensilla in I. acuminatus and I. cembrae (Paper III). 

o Subchapter 4.4 examines size-dependent antennal sensitivity and 

behavioral responses to oxygenated monoterpenes in I. typographus 

females (Paper IV). 

o Subchapter 4.5 characterizes OSNs in I. acuminatus and I. cembrae, with 

comparisons to the OSN profiles of I. typographus (Paper V). 

• Chapter 5 provides an integrated discussion of the experimental findings, 

relating them to existing studies and identifying major olfactory system structure 

and function patterns. The chapter also addresses the ecological relevance of the 

observed variations and outlines the limitations of the research. 

• Chapter 6 concludes the thesis by summarizing key findings, evaluating the main 

hypotheses, and offering recommendations for future research directions, 

particularly in the context of forest pest monitoring and management strategies. 

Through the integration of morphological, electrophysiological, and behavioral data, this 

thesis offers new insights into the diversity and specificity of olfactory coding in Ips bark 

beetles. The work contributes to a deeper understanding of species- and size-related 

differences in chemosensory function. It supports the development of targeted 

approaches in applied entomology, particularly in managing bark beetle outbreaks and 

forest health monitoring. 
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Chapter 2: Review of literature 

2.1. Abiotic disturbances in forest ecosystems 

Recent shifts in global climate are having a serious impact on forest ecosystems. Rising 

temperatures, frequent droughts, and declining precipitation levels have increasingly weakened 

tree defenses, making forests more susceptible to bark beetle infestations (Jaime et al., 2024; 

Fig.1). Additionally, environmental disturbances such as windthrows, wildfires, and snow 

damage create large amounts of weakened or dying host material. These disturbances offer ideal 

breeding grounds for bark beetles and encourage population growth (Allen et al., 2015; Senf et 

al., 2018; Jakoby et al., 2019). 

 High temperatures minimize generation times, promote dispersal, and speed up bark beetle 

development and reproduction, all of which increase the frequency and severity of outbreak 

incidents (Biedermann et al., 2019; Dobor et al., 2020; Sommerfeld et al., 2021). As climate 

zones shift, several bark beetle species are expanding into higher elevations and northern 

latitudes, colonizing previously unsuitable habitats and further altering forest dynamics. 

Figure 1: Map showing key abiotic (wildfire, windstorm, drought, flood, snow damage) 

and biotic (bark beetle outbreaks, root rot) stressors affecting tree growth in European 

forests, in the context of global climate change. Adapted from Vacek et al. (2023).  

 Long-term environmental stress compromises tree vigor and reduces resistance to herbivore 

attack. This interaction between abiotic and biotic stressors strongly influences beetle population 

dynamics (Netherer et al., 2024). Bark beetles usually target weaker or less competitive trees in 

endemic conditions to maximize offspring success. However, during outbreaks, even healthy or 

suboptimal trees are colonized. This often results in smaller beetles, lower pheromone 
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production, and reduced mating success (Pureswaran & Borden, 2003; Sallé & Raffa, 2007; 

Foelker & Hofstetter, 2014; Dacquin et al., 2024).  Coniferous tree species in the Pinaceae 

family, including Picea (spruce), Pinus (pine), and Larix (larch), are especially at risk. These 

species rely on constitutive defense mechanisms, such as resin production, which can be 

compromised under prolonged heat and drought stress (McNichol et al., 2021; Netherer et al., 

2021). As a result, climate-induced abiotic stressors weaken trees directly and amplify the risks 

posed by insect herbivores like bark beetles. 

 

2.2 . Bark beetle ecology 

Bark beetles (Coleoptera: Curculionidae, Scolytinae) play a dual role in forest ecosystems. 

Under natural conditions, many species contribute positively to forest health by colonizing dead 

or dying trees. They facilitate nutrient cycling and support habitat creation, helping maintain 

ecological balance in mature forests (Knížek & Beaver, 2007; Hulcr et al., 2015). However, 

several bark beetle species, particularly in the Northern Hemisphere, have become serious forest 

pests. Some of these species can attack living, healthy trees, and during outbreaks, they can cause 

widespread mortality. Such events disturb forest dynamics, leading to substantial economic 

losses (Wermelinger, 2004; Hlásny et al., 2021; Jaime et al., 2024; Fig.2).  

 

Figure 2. Cumulative volume of Norway spruce (Picea abies) mortality attributed to Ips 

typographus and other bark beetle species across selected European countries over 

recent decades. Adapted from Hlásny et al., 2021. 
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Majority of bark beetle species spend most of their life cycle beneath tree bark, where 

they bore galleries to feed, reproduce, and develop in the phloem. Some species also 

carry symbiotic blue-stain fungi, particularly from the Ophiostomatales group. These 

fungi invade the host tree’s vascular tissue, reducing water transport and accelerating tree 

decline (Krokene, 2015). The symbiotic relationship benefits both partners; the beetles 

gain assistance in overcoming tree defenses while the fungi gain transport and access to 

new hosts, which weaken tree defenses and contribute to host decline and mortality. 

Associations between fungi and bark beetles are important for the environment because 

they can change the dynamics of competition between insect species and accelerate tree 

mortality. During outbreak seasons, when tree defenses are overwhelmed and both 

beetles and fungi reproduce quickly, these mutualistic associations are strongest. 

Therefore, bark beetles have a significant centralized influence on the successional 

patterns and composition of forests, especially in systems dominated by conifers. 

2.3. Impact of bark beetle outbreaks on forest ecosystems 

As already described in Section 2.1, climate-induced abiotic stress, such as drought and 

increased temperatures, creates conditions that increase bark beetle activity. However, 

the broader ecological impact of outbreaks is influenced by the beetles’ behavior, 

reproductive strategies, and interactions with host trees. When populations shift from 

endemic to epidemic levels, they can cause extensive mortality in conifer forests, 

reshaping ecosystem structure, function, and resilience.  

One of the marking attributes of bark beetle outbreaks is the ability of some species to 

coordinate mass attacks through aggregation pheromones. Pioneering male individuals 

release species-specific pheromones that attract conspecifics to the same host, facilitating 

them to overcome the tree’s defense mechanisms. This strategy is particularly effective 

in physiologically stressed trees but can also work in otherwise healthy trees under high 

beetle pressure (Christiansen & Bakke, 1988; Byers, 2007; Raffa et al., 2016; Keeling et 

al., 2021). Large-scale bark beetle infestations can have great ecological consequences 

(Fig. 3). Outbreaks can lead to extensive dieback, significantly lowering forest 

biodiversity, altering population dynamics, and disrupting nutrient flow and carbon 

cycles. Accumulated deadwood after outbreaks often increases wildfire risk by acting as 

fuel, intensifying the ecological disturbance (Allen et al., 2010). 
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Figure 3. Host selection behavior of Ips typographus on Norway spruce. Long-range 

attraction involves visual and VOC cues; short-range selection depends on tree stress 

signals. During outbreaks, aggregation pheromones trigger mass attacks (a–b), followed 

by egg laying and fungal inoculation in the phloem (c–d), adapted from Lehmanski et 

al., 2023. 

Some of the bark beetle species in the Ips genus are considered among the most 

aggressive pests, with a strong preference for conifers. Many Ips species show significant 

flexibility in their reproductive strategies, altering their voltinism (the number of 

generations per year) depending on environmental conditions. While some species are 

univoltine or bivoltine, others, particularly in North and Central America, are polyvoltine 

and may produce up to five generations annually (Wood, 1982; Byers, 2007). This 

reproductive plasticity gives them a strong advantage in warmer climates, where longer 

growing seasons and higher temperatures support faster development and higher 

population growth (Christiansen & Bakke, 1988; Raffa et al., 2016). 

Recent observations support this pattern. In parts of Central Europe, rising temperatures 

have enabled I. cembrae, which was previously restricted to low-elevation forests, to 

produce up to two generations per year (Byers, 2007). At the same time, I. typographus 

is expanding its range into higher-elevation forests, formerly less suitable for its 

development. Warmer temperatures facilitate increased voltinism, which is closely 

associated with this ascending trend (Keeling et al., 2021). These variations imply that, 

in addition to making bark beetle outbreaks more severe, climate change is also making 
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it possible for them to spread into previously unsuitable environments, which could have 

long-term effects on the management and health of forests. 

2.4. Bark beetle chemical communication 

Chemical communication is central to bark beetle ecology, mediating crucial behaviors 

such as host selection, aggregation, mating, and avoidance of unsuitable host trees. These 

beetles primarily use volatile organic compounds (VOCs) emitted by trees to assess host 

identity, physiological conditions, and stress status (Jirošová et al., 2022a; Moliterno et 

al., 2023). Host-emitted volatiles act as attractants, guiding beetles toward weakened or 

susceptible trees. In contrast, non-host volatiles (NHVs), typically released by deciduous 

trees, function as repellents, helping beetles avoid unsuitable trees and boosting host 

specificity in mixed-species forests (Zhang and Schlyter, 2004, Fig.4). 

Figure 4. Schematic representation of I. typographus host location and acceptance 

behaviour. The process shows from long-range dispersal to host entry, integrating 

olfactory signals from host volatiles, non-host volatiles (NHVs), beetle pheromones, and 

fungal associates. Adapted from Netherer et al. (2021). 

In addition to host- and non-host volatiles, bark beetles respond to chemical signals from 

their symbiotic fungi, mainly ophiostomatoid species, which colonize host tissues 

following beetle entry. These microbial VOCs influence beetle behavior by enhancing 

aggregation and signaling successful colonization, further supporting beetle development 

within the host (Jirošová et al., 2022b; Kandasamy et al., 2019, 2023). At the same time, 
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anti-aggregation pheromones help regulate colonization density by signaling resource 

saturation, thus reducing competition and overexploitation of host resources (Frühbrodt 

et al., 2024). 

Beetles also respond to volatiles produced by other bark beetle species and their 

associated microbes. This broader and complex network of interspecific chemical 

signaling likely reflects the ecological complexity of forest environments, where multiple 

species interact and compete within shared habitats (Andersson et al., 2009; Schiebe et 

al., 2019; Yuvaraj et al., 2024).  

2.4.1. Aggregation Pheromones in Ips Bark Beetles 

Aggregation pheromones are central to the successful colonization strategy of Ips bark 

beetles. In Ips bark beetles, pioneering males release aggregation pheromones during the 

initial phase of host colonization. These compounds attract both sexes to the same tree, 

enabling coordinated mass attacks to overcome the tree's defenses. These same 

pheromones also act as mating signals, enhancing reproductive success alongside 

colonization efficiency. 

The first bark beetle pheromones identified, i.e., ipsenol, ipsdienol, and cis-verbenol, 

were isolated from I. paraconfusus (Silverstein et al., 1966). Their structures are similar 

to host-derived monoterpenes such as myrcene and α-pinene, suggesting beetles may 

synthesize these pheromones from tree-derived precursors (Hughes, 1973, 1974, Fig.5). 

This metabolic link reflects the close ecological association between pheromone 

signaling and host volatile chemistry. 

Figure 5.  Chemical structures of major Ips pheromones (ipsenol, ipsdienol, and cis-

verbenol) and their proposed precursors myrcene and α-pinene from conifer 

monoterpenes. Adapted from Keeling et al. (2021). 
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Most Ips pheromones are oxygenated hemi- and monoterpenes that closely resemble the 

resin compounds of their conifer hosts. Some of the components include ipsdienol, 

ipsenol, E-myrcenol, amitinol, and cis-verbenol, as well as byproducts like lanierone and 

3-methyl-3-buten-1-ol (Byers, 2007; Cognato, 2015). Despite the limited number of 

structural components, species-specific pheromone blends have variations through 

differences in overall composition, relative concentration, and stereochemistry, 

especially enantiomeric ratios (Cognato, 2015; Keeling et al., 2021). Even minor 

variations in enantiomeric ratios minimize cross-attraction between sympatric species 

and contribute to reproductive isolation within the Ips genus (Table 3). 

2.4.2. Enantiomeric Specificity of Ips aggregation pheromones 

Many pheromone components used by Ips spp. exist in enantiomeric forms, with species 

often showing strict preferences for specific stereoisomers. These preferences are critical 

for maintaining species recognition and reproductive isolation, especially in habitats 

where multiple Ips species co-occur and where similar compounds may be shared. For 

example, most Ips species rely predominantly on (S)-(−)-cis-verbenol and (S)-(−)-ipsenol 

as main aggregation pheromone components (Byers, 2007), while their response to the 

opposite enantiomers is much weaker or entirely absent. Ipsdienol, another component, 

shows significant variability in its enantiomeric ratios between different species (Table 

3). In particular, the enantiomeric ratio of ipsdienol varies among species and sometimes 

even in populations within the same species, highlighting its role in prezygotic isolation 

(Byers & Levi-Zada, 2022). 

2.4.3. Host Tree Volatiles and Bark Beetle Attraction 

The volatile organic compounds (VOCs) emitted by host trees play a fundamental role 

in guiding bark beetles towards suitable habitats. These airborne signals can help beetles 

navigate in the environment. In Ips typographus, for example, host trees such as Norway 

spruce (Picea abies) emit common monoterpenes, including α-pinene, β-pinene, 

limonene, and β-phellandrene, all of which are known attractants (Hulcr et al., 2006; 

Netherer et al., 2021).  Recently, studies have identified oxygenated monoterpenes, 

though present in trace amounts (less than 1% of total emissions), for their exceptionally 

strong influence on beetle behavior. Compounds like isopinocamphone and 1,8-cineole 

elicit strong antennal responses and appear central as short-range host acceptance cues 

(Kalinová et al., 2014; Schiebe et al., 2019). These volatiles are regularly linked with 
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stressed or recently felled trees, making them markers for host targeting. They are 

produced not only from the host tree but also from fungal symbionts, adding further 

complexity to the chemical interface between beetles and their environment (Celedon & 

Bohlmann, 2019; Kandasamy et al., 2023). 

2.5. Bark beetle outbreak control and management 

One of the main challenges is controlling bark beetle outbreaks across large forest 

landscapes. Traditional techniques, such as applying pesticides, are typically used 

cautiously because of their impracticality. Environmental problems, legal limits 

(particularly in the EU), and potential effects on non-target organisms render them 

unsuitable for landscape-level control, despite their potential effectiveness in high-value 

or local small-scale environments (Hlásny et al., 2021). 

On the other hand, semiochemical-based approaches, especially those involving 

pheromones, offer more directed and eco-friendly alternatives. Aggregation pheromone 

composition has been identified in more than 20 Ips species, which include some of the 

most economically important pests (El-Sayed, 2025). Nonetheless, most pheromone-

based approaches have been directed at monitoring rather than active population control. 

Semiochemical-based techniques often yield inconsistent results when used alone, 

especially under outbreak conditions. Their efficacy varies greatly depending on location 

characteristics, beetle population density, and the presence of competing attractants or 

host material. To improve efficiency, pheromone-based methods can be combined with 

silvicultural practices, such as thinning and sanitation harvesting, that reduce host 

availability and improve forest resistance (Lubojacký et al., 2014; Gallo et al., 2020; 

Table 1). This integrated approach is increasingly favored in forest health strategies, 

balancing ecological considerations with operational feasibility. 

Modern forest pest management is based on this integrated approach, representing an 

increasing trend toward multidimensional, environmentally based tactics. These 

techniques seek to strike a compromise between environmental sustainability and 

controlling outcomes, especially because of the growing rate of climate change and the 

rise in disturbance regimes. 

 

 



34 
 

Table 1: Overview of current control strategies: effectiveness and limitations 

Strategy Effectiveness Challenges References 

Silviculture 

(thinning, sanitation) 
Moderate 

Requires timely detection 

and proactive action 

Gallo et al., 2020; 

Holuša and Fiala 2025 

Pheromone-based 

(mass trapping, push–pull) 
Variable 

Site- and species-specific 

outcomes; deployment 

complexity 

Lubojacký et al., 2014, 

Jakuš and Zhang, 2003, 

Deganutti et al., 2024 

Biological control 

(predators, 

entomopathogens) 

Limited 
Not fully scalable; mixed 

success in field trials 

Hajek and Delalibera, 

2010, Mann and Davis, 

2021 

Insecticides 

(Last option, banned in 

Europe) 

Localized 

effectiveness 

Environmental impact; 

non-target risk 

Gillete and Fettig et al., 

2021 

 

2.5.1. Mass Trapping ("Attract-and-Kill") 

Pheromone-baited traps or trap trees are used in mass trapping to draw in and catch bark 

beetles before they infest living hosts.  This approach can lower local beetle populations, 

but its effectiveness has been inconsistent, especially in small-scale applications or the 

early stages of epidemics (Byers, 2007; Lubojacký et al., 2014).  Its efficiency, however, 

varies greatly depending on the situation and is affected by beetle pressure, trap density, 

and spatial arrangement.  Inadequate implementation may unintentionally draw in 

additional beetles without successfully eliminating them, raising the possibility of 

infestation.  Another issue is non-target by-catch, since traps can collect beneficial insects 

like pollinators and predators (Brockerhoff et al., 2023). For large-scale control, mass 

trapping is therefore rarely enough. It works best when combined with insecticides, 

repellents or silvicultural techniques as part of an integrated pest management (IPM) 

approach to improve overall efficacy and ecological compatibility. 
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2.5.3. Anti-Aggregation Signals 

Anti-aggregation pheromone derivatives, such as verbenone, non-host compounds, or 

defensive compounds from conifers (Schiebe 2011), serve as chemical repellents, 

preventing beetles from further colonization of already attacked or healthy trees. These 

“push” cues are useful in controlling beetle density and protecting uninfested hosts. 

While such compounds have shown promising efficacy in some Dendroctonus species, 

their use in Ips beetles is still under development (Schebeck et al., 2024). One main 

limitation is that push-only strategies can relocate beetles to untreated areas, especially 

in fragmented forests or under high beetle pressure. Improving cost-effectiveness and 

application precision will be important steps toward broader implementation. 

Nonetheless, anti-aggregation signals are a promising part of integrated pest 

management. Ongoing research aims to improve utilization strategies, improve 

compound formulations, and evaluate context-specific outcomes to support more reliable 

and sustainable bark beetle control (Frühbrodt et al., 2024).  

2.5.4. Push-Pull Strategy 

The push–pull strategy combines repellent cues (“push”) with attractive pheromones 

(“pull”) to divert bark beetles away from vulnerable trees and toward traps or baited trap 

trees. This technique has proven effective in North American species like Ips 

paraconfusus and Ips pini by disrupting host colonization (Byers & Levi-Zada, 2022). In 

Europe, similar approaches using anti-attractants with pheromone traps or trap trees show 

promise for Ips typographus management (Jakuš et al., 2022; Lindmark et al., 2022). 

However, their efficacy declines under high beetle pressure or during severe drought, 

when stressed trees become more attractive despite repellent cues (Deganutti et al., 2024; 

Keeling et al., 2021). Additionally, success depends on factors such as the timing, spatial 

deployment, and release rates of semiochemicals and the surrounding landscape 

structure. 

Despite these drawbacks, push-pull tactics are valued for their flexibility and low 

environmental impact. Together with silvicultural practices, they improve the overall 

resilience of forests and could provide effective alternatives for chemical pesticides in 

environmentally vulnerable locations (Keeling et al., 2021). 
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2.5.5. Toward Integrated Pest Management (IPM) 

Multilayered approaches are needed to manage bark beetle epidemics effectively over 

the long run. IPM aims to minimize environmental damage while achieving sustainable 

control by combining ecological, behavioral, and silvicultural techniques. Pheromone-

based strategies, including mass trapping or push-pull techniques, work best when 

combined with habitat changes, thinning, or sanitation harvesting (Gallo et al., 2020). 

Biological control remains limited despite its potential due to its uneven field results and 

application issues. Similarly, insecticides are now rarely used in Europe due to 

environmental regulations and concerns over non-target effects (Gillete and Fettig et al., 

2021). IPM acknowledges that no single strategy works alone. Early identification, site-

specific adaptability, and the capacity to combine complementary approaches are 

ultimately essential for success. Continued research into species-specific behavior, 

olfactory ecology, and ecosystem interactions will be essential for developing resilient, 

adaptive forest pest management strategies. 

2.6. Insect olfactory system 

Olfaction plays a fundamental role in the lives of insects, guiding them in essential 

behaviors like finding hosts, locating mates, avoiding predators, and selecting habitats. 

These tiny creatures depend on volatile chemical signals to navigate in their complex 

ecological landscapes.  

These signals can come from various sources, including plant-emitted volatiles, 

pheromones, associated microbes, and even volatiles released by their predators or 

natural enemies (Visser, 1986; Bruce & Pickett, 2011). The process of olfactory detection 

starts at the periphery (Fig. 6). Airborne odor molecules diffuse via porous, specialized 

structures called sensilla.  These sensilla are predominantly located on the antennae 

(Hallberg, 1982a) and sometimes on mouthparts and other appendages (Hallberg, 

1982b). Inside each sensillum, olfactory sensory neurons (OSNs) detect and process 

these odorants.  The dendritic membranes of OSNs contain membrane-bound 

chemoreceptors: primarily odorant receptors (ORs) (Clyne et al., 1999), ionotropic 

receptors (IRs) (Benton et al., 2009), and occasionally gustatory receptors (GRs) 

(Wicher, 2018). These receptors convert chemical signals into neural impulses that travel 

to the antennal lobes and are further interpreted by the brain (Martin et al., 2011), leading 

to behavior (Andersson et al., 2015). 
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The insect olfactory system is both evolutionarily conserved and ecologically diverse. 

The insect olfactory system is often finely tuned to meet the specific needs and behaviors 

of different insects. Given the ecological importance of olfaction, insect olfactory 

systems have evolved remarkable diversity and sensitivity, adapting to the specific needs 

and habitats of different species (Hansson & Stensmyr, 2011; Carraher, 2015). 

2.6.1. Olfactory Organization in Bark Beetles 

Bark beetles rely heavily on their sense of smell to find suitable hosts and coordinate 

aggregation and mass-attack. Their primary olfactory organs, the club-shaped antennae 

(Payne et al., 1973), are densely covered with porous sensilla, each housing OSNs tuned 

to detect volatiles from host trees, conspecifics, and symbiotic fungi (Hansson & 

Stensmyr, 2011; Fig. 6). These sensilla contain one to three olfactory sensory neurons 

(OSNs) placed in a lymph-filled chamber. Odorant molecules pass through tiny pores on 

the sensillum surface and are transported by odorant-binding proteins (OBPs) to 

receptors on the dendritic membranes of olfactory sensory neurons (OSNs).  

Figure 6. Peripheral olfactory system in I. typographus. (A) Adult beetle with antennae. 

(B) SEM image of antennal club showing sensory bands A–C. (C) Structure of an 

olfactory sensillum with two OSNs. (D) Schematic of odor detection: odorants enter via 
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pores, are transported by OBPs, and activate OR-ORCO complexes to trigger neural 

signals. Adapted from Ramakrishnan et al., unpublished. 

Each OSN is functionally tuned, with some acting as specialists, responding only to a 

narrow range of compounds (e.g., specific pheromone enantiomers), while others 

function as generalists, reacting to broader sets of structurally related volatiles (Hallem 

& Carlson, 2006; Binyameen et al., 2014). This balance between precision and flexibility 

allows beetles to discriminate among complex odor blends in dynamic environments. 

OSNs express different classes of chemoreceptors, including odorant receptors (ORs) 

(Clyne et al., 1999) that detect host volatiles and pheromones, ionotropic receptors (IRs) 

that respond to acids and amines, and gustatory receptors (GRs) which are typically 

associated with taste but also implicated in CO₂ and bitter odorant detection (Clyne et 

al., 2000; Wicher, 2018; Fig. 7). ORs tend to function together with a co-receptor, ORCO, 

to form ligand-gated ion channels. These receptors generate action potentials that initiate 

the olfactory signal cascade upon activation. 

Figure 7. Schematic overview of insect chemosensory receptor classes and peripheral 

olfactory signal transduction. ORs, IRs, and GRs form the molecular basis of odor 

detection, translating chemical signals into electrical activity in OSNs. Adapted from 

Pask & Ray (2016). 

OSNs in bark beetles exhibit variable specificity, ranging from specialists that are highly 

selective neurons tuned to specific pheromones or enantiomers to generalists that respond 

to broader environmental cues (Hallem & Carlson, 2006; Carey et al., 2010). Specialist 

OSNs detect sex pheromones at extremely low concentrations, capable of enantiomeric 

discrimination (Wojtasek et al., 1998). Generalist OSNs are typically tuned to host 
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volatiles and non-pheromonal cues, playing a role in host selection (Andersson et al., 

2010; Binyameen et al., 2014). Together, this diversity supports both precise pheromone-

mediated behaviors and flexible environmental sensing. 

The organization of sensilla and OSNs is not random. In Ips species, the antennal club 

contains three distinct sensory bands (A, B, and C), each having specific sensillum types 

(Hallberg, 1982a; Shewale et al., 2023). These bands are densely populated with 

olfactory sensilla. OSNs within these sensilla vary in tuning breadth, with narrowly tuned 

OSNs responding selectively to host volatiles or pheromones, while some neurons 

exhibit broader tuning, reacting to structurally related compounds (Andersson et al., 

2009; Kandasamy et al., 2019, 2023). This highly tuned system enables bark beetles to 

respond with great specificity to environmental cues, discriminating between tree species 

and physiological status and between pheromone enantiomers and microbial volatiles. 

2.6.2. Structure and Function of the Antennae 

Antennae are the main olfactory sensory organs in Ips bark beetles (Hallberg, 1982a; 

Faucheux, 1989, 1994). The appendages are abundantly equipped with sensilla-carrying 

sensory neurons that detect chemical, mechanical, thermal, and humidity stimuli 

(Hallberg, 1982; Faucheux, 1989, 1994; Hallberg et al., 2003). The antennal surface is 

dominated by olfactory sensilla responsible for host volatile and pheromone detection. 

Additional sensory modalities are supported by mechanoreceptors and thermoreceptors 

within the antennae. In certain behavioral contexts, particularly during host evaluation or 

oviposition, secondary sensory organs such as maxillary palps and ovipositors may also 

contribute to chemical perception (Payne et al., 1973; Hallberg, 1982b). 

2.6.3. Sensilla types and functional diversity 

The diversity of sensilla on bark beetle antennae reflects their ecological specialization 

and chemical sensitivity. Each sensillum is a small, morphologically distinct structure 

with specific functional roles, enabling beetles to detect a wide range of semiochemicals. 

Olfactory sensilla are central to odor detection (Schneider, 1964). Their morphological 

diversity is closely linked to functional specialization, enabling insects to discriminate 

among the various chemical cues (Hallberg et al., 2003). Among the most common 

sensilla are sensilla trichodea, elongated, hair-like, which are involved in pheromone 

detection. Sensilla basiconica are generally shorter and peg-like, highly sensitive to host 
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and food-related volatiles. These two types dominate the antennal surfaces in many Ips 

species and house most OSNs (Hallberg et al., 2003; Shewale et al., 2023; Fig. 8). 

Figure 8. Scanning electron micrograph showing I. typographus antennae showing 

major types of olfactory sensilla. Labeled structures include sensilla trichodea (TR), 

sensilla basiconica (BA), and sensilla chaetica (CH). Adapted from Shi et al. (2021). 

Other sensilla types, although not strictly olfactory, contribute to the insect’s broader 

sensory perception. Sensilla coeloconica are peg-like, double-walled structures that 

detect amines, carboxylic acids, ammonia, and humidity (Yao et al., 2005; Prieto-Godino 

et al., 2017). Sensilla chaetica are mechanosensory and gustatory, largely involved in 

tactile and taste perception. Sensilla styloconica and sensilla ampullacea are typically 

associated with thermoreception and hygroreception, allowing the insect to sense 

temperature and humidity changes (Ruchty et al., 2010; Schneider et al., 2018). Böhm’s 

bristles are located near the antennal base, show mechanoreceptive function, and respond 

to antennal movement and wind flow. This structural and functional diversity allows bark 

beetles to process complex chemical landscapes with high specificity, combining cues 

related to host tree identity, condition, and interspecies interactions (Suh et al., 2014; 

Pelosi et al., 2018). 
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While antennal sensilla have been well-characterized in species like I. typographus, I. 

sexdentatus, I. pini, and I. subelongatus, detailed studies on I. duplicatus remain limited 

(Payne et al., 1973; Hallberg, 1982a; Faucheux, 1989). Investigating sensilla distribution 

and morphology in this species is critical for understanding its olfactory perception and 

host selection mechanisms. 

2.6.4. Central Olfactory Processing in Bark beetles 

When odor molecules are detected by OSNs on the antennae, they are transmitted to the 

antennal lobes (ALs), the primary olfactory center of the insect brain. There, OSN 

axons target specialized structures called glomeruli, which are separate processing units 

for individual odorants (Vosshall et al., 2000; Gao et al., 2000). OSNs that share a 

receptor type send input to a given glomerulus, and the antennal lobe thereby spatially 

translating odor quality and intensity. Output from the processed information in the 

antennal lobes is sent via projection neurons (PNs) to higher-order brain regions. These 

include the mushroom bodies (MBs), which mediate learning, memory, and decision-

making, and the lateral horn (LH), which controls more reflex and instinctual behaviors 

(Galizia, 2014; Clark & Ray, 2016). 

This neural structure allows bark beetles to combine olfaction-based data with other 

sensory modalities, like visual or mechanosensory information, thereby allowing 

context-dependent behavioral responses. It also enhances the capacity for odor 

discrimination with high accuracy, showing the capacity to discriminate between 

pheromone enantiomers or slight differences in the volatile organic compound profiles 

of the host trees. Understanding this critical processing system is crucial to understanding 

how to correlate peripheral olfactory perception with behavioral response. Additionally, 

it provides valuable insights into the mechanisms by which bark beetles make rapid, 

ecologically relevant decisions in chemically complex environments (Raffa et al., 2016).  

2.7. Influence of Beetle Size on Behavior 

Bark beetle body size is a key trait that determines behavior, reproductive success, and 

olfactory sensitivity. It is determined by developmental conditions, especially resource 

quality and competition in the host, and is both interspecific and intraspecific, sometimes 

even brood-specific. In I. typographus, it can influence the beetle host location, responses 

to pheromone, and reproductive success (Foelker & Hofstetter, 2014; Dacquin et al., 

2024).   
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Small males, often the products of inadequate larval nutrition or high brood densities, are 

typically associated with diminished aggregation pheromone production. This also 

consequently lowers their attractiveness to females and their capacity for inducing mass 

attack, thereby removing mating success and offspring quality (Anderbrant et al., 1985; 

Pureswaran & Borden, 2003). Dominant males, on the other hand, produce more 

pheromones and have better chances of acquiring mates in polygynous systems like that 

of I. typographus (Schebeck et al., 2023). 

Female beetles also have size-dependent differences in behavior. The larger females are 

more selective in host and mate choice and respond more strongly to semiochemicals 

(Müller et al., 2020). As the primary task of constructing maternal galleries relies on 

females, their host selection choice directly affects larval survival and development. 

Overall, intraspecific size variation adds yet another aspect of complexity to bark beetle 

olfactory ecology. Besides impacting signal production and detection, it influences 

ecological strategies, including competition, reproduction, and host use. 

2.8. Olfactory Systems and Sensory Perception in Ips typographus 

Ips typographus is the most economically important forest pest in Europe, being the 

primary pest of P. abies (Norway spruce). In the past decade alone, it has been 

responsible for losing over 70 million cubic meters of spruce timber on the continent 

(Hlásny et al., 2021).  

Male beetles are pioneers, using a combination of visual and chemical cues to locate 

physiologically stressed trees. Once a host is located, the male bores into the bark and 

releases aggregation pheromones, such as (−)-cis-verbenol and 2-methyl-3-buten-2-ol, 

which attract conspecifics and lead to mass attacks (Franceschi et al., 2005; Raffa et al., 

2016). This strategy enables beetles to overcome tree defenses and colonize (Schebeck 

et al., 2023). The role of the female is also equally crucial. Females construct maternal 

galleries and inoculate symbiotic ophiostomatoid fungi, which assist in overcoming tree 

defenses and provide a source of nutrition to the developing larvae (Paynter et al., 1990; 

Kandasamy et al., 2023). 
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Figure 9. Basic electrophysiological setup for recording bark beetle OSN responses to 

semiochemicals using SSR or EAG. Adapted from Schiebe (2012).  

Electrophysiological studies have revealed a remarkably varied repertoire of olfactory 

sensory neurons (OSNs) in I. typographus, comprising at least 26 functionally different 

classes of OSNs (Fig. 9; Table 2 for identified OSN classes in I. typographus). They are 

spatially distributed across the entire antennal club and are selectively tuned to various 

stimuli. Some neurons respond strongly to oxygenated monoterpenes such as 1,8-cineole 

and (+)-isopinocamphone, which are linked to host stress and may enhance pheromone 

signaling. Others are tuned to fungal volatiles or green leaf volatiles (GLVs), supporting 

host selection and reproductive isolation. Refer to Table 1: OSN classes in I. typographus 

and their response profiles. One of the first electrophysiological studies suggests that I. 

typographus can distinguish between enantiomers of key compounds, supporting high 

olfactory decision-making (Tömmerås 1985). This capacity likely underpins both mating 

specificity and host discrimination. Field experiments have further demonstrated that I. 

typographus can spatially distinguish between these compounds, highlighting the 

beetle’s refined olfactory discrimination abilities (Binyameen et al., 2014). Its thoroughly 

characterized OSN map and behavioral responses offer a standard against which to 
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compare other Ips species and determine both conserved and species-specific features of 

bark beetle chemoreception. 

Table 2: Identified OSN classes in I. typographus and their responses to ecologically 

relevant chemical compounds from different sources (Modified from Raffa et al., 2016 and 

updated to recent findings)  

OSN 

classes 

Biological 

sources 

OSN class 

(Primary responses) 

OSN class 

(Secondary responses) 

References 

1.  Beetle (−)-cis-Verbenol (−)-Verbenone 

(±) camphor 

(Andersson et al. 2009; 

 Schiebe et al. 2019) 

2.  Beetle Ipsenol (±) ipsdienol (Tömmerås 1985) 

3.  Beetle Ipsdienol A and B (±) ipsenol, 

aminitol 

(Andersson et al., 2009) 

4.  Beetle 2-methyl-3-buten-2-ol Aminitol 

2-methyl-1-butanol 

pinocarvone 

(Andersson et al., 2009; 

 Kandasamy et al., 2019) 

5.  Beetle Aminitol (±)ipsdienol (Andersson et al., 2009) 

6.  Beetle Lanierone - (Yuvaraj et al., 2024) 

7.  Beetle/fungi (−)-Verbenone (−)-trans-verbenol 

α-isophorone 

(Andersson et al., 2009; 

 Kandasamy et al., 2023) 

8.  Beetle/fungi 2-Phenylethanol 2-phenethyl acetate 

3-methyl-1-butanol 

Chavicol 

Benzyl alcohol 

(Kandasamy et al., 2019) 

9.  Host  (+)-α-Pinene  

  

(−)-β-pinene, 

(−)-cis-verbenol 

(Andersson et al., 2009) 

10.  Host Myrcene Terpinolene, 

4-terpineol 

Phenethyl acetate 

Isoamyl acetate 

(Andersson et al., 2009; 

 Kandasamy et al., 2019;  

Schiebe et al., 2019) 

11.  Host p-cymene (±) limonene, 

∆3-carene 

(+) borneol 

Terpinolene 

γ-terpinene 

(±)-Carvone 

(Andersson et al., 2009; 

 Schiebe et al., 2019) 
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12.  Host 1,8-cineole (±)chalcogran,       

trans-conophthorin 

(Andersson et al., 2009) 

13.  Host ∆3-carene trans-conophthorin, 

(±)exo-brevicomin, 

methyl-2,4-decadienoate 

(Andersson et al., 2009) 

 

14.  Host Pinocarvone (−)-β-pinene 

(±) camphor 

4-allylanisole (estragole) 

(Schiebe et al., 2019) 

15.  Host/fungi Estragole ? (Raffa et al., 2016) 

 

16.  Host/fungi (+)-trans-4-thujanol Terpine-4-ol 

3-octanol 

(Kandasamy et al., 2023; 

 Schiebe et al., 2019) 

17.  Host/fungi (+) isopinocamphone (+)-pinocamphone (Kandasamy et al., 2023) 

18.  Non-host GLV-OHs  

(green leaf volatile alcohols) 

1-Hexanol 

(E)-2-Hexenol 

(Z)-3-Hexenol 

2-methyl-3-buten-2-ol 

Hexanal 

(±)-1-Octen-3-ol 

E2-Hexenol 

(Andersson et al., 2009) 

19.  Non-

host/fungi 

3-octanol (−)Bornyl acetate 

(±)-1-Octen-3-ol 

(Andersson et al., 2009) 

20.  Non-

host/fungi 

 

1-octen-3-ol (±)chalcogran 

3-octanol 

(Andersson et al., 2009) 

21.  Non-

host/fungi 

(5S, 7S)-trans-conophthorin (±)chalcogran 

(±)exo-brevicomin 

(R,R)-trans-conophthorin 

Dehydro-conophthorin 

(Andersson et al., 2009;  

Unelius et al., 2014) 

22.  Non-host/ 

fungi 

Geranyl acetone Geranyl acetate (Kandasamy et al., 2019) 

 

23.  Fungi 3-Methyl-1-butanol ? ? 

24.  Fungi 2-Methyl-1-butanol ? ? 

25.  Fungi 3-Methyl-1-butyl acetate ? ? 

26.  Fungi Styrene 2-phenylethanol (Schiebe et al., 2019; 

 Kandasamy et al., 2023) 

27.  Fungi 2-Phenethyl acetate ? ? 

?: Responses not yet identified/unknown. 
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2.9. Study species 

2.9.1. Ips duplicatus (Double-Spined Bark Beetle) 

Ips duplicatus is a secondary bark beetle species primarily associated with Norway 

spruce (P. abies), though it occasionally occurs in other coniferous hosts. Originally 

distributed in areas like Fennoscandia, Siberia, and East Asia, its range has extended 

southward over time into Central Europe, where it often occurs together with I. 

typographus, particularly in spruce stands at higher elevations (Holuša et al., 2010; 

Wermelinger et al., 2020).  

Unlike I. typographus, I. duplicatus generally infests the upper sections of affected trees 

(Schlyter and Anderbrant, 1993) or residual wood debris after harvest. Its subtle 

infestation patterns, in shaded locations or inner parts of stands, often preclude early 

detection and confuse management strategies (Davídková et al., 2023). However, it can 

substantially contribute to spruce mortality under outbreak conditions, especially when 

present with I. typographus in mixed infestations (Kasák & Foit, 2015; Knízek et al., 

2019). 

Males produce aggregation pheromones with a structure similar to other Ips species, and 

beetles utilize host volatiles of stressed trees (Schlyter et al., 1992; Zhang et al., 2007). 

The species remains underinvestigated in terms of antennal morphology and OSN 

diversity. Little has been reported regarding its sensilla organization or functional 

olfactory tuning, highlighting the primary knowledge gap. Knowledge of I. duplicatus 

olfactory biology is critical for developing species-specific monitoring tools and 

elucidating olfactory adaptations among sympatric Ips species that occupy equivalent 

ecological niches. 

2.9.2. Ips acuminatus (Pine Bark Beetle) 

The pine bark beetle, Ips acuminatus, is a common secondary pest of Scots pine (Pinus 

sylvestris) across European forests (Liška et al., 2021; Papek et al., 2024). While it mostly 

colonizes stressed or felled trees, climate change, especially heat stress and droughts, has 

increased the number of susceptible hosts, adding outbreak potential (Wermelinger et al., 

2008; Thabeet et al., 2009). This species coexists with other pine bark beetles, including 

I. sexdentatus, Tomicus piniperda, and Tomicus minor, but exhibits distinct microhabitat 

preferences. 



47 
 

 Ips acuminatus inhabits the upper sections of tree trunks and crowns, while I. 

sexdentatus prefers thicker lower trunks (Pfeffer, 1955; Petterson, 2000). Upon host 

location, males produce aggregation pheromones composed of S-(−)-ipsenol, S-(+)-

ipsdienol, and (4S)-cis-verbenol, which attract both sexes for mass colonization (Bakke, 

1978; Francke et al., 1986). Like its relatives, I. acuminatus is polygynous (Kirkendall, 

1989, 1990) and maintains close associations with blue-stain fungi (ophiostomatoid 

fungi), which may aid in nutrition and host degradation (Francke-Grosmann, 1965; 

Villari et al., 2012).  

Despite its ecological importance, I. acuminatus is understudied regarding olfactory 

morphology and physiology. Its antennal sensilla structure and OSN responses to host or 

fungal volatiles have not been fully characterized. This gap hinders our understanding of 

how this species navigates chemically complex pine forests and responds to 

environmental change. In this thesis, I. acuminatus will serve as a comparison to the 

well-studied I. typographus and the less characterized I. cembrae to uncover patterns of 

olfactory adaptation across host-specialized bark beetles. 

2.9.3. Ips cembrae (Larch Bark Beetle) 

The larch bark beetle, Ips cembrae, usually infests European larch (Larix decidua) and 

Japanese larch (L. kaempferi); it can also attack Norway spruce (Postner, 1974). Ips 

cembrae is generally described as a secondary pest because it infests weakened and felled 

trees, but when conditions are suitable, it can infest healthy larches as well (Grodzki, 

2008; EFSA, 2017). This bark beetle species often colonizes the entire trunk, including 

the canopy, with widespread co-occurrence with Pityogenes, Pityophthorus, and 

Cryphalus species (Pfeffer, 1955; Postner, 1974). Unlike I. acuminatus, which limits 

colonization to the crown part of the tree, I. cembrae utilizes a larger portion of its host 

and is more destructive during outbreaks. The aggregation pheromone of I. cembrae 

consists of a mix of S-(−)-ipsenol, S-(+)-ipsdienol, and 3-methyl-3-buten-1-ol that 

attracts both sexes to weakened hosts (Stoakley et al., 1978; Kohnle et al., 1988). This 

species is also known to vector the pathogenic fungus Endoconiophora laricola, which 

could accelerate host decline (Redfern et al., 1987; Kiristis, 2004; Jankowiak et al., 

2007). 

Studying the olfactory system of I. cembrae is ecologically relevant, but very little is 

known about this species. The antennal sensillum types and their OSN responses have 
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not been reported, making I. cembrae one of the least studied Ips species in 

chemosensory biology. Given the increasing importance of this species in larch forest 

dynamics, this species presents a valuable model for studying the divergence and 

specificity of olfactory coding in bark beetles (Table 3 for details on selected species). 

Table 3: Ips species aggregation pheromone blends compositions including 

enantiomeric ratio of components and host distribution. From Ramakrishnan et al., 

unpublished manuscript. 

 

Species Pheromone composition Enantiomeric ratio 

of pheromone 

components 

Host/ Distribution 

region 

Ips duplicatus 

(C.R. Sahlberg, 

1836) 

ipsdienol:E-myrcenol 

5:1:0.01  

 

ipsdienol  

(S)-(+)-:(R) -(−)- 50:50 

Picea abies (L.) H. 

Karst. 

Central Europe 

Ips typographus 

 (Linnaeus, 1758) 

2-methyl-3-buten-2-ol 

cis-verbenol 

ipsdienol 

9:1:0.1  

ipsdienol  

(S)-(+) :(R) -(−)- 

5:95   

(S)-(−)-cis-verbenol 

100 

Picea abies (L.) H. 

Karst. 

Europe and Asia 

Ips acuminatus  

(Gyllenhal, 1827) 

cis-

verbenol:ipsdienol:ipsenol 

2:5:3  

 

ipsdienol  

(S)-(+)-:(R) -(−)- 

95:5  

 

Pinus spp. (Pinus 

nigra J.F. Arnold;  

Pinus sylvestris L.),  

Europe and Asia 

Ips cembrae (Heer, 

1836) 

ipsenol:ipsdienol: 

3-methyl-3-buten-1-ol 

~ 68:28:4 

 

ipsenol  

(S)-(−)-:(R) -(+)- 

99:1 

ipsdienol 

(S)-(+)-:(R) -(−)- 96:4 

Larix spp. (L. 

decidua Mill.; L. 

kaempferi (Lamb.), 

Piea abies (Karst.) 

Europe 
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2.9.4. Current Research Gaps 

 

While there has been substantial investigation regarding I. typographus, there are still critical 

knowledge gaps for the other Ips species. The antennal morphology and olfactory sensory 

neuron profiles for I. duplicatus, I. acuminatus, and I. cembrae are understudied, limiting our 

knowledge of interspecific sensory adaptations. The role of intraspecific variability, such as 

body size, on olfactory perception is also largely unstudied. These knowledge gaps limit our 

ability to develop species-specific monitoring techniques and also limit potential ecological 

comparisons. This thesis aims to address these issues through a comparative study that includes 

morphology, electrophysiology, and behaviour across three Ips species that feed on conifers. 

 

2.9.5. Study species 

 

Our study mainly focused on four species of bark beetles, I. typographus, I. duplicatus, I. 

acuminatus, and I. cembrae, which are key conifer pests in European forests.  

  

                              

    Ips typographus                        Ips duplicatus 

 

Ips acuminatus                             Ips cembrae 
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Chapter 3: Summarized workflow of methodology 

3.1. Study Species (Collection, maintenance, and rearing) 

For Paper II, I. duplicatus were collected from infested Picea abies logs near Kostelec 

nad Černými lesy (49°59’39”, 14°51’33”, Czech Republic), maintained in rearing 

chambers at the Czech University of Life Sciences, Prague until beetles developed. After 

debarking, adult beetles were collected and stored at 4°C. Five males and five females 

were selected for SEM. 

For Paper III, I. acuminatus and I. cembrae were collected from forests near 

Rouchovany (Czech Republic) in late spring 2024. Beetles were identified in the field, 

sexed in the laboratory (Pfeffer, 1955; Zhang & Niemeyer, 1992), and reared in butterfly 

cages under controlled conditions until development (25°C Day, 19°C night, 60% RH, 

16/8 light/dark). Five males and five females from each species were selected for SEM.  

For Paper IV, I. typographus adults were obtained from ethanol-stored specimens and 

from newly emerged beetles reared under controlled conditions. For body size 

measurements, 50 undamaged beetles per replicate were randomly selected, dried at 

25°C for two hours, sexed, and measured for body length. A total of eight groups (each 

with 50 beetles) were selected from ethanol-stored individuals captured using pheromone 

alone or pheromone combined with either 1,8-cineole or (+)-isopinocamphone during 

field experiments conducted in 2019 and 2021. For antennal club measurements and 

electroantennography (EAG), only females of the F0 generation, aged approximately 

three days, were used. These individuals emerged from naturally infested Picea abies 

logs (n = 12; ~50 × 28 cm) collected in Kostelec nad Černými lesy between June and 

July 2024. Logs were placed in fine-mesh emergence cages monitored daily, and freshly 

emerged beetles were collected by hand. Only undamaged females were selected for 

further analyses. 

For Paper V, I. acuminatus and I. cembrae were again collected in 2024 from pine and 

larch hosts, respectively, in Rouchovany. Beetles were reared under identical lab 

conditions at CULS. A separate I. acuminatus population from Schönberg am Kamp 

(Austria) was reared at BOKU University and shipped to Lund University for SSR 

recordings. Adults were stored at 4°C and tested across a standard odor panel. Beetles 

from both locations were used for single sensillum recordings (SSR) and dose-dependent 



51 
 

response experiments. Each individual was screened across ten odorant stimuli during 

SSR, while separate individuals were used for each dose-response trial. 

3.2. Morphological Studies 

3.2.1. Scanning electron microscopy (SEM) analyses and sensilla categorization 

 (Paper II, III) 

Scanning electron microscopy (SEM) was used to investigate the antennal morphology 

and sensilla structures of beetles.  

Beetles were cleaned with an air blower to remove surface dirt. Antennae were dissected 

under an optical microscope (NIKON, Japan), fixed in 2.5% glutaraldehyde for 24 hours, 

post-fixed in 2% OsO4 for 4 hours, and washed twice with distilled water. The antennae 

were then dehydrated through an ethanol series (35%, 50%, 70%, 96%, 100%) for 10 

minutes at each step, and dried using a critical point dryer (Bal-Tec CPD 030). The 

samples were sputter-coated with gold (thickness: 20 nm) using a Bal-Tec SCD 050 ion 

sputter coater and observed under a JEOL JSM-IT200 scanning electron microscope and 

JEOL IT800 high-resolution SEM at 3, 5, 10, and 15 kV with a working distance of 3-5 

mm at the University of Karlova, Prague. Images were obtained using a JEOL SU3500 

scanning electron microscope at 5 kV at the FFWS Microscopy Facility, CZU Prague. 

The antennae and sensilla types, their numbers, and distribution were examined on five 

antennae from both sexes. 

The general antennal morphology of I. duplicatus, I. cembrae and I. acuminatus was 

described as per Hulcr et al. (2015). Sensilla classification was based on external 

morphological criteria such as size, shape, presence or absence of pores (Schneider, 

1964), and attachment to the cuticle (flexible vs. inflexible socket) (Nowińska & Brożek, 

2017). Further classification followed the guidelines of Chen et al. (2010), Shewale et al. 

(2023), and Schneider (1964). 

3.2.2.  Morphometric analysis (Paper IV) 

 

The total body length of adult female I. typographus was measured from the pronotum 

to the distal end of the elytra. Females ranged from 4.2 to 5.3 mm in size, with two 

categories established for further analysis: 
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1. Large females: ≥ 4.80 mm (n = 30) 

2. Small females: ≤ 4.70 mm (n = 30) 

Excised antennae were mounted on borosilicate glass slides for antennal club 

measurements and imaged using a Nikon DFK 33UX250 camera attached to a Nikon 

SMZ800N stereomicroscope. Antennal club length was measured from the apical end 

(ventral view) to the distal tip of the final antennomere, and width was determined at the 

midpoint of the club (ventral view). Measurements were conducted using IC Capture - 

Image Acquisition 4.0 software. For each individual, the average value from both the left 

and right antennae was calculated and recorded in micrometres. 

3.3. Electrophysiological studies 

3.3.1. Chemical stimuli (Papers IV & V) 

For Paper IV, electroantennography (EAG) experiments were conducted using an 

aggregation pheromone mix of 2-methyl-3-buten-2-ol (MB) and cis-verbenol (cV) in a 

10:1 ratio, along with individual compounds such as 1,8-cineole and (+)-

isopinocamphone. All chemicals were procured from Sigma Aldrich, except (+)-

isopinocamphone, which was a gift from Prof. Unelius from Linnaeus University, 

Sweden. The compounds were presented in seven doses ranging from 0.001 µg to 1000 

µg in decadic concentrations. For odor cartridge preparation, 10 µL of each odor solution, 

diluted in hexane, was applied to a 1×1 cm strip of Whatman No. 1 filter paper. The 

solvent was allowed to evaporate for 1 minute before the strip was placed into a glass 

Pasteur pipette, which served as the odor delivery cartridge for stimulation.  

For Paper V, a broader odor panel was used for screening experiments using single 

sensillum recordings, including 57 ecologically relevant compounds such as beetle 

pheromones, host and non-host volatiles, and microbial-related compounds. These 

compounds were selected based on previous studies of Ips beetles, including I. 

typographus. Stock odor solutions were prepared at 10 µg/µL in paraffin oil and diluted 

as needed. A 10 µL volume of each solution was applied to filter paper inside glass 

Pasteur pipettes. Control stimuli consisted of paraffin oil alone. Pipettes were stored at -

18°C between experiments and replaced regularly to prevent odor depletion. The 

essential oils of P. sylvestris and L. decidua were acquired from Oshadhi Ltd. (United 

Kingdom) for the GC-EAD studies. For use, the stock odor solutions (10 μg/μL) were 
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made in hexane and then further diluted. GC was directly injected with 1 μL of the 

solution for GC-EAD studies. 

3.3.2. Electroantennographic detection (EAD) Experiments (Paper IV) 

In Paper IV, electrophysiological analyses were performed on F0 female Ips 

typographus beetles, selected for their representative status in wild populations from 

natural spruce forests. Females were classified into two size categories: large (≥ 4.80 

mm) and small (≤ 4.70 mm). The beetles were immobilized at 4 °C for 5 minutes before 

dissection. 

Electroantennograms (EAGs) were recorded by excising the head and connecting two 

capillary electrodes filled with Ringer’s solution: one electrode was placed on the 

antennal club, and the other served as a reference inserted into the excised head. The 

EAG probe was connected to a pre-amplifier, and a constant stream of humidified air 

(200 mL/min) was directed over the antenna. Odor cartridges were used to deliver the 

stimuli, and responses were recorded using EAG Pro software (Syntech, IDAC-4). 

Control and odor stimuli were presented sequentially with a 1-minute interval between 

stimulations. The EAG probe was configured with a 0–32 Hz filter and a sampling rate 

of 100 Hz. Antennal responses were recorded as downward deflections in millivolts 

(mV), with response amplitudes representing antennal peak depolarizations. Ten 

biological replicates were conducted for each stimulus, and mean response amplitudes 

were calculated to assess antennal sensitivity. 

3.3.3. Gas chromatography coupled with electroantennographic detection (GC-

EAD) Experiments (Paper V) 

For Paper V, Gas chromatography was carried out using an Agilent 7890B GC system 

with an HP-5 column (Agilent Technologies, Inc.), measuring 30 m in length, 0.32 mm 

in diameter, and with a 0.25 µm film thickness. GC setup was combined with standard 

EAD setup (Syntech, IDAC-4).  For the GC-EAD analysis, beetle heads with antennae 

were mounted between glass microelectrodes filled with Ringer’s solution, following the 

procedure described by Olsson and Hansson (2013). Antennal signals were captured 

using a Universal probe (Syntech) and processed through the IDAC 2 data acquisition 

system (Syntech). Data were analyzed using GcEad software version 4.6.1 (Syntech). A 

minimum of five replicates per sample was conducted. A volatile compound was 
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considered electrophysiologically active if at least two antennal responses were detected 

in Ips acuminatus and I. cembrae. 

The column was split, with 5 m directed toward the flame ionization detector (FID) and 

1 m toward the insect antenna. At the end of the column, effluents were mixed with 

humidified air flowing at 2 L/min before being delivered to the antenna. Samples were 

introduced in splitless mode, using helium as the carrier gas at a constant flow rate of 3 

mL/min. The GC oven was programmed to start at 40 °C (held for 1 minute), ramping at 

10 °C/min to 100 °C (held for 0.5 minutes), then at 20 °C/min to 150 °C, and finally at 

40 °C/min to a final temperature of 300 °C, held for 3 minutes. The FID temperature was 

maintained at 300 °C. 

3.3.4. Single-Sensillum Recordings (SSR) (Paper V) 

To characterize the olfactory sensory neuron (OSN) response profiles in I. acuminatus 

and I. cembrae, single-sensillum recordings were performed on live adult beetles using 

established electrophysiological protocols. Individual insects were immobilized in 

modified pipette tips, exposing the head and antennae. One antenna was fixed onto a 

microscope slide using dental wax to allow stable electrode access and optimal light 

transmission. Under a light microscope at 500× magnification (NIKON), recordings were 

carried out using electrolytically sharpened tungsten microelectrodes.  

The reference electrode was inserted into the pronotum, and the recording electrode was 

precisely positioned at the base of an olfactory sensillum using a micromanipulator. 

Neural signals were amplified and digitized using an IDAC4 system (Syntech) and 

visualized in real time with AutoSpike software. A continuous flow of humidified, 

charcoal-filtered air (1.2 L/min) was directed toward the antenna, and odor stimuli were 

introduced as brief (0.5 s) pulses via a stimulus controller, mixed into the airstream at 0.3 

L/min. Odor pipettes used in the screening phase were reused under controlled 

conditions, while dose-response pipettes were freshly prepared daily to maintain stimulus 

integrity. Screening was conducted with a high-dose application (10 µg) to identify OSN 

classes based on differential spike activity. Compounds were stimulated in randomized 

order, and sufficient time was allowed between stimulations to avoid adaptation. Selected 

OSNs from each species (five classes in I. acuminatus, three in I. cembrae) were 

subsequently subjected to dose–response assays using increasing concentrations (10 pg 
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to 10 µg). This approach allowed precise assessment of OSN sensitivity and tuning 

breadth for key odorant stimuli. 

3.4. Field experiments and pheromone traps 

Field experiments for Paper IV were conducted in 2019 and 2022 to investigate the 

behavioral responses of I. typographus to semiochemical treatments under natural 

conditions. Both studies were carried out in a mature (~100-year-old) Norway spruce 

forest at the Czech University of Life Sciences research site in Kostelec nad Černými 

lesy, Czech Republic (600 m a.s.l.), a natural habitat of the target species. The 2019 

experiment took place at coordinates 49°56′02″N, 14°52′21″E, and the 2022 experiment 

at 49°55′57″N, 14°55′13″E. Each trial spanned from early June to late July, coinciding 

with peak beetle flight activity. 

Traps were deployed approximately 30 meters inside a two-year-old forest clearing and 

positioned 1.5 meters above ground on wooden poles, with a minimum spacing of 15 

meters to reduce inter-trap interference. In 2019, seven cross-vane Ecotraps (Fytofarm, 

Slovak Republic) were used in a Latin square design. Six traps were baited with three 

concentration levels (low, medium, high) of either 1,8-cineole or (+)-isopinocamphone, 

each combined with a standard pheromone blend; one trap with pheromone only served 

as a control (See Paper IV). Trap positions were rotated seven times to control for 

location effects. 

In 2022, a randomized complete block design was employed separately for the two 

compounds. Each block included four traps: three baited with varying doses of the test 

compound plus pheromone, and one control trap with pheromone alone. Trap positions 

within each block were rotated four times, and each block was replicated twice, yielding 

eight replicates per treatment. 

Captured beetles were preserved in ethanol for post-collection analyses, including 

species confirmation, sex determination, and morphometric measurements. 
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3.5.  Data interpretation and statistical analysis 

For Paper II,  

Morphometric measurements of antennal sensilla were performed using ImageJ v1.53q 

(Schneider et al., 2012). The software enabled calibration to a defined scale, allowing 

precise quantification of sensilla length and basal width (n = 10 per sensilla type per sex). 

Data were analyzed using Bonferroni multiple comparison tests in GraphPad Prism v9.0 

to assess sex-based differences in sensilla dimensions and abundance. 

In Paper IV,  

Normality and variance were tested using Shapiro–Wilk and Levene’s tests. ANOVA 

with Tukey’s post hoc tests analyzed year-wise treatment effects. Chi-square tests 

(Yates’ correction) compared female proportions. Wilcoxon signed-rank tests were used 

for paired morphometric comparisons. 

Standardized major axis (SMA) regression (R package “smatr”) was applied to log-

transformed antennal data to test allometric relationships (Jolicoeur, 1990). EAG dose-

response differences between size classes were tested using Wilcoxon tests. All analyses 

used p = 0.05. 

For Paper V,  

Neuronal activity was analyzed offline using AutoSpike v3.9 by measuring spike rates 

during the initial 0.5 seconds of odorant exposure, from which the baseline (pre-stimulus) 

activity was subtracted. Any activity recorded in response to the paraffin oil control was 

also deducted. At the screening concentration, responses below 20 Hz were deemed 

biologically insignificant. Excitatory responses were classified into intermediate (40–60 

Hz) and strong (>80 Hz) categories. Recordings of insufficient quality or neurons that 

were not fully assessed were omitted from further analysis. Data visualizations, including 

graphs and heatmaps, were produced with GraphPad Prism version 10.1.2 (GraphPad 

Software, San Diego, CA, USA). The Venn diagram was generated using InteractiVenn 

(Heberle et al., 2015). 
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Chapter 4: Results 

Subchapter 4.1: Review of aggregation pheromones and olfactory 

mechanisms in Ips bark beetles (Paper I) 

Article type and status:  

Review article (Submitted to Current Forestry Reports (under revision)) 

Based on: Ramakrishnan, R.†, Shewale, M.K.†, Strádal, J.†, Hani, U., Gershenzon, J., 

Andersson, M.N., Frühbrodt, T., Doležal, P., Jirošová, A. (2025). Aggregation 

Pheromones in the Bark Beetle Genus Ips: Advances in Biosynthesis, Sensory 

Perception, and Forest Management Applications.  

† Equal contribution as first author 

My contribution: Compiled literature on olfactory perception in Ips species, interpreted 

pheromone composition data, prepared figures and tables, and authored sections on 

antennal morphology and pheromone-based management. 

Article Summary 

This review provides an in-depth synthesis of the current understanding of aggregation 

pheromones in Ips bark beetles. It emphasizes their chemistry, biosynthetic origins, 

olfactory detection, and application in forest pest control. It includes key pest species 

such as Ips typographus, I. duplicatus, and I. cembrae, alongside others of ecological and 

economic relevance. Although this thesis did not directly investigate pheromone 

biosynthesis, this section reviews essential pathways relevant for interpreting species-

specific blends studied in Paper V. 

The review outlines the molecular structures of pheromone compounds, their 

enantiomeric specificity, and the biochemical pathways involved in their production. 

Furthermore, it discusses how olfactory sensory neurons (OSNs) detect these 

semiochemicals and their use in integrated pest management. The article also highlights 

several knowledge gaps and suggests directions for future research to improve species-

specific monitoring and control strategies. This review directly supports the primary aims 

of the dissertation by providing the theoretical framework for understanding species-

specific olfactory adaptations in conifer-feeding Ips bark beetles. It bridges the literature 



58 
 

analysis in Chapter 2 and the experimental findings presented in Chapters 4.2 to 4.5, 

guiding both the species selection and methodological choices in this thesis. Moreover, 

the insights gathered here inform future research on semiochemical-based management 

and underscore the ecological complexity of pheromone-mediated behaviors in bark 

beetles. 

4.1.1. Chemical composition of aggregation pheromones in Ips species 

Key message: Ips species use species-specific blends of structurally similar pheromones, 

with enantiomeric variation ensuring clear communication and reproductive isolation. 

In Ips bark beetles, the aggregation pheromone blends consist predominantly of a few 

structurally related compounds. However, they exhibit species-specificity through subtle 

pheromone blend ratios and enantiomeric composition variations. The most common 

pheromone components include ipsenol and ipsdienol, which are produced exclusively 

within the genus, alongside compounds such as amitinol, E-myrcenol, lanierone, and 

hemiterpenes like 2-methyl-3-buten-2-ol. Additionally, monoterpenoid alcohols such as 

cis-verbenol (a derivative of host compound α-pinene) also frequently contribute to 

aggregation pheromone blends. 

 

Figure 10: Structures of pheromone compounds from Ips species. Adapted from 

Ramakrishnan et al. unpublished manuscript. 
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Despite their structural similarities (Fig. 10), these compounds' specific combinations 

and enantiomeric configurations contribute to distinct pheromone blends for each 

species, giving them a distinct olfactory signature. These variations support reproductive 

isolation and reduce cross-attraction in sympatric environments where multiple Ips 

species co-occur. A comparative overview of pheromone compositions for nine Ips 

species is provided in Table 4 (also more details in section 2.5). 

Table 4: Aggregation pheromone blends compositions including enantiomeric ratio of 

components in selected Ips species. From Ramakrishnan et al., unpublished manuscript. 

Species Composition of pheromone Enantiomeric ratio of pheromone 

components 

Ips amitinus 

 (Eickhoff, 1872) 

ipsdienol:ipsenol:amitinol 

  4:2:4 

ipsdienol  

(S)-(+)-:(R) -(−)- 5:95 

Ips duplicatus 

(C.R. Sahlberg, 

1836) 

ipsdienol:E-myrcenol 

5:1:0,01  

ipsdienol  

(S)-(+)-:(R) -(−)- 50:50  

Ips hauseri  

(Reitter, 1895) 

ipsenol: cis-verbenol 

95:5  

(S)-(−)-ipsenol 100  

(S)-(−)-cis-verbenol 100  

Ips nitidus  

(Eggers, 1933) 

2- methyl-3-buten-2-ol: 

ipsdienol: (S)- (−)-cis-verbenol  

7:2:1  

ipsdienol  

(S)-(+)-:(R) -(−)- 74:26 

Ips perturbatus  

(Eichhoff, 1869) 

ipsdienol: cis-verbenol: ipsenol 

1:0,8:1 

 

ipsenol  

(S)-(−)-:(R) -(+)- 99:1 ipsdienol 

(S)-(+)-:(R) -(−)- 90:10 

Ips shangrila 

(Cognato & Sun, 

2007) 

ipsenol:ipsdienol: cis-verbenol 

1:5:4  

ipsdienol  

(S)-(+)-:(R) -(−)- 99:1 

(S)-(−)-cis-verbenol 100 

Ips typographus  

(Linnaeus, 1758) 

2-methyl-3-buten-2-ol 

cis-verbenol 

ipsdienol 

9:1:0,1  

ipsdienol  

(S)-(+) :(R) -(−)- 5:95   

(S)-(−)-cis-verbenol 100 

Ips acuminatus      

 (Gyllenhal, 1827) 

cis-verbenol:ipsdienol:ipsenol 

2:5:3  

ipsdienol  

(S)-(+)-:(R) -(−)- 95:5  

Ips confusus   

(LeConte, 1876) 

ipsenol:ipsdienol 

9:1  

ipsenol (S)-(−)-:(R) -(+)- 99:1 

ipsdienol (S)-(+)-:(R) -(−)- 95:5 

Ips grandicollis  

 (Eichhoff, 1868) 

ipsenol  ipsenol (S)-(−)-:(R) -(+)- 99:1  

Ips lecontei  

(Swaine, 1924) 

ipsdienol:ipsenol 

2:1  

Ipsdienol (S)-(+)-:(R) -(−)- 95:5  

ipsenol (S)-(−)-:(R) -(+)- 99:1 
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Ips paraconfusus 

 (Lanier, 1970) 

ipsenol:ipsdienol: 

cis-verbenol 

1:1:0,1 

 

(S)-(−)-cis-verbenol 100 

ipsenol (S)-(−)-:(R) -(+)- 99:1 

ipsdienol (S)-(+)-:(R) -(−)- 90:10 

Ips pini 

 (Say, 1826) 

ipsdienol: lanierone 

99:1  

Ipsdienol (S)-(+)-:(R) -(−)- 35:65  

ipsdienol† (S)-(+)-:(R) -(−)- 95:5  

Ips sexdentatus  

(Börner, 1776) 

ipsdienol:ipsenol  

1:0,5   

Ipsdienol (S)-(+)-:(R) -(−)- 50:50 

 

Ips cembrae 

 (Heer, 1836) 

ipsenol:ipsdienol: 

3-methyl-3-buten-1-ol 

~ 68:28:4 

ipsenol (S)-(−)-:(R) -(+)- 99:1 

ipsdienol (S)-(+)-:(R) -(−)- 96:4  

Ips subelongatus 

 (Motschulsky, 

1860) 

ipsenol: ipsdienol:3-methyl-3-

buten-1-ol 

3:1 

ipsenol (S)-(−)- 100 

ipsdienol (S)-(+)-:(R) -(−)- 96:4  

Ips avulsus   

(Eichhoff, 1868) 

ipsdienol:lanierone 

10:1 [91] 

Ipsdienol (S)-(+)-:(R) -(−)- 96:4 

(Texas)  

Ipsdienol (S)-(+)-:(R) -(−)- 75:25 

(Alabama) 

†Ratio varies within eastern and western populations 

 

4.1.2. Pheromone biosynthesis and regulatory mechanisms 

Key message: Pheromone production is hormonally regulated and involves both beetle 

enzymes and microbial symbionts, reflecting a complex biosynthetic network. 

This section discusses the biochemical and molecular pathways through which Ips 

beetles produce aggregation pheromones. Two primary biosynthetic origins are 

described as follows: 1) de novo biosynthesis through the mevalonate pathway, and 2) 

from host compounds, like α-pinene. The former occurs mainly in the gut and fat body, 

with hormonal regulation through juvenile hormone III and several enzymes.  

Hormonal regulation of this pathway permits species- and sex-specific pheromone 

output. In most Ips species, the site of pheromone production is limited to the gut where 

biosynthetic activity is initiated when the insect feeds. At the same time, juvenile 

hormone III (JH III) appears to be the primary regulator of pheromone synthesis and has 

a major role in triggering pheromone biosynthesis, metabolism, and release.  
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Interestingly, some of the pheromone compounds, such as (S)-cis-verbenol, which is part 

of several species' pheromone signaling systems, is not produced de novo, but is instead 

formed through the hydroxylation of α-pinene. This is done by cytochrome P450 

monooxygenases (CYP450s), indicating that pheromone production may have developed 

as an evolutionary extension of host terpenes detoxification (Figure 10, see earlier section 

4.1.1). 

Beyond endogenous biosynthesis, there is also the potential for both gut-resident 

microbes and exosymbiotic fungal symbionts to influence or contribute to the pheromone 

profile produced by bark beetles. For example, antibiotic inhibition studies have 

suggested that gut microbiota can convert host compounds into active pheromones. 

Examples of fungal associates, Grosmannia penicillata and Endoconidiophora polonica, 

were shown to produce compounds such as 2-methyl-3-buten-2-ol and brevicomin from 

wood substrates (i.e., implicating fungi in semiochemical signaling). 

4.1.3. Olfactory detection and sensory specialization in Ips 

Key message: Ips bark beetles detect pheromones using finely tuned sensory systems 

that enable species-specific mate and host recognition under complex forest 

environments. 

This subsection summarizes advances in our understanding of how Ips beetles detect 

pheromone signals using specialized olfactory sensory neurons (OSNs) located in 

antennal sensilla. While antennal morphology in Coleoptera has generally received less 

focused research attention than in Lepidoptera, recent investigations of I. typographus 

have greatly advanced our understanding of beetle chemosensation. Multiple classes of 

OSNs have been identified, with responses selective to particular key pheromone 

components, including their enantiomers. These OSNs are organized into two 

functionally distinct classes: some are narrowly tuned to specific pheromone compounds, 

and the other class is much more broadly tuned. This OSN function reflects the ecological 

needs and diversity of the semiochemicals of the species.  

Recent molecular and electrophysiological data suggest that detection occurs through a 

conserved set of similar odorant receptors across Ips species. These may partly represent 

evolutionary balance and also species-level adaptation. The results presented here 

complement the literature reviewed in Chapter 2 (specifically Section 2.6 and Fig. 6), 
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which contribute toward the ecological role of antennal coding in the expression of 

aggregation behavior and patterns of reproductive isolation. 

4.1.4. Pheromone-based management approaches 

Key message: Semiochemical tools offer targeted and eco-friendly alternatives, but 

optimizing their effectiveness requires species-specific strategies. 

Aggregation pheromones have been widely employed in Ips bark beetle management, 

particularly for population monitoring and outbreak control. Some common methods 

include mass trapping and push–pull systems, and there are several options for using anti-

aggregation compounds, such as verbenone, but effectiveness varies because of beetle 

pressure, design of the trap, release rates of the lure, and forest condition. In reviewing 

this chapter, we have focused on best practices in semiochemical use, and it is critical 

that there is increased species specificity, particularly in forestry situations where there 

are multiple co-occurring Ips species. Future directions that show promise include 

making region-specific blends, using volatiles of the host or fungus to increase lure 

attractiveness, and exploring pheromone disruption as a novel pest control strategy 

(section 2.4). 
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Subchapter 4.2: Antennal morphology is highly conserved across Ips 

Species, with minor differences in sensilla frequency and distribution 

(Paper II) 

Article type and status: 

Original research article (Published in Microscopy Research and Technique) 

Based on: Shewale et al., 2023 – Microscopy Research and Technique: 

Shewale, M. K., Nebesářová, J., Grosse‐Wilde, E., & Kalinová, B. (2023). Microscopic 

morphology and distribution of the antennal sensilla in the double‐spined bark beetle, Ips 

duplicatus (Coleoptera: Curculionidae). Microscopy Research and Technique, 86(12), 

1610–1625. https://doi.org/10.1002/jemt.24397 

My contribution: Conceptualization, data curation, investigation, funding acquisition, 

methodology, formal analysis, data visualization, original drafting, and editing. 

Article Summary 

This study directly addresses the second objective of the thesis, which was to examine 

antennal morphology and sensilla distribution across important Ips species, as the first 

detailed description of the antennal morphology of Ips duplicatus. As an important pest 

of Picea abies in Central Europe, I. duplicatus acts as comparison species to consider the 

conservation and divergence of olfactory sensilla at the genus-level.   

Using scanning electron microscopy (SEM), the five major sensilla chaetica, basiconica, 

trichodea, coeloconica, and Böhm's sensilla were characterized on the antennal clubs in 

both sexes. The five types of sensilla occurred across the three sensory bands (A–C) 

found across all Ips species. Ips duplicatus also possesses a richer diversity with more 

subtypes of observed sensilla, with some subtle patterns of sexual dimorphism of sensilla 

distributions. These results provide further support for the hypothesis that general 

olfactory architecture is largely conserved across Ips species with slight variations that 

show elements of the respective ecological niches. These results also provide a morpho-

functional framework for a future study investigating olfactory detection in I. duplicatus 

and its close relatives, as well as the structural framework for comparative analysis in 

subchapter 4.3 with I. acuminatus and I. cembrae. 

 

https://doi.org/10.1002/jemt.24397
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4.2.1. General antennal morphology of Ips duplicatus 

Key message: The antennal structure of I. duplicatus follows the conserved Ips species 

morphological pattern yet displays subtle differences in sensilla density and organization. 

 The antennae of I. duplicatus are made up of seven segments: the scape (proximal), the 

five funicular segments (the pedicel is represented by F1 and is followed by F2 - F5), and 

club-shaped terminal segment (Fig. 11a). The five funicular segments are bowl-shaped 

and flexibly attached to one another, whose depth gradually increases while the diameter 

decreases toward the distal end of the antenna. The pedicel (F1) is the largest segment 

with slight lateral curvature, opposite in both antennae. 

 

Figure 11. General antennal morphology of Ips duplicatus (female). (a) Ventral view 

showing scape, pedicel (F1), funicle (F2–F5), and club. (b) Distinct sensory bands (A, 

B, C) on the ventral side of the antennal club. Shewale et al.,2023 

The club, along with the anterior face, are oval in shape (Fig. 11b), slightly convex on 

each side, and covered with scale-like structures, particularly prominent on the scape, 

funicle and proximal club surface. Most of the olfactory sensilla occur on the ventral side 

of the antennal club concentrated on the distal three-fourths of the club's surface (Figure 

11b). These sensilla are organized in three distinct sensory bands (A, B, and C) which 

are previously described in other species of Ips, including I. typographus, I. pini. Bands 

A and B were arranged in a wave pattern (stripes) with a plain cuticle in between these 

bands; this was used to indicate band C because characteristics in the distal area were 

partly fused to band B. Surprisingly, oval-shaped surface pore (SP) structures were 

present over the dorsal and ventral surfaces of the club and other segments, distributed 

among sensilla. 
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Ips duplicatus has a higher number of sensilla basiconica, coeloconica, and trichodea 

compared to other Ips species. Additionally, I. duplicatus has two types of sensilla 

coeloconica, a feature not found in the other examined Ips species. It is impossible to 

determine whether these distinctions reflect true species-specific adaptations or simply 

methodological differences; however, this could represent ecological or behavioral 

specializations unique to I. duplicatus. 

4.2.2. Sensilla types and distribution on the antennal surface 

Key message: Ips duplicatus antennae exhibit a rich diversity of sensilla subtypes, 

reflecting a complex sensory landscape that likely supports chemical detection. 

Five main sensilla categories were identified on the antennal club of I. duplicatus, 

including chaetica, basiconica, trichodea, coeloconica, and Böhm’s sensilla, which had 

further subtypes. These sensilla appeared primarily on the ventral surface and were 

arranged into three sensory bands. Some sensilla (e.g. the sensilla chaetica and sensilla 

trichodea) were also located on the dorsal areas. Sensilla chaetica were long, aporous, 

and branched and likely act as mechanosensory or gustatory sensilla members. There 

were two identifiable subtypes based on their length and surface texture (SchI and SchII), 

along with their branching pattern (Table 5).  

Figure 12. Sensilla basiconica subtypes on Ips duplicatus antennae: (a) Clustered 

distribution on band C; (b–g) Morphological details of SBI–SBIV showing differences in 

shape, wall texture, and pore structures. Shewale et al., 2023. 
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Basiconica represented the most abundant group of antennal sensilla and was composed 

of four morphologically distinct porous subtypes, mainly SBI, SBII, SBIII, and SBIV 

(Fig. 12). The presence of multiple pores across their cuticular walls strongly indicates 

an olfactory role, likely involved in detecting a wide range of odor molecules. These 

subtypes varied slightly in size and distribution but shared the common feature of being 

structurally adapted for chemoreception. 

Sensilla trichodea were classified into three subtypes, mainly STrII, STrIII, and STrIV 

(Fig. 13), based on differences in socket structure and the presence or absence of wall 

pores. These morphological distinctions suggest functional specialization, with some 

subtypes likely acting as generalist olfactory sensilla capable of detecting broad odor 

profiles, while others may serve more specialized roles in recognizing specific 

pheromones or environmental cues. 

Figure 13. Sensilla trichodea subtypes on Ips duplicatus antennae: (a) Grouped 

distribution; (b–h) STrII–STrIV showing variations in socket type, wall porosity, and tip 

morphology. Shewale et al., 2023. 

Two of the more interesting sensory types identified in I. duplicatus were shallow 

coeloconica with two mostly distinct subtypes: fluted with either pointed or rounded tips 

(ScoI and ScoII), both of which were newly described in Ips and could suggest some 
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form of sensory specialization. On the other hand, Böhm’s sensilla (BS), portal structures 

appear mechanoreceptive and were only located at the antennal base. Shallow surface 

pores (SP) were found in diffuse distribution and were predominantly associated with 

flexible socket sensilla, although their exact function remains uncertain. Overall, these 

results reveal both conserved and localized components of the antennal morphology of 

I. duplicatus. Table 5 shows sensilla types and subtypes, their locations across antennal 

regions, and external features. 

    Table 5. Morphological characteristics and distribution of sensilla types on the 

antennae of Ips duplicatus. Shewale et al.,2023 

Sensilla 

type 

Distribution Pores Wall structure Tip Shape Socket 

SchI Antennal club (A, B and 

C), 

funicular segments (F1-

F5)  

and scape 

Aporous Longitudinal 

grooved wall, 

bilateral 

branching 

Sharp Straight Flexible 

SChII Antennal club (A), 

funicular segments (F1-

F5) and scape 

Aporous Longitudinal 

grooved wall, 

multi-

branching 

Sharp Curved Flexible 

SBI Antennal club (A, B, C) Multiporous Pitted Blunt Straight Inflexible 

SBII Antennal club (A, B and 

C) 

Multiporous Grooved Blunt Straight Inflexible 

SBIII Antennal club (B and C) Uniporous Smooth Blunt 

and 

round 

Peg 

shaped 

Inflexible 

SBIV Antennal club I Uniporous Smooth Round Straight Inflexible 

StrII Antennal club (B and C) Multiporous Smooth Pointed Slightly 

curved 

Inflexible 

STrIII Antennal club (A, B and 

C) 

Terminal 

pore 

Smooth Blunt  Long  

and 

curved 

Flexible 

StrIV Antennal club (A, B and 

C) 

Multiporous Pitted  Pointed Straight 

 

Inflexible 

Sco I Antennal club (A, B and 

C) 

Aporous Grooved Round Cone-

shaped 

Inflexible 
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Sco II 

 

Antennal club (A, B and 

C) 

 

Aporous 

 

Grooved 

 

Sharp Cone-

shaped 

Inflexible 

BB Scape Aporous Smooth Blunt 

and 

round 

Short 

and 

straight 

Flexible 

SP? Club (A, B and C), 

funicle segments (F1-

F5) and scape 

? Pit on the club 

surface 

- Oval - 

SchI: sensilla chaetica type I, SChII: sensilla chaetica type II, SBI: sensilla basiconica type I, SBII: sensilla 

basiconica type I, SBIII: sensilla basiconica type III, SBIV: sensilla basiconica type IV, StrII: sensilla 

trichodea type II, STrIII: sensilla trichodea type III, StrIV: sensilla trichodea type IV, ScoI: sensilla 

coeloconica type I, ScoII: sensilla coeloconica type II, BB: Bӧhm’s bristles, and SP: Surface Pores  

4.2.3. Distribution, dimensions, and sex-based differences in sensilla 

Key message: While overall antennal structure is similar in both sexes of I. duplicatus, 

minor differences in sensilla size and abundance suggest subtle sexual dimorphism. 

The organization of sensilla on the male and female I. duplicatus antennae was relatively 

similar, although statistical analyses indicated slight but significant sexual dimorphism 

in several sensilla characteristics. While total length and major segment dimensions 

showed no significant differences between sexes, SChII and BS had greater width in 

females, and some SBI and STrIV showed different abundance in either sex (Fig. 14). 

Figure 14. Comparative bar graphs of sensilla length (a), width (b), and abundance (c) 

between sexes in I. duplicatus (Bonferroni test, n = 5 per sex). Shewale et al., 2023. 
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Sensilla mapping revealed that SChI and SChII were primarily distributed along the outer 

edges of sensory bands A, B, and C (Fig. 15a). Böhm sensilla (BS) were localized 

exclusively to the scape and pedicel. Long basiconica sensilla types SBI and SBII were 

widely distributed across sensory bands A and B. In contrast, the shorter basiconica types 

SBIII and SBIV were restricted to the distal sensory band C (Fig. 15e). Trichoid sensilla 

showed subtype-specific patterns, with STrIII notably concentrated near the margins of 

bands A and B (Fig. 15d). 

Figure 15. a–e. Sensilla distribution maps across the antennal club in I. duplicatus: 

chaetica (SchI and SchII) and Bohm sensilla (BB) (a); coeloconica (Sco I and II) (b); 

trichodea (STr II, I and III) (c), and basiconica (SBI, II, III and IV). Shewale et al., 

2023. 
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Interestingly, both types of coeloconic sensilla (SCoI and SCoII) were more consistently 

distributed in bands B and C and were often present in pairs. SCoI and SCoII also 

exhibited asymmetric lateral distributions occurring more frequently on one side or the 

other, more often on the side (right or left) of the antennal club, depending on the antenna 

side (Fig. 15 b,c). Why there is an asymmetry of SCoI and SCoII is unknown and may 

suggest some lateralized processing, indicating there is different processing based on 

where the sensory information is received. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



71 
 

Subchapter 4.3: Comparative descriptive morphology of antennal 

sensilla in Ips cembrae and Ips acuminatus (Paper III) 

Based on: 

Shewale, M.K., Dusek, J., Jirošová, A. (2025). Microscopic morphology and distribution 

of the antennal sensilla in the larch bark beetle, Ips cembrae, and pine bark beetle, Ips 

acuminatus (Coleoptera: Curculionidae). Manuscript in preparation. 

*Note:  

This chapter presents preliminary results from ongoing research. Quantitative 

morphometric data and statistical analyses will be incorporated into the final manuscript. 

My contribution: Conceptualization, sample preparation, SEM imaging, data curation, 

morphological classification, figure and table preparation. 

Key message: 

Despite species-specific host preferences, Ips cembrae and Ips acuminatus display a 

conserved antennal sensilla architecture, providing a foundational map for future 

electrophysiological studies. 

Article Summary 

This study is the first comparative account of antennal sensilla morphology in I. cembrae 

and I. acuminatus conifer-associated bark beetles of ecological significance within 

European forests. A scanning electron microscope (SEM) was used to view the antennal 

club of each species to examine sensilla types and their distribution patterns. These 

preliminary findings showed that antennal architecture is conserved within the genus Ips. 

The major sensilla types included in each species are sensilla chaetica, trichodea, 

basiconica, coeloconica and Böhm's sensilla, and all were present in both species. These 

morphological sensilla map will help to inform future electrophysiological studies and 

advance our understanding of olfactory specialization in the genus. The general 

observations are consistent with the conserved antennal architecture observed in other 

Ips species, including I. typographus and I. duplicatus (see Chapter 4.2). 
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4.3.1. General antennal morphology 

Key message: Both species display a conserved antennal architecture, supporting genus-

level patterns in sensilla distribution across Ips bark beetles. 

Both I. cembrae and I. acuminatus exhibit the characteristic scolytine antennal structure, 

consisting of four main segments: the scape, pedicel, funiculus, and the club or terminal 

segment. The antennal club serves as the primary olfactory organ and is structurally 

organized into three distinct ventral sensory bands, designated as bands A, B, and C. This 

organization is consistent with previous descriptions in other Ips species, such as I. 

typographus and I. duplicatus (Hallberg, 1982a; Shewale et al., 2023). 

The majority of sensilla are located on the anterior (ventral) surface of the antennal club 

and show a clear pattern of distribution that aligns with the defined sensory bands. 

Scanning electron microscopy (SEM) images (Figs. 16 and 17) provide detailed views 

of the surface morphology and the arrangement of sensilla within each band. These initial 

images highlight the grouping and structural characteristics of sensilla across the club 

surface. At this stage, evaluation of sexual dimorphism was not possible, as detailed 

quantitative morphometric analyses have not yet been conducted. 



73 
 

Figure 16. SEM image of Ips cembrae antennal club indicating general structure (A)and 

the three bands (A–C) with sample types of sensilla labeled (B); sensilla trichodea 

(STrIII & IV) (C); sensilla basiconica (SBI, II, III & IV) (D); Bohm sensilla (BS) (E); 

sensilla chaetica (SchI & II) (F); sensilla coeloconica (Sco)(G); and wall pores on 

sensilla basiconica type I (SBI) (I).Shewale et al., unpublished. 
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Figure 17. SEM image of Ips acuminatus antennal club showing general structure 

(A)and the three bands (A–C) with sample types of sensilla labeled surface(B); 

topography and distribution of important sensilla types sensilla trichodea and sensilla 

basiconica (C, D); Bohm sensilla (E); sensilla chaetica (F); sensilla coeloconica (G). 

Shewale et al., unpublished. 
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4.3.2. Classification of sensilla types 

Key message: The sensilla types and their arrangement that we have characterized 

further illustrate the conserved structure of the peripheral antennal morphology in Ips.  

A total of five main categories of antennal sensilla were identified and characterized in 

both Ips cembrae and Ips acuminatus (Table 6). Sensilla chaetica (SCh), identified as 

long, uniporous mechanosensory hairs, were predominantly located along the peripheral 

edges and outer margins of the antennal club. Two distinct subtypes were differentiated 

based on the presence or absence of lateral branching structures. 

Sensilla basiconica (SB) were observed as a short, thick, multiporous sensilla with four 

morphologically distinct subtypes. These were primarily arranged within sensory bands 

A and B. Among them, subtype SBI was the most numerous and densely distributed, 

appearing across all three sensory bands (A, B, and C). 

Sensilla trichodea (STr) were slender, hair-like, porous structures, and three subtypes 

were recognized. These were mainly confined to the sensory band C. Sensilla 

coeloconica (SCo), recognized by their characteristic peg-in-pit morphology, appeared 

in low numbers and were sparsely distributed across the antennal surface. 

Lastly, Böhm's sensilla (BS), known for their mechanosensory function, were identified 

at the articulation between the scape and pedicel. Their presence and morphology were 

consistent with those previously reported in other species of the Ips genus. 
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Table 6: Morphological characteristics and distribution of sensilla types on the 

antennae of Ips acuminatus and I. cembrae. Shewale et al., unpublished. 

Sensilla 

type 

Distribution Pores Wall 

structure 

Tip Shape Socket 

SchI Antennal club 

(A, B and C), 

funicular 

segments (F1-

F5)  

and scape 

Aporous Longitudinal 

grooved 

wall, 

bilateral 

branching 

Sharp Straight Flexible 

SChII Antennal club 

(A), funicular 

segments (F1-

F5) and scape 

Aporous Longitudinal 

grooved 

wall, multi-

branching 

Sharp Curved Flexible 

SBI Antennal club 

(A, B, C) 

Multiporous Pitted Blunt Straight Inflexible 

SBII Antennal club 

(A, B and C) 

Multiporous Grooved Blunt Straight Inflexible 

SBIII Antennal club 

(B and C) 

Uniporous Smooth Blunt 

and 

round 

Peg 

shaped 

Inflexible 

SBIV Antennal club 

I 

Uniporous Smooth Round Straight Inflexible 

STrIII Antennal club 

(A, B and C) 

Terminal 

pore 

Smooth Blunt  Long  

and 

curved 

Flexible 

Sco  Antennal club 

(A, B and C) 

Aporous Grooved Round Cone-

shaped 

Inflexible 

BB Scape Aporous Smooth Blunt 

and 

round 

Short 

and 

straight 

Flexible 

SP? Club (A, B 

and C), funicle 

segments (F1-

F5) and scape 

? Pit on the 

club surface 

- Oval - 
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4.3.3. Current scope and future directions of this study 

Key message: This preliminary map presents a significant starting point for SSR-based 

OSN classification and future comparative sensory ecology studies. 

In this section, we have set the foundational map morphology for subsequent SSR studies 

set to functionally characterize OSN classes in I. cembrae and I. acuminatus (see Chapter 

4.5). While only qualitative data are presented here, future analyses will explore more 

detailed morphometrics, i.e., sensillum length, socket type, and sex differences, and they 

will be submitted as a separate manuscript.  

The consistency of the sensory band patterns and sensilla types across the species 

supports the hypothesis that antennal morphology is a conserved trait across the genus 

Ips. This data give a better understanding of how bark beetles have evolved olfactory 

structures related to their ecological characteristics in conifer forests. 
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Subchapter 4.4: Size-dependent olfactory responses in female Ips 

typographus (Paper IV) 

Article type and status: Original Research Article (Submitted to Annals of Forest 

Science, under revision) 

Based on: Moliterno, A. A. C. †, Shewale, M.K. †, Basile, S., Synek, J., Jirošová, A. 

(2025). Size- and dose-dependent behavioral responses to 1,8-cineole and (+)-

isopinocamphone: a potential host selection strategy in female Ips typographus. 

Manuscript submitted to Annals of Forest Science. 

 † Equal contribution as first author 

My contribution: Conceptualization, electroantennography experiments, data analysis 

and visualization, writing of original draft, and review and editing of manuscript. 

Key message: Body size in female Ips typographus significantly influences antennal 

sensitivity and behavioral responsiveness to host-related semiochemicals, suggesting 

size-linked adaptive roles in host selection. 

Article summary: 

This research investigated whether body size variation among female I. typographus may 

influence their olfactory sensitivity to two chemically related oxygenated monoterpenes: 

1,8-cineole and (+)-isopinocamphone. These two compounds are ecologically relevant 

because they are both emitted by a drought-stressed host and symbiotic fungi, 

respectively. Field experiments conducted using pheromone-baited traps added with 

varying doses of either monoterpene resulted in size-dependent reaction in females, 

which may indicate greater behavioral sensitivity and possible preference during host 

selection. 

Along with the behavioral experiments, complementary electroantennography (EAG) 

recordings confirmed these patterns at the physiological level. The antennae of large 

females demonstrated significantly stronger responses to (+)-isopinocamphone than 

small females when responding to the same stimuli and with respect to the dose gradient. 

In contrast, smaller females showed stronger responses to a high dose of 1,8-cineole than 

larger females. Morphometric data also confirmed size-related variation in the antennal 

club structure, providing further evidence of a relationship between morphology and 
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olfactory function. Taken together, these findings illustrate intraspecific variability in 

chemical perception and evidence suggesting that female body size can be a criterion for 

olfactory responsiveness and ecological role when colonizing hosts.  

4.4.1 Prevalence and body size differences in female trap captures 

Key message: Female I. typographus of varying sizes respond differently to 

semiochemical treatments, suggesting a size-linked preference or sensitivity in host cue 

recognition. 

 Field trapping data collected in 2019 and 2022 demonstrated significant variation in 

female body size across different chemical treatment groups. Traps baited with higher 

concentrations of 1,8-cineole consistently captured smaller females (Fig. 18A). In 

contrast, traps containing elevated doses of (+)-isopinocamphone were associated with 

the capture of larger females (Fig. 18B). These observations indicate a measurable, 

compound-specific difference in the size distribution of captured females depending on 

the type and dose of the chemical lure. 

Figure 18. Body length of female I. typographus captured with different doses of (A) 1,8-

cineole and (B) (+)-isopinocamphone vs. pheromone-only controls in 2019 and 2022. 

Moliterno et al., unpublished. 

4.4.2 Antennal club dimensions scale with body size 

Key message: Antennal club morphology scales isometrically with body size in female 

I. typographus, preserving proportional structure regardless of individual size class. 

Morphometric analysis comparing large and small Ips typographus females revealed that 

antennal club dimensions, specifically length and width, scaled isometrically with total 
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body length in both size groups. Statistical comparisons confirmed significant 

differences in overall body and antennal size between the large and small individuals. 

However, the relationship between antennal length and width remained consistent, 

indicating isometric scaling. This finding shows that while absolute sizes varied, the 

proportional dimensions of the antennal club were maintained across individuals of 

different sizes. 

4.4.3 Size-dependent antennal sensitivity to oxygenated monoterpenes 

Key message: Female body size in I. typographus correlates with differential antennal 

sensitivity to specific semiochemicals, possibly affecting individual-level host selection 

strategies. 

Electroantennography (EAG) recordings revealed size-dependent differences in antennal 

responses among Ips typographus females. No significant variation in pheromone 

sensitivity was observed between large and small females across size classes (Fig. 19A). 

However, larger females exhibited significantly higher antennal responses to increasing 

concentrations of (+)-isopinocamphone (Fig. 19B). In contrast, smaller females showed 

stronger antennal responses to higher doses of 1,8-cineole (Fig. 19C). These data 

demonstrate a compound- and size-specific variation in olfactory response intensity.  

Figure 19. EAG responses of large and small I. typographus females to (A) pheromone 

blend (MB:cV, 10:1), MB: 2-methyl-3-buten-2-ol and cV: cis-Verbenol, (B) (+)-

isopinocamphone (IPC), and (C) 1,8-cineole across increasing doses. Asterisks denote 

significant differences (Wilcoxon test, p < 0.05). Moliterno et al., unpublished. 
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Subchapter 4.5: Electrophysiological characterization of Olfactory 

Sensory Neurons in I. acuminatus and I. cembrae (Paper V) 

Article type and status: Original research article (Accepted for publication) 

Authors: Shewale, M. K., Bláha, J., Synek, J., Schebeck, M., Andersson, M. N., 

Kandasamy, D., & Jirošová, A. (2025) Comparative analysis of olfactory sensory 

neurons in two Ips species reveals conserved and species-specific olfactory 

adaptations. Frontiers in Forests and Global Change, 8, 1588866.  

doi: 10.3389/ffgc.2025.1588866 

My contribution: Conceptualisation, data curation, investigation, formal analysis, 

writing original draft, visualisation, methodology, review and editing. 

Article summary 

This work is the first detailed electrophysiological mapping of olfactory sensory neurons 

(OSNs) in Ips acuminatus and Ips cembrae using single sensillum recordings (SSR), and 

details 19 OSN classes between the two species that responded to a variety of ecological 

odorants, including pheromones, host-, non-host, and microbial volatiles.  

The findings reveal conserved and species-specific olfactory adaptations across the 

compared Ips bark beetles, deepening our understanding of their peripheral olfactory 

coding systems and identifying OSN in pheromone and host volatile detection. This 

study presents a comprehensive olfactory profile for two economically important bark 

beetle species, establishing a reference for their peripheral sensory systems.  

Despite morphological similarities, their OSN tuning diversity highlights ecological 

specialization and evolutionary divergence. These results provide essential groundwork 

for designing semiochemical-based pest management strategies and future neurogenetic 

research into Ips olfactory mechanisms. 
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4.5.1 General classification of OSN types 

Key message: I. acuminatus and I. cembrae exhibit complex and highly responsive 

peripheral olfactory systems, with most antennal sensilla housing multiple OSNs tuned 

to ecologically relevant volatiles.  

Using single sensillum recordings (SSR), we characterized 19 classes each of olfactory 

sensory neurons (OSNs) in I. acuminatus and I. cembrae and identified different response 

profiles to a wide range of 57 ecologically relevant odorants (Fig. 21A and 24A).  

In both species, most sensilla had two OSNs, distinguished by different spike amplitudes: 

A neuron with larger spike amplitudes and B neuron with smaller ones. Occasionally, a 

few sensilla housed only one or at most three neurons. Responses exhibited tonic or 

phasic-tonic response patterns, with firing rates consistently above 80 Hz for their 

primary ligands (Fig. 20A and B).  

 

Figure 20. Olfactory sensory neurons (OSNs) exhibit distinct phasic-tonic responses to 

10 µg of each compound. Two OSNs (A and B), differing in spike amplitude, are typically 

present in one sensillum. Panel (A) shows I. acuminatus responses to six odorants; panel 

(B) shows I. cembrae responses to four. 
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OSNs generally responded to multiple compounds, but primary ligands consistently 

triggered the highest firing rates, often exceeding 80 Hz, with secondary responses 

typically elicited by structurally similar compounds. Maximum response frequencies 

reached 150 Hz in I. acuminatus and 200 Hz in I. cembrae. Compounds that exhibited 

the strongest responses also displayed the lowest detection thresholds. 

In both Ips species, a good percentage of sensilla responded to at least one of the 

compounds, with 84% of sensilla in I. acuminatus and 73% of sensilla in I. cembrae. 

Strongly responsive OSNs (>80 Hz) were grouped into distinct OSN classes based on 

their tuning profiles. In contrast, OSNs with moderate responses (20–80 Hz) remained 

unclassified, as we could not clearly identify the ligand specificity. These results provide 

the first foundational OSN map for peripheral olfactory detection for these species and 

allow for comparative study with existing data for I. typographus (see Section 4.5.4).  

4.5.2 OSN responses in Ips acuminatus 

Key message: Ips acuminatus exhibits specialized OSNs that selectively respond to 

pheromones, host-, non-host and microbial volatiles, highlighting its complex 

chemosensory adaptations for host selection and intraspecific communication. 

OSNs responding to aggregation pheromone components in I. acuminatus 

In I. acuminatus, at least five OSN classes responded strongly to aggregation pheromone 

components, each demonstrating high ligand specificity and dose-dependent activity. 

IAc1 neurons were strongly responsive to (4S)-cis-verbenol, the major pheromone 

component. This class also showed weak responses to secondary compounds such as 

trans-verbenol isomers, verbenone, and chalcogran (Fig.22C). These A neurons were co-

ocalized with IAc2 B neurons, which responded to the host volatile 1,8-cineole. Both 

were primarily located in sensory band C of the distal antennal club (Fig. 21A). 
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Figure 21: (A) Spatial distribution of olfactory sensory neuron (OSN) classes across 

sensory bands A, B, and C on the antennae of Ips acuminatus. (B) Total counts of 19 

identified OSN classes, categorized by primary response to ecologically relevant 

compounds. Shewale et al., 2025. 

Class IAc3 had a strong response to S-(−)-ipsenol and weak responses to R-(+)-ipsenol 

and ipsdienol (Fig.22G). The sensitivity of this neuron was confirmed at 100 pg 

(Fig.23E). These neurons were localized in sensory band B. IAc4 neurons were 

exclusively found only in females, responded strongly to R-(−)-ipsdienol, with weaker 

responses to its S-(+) enantiomer, racemic ipsdienol, and amitinol (Fig.22E). These were 

co-localized with IAc9 B neurons, which responded to lanierone, and were distributed in 

bands A and B. Dose-response tests later revealed stronger tuning to S-(+)-ipsdienol, 

suggesting the presence of two enantiomer-selective OSN classes (Fig.23D). OSN class 

IAc13 responded most to racemic ipsdienol, with secondary responses to amitinol, E-

myrcenol, and ipsdienol enantiomers. Another OSN class IAc14 showed strong 

activation by amitinol, followed by weaker responses to racemic ipsdienol and its 

enantiomers. 

OSN responses to other beetle-produced compounds in I. acuminatus 

Five OSN classes in I. acuminatus were specifically tuned to beetle-produced 

semiochemicals beyond its own aggregation pheromones. IAc5 was the most abundant 

class and responded strongly to (−)-verbenone, with a 1 ng threshold (Fig. 23B). This 

class was also exclusively found in females.  



85 
 

Furthermore, another very specific OSN class, IAc6, was tuned to α-isophorone and was 

very sensitive, with detection thresholds at the picogram level (Fig. 23C). IAc9 

responded strongly to lanierone, co-localized with either R-(−)-ipsdienol-responsive or 

non-responsive A neurons. IAc10 strongly responded to 2-phenylethanol, and IAc11 to 

2-methyl-3-buten-2-ol, with weaker responses to 3-methyl-3-buten-1-ol. IAc17 strongly 

responded to chalcogran, with intermediate responses to (±)-exo-brevicomin and weaker 

activity to trans-conophthorin. These OSNs were broadly distributed across sensory 

bands A, B, and C. 

Figure 22. Number of OSNs uniquely identified in I. acuminatus, indicating primary and 

secondary responses. Primary OSN classes (A-G) labeled IAc7, IAc5, IAc1, IAc11, IAc4, 

IAc8 and IAc3 correspond to compounds (+)-isopinocamphone, (−)-verbenone, (4S)-

cis-verbenol,2-methyl-3-buten-2-ol, R-(−)-ipsdienol,styrene and racemic ipsenol. 

Shewale et al.,2025. 
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OSN responses to host-, non-host, and microbial volatiles  

Three OSN classes were highly responsive to host tree-derived volatiles. The B neuron 

of class IAc2 responded exclusively and robustly to 1,8-cineole. The A neuron class 

IAc15 was activated by both (−)- and (+)-limonene, with additional secondary responses 

to myrcene, p-cymene, terpinolene, and Δ-3-carene, and weaker activity to (+)-terpine-

4-ol and (−)-β-pinene. Another A neuron class, IAc18, responded strongly to γ-terpinene 

and showed secondary responses to several structurally related oxygenated 

monoterpenes, including both isomers of isopinocamphone and pinocamphone, as well 

as racemic camphor. These OSNs were predominantly located in sensory band B of the 

antennal club. While most pheromone- and host-volatile-responsive neurons were not 

spatially segregated, (4S)-cis-verbenol-sensitive neurons (IAc1) were always located 

exclusively to sensory band C. 

Figure 23. Mean dose responses (Hz) of selected OSN classes in I. acuminatus, showing 

both primary and secondary responses: IAc3: S-(−)-ipsenol, IAc5: (−)-verbenone, IAc6: 

α-isophorone, IAc?: R-(−)-ipsdienol, and IAc1: (4S)-cis-verbenol. Shewale et al.,2025. 

In response to non-host volatiles, three OSN classes were identified. OSN class IAc12 

responded strongly to 1-hexanol, with weaker secondary responses to racemic 1-octen-

3-ol and chalcogran. IAc16 was activated by racemic 1-octen-3-ol and showed minor 

responses to racemic 3-octanol. The IAc19 class responded specifically to the non-host 

volatile (5S,7S)-trans-conophthorin. 
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Two OSN classes showed strong tuning to microbial volatiles. The A neuron class IAc7 

was specifically activated by (+)-isopinocamphone and showed moderate responses to 

structurally related compounds such as (−)-isopinocamphone, (+)- and (−)-

pinocamphone, and racemic camphor. Meanwhile, IAc8, also an A neuron, responded 

selectively to styrene and exhibited weaker responses to benzaldehyde and racemic 

camphor. 

4.5.3. OSN responses in Ips cembrae 

Key message: In I. cembrae, 19 olfactory sensory neuron (OSN) classes were identified, 

revealing a highly conserved and partially species-specific peripheral olfactory system. 

OSNs responding to aggregation pheromone of I. cembrae 

Two classes of OSNs responded to aggregation pheromone components of this species.  

OSN class IC1, an A neuron, responded strongly to (4S)-cis-verbenol with dose-

dependent activity and a sensitivity threshold of 100 pg (Fig.26C) . Secondary responses 

to (+)- and (−)-trans-verbenol were moderate (Fig. 25D). (4S)-cis-verbenol OSNs were 

co-localized with IC2, a B neuron class responsive to 1,8-cineole. These OSNs were 

predominantly located in sensory band C of the distal antennal club, with a few located 

in band B (Fig. 24A). 

Figure 24. (A) Distribution of olfactory sensory neuron (OSN) classes across sensory 

bands A, B, and C on the antenna of Ips cembrae. (B) Total counts of the 19 OSN classes, 

grouped by primary responses to compounds from various ecological origins. Shewale 

et al.,2025. 
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The most frequently encountered OSN class was IC3, tuned to racemic ipsenol and S-

(−)-ipsenol, the major component of the species’ pheromone blend. These neurons 

showed high specificity, low thresholds (~100 pg), and minimal responses to R-(+)-

ipsenol, aligning with its absence in the natural pheromone mix (Fig. 25A). IC3 neurons 

were uniformly distributed across sensory bands A and B. Another class, IC4, responded 

to R-(−)-ipsdienol, with weaker responses to the corresponding S-enantiomer and 

racemic form of ipsdienol, but was not observed in dose-response studies. In contrast, 

IC5 neurons were specifically tuned to S-(+)-ipsdienol, with a response threshold of 1 ng 

(Fig. 25B). These were consistently co-localized with IC6, a B neuron class responsive 

to amitinol. Both IC5 and IC4 classes mainly were localized in sensory band C and rarely 

in band B (Fig. 24A). Interestingly, no OSNs were detected that responded to 3-methyl-

3-buten-1-ol, which is a pheromone component of I. cembrae. 

Figure 25. Dose-response profiles of three pheromone-specific OSN classes in I. 

cembrae: IC3 responding to S-(−)-ipsenol, IC5 to S-(+)-ipsdienol, and IC1 to (4S)-cis-

verbenol. Mean responses are presented with SEM error bars. Shewale et al., 2025. 

Other OSNs responding to other beetle-produced pheromones 

Four additional OSN classes in I. cembrae responded strongly to various beetle-produced 

volatiles. OSN class IC7 was activated by (±)-exo-brevicomin, with weaker responses to 

chalcogran and (5S,7S)-trans-conophthorin (Fig. 26C). IC14 was tuned to lanierone and 

was co-localized with either IC9 or a non-responsive A neuron. IC12 responded 

specifically and strongly to 2-phenylethanol, while IC15 was primarily activated by 

chalcogran and secondarily by 1-hexanol, 1-octen-3-ol, and trans-conophthorin. OSN 

class IC16 responded strongly to amitinol with secondary responses to racemic ipsdienol, 

and IC17 was tuned to α-isophorone, with weaker responses to verbenone and both 

enantiomers of trans-verbenol. These OSNs were primarily located in the distal region 
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of the antennal club, indicating a localized sensory specialization for these beetle-

produced cues. 

OSNs responding to host-, non-host, and microbial volatiles 

In I. cembrae, five OSN classes were specifically tuned to host volatiles. Among them, 

IC2 class was specific for 1,8-cineole, while IC9 responded strongly to camphor and (+)-

isopinocamphone, with additional weaker responses to structurally related oxygenated 

monoterpenes including isopinocamphone, pinocamphone, and borneol. IC9 was co-

localized with a B neuron responsive to lanierone (IC14). The IC10 class was tuned to 

(−)-α-pinene and showed lower responses to several related terpenoids such as cis-

verbenol and β-pinene. OSN classes IC18 and IC19 responded strongly to p-cymene and 

estragole, respectively. These host-volatile-responsive neurons were primarily located in 

sensory bands B and C (Fig. 23A). 

Figure 26. Mean response rates (Hz) of selected OSN classes in I. cembrae, including 

secondary responses: IC8 responding to 1-hexanol, IC3 to S-(−)-ipsenol, IAc7 to (±)-

exo-brevicomin, IC9 to racemic camphor, IC1 to (4S)-cis-verbenol, IC5 to S-(+)-

ipsdienol, and IC4 to R- (−)-ipsdienol. Error bars indicate the standard error of the 

mean (SEM). Shewale et al.,2025. 
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Two OSN classes strongly responded to non-host volatiles. IC8 responded primarily to 

1-hexanol, with secondary responses to chalcogran, 1-octen-3-ol, and 2-phenylethanol 

(Fig. 26A). IC13 was activated by 1-octen-3-ol, with weaker responses to 3-octanol. Both 

classes were found in sensory bands B and C. 

One additional class, IC11, responded to the microbial volatile styrene, showing weak 

secondary activity to benzaldehyde. These results indicate a well-distributed and 

chemically diverse OSN system in I. cembrae, capable of detecting key volatiles from 

host trees, non-hosts, and microbial sources. 

4.5.4 Comparative analysis of OSN profiles and distribution among Ips acuminatus, 

I. cembrae, and I. typographus 

Key message: Ips acuminatus, I. cembrae, and I. typographus share a conserved set of 

OSN classes tuned to ecologically relevant volatiles, yet each species also possesses 

unique OSN types reflecting distinct host preferences. 

Comparison across the three Ips species: I. acuminatus, I. cembrae, and I. typographus 

revealed 11 OSN classes shared by all three, predominantly those tuned to aggregation 

pheromones and host volatiles (Fig.27; Table 7). However, unique OSNs were observed 

in each species: four in I. cembrae (e.g., α-pinene, exo-brevicomin) and two in I. 

acuminatus (e.g., γ-terpinene, limonene). The comparison indicates both evolutionary 

conservation and species-specific tuning of peripheral olfactory systems. 

Figure 27. Venn diagram illustrating the overlap of identified olfactory sensory neuron 

(OSN) classes in Ips acuminatus and Ips cembrae compared to previously reported OSN 

classes in Ips typographus. Shewale et al., 2025. 
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Table 7. Olfactory sensory neurons (OSNs) classified based on their response 

profiles at a 10 µg screening dose in I. acuminatus and I. cembrae and their 

comparison to previously characterized OSN classes in I. typographus. Shewale et 

al., 2025. 

Biological 

origin 

OSN class↓/Species→ 

 
 

I. typographus 

(IT) 

I. 

acuminatus 

(IAc) 

I. cembrae     

        (IC) 
 

Beetle (4S)-cis-Verbenol ✓
[1,2]
 ✓ ✓ 

Beetle S- (+)-Ipsdienol ✓
[1]
 ✓ ✓ 

Beetle R- (−)-Ipsdienol ✓
[1]
 ✓ ✓ 

Beetle S- (−)-Ipsenol ✓
[6]
 ✓ ✓ 

Beetle R- (+)-Ipsenol - - - 

Beetle Amitinol ✓
[1]
 ✓ ✓(A and B neuron) 

Beetle 2-Methyl-3-buten-2-ol ✓
[1,3] (B neuron) ✓ (B neuron) - 

Beetle 3-Methyl-3-buten-1-ol - - - 

Beetle Lanierone ✓ [5] (B neuron) ✓ (B neuron) ✓ (B neuron) 

Beetle (±)-Chalcogran - ✓ ✓ 

Beetle α-isophorone - ✓ ✓ 

Beetle/fungi (−)-Verbenone ✓
[1,4]
 ✓ - 

Beetle/ fungi (±)-exo-Brevicomin - - ✓ 

Beetle/fungi 2-Phenylethanol ✓
[3]
 ✓ ✓ 

Host (+)-3-Carene ✓
[1]
 - - 

Host Myrcene ✓
[1,2,3]
 - - 

Host (+)-α-Pinene ✓
[1]
 - - 

Host (-)-α-Pinene - - ✓ 

Host p-Cymene ✓
[1]
 - ✓ 

Host (−)-Limonene - ✓ - 

Host γ-Terpinene - ✓ - 

Host 1,8-Cineole ✓
[1] (B neuron) ✓(B neuron) ✓(B neuron) 

Host/fungi (±)-Camphor - - ✓ 

Host/fungi (+)-Isopinocamphone ✓
[4]
 ✓ - 

Host/fungi Estragole ✓
[7]
 - ✓ 

Host/fungi (+)-trans-4-Thujanol ✓
[2,4]
 - - 

Non-host 1-Hexanol ✓
[1]
 ✓ ✓ 

Non-host/fungi (±)-3-Octanol ✓
[1]
 - - 
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Non-host/fungi (±)-1-Octen-3-ol ✓
[1]
 ✓ ✓ 

Non-host/fungi Geranyl acetone ✓
[3]
 - - 

Non-host/fungi 

(5S,7S)-trans-

Conophthorin ✓
[1]
 ✓ - 

Fungi Styrene ✓
[2,4]
 ✓ ✓ 

✓ OSN class identified; OSN class not found yet   

 [1]Andersson et al. 2009; [2] Schiebe et al. 2019; [3] Kandasamy et al. 2019; [4] Kandasamy et a.l 2023; [5] Yuvaraj et 

al. 2024; [6] Tömmerås 1985; [7] Raffa et al. 2016 

 

4.5.5 Antennal responses to host essential oils for further validation (GC-EAD) 

Key message: GC-EAD confirms that Ips species display species-specific antennal 

sensitivity to conifer volatiles. 

To complement the single sensillum recording (SSR) data, gas chromatography coupled 

with electroantennographic detection (GC-EAD) was employed to assess antennal 

sensitivity to host-derived essential oil compounds. In Ips acuminatus, GC-EAD 

recordings revealed four electroantennographically active peaks (1-4), corresponding to 

α-pinene, limonene, linalool, and isobornyl acetate (Fig. 28A). These compounds elicited 

clear and reproducible antennal responses across multiple replicates. 

In Ips cembrae, five distinct EAD-active peaks (1-5) were detected, identified as β-

pinene, p-cymene, camphor, linalool, and terpinen-4-ol (Fig. 28B). Each of these 

compounds produced distinct deflections in the EAD signal, indicating activation of 

olfactory receptor neurons. 

Several other host-emitted monoterpenes, despite being abundant in the essential oil 

blends, produced only weak or inconsistent antennal responses in both species. This 

pattern of antennal activation was consistent with SSR results and provided additional 

evidence of differential sensitivity across individual host volatiles. 
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Figure 28. GC-EAD traces showing antennal responses of Ips acuminatus and Ips 

cembrae to pine and larch essential oils at a dose of 10 µg. Shewale et al.,2025. 

 

 

 

 

 

 

 

 

 

 



94 
 

Chapter 5: Discussion 

5.1 Overview  

The central objective of this thesis was to examine how Ips bark beetles perceive and 

respond to chemical cues in their environment, with a particular focus on variations in 

olfactory detection and sensitivity across species, sexes, and individual traits such as 

body size. By investigating both morphological and physiological aspects of the 

peripheral olfactory system, this work aimed to provide a more comprehensive 

understanding of the sensory mechanisms underlying semiochemical communication in 

Ips species. 

A multidisciplinary methodology was employed to address this objective. This included 

scanning electron microscopy (SEM) for high-resolution morphological characterization 

of antennal sensilla, single sensillum recordings (SSR) and electroantennography (EAG) 

for functional analysis of sensory neuron activity, and gas chromatography coupled with 

electroantennographic detection (GC-EAD) for the identification of behaviorally and 

physiologically active odorants. Together, these techniques enabled a detailed 

investigation of antennal sensory systems' structure and function across four ecologically 

important Ips species: I. typographus, I. duplicatus, I. cembrae, and I. acuminatus. 

The experimental result sub-chapters presented novel findings based on the background 

outlined in the first review article (Paper I). Papers II and III addressed the diversity 

and spatial distribution of antennal sensilla, offering the first comparative morphological 

descriptions for I. duplicatus, I. cembrae and I. acuminatus, species that have been 

understudied in the context of olfactory biology and antennal morphology. Paper IV 

examined how body size influences antennal sensitivity to semiochemicals, revealing 

distinct response patterns that suggest intraspecific variation in olfactory function. Paper 

V focused on electrophysiological recordings from individual olfactory sensory neurons, 

enabling classification based on response profiles to known pheromone components, 

host-, non-host and microbial volatiles. Overall, these studies contribute new insights 

into the chemosensory biology of Ips beetles. By integrating structural and functional 

data across multiple species and individual traits, this thesis establishes a comparative 

framework for understanding how bark beetles detect and process ecologically relevant 

chemical signals in their environment. 
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5.2. Conserved antennal morphology and potential function of sensilla types in Ips 

bark beetles 

(Synthesizing Subchapters 4.2 & 4.3) 

Our direct comparison of I. duplicatus, I. acuminatus, and I. cembrae reveals a highly 

conserved antennal morphology among Ips species, confirming earlier reports for I. 

typographus and I. sexdentatus (Payne et al., 1973; Hallberg, 1982a; Faucheux, 1989). 

Each of the three species possesses a seven-segmented antenna with a club-shaped 

terminal segment that houses sensilla in three sensory bands (A, B, and C), a 

characteristic at the genus level for scolytine bark beetles. 

Five principal sensilla types, mainly, sensilla chaetica, basiconica, trichodea, 

coeloconica, and Böhm's sensilla observed across species. While this typology is largely 

conserved, detailed morphological distinctions were observed, with I. duplicatus 

displaying two different subtypes of coeloconica and a novel subtype of trichodea 

(STrIV). These distinctions could be a reflection of species-specific adaptations to 

different ecological niches, or they could reflect the increased imaging resolution 

afforded by HR-SEM. For example, the lateralized mirror-like pattern of coeloconica 

sensilla in I. duplicatus can suggest fine-scale thermohygrosensory tuning for habitat 

microclimate detection. 

Functionally, sensilla chaetica are likely mechanosensory, supporting antennal 

positioning and perhaps acoustic communication, particularly in females, in which 

multibranched SChII subtypes were found to be longer. Such subtle sexual dimorphism 

correspond with that described in other bark beetles such as I. sexdentatus and T. 

lineatum (Moeck, 1968; Faucheux, 1989) and may be linked to oviposition behavior or 

bark navigation (Moeck, 1968; Rudinsky, 1979; Hofstetter et al., 2019). Similar can be 

possibly true in I. acuminatus and I. cembrae, although not yet quantified and confirmed. 

Multiporous sensilla basiconica (especially SBI) are the most prevalent and abundant 

sensilla, occurring in clustered densities in sensory bands A and B, and are considered 

central to pheromone and host volatile detection (Hallberg, 1982a; Shi et al., 2021), 

consistent with electrophysiological data reported in I. typographus (Andersson et al., 

2009; Kandasamy et al., 2019). Sensilla trichodea are structurally diverse based on 

species, with all multiporous walls indicating their role in olfactory function. One of 

these trichodea sensilla (STrIV) was observed specifically in I. duplicatus and has not 
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been previously documented in the Ips genus, representing a morphological variation 

from a general form. These sensilla are likely used to detect airborne pheromones and 

volatiles from hosts (Hallberg, 1982a; Shi et al., 2021). 

Sensilla coeloconica reportedly arise from a double-walled or grooved structure, and 

have been implicated in thermo-, hygro-, and chemoreception (Altner et al., 1977; 

Hallberg, 1982a). Sensilla coeloconica, typically associated with thermo- and 

hygroreception or specific volatiles of hosts (ketones and aldehydes), were comprised of 

two morphological subtypes in I. duplicatus, a distinct novelty from other Ips species. 

Böhm's sensilla on the scape base and pedicel are species-conserved and likely serve as 

proprioceptors signaling antennal movement (Merivee et al., 1999). Finally, surface 

pores (SPs) found along the antennal club in I. duplicatus may have glandular or 

mechanosensory in function, but are otherwise speculative in purpose (Hallberg, 1982a; 

Faucheux, 1989). 

 In general, while overall antennal organization is evolutionarily conserved in Ips, 

sensilla subunit diversity and subtle dimorphisms suggest a hierarchical olfactory system, 

insensitive to widespread semiochemicals, but flexible enough for species-specific 

behavior and ecological specialization. 

5.3 Size-dependent olfactory perception and host selection in I. typographus 

(Synthesizing Subchapter 4.4) 

This study provides compelling evidence that female Ips typographus exhibit body size-

dependent variation in both antennal morphology and olfactory response to specific host-

emitted volatiles. The findings highlight distinct patterns in antennal sensitivity and 

semiochemical-guided behavior related to body size, particularly in response to two 

oxygenated monoterpenes: (+)-isopinocamphone and 1,8-cineole. 

Larger females had proportionally longer and wider antennal clubs, which scaled 

isometrically with overall body length. These structural morphometrics were functionally 

associated with significantly stronger antennal responses, as measured by 

electroantennography (EAG), particularly toward higher doses of (+)-isopinocamphone. 

This compound, commonly released during host degradation by symbiotic fungi, is 

associated with advanced stages of tree colonization and fungal metabolism (Kandasamy 

et al., 2023). The greater antennal surface area in large females likely facilitates enhanced 
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odorant capture and detection, supporting previous observations that antennal size 

correlates with increased olfactory detection (Spaethe et al., 2007; Makarova et al., 

2022). The behavioral implications of this higher sensitivity were reflected in field 

trapping results, where large females showed increased attraction to isopinocamphone-

baited traps, suggesting a preference for trees exhibiting signs of fungal activity, 

environments that may offer higher reproductive success (Sallé & Raffa, 2007; Foelker 

& Hofstetter, 2014). 

In contrast, smaller females exhibited a different olfactory profile. Notably, they 

demonstrated higher antennal sensitivity to 1,8-cineole, an oxygenated monoterpene 

generally associated with host resistance and considered an anti-attractant for I. 

typographus (Schiebe et al.,2019; Jirošová et al., 2022a). Field trap data supported this 

physiological sensitivity, showing that smaller females were more frequently captured in 

traps baited with 1,8-cineole. These findings were unexpected but may suggest altered 

neural processing or behavioral strategies in smaller individuals (Martin et al., 2011). It 

is possible that smaller females, with potentially lower competitive abilities, may engage 

in a risk-tolerant or avoidance-based strategy by selecting suboptimal hosts to reduce 

intraspecific competition. This idea aligns with prior work suggesting that body size can 

influence colonization strategy and habitat choice under varying ecological pressures 

(Anton et al., 2007; Wiesel et al., 2022). 

Seasonal field data further support the role of body size in host selection behavior. During 

epidemic conditions in 2022, a significantly higher number of large females were 

captured, compared to 2019 when populations were at endemic levels. This seasonal 

contrast supports density-dependent behavioral plasticity in host selection, where larger 

females may more successfully exploit resources under high-density conditions (Sallé et 

al., 2005). 

Although this study focused exclusively on females, the olfactory sensory neurons 

(OSNs) responsive to both 1,8-cineole and (+)-isopinocamphone are known to occur in 

both sexes (Andersson et al., 2009; Kandasamy et al., 2023). Therefore, similar size-

related olfactory patterns may also exist in males, and future studies could usefully 

explore the extent of sex-specific and size-dependent chemosensory variation in male I. 

typographus. 
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In summary, the data presented here demonstrate that olfactory perception in I. 

typographus is influenced by body size, which in turn affects antennal sensitivity and 

semiochemical-guided behavior. These size-dependent differences have potential 

ecological consequences for host selection, intraspecific competition, and outbreak 

dynamics. They also emphasize the importance of considering individual morphological 

traits when interpreting bark beetle behavior in the context of forest pest management 

and chemical communication. 

 

5.4 Conserved OSN classes and evolutionary constraints across Ips species 

(Comparative synthesis with I. typographus, Subchapter 4.5) 

This study presents the first electrophysiological profiling of olfactory sensory neurons 

(OSNs) in Ips acuminatus and Ips cembrae, revealing 19 OSN classes in both species. 

Most OSNs were narrowly tuned to single compounds or structurally similar analogues, 

while few OSNs were broadly responsive. At lower stimulus doses, OSNs exhibited high 

specificity, which is consistent with similar findings in I. typographus (Andersson et al., 

2009; Kandasamy et al., 2019, 2023). 

Several OSNs showed conserved tuning, particularly to the enantiomers of aggregation 

pheromones such as ipsenol and ipsdienol (Renwick & Dickens, 1979; Francke & Vité, 

1983). For both species, OSNs showed enantiomer-specific responses, often with 

heightened specificity to the natural form (S-(−)-ipsenol). This enantiomeric selectivity 

aligns with previous studies on Ips species like I. typographus, I. pini, and I. 

paraconfusus (Mustaparta et al., 1979, 1980; Tømmerås, 1985). 

(4S)-cis-Verbenol was detected by specific OSNs in both species, but only functions as 

an aggregation pheromone in I. acuminatus. In I. cembrae, it appears to act as a disruptive 

interspecific signal, likely mediated by I. typographus (Schlyter et al., 1989). OSNs 

responsive to amitinol, lanierone, and (−)-verbenone were also identified in both species, 

mirroring patterns seen in I. typographus (Andersson et al., 2009, 2012b; Yuvaraj et al., 

2024). Co-localization of OSNs within single sensilla, such as ipsdienol with amitinol or 

lanierone, supports mechanisms for blend discrimination (Baker et al., 1998; Bruce et 

al., 2005). 

Responses to fungal volatiles (e.g., 2-phenylethanol, 1-octen-3-ol, and trans-

conophthorin) and minor oxygenated host monoterpenes (e.g., camphor and 
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isopinocamphone) indicate that both species detect chemical cues associated with 

microbial activity and host stress, as observed in I. typographus (Kandasamy et al., 2019, 

2023; Moliterno et al., 2023). Responses to non-host volatiles (NHVs) such as 1-hexanol 

and 1,8-cineole suggest shared avoidance mechanisms in conifer-feeding bark beetles 

(Schlyter et al., 1999, 2000). 

Electrophysiological responses were consistent with a broader pattern across insects, 

where OSNs are often finely tuned to ecologically relevant odorants (Hallem et al., 2004; 

de Bruyne & Baker, 2008). Comparative evidence from other beetle genera (e.g., 

Protapion and Pachnoda) supports the idea of conserved OSN classes with a subset of 

species-specific specializations (Bengtsson et al., 2011; Carrasco et al., 2019). While 

OSN responses observed here parallel known patterns in I. typographus, molecular data 

such as the functionally characterized odorant receptors (ORs) in that species suggest 

potential conserved OR orthologs also underline responses in I. acuminatus and I. 

cembrae (Hou et al., 2021; Yuvaraj et al., 2021, 2024; Biswas et al., 2024). These 

conserved OSN profiles suggest strong stabilizing selection for detecting key 

semiochemicals involved in mating, aggregation, and host discrimination. 

In sum, this subchapter demonstrates that while core elements of the olfactory system are 

conserved across Ips species, likely due to shared ancestral traits and ecological overlap, 

species-specific sensilla structures and OSN classes have evolved in response to niche 

partitioning and chemical specialization. These findings underscore the delicate balance 

between evolutionary conservation and adaptive divergence in the peripheral olfactory 

systems of conifer-feeding bark beetles. 

5.5 Species-specific OSN tuning in I. acuminatus and I. cembrae 

(Synthesizing Subchapter 4.5) 

Despite predominant similarities, notable species-specific OSN features were identified. 

Only I. acuminatus showed strong, female-specific responses to (−)-verbenone, a bark 

beetle anti-attractant. This sex-specific OSN distribution, including others tuned to 

lanierone and R-(−)-ipsdienol in females and 2-methyl-3-buten-2-ol in males, may reflect 

its polygynous mating system and sex-specific behavioral roles (Kirkendall, 1989, 1990). 

In I. cembrae, OSNs specific to (−)-α-pinene and styrene were observed exclusively in 

males, suggesting a role in host tree detection.  
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OSN responses to heterospecific pheromones, such as chalcogran and exo-brevicomin 

(Francke, 1977; Zhao et al., 2019), were also more prominent in I. cembrae, potentially 

linked to its ability to colonize a broader range of hosts and interact with other bark beetle 

genera (Pfeffer, 1955; Postner, 1974). These findings imply a capacity for interspecific 

signal detection, likely facilitating coexistence or competition avoidance in overlapping 

habitats. Such heterospecific olfactory recognition is also reported in other Coleoptera 

and suggests a broader ecological role for olfaction beyond conspecific communication 

(Andersson et al., 2009; Kandasamy et al., 2023). 

 Finally, differences in monoterpene detection were evident. OSNs for monoterpenes 

were rare in both species and the compounds and their response strengths differed. I. 

acuminatus OSNs primarily responded to (−)-limonene and γ-terpinene, while I. cembrae 

responded to (−)-α-pinene and p-cymene. GC-EAD results supported these trends and 

indicated that monoterpenes may play a minor role in host tree location, especially in I. 

acuminatus, which does not show strong host attraction in the field (Brattli et al., 1998). 

5.6 Integration of morphological and functional insights into bark beetle olfaction 

(Synthesizing Subchapters 4.2 to 4.5) 

This study demonstrates that the peripheral olfactory system in Ips duplicatus, I. 

acuminatus, and I. cembrae is built upon a structurally conserved antennal basis, with 

consistent sensilla organization across species. However, subtle morphological 

differences, such as distinct sensilla subtypes and species-specific olfactory sensory 

neuron (OSN) classes, reveal adaptations linked to ecological specialization. 

Antennal mapping revealed differences in the spatial distribution of OSNs across species. 

For instance, ipsenol OSNs were restricted to band B in I. acuminatus but were present 

in bands A and B in I. cembrae. On the contrary, ipsdienol OSNs occurred mostly in 

bands A and B in I. acuminatus, and in bands B and C in I. cembrae. These species-

specific differences may reflect unique olfactory adaptations related to their respective 

host detection and pheromone communication shaped by distinct ecological pressures. 

Single sensillum recordings confirmed the presence of both conserved and species-

specific OSN classes. Conserved classes were generally tuned to shared pheromone 

components and host volatiles, while species-specific OSNs—such as those responsive 

to γ-terpinene in I. acuminatus or estragole in I. cembrae. These patterns demonstrate 

functional divergence tailored to particular ecological contexts.  Apart from coleopteran 
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insects (Larsson et al., 2001), this pattern is also observed in other groups such as 

Drosophila and various Lepidoptera, where species exhibit both conserved OSNs and the 

evolution of narrowly tuned, species-specific neurons (Hallem et al., 2004; de Bruyne & 

Baker, 2008; Andersson et al., 2015). 

At the molecular level, recent studies have linked odorant receptor (OR) repertoires in I. 

typographus to specific OSN classes (Hou et al., 2021; Roberts et al., 2021, 2022; 

Yuvaraj et al., 2021, 2024; Biswas et al., 2024). The presence of OR orthologs between 

I. typographus and I. duplicatus (Johny et al., 2024) suggests that similar conservation 

patterns likely extend to I. cembrae and I. acuminatus. This molecular parallel supports 

the idea that functional similarities in OSN tuning are supported by conserved genetic 

mechanisms. Taken together, these findings indicate that the olfactory system in Ips 

beetles is shaped by a dynamic interplay between evolutionary conservation and 

ecological diversification. Conserved OSN classes facilitate the detection of broadly 

relevant cues, while species-specific neurons provide the flexibility required for 

ecological specialization and reproductive isolation. Genomic and functional 

approaches, including receptor-ligand characterization and comparative transcriptomics, 

will be essential in elucidating the molecular basis of these olfactory adaptations. 

Furthermore, results from I. typographus highlight the influence of antennal morphology 

and body size on olfactory performance and behavior. These observations suggest that 

both interspecific differences and intraspecific variation contribute to shaping olfactory 

function. Overall, the balance between phylogenetic constraints and adaptive flexibility 

enables bark beetles to efficiently navigate complex olfactory landscapes and maintain 

ecological success across diverse environments. 

5.7. Methodological considerations and study limitations 

 

While this study provides valuable insights into the sensilla equipment and olfactory 

adaptations of Ips species, particularly I. typographus, I. duplicatus, I. acuminatus, and 

I. cembrae, several challenges were encountered. One of the main difficulties was 

maintaining live beetles for experiments year-round, as some species are challenging to 

rear in laboratory conditions. Many bark beetles require specific environmental factors 

for successful breeding, and attempts to rear them under control conditions were often 
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unsuccessful. Additionally, since these beetles emerge seasonally, specimen collection 

was limited to specific periods, reducing the number of individuals available for study. 

While highly sensitive, the single sensillum recording (SSR) technique has several 

challenges. Accurate recording from olfactory sensory neurons (OSNs) required precise 

electrode placement, and accessing certain antennal regions was difficult. Similarly, 

scanning electron microscopy (SEM) presented technical challenges, including sample 

preparation, imaging resolution, and classification of sensilla located in challenging 

areas, potentially affecting the accuracy of morphological analyses.  

Furthermore, comparisons with I. typographus relied on previously published data, 

which may have been generated under slightly different experimental conditions. 

Variations in odor panels, methodologies, and environmental factors influencing beetle 

populations could introduce biases, making distinguishing species-specific adaptations 

from shared traits difficult. Despite these limitations, the findings of this study remain 

significant. However, future research could benefit from expanding sampling efforts, 

refining rearing techniques, and integrating behavioral and molecular studies. 

5.8. Recommendations for future research and applied perspectives in forest pest 

management 

 

Based on the findings of this study, a number of directions are proposed to advance 

our understanding of bark beetle olfaction and to improve semiochemical-based 

control strategies: 

 

1. Expand OSN and OR characterization across Ips species: Future work should 

prioritize the functional mapping of olfactory sensory neurons (OSNs) and their 

associated odorant receptors (ORs) in underexplored Ips species and geographic 

populations. 

2. Incorporate sex and size-specific olfactory sensitivity in other species: Future 

research should explore whether similar size-dependent olfactory adaptations 

exist in males and other Ips species. Management tools such as pheromone traps 

could be refined to selectively target individuals based on sex and size, especially 

those contributing disproportionately to reproduction and outbreak potential. 

3. Integrate fungal symbionts and host-derived volatiles into lure design: 

Combine fungal-symbionts and host-derived oxygenated monoterpenes in lures 
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to enhance trap performance and species selectivity in mixed-beetle 

environments. 

4. Validate species-specific OSNs through behavioral assays: Compounds such 

as estragole, chalcogran, and camphor, which activate specific OSN classes, 

represent promising targets for future behavioral validation to assess their 

ecological roles and potential in pest management. Their role in species 

recognition, interspecific interactions, or host selection warrants further 

ecological testing before potential inclusion in monitoring or control strategies. 

5. Develop smart trapping and monitoring systems: Integrate biosensors 

mimicking beetle olfaction into traps for real-time semiochemical detection, 

enhancing early outbreak forecasting and surveillance. 

Collectively, these recommendations aim to bridge fundamental olfactory 

research with applied forest entomology, contributing to the development of more 

ecologically informed pest management systems. 
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Chapter 6: Concluding remarks 

This thesis provides an in-depth investigation of antennal morphology and olfactory 

sensory neuron function in three Ips species: I. duplicatus, I. acuminatus, and I. cembrae. 

It also provides a focused analysis of size-dependent olfactory detection in Ips 

typographus. By combining high-resolution morphological techniques with advanced 

electrophysiological recordings and behavioral assays, this work significantly 

contributes to our understanding of chemosensory diversity and specialization in Ips bark 

beetles. 

The first detailed morphological characterization of antennal sensilla in I. duplicatus 

revealed diverse sensillum types and identified subtle sexual dimorphism in their 

distribution and structure. It also reported descriptive analysis of antennal sensilla types 

in I. cembrae and I. acuminatus. These findings align with patterns observed in other Ips 

species and offer a valuable comparative framework. The sensilla classification proposed 

here contributes to a more standardized and reproducible nomenclature for future studies 

on antennal morphology and sensory system organization in bark beetles. 

Electrophysiological and behavioral experiments in I. typographus females demonstrated 

clear size-dependent differences in antennal sensitivity and attraction to host-emitted 

oxygenated monoterpenes. Larger females showed increased antennal responses to (+)-

isopinocamphone, a fungal-associated compound, while smaller females were more 

responsive to the anti-attractant 1,8-cineole. These results indicate that body size 

influences olfactory perception and semiochemical-guided behavior, potentially 

affecting host selection, dispersal capacity, and reproductive success. Such findings add 

an important individual-level perspective to population-level bark beetle dynamics. 

This thesis presents the first functional classification of OSNs in I. acuminatus and I. 

cembrae through single sensillum recordings, identifying 19 distinct OSN classes in each 

species. Most OSNs were selectively tuned to key semiochemicals, including 

aggregation pheromones, host volatiles, non-host cues, and microbial metabolites, 

reflecting specialized olfactory roles. Comparative analysis with I. typographus revealed 

a shared set of OSNs, suggesting evolutionary conservation of key chemosensory 

functions across Ips species. At the same time, several OSNs were species-specific, likely 

representing adaptations to different ecological conditions or chemical landscapes. A 
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subset of OSNs remained unresponsive to the test panel, highlighting the need to expand 

odorant libraries and include a broader range of semiochemicals for future screening. 

Taken together, the findings of this thesis offer important insights into the structure and 

function of the peripheral olfactory system in Ips bark beetles. These results not only 

advance fundamental knowledge in insect sensory biology but also provide practical 

implications for improving pest detection and control strategies. The demonstrated 

importance of oxygenated host volatiles and non-host cues suggests that integrating these 

compounds into pheromone-based traps may enhance their effectiveness and selectivity 

in field monitoring programs. 

Lastly, this work establishes a foundation for future interdisciplinary research. Promising 

avenues include linking OSN functionality with olfactory receptor gene expression, 

exploring sex-specific differences in olfactory coding and behavior, and investigating 

how changing environmental conditions, including host stress and microbial interactions 

under climate change may influence bark beetle chemosensory ecology. Addressing 

these questions will further clarify the role of chemical communication in bark beetle 

population dynamics and inform more adaptive and sustainable forest pest management 

strategies. 
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Abstract:  53 

Purpose of Review 54 

This review synthesizes current knowledge on the aggregation pheromones of Ips bark beetles, 55 

major conifer forest pests worldwide whose outbreaks have intensified due to climate change. Their 56 

high pest potential arises from coordinated mass attacks on trees facilitated by male-released 57 

pheromones. 58 

 59 

Bringing together expertise from various fields, this review integrates pheromone-based Ips 60 

management strategies with laboratory research on pheromone biosynthesis and detection at the 61 

neuronal and genetic levels, framed within the ecological context of selected species. By linking 62 

traditional forestry perspectives with new molecular insights, we aim to foster productive 63 

discussions and inspire innovative control approaches that can be integrated into existing 64 

management methods. 65 

 66 

Recent Findings  67 

• With global warming, the plasticity in voltinism allows Ips pest species to produce more 68 

generations per year, even at higher altitudes. Combined with weakened tree defenses, this 69 

increases their pest potential. 70 

• Several key genes involved in the final steps of pheromone biosynthesis have been identified 71 

and characterized, enabling potential suppression of aggregation pheromone production. A new 72 

pheromone storage conjugate within the beetle body has also been proposed. 73 

• Genes encoding olfactory pheromone receptors have been functionally characterized in Ips 74 

typographus as potential targets for interference, aiming to disrupt the aggregation pheromone 75 

perception of bark beetles.  76 

• Manipulation of pheromone production and detection on the genetic level is supported by the 77 

published I. typographus and I. nitidus genomes. 78 

• Pheromone-based population monitoring remains a key strategy in the Ips beetle management, 79 

while trap-and-kill methods are being underscored. Efforts are underway to develop new lure 80 

formulations and optimize the push-and-pull strategies involving anti-aggregation signals, with 81 

varying degrees of success. 82 

 83 
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Summary 84 

Seventeen Ips species from diverse geographical regions, colonizing one of three conifer hosts, 85 

were selected for this review based on economic impact and biological significance. Their global 86 

distribution, preferred hosts, ecology, and biology provide a foundation for discussing pheromone 87 

composition, including advanced insights into its chemical basis. 88 

The review details pheromone production mechanisms, biosynthetic pathways, and genetic 89 

regulation. It also explores the olfactory mechanisms on the antennae of Ips species, focusing on 90 

the selectivity of pheromone detection, which has been unraveled through the functional 91 

characterization of pheromone receptors and sensory neurons. 92 

Pheromone-based management methods, including monitoring, attract-and-kill, and push-and-pull 93 

strategies, are reviewed.  94 

Knowledge gaps in each area are highlighted, and the final section addresses these gaps while 95 

proposing future directions for innovative bark beetle management strategies. 96 

 97 

Keywords:  98 

Bark beetle; Ips genus; pheromone biosynthesis; pheromone receptor; pheromone derived 99 

application; pest management. 100 

 101 

  102 
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1. Introduction   103 

Bark beetle (Coleoptera: Curculionidae, Scolytinae) outbreaks have intensified worldwide, 104 

primarily due to climate change. Rising temperatures and prolonged droughts weaken tree 105 

defenses [1], while warmer conditions accelerate beetle development and expand their ranges [2], 106 

fueling larger infestations [3] . With projected global warming of 2–4°C this century, these trends 107 

are expected to worsen, with climate-driven beetle surges potentially causing increasingly severe 108 

ecological and economic losses [4,5]. 109 

Trees in the pine family (Pinaceae), particularly Pinus (pine), Picea (spruce), and Larix 110 

(larch), are highly susceptible to drought and rising temperatures worldwide [6]. A major threat 111 

to their health is the bark beetle genus Ips, which comprises 37 known species—23 in North 112 

America,13 in Eurasia and one in Australia [7]. Several Ips species can infest and kill living trees 113 

during mass outbreaks triggered by favorable abiotic conditions, with the most economically 114 

significant species in Europe, Asia, and North America causing severe forest damage. Their 115 

management primarily relies on silvicultural practices [8], with insecticides used as a last resort 116 

[9]. 117 

Pheromone-based methods offer significant advantages over conventional insecticide 118 

approaches.  Pheromones have been identified in at least 20 Ips species, including several 119 

economically significant tree-killing species targeted for control. However, their application 120 

remains largely restricted to trap-based monitoring of beetle activity. 121 

This review promotes a deeper and more comprehensive understanding of Ips pheromones. 122 

By examining their role within the ecology, physiology, and management of Ips beetles, we 123 

provide new insights while also exploring the biochemical and genetic mechanisms that regulate 124 

pheromone production and detection. A more integrated understanding of these aspects could 125 

pave the way for innovative, more effective, and sustainable pest management strategies. 126 

2. Distribution, economic importance, and preferred host trees for selected Ips species  127 

 128 

All Ips bark beetles reproduce in conifer trees, with the most aggressive species in Europe, 129 

America, and Asia capable of killing trees, particularly when forests are weakened by climatic 130 

stressors such as drought or windstorms (Figure1) [9].  131 

Among them, Ips grandicollis stands out as the only invasive species. Originally native to 132 

North America, it was introduced to Australia in the 1940s, causing significant damage to Pinus 133 

radiata plantations. Today, I. grandicollis is considered a major exotic forest pest in Australia 134 

[10]. 135 

Most Ips species exhibit considerable plasticity in their voltinism, except for North and 136 

Central American Ips species that infest pine trees. These species are strictly polyvoltine, 137 

producing two to five generations yearly [11,12]. Populations of other Ips species can be 138 

univoltine, bivoltine, or produce up to three generations per year, depending on temperature 139 

variations along altitudinal, latitudinal, or both gradients.[13–17]. This plasticity in responding 140 

positively to warmer temperatures is likely a key factor contributing to the pest potential of Ips 141 

bark beetles. 142 

For example, I. cembrae, primarily inhabiting low-altitude regions, has recently benefited 143 

from rising temperatures and climate change, accelerating its development and completing up to 144 

two generations in Central Europe [18]. Similarly, I. typographus, already responsible for 145 

significant damage at lower altitudes, exhibits an increased outbreak potential at higher elevations 146 

due to a larger number of generations per year [19]. 147 
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 148 

Ips bark beetles on Picea sp. 149 

Regarded as one of the main dangers to conifer stands in Eurasia, I. typographus is a 150 

prominent pest of Norway spruce (Picea abies (L.) H. Karst). Recent heat waves, droughts, and 151 

overall climate shifts, together with the widespread planting of Norway spruce, driven by its 152 

economic importance, have intensified the severity of its outbreaks [20,21]. In the last ten years, 153 

I. typographus has affected approximately 70.1 million cubic meters of spruce wood across 154 

Europe [22]. During recent outbreaks, I. typographus often infested the same trees as I. duplicatus. 155 

This species originating from Eurasian north boreal forests, has quickly spread across Europe [23] 156 

and become a significant local pest [24]. It prefers the upper stem below the canopy of shaded 157 

trees inside the stand, which complicates their timely detection and removal. Although I. 158 

duplicatus competes with I. typographus for space and resources on the same tree [25,26], both 159 

species differ in several aspects, e.g. overwintering biology, rate of development, and flight 160 

activity [27,28]. Ips amitinus is economically less important but often colonizes thicker branches 161 

and the upper parts of the trees infested by Ips typographus. Its range and bionomy are also very 162 

similar, with the number of generations per year depending on altitude and the occurrence of sister 163 

broods. In the last ten years, it has spread rapidly in the Nordic countries and in Siberia, where it 164 

causes significant damage  [29] 165 

Two species that mirror the ecological and economic impacts of I. typographus and I. 166 

duplicatus on other spruce species in Central Asia are I. hauseri and I. nitidus. Ips hauseri 167 

primarily attacks Schrenk spruce (Picea schrenkiana Fisch. & C.A. Mey.) and Siberian spruce 168 

(Picea obovata Ledeb.), weakened by abiotic factors in mountainous regions [14]  whereas large 169 

outbreaks of I. nitidus together with I. shangrila occurred on Picea crassifolia [30]. 170 

The only member of the genus Ips involved in spruce mortality on the North American 171 

continent is I. perturbatus. The hosts of this bark beetle are mainly Picea glauca, but also P. 172 

engelmannii and P. lutzii.  173 

 174 

Ips bark beetles on Pinus sp. 175 

Several Ips bark beetles also colonize pines (Pinus spp.) as their primary hosts. The climatic 176 

extremes of recent decades have also weakened pine stands in many areas (Pinus sp.), making 177 

them more susceptible to bark beetle attacks. Many bark beetle species have spread beyond their 178 

original range, which has led to an increase in economic losses [31]. The effects of rising 179 

temperatures can be well illustrated by the example of I. sexdentatus, a species with a Eurasian 180 

distribution range that causes great damage not only to Pinus sp. but also to spruce (Picea) trees, 181 

especially in the Mediterranean region. It tends to colonize the lower and middle parts of the trunk 182 

with thick bark. In Central Europe, an intensive spread of this species has been observed in recent 183 

decades. In Scandinavia, the abundance of the species varies from decade to decade, depending 184 

on the minimum temperatures in winter, which determine the success of overwintering. In the 185 

warmest areas, the gradation process is very intense, and up to five generations per yearcomplete 186 

their development. At the northern limit of its range, however, it is univoltine [32]. Ips acuminatus, 187 

on the other hand, is an example of a species with the same distribution range that can cope rather 188 

well even with the lowest temperatures. It tends to colonize the treetops and branches, where it 189 

also partially hibernates and where it can survive temperatures below -35 °C [33]. 190 

In North and Central America, several Ips species, which differ in their biology and host 191 

preferences, can lead to the death of pine trees on a large scale. Ips avulsus is a smaller species 192 

which, like I. acuminatus mentioned above, prefers the thin bark of branches in the crowns of 193 
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large trees, most frequently Pinus palustris, P. taeda and P. serotina. Unlike I. acuminatus, 194 

however, it occurs exclusively in the warm southern part of the United States, where high 195 

temperatures accelerate development, resulting in up to 10 generations per year [34,35].A species 196 

that feeds on a variety of pines, including red pine (Pinus resinosa Aiton), jack pine (Pinus 197 

banksiana Lamb.) and white pine (Pinus strobus L.) [36] and occasionally larch (Larix laricina), 198 

is I. pini. It infests weakened or recently dead trees but can also infest healthy trees [11,37]. Other 199 

species that play an important role in pine mortality in North American forests include I. confusus 200 

and its sibling species I. lecontei, I. paraconfusus and I. grandicollis [38–40]. These species differ 201 

in their host plant spectrum. Ips confusus prefers the pinyon pines P. edulis and P. monophyla [38], 202 

but other pines are only rarely infested. Ips lecontei, I. grandicollis and I. paraconfusus are 203 

important pests of P. ponderosa, P. radiata, P. concorta, and several other pine species [40].  204 

 205 

Ips bark beetles on Larix sp. 206 

Larches (Larix sp.) are also hosts for Ips bark beetles. The most important pest in larch 207 

stands is I. cembrae, which was only recently derived from a closely related species, Ips 208 

subelongatus. These two species are geographically separated, with I. cembrae occurring in 209 

Europe and I. subelongatus in Asia [41]. The host trees include not only various larch species, e.g. 210 

the European larch (Larix decidua Mill.) and the Japanese larch (L. kaempferi (Lamb.)), but also 211 

the common spruce Picea abies (Karst.) [42]. The ability of I. cembrae to attack healthy trees 212 

following abiotic disturbance has led to severe outbreaks, particularly in reforested areas and 213 

outside the natural geographic range of L. decidua, highlighting the need for robust management 214 

measures [25,43]. I. subelongatus is reported to be even more damaging to healthy larch stands 215 

in Asia than I. cembrae in Europe [44].  216 

 217 

  218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 

Figure 1. Global distribution of selected Ips species [host trees]: Ips bark beetles on Picea sp.: 1- 226 
Ips amitinus [Picea spp. (Picea abies, Picea pungens)]; 2- Ips duplicatus [Picea abies]; 3- Ips 227 
hauseri [Picea schrenkiana, Picea obovata]; 4- Ips nitidus [Picea crassifolia]; 5- Ips perturbatus [Picea 228 
glauca, P. engelmannii, P. lutzii]; 6- Ips shangrila [Picea crassifolia]; 7- Ips typographus [Picea abies]; 229 
Ips bark beetles on Pinus sp: 8- Ips acuminatus [Pinus spp. (Pinus nigra, Pinus sylvestris)]; 9- Ips 230 
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confusus [Pinus edulis, P. monophylla]; 10- Ips grandicollis [Pinus spp. (P. ponderosa, P. radiata, P. 231 
contorta)]; 11- Ips lecontei [Pinus spp. (P. ponderosa, P. radiata, P. contorta)]; 12- Ips paraconfusus [Pinus 232 
spp. (P. ponderosa, P. radiata, P. contorta)]; 13- Ips pini [Pinus resinosa, Pinus banksiana, Pinus strobus, 233 
Larix laricina]; 14- Ips sexdentatus [Pinus spp. (Pinus sylvestris, Pinus pinaster), Spruce spp.]; Ips bark 234 
beetles on Larix sp.: 15- Ips cembrae [Larix spp. (L. decidua, L. kaempferi), Picea abies]; 16- Ips 235 
subelongatus [Larix spp. (L. decidua, L. kaempferi), Picea abies]; 17- Ips avulsus [Pinus spp. (P. 236 
sylvestris)]. 237 

 238 

3. Chemical structures and compositions of aggregation pheromones in Ips 239 

species  240 

 241 

The aggregation pheromones of Ips species are produced exclusively by males to gather 242 

conspecifics and overcome tree defense, as well as to attract females for mating. The structural 243 

repertoire of biologically active pheromonal compounds in this genus is relatively limited, 244 

primarily consisting of oxygenated hemi- or monoterpenes [45]. These compounds are volatile 245 

and structurally resemble the defense compounds (resin) found in their conifer host trees (Figure 246 

2, Table 1.).  247 

 248 

 249 
Figure 2: Structures of pheromone compounds from Ips species with the known biological activity 250 
 251 
 In most Ips species, the primary pheromone components consist of ipsdienol and ipsenol, 252 

compounds exclusively synthesized by this beetle genus [46,47]. Some species also produce 253 

additional linear hydroxylated monoterpenes, such as amitinol and E-myrcenol, along with the 254 

quinone derivative lanierone [48–50]. Other identified active pheromone compounds include the 255 

hemiterpenes 2-methyl-3-buten-2-ol and 3-methyl-3-buten-1-ol, as well as the monoterpene cis-256 

verbenol, which originates from the host-derived compound α-pinene (Figure 2). Despite the 257 

relatively limited number of structural components, the resulting pheromone blends are species-258 

specific, driven by variations in the relative proportions of each compound and differences in 259 

enantiomeric composition (Table 1). 260 

  261 
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Table 1: Ips species aggregation pheromone blends compositions including 262 

enantiomeric ratio of components.  263 

 264 
Species Composition of pheromone Enantiomeric ratio of pheromone 

components 

Literature 

Ips bark beetles on Picea sp. 

 

Ips amitinus (Eickhoff, 
1872) 

ipsdienol:ipsenol:amitinol 
4:2:4 

ipsdienol  
(S)-(+)-:(R)-(−)- 5:95 

[51] 

Ips duplicatus 

(C.R. Sahlberg, 1836) 

ipsdienol:E-myrcenol 

5:1:0,01 [52] 

ipsdienol  

(S)-(+)-:(R)-(−)- 50:50  

[53,54] 

Ips hauseri Reitter, 

1895 

ipsenol 

cis-verbenol 

95:5  

(S)-(−)-ipsenol 100  

(S)-(−)-cis-verbenol 100  

[55] 

Ips nitidus Eggers, 
1933 

2- methyl-3-buten-2-ol: 
ipsdienol: (S)-(−)-cis-verbenol  

7:2:1  
 

ipsdienol  
(S)-(+)-:(R)-(−)- 74:26 

[30,56] 

Ips perturbatus 

(Eichhoff, 1869) 

ipsdienol: cis-verbenol: ipsenol 

1:0,8:1 

[57] 

ipsenol  

(S)-(−)-:(R)-( +)- 99:1 

ipsdienol 
(S)-(+)-:(R)-(−)- 90:10 

[58–60] 

Ips shangrila Cognato 

& Sun, 2007 

ipsenol:ipsdienol: cis-verbenol 

1:5:4 [61] 

ipsdienol  

(S)-(+)-:(R)-(−)- 99:1 
(S)-(−)-cis-verbenol 100 

 

[30,62] 

Ips typographus 

(Linnaeus, 1758) 

2-methyl-3-buten-2-ol 

cis-verbenol 
ipsdienol 

9:1:0,1 [63] 

 

ipsdienol  

(S)-(+):(R)-(−)- 5:95   
(S)-(−)-cis-verbenol 100 

[64,65] 

Ips bark beetles on Pinus sp. 

 

Ips acuminatus 

(Gyllenhal, 1827) 

cis-verbenol:ipsdienol:ipsenol 

2:5:3 [66] 
 

ipsdienol  

(S)-(+)-:(R)-(−)- 95:5 [67] 
 

 

[68] 

 

Ips confusus (LeConte, 
1876) 

ipsenol:ipsdienol 
9:1 [69] 

ipsenol  
(S)-(−)-:(R)-( +)- 99:1 [70] 

 

ipsdienol 
(S)-(+)-:(R)-(−)- 95:5 [71] 

 
[50,69,70,72] 

Ips grandicollis 

(Eichhoff, 1868) 

ipsenol [73] ipsenol  

(S)-(−)-:(R)-( +)- 99:1 [74] 

 

[75] 

Ips lecontei Swaine, 

1924 

ipsdienol:ipsenol 

2:1 [76] 

ipsdienol 

(S)-(+)-:(R)-(−)- 95:5  

ipsenol  
(S)-(−)-:(R)-( +)- 99:1 

 

 

[67] 

 
 

Ips paraconfusus 
Lanier, 1970 

ipsenol:ipsdienol: 
cis-verbenol 

1:1:0,1 

 [77] 
 

(S)-(−)-cis-verbenol 100 

[78] 

ipsenol  

(S)-(−)-:(R)-( +)- 99:1 
[45] 

ipsdienol 

(S)-(+)-:(R)-(−)- 90:10  
 

[79–83] 

Ips pini (Say, 1826) ipsdienol: 

lanierone 

99:1 [75] 

ipsdienol 

(S)-(+)-:(R)-(−)- 35:65  

 [46] 
ipsdienol† 

(S)-(+)-:(R)-(−)- 95:5  

[46] 
 

[46,48,72,75,83,84] 
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Ips sexdentatus 

(Börner, 1776) 

ipsdienol:ipsenol  

1:0,5   

ipsdienol 

(S)-(+)-:(R)-(−)- 50:50 

[85] 
 

[67,68] 

Ips bark beetles on Larix sp. 

 

Ips cembrae (Heer, 
1836) 

ipsenol:ipsdienol: 
3-methyl-3-buten-1-ol 

~ 68:28:4 

 

ipsenol  
(S)-(−)-:(R)-( +)- 99:1 

ipsdienol 

(S)-(+)-:(R)-(−)- 96:4 [86] 

[87–89]  

Ips subelongatus 

(Motschulsky, 1860) 

ipsenol:ipsdienol:3-methyl-3-buten-1-

ol 

3:1 

ipsenol  

(S)-(−)- 100 

ipsdienol 
(S)-(+)-:(R)-(−)- 96:4  

[90] 

Ips avulsus (Eichhoff, 

1868) 

ipsdienol:lanierone 

10:1 [91] 

ipsdienol 

(S)-(+)-:(R)-(−)- 96:4 (Texas) [92]  
ipsdienol 

(S)-(+)-:(R)-(−)- 75:25 (Alabama) 

[93] 

 

[68,75,91] 

† The ratio varies for eastern and western populations of I. pini in the USA.  265 
 266 
Among Ips aggregation pheromones are three chiral compounds: (S)-(+)- and (R)-(−)-267 

ipsdienol; (S)-(−)- and (R)-(+)-ipsenol, and (S)-(−)- and (R)-( +)-cis-verbenol (each structure possesses 268 

at least two asymmetrical mirror-image forms called enantiomers). However, Ips males 269 

predominantly utilize only the enantiomeric forms (S)-(−)-cis-verbenol and (S)-(−)-ipsenol as 270 

their pheromonal signals [94]. In contrast, ipsdienol is the only chiral compound whose 271 

enantiomeric ratio varies, not only between Ips species (Table 1) but also among spatially distinct 272 

populations within the same species [71]. This enantiomeric specificity, along with the unique 273 

composition and ratio of pheromonal molecules (Table 1), helps minimize cross-attraction 274 

between related species and likely reflects an important mechanism of prezygotic reproductive 275 

isolation within the genus Ips [95]. 276 

4. Production of the aggregation pheromones by Ips bark beetles 277 

4.1. Sequence of host tree attack by Ips bark beetles 278 

As mentioned earlier, Ips pioneer males first select a host tree and use chemical signals to 279 

coordinate attacks on trees. In the terminal phase of the attack, as tree resources deplete and wood 280 

decomposition begins due to fungal growth and other factors, the profile of volatile changes and 281 

compounds with anti-attractive functions are released [96–100]. Conifer bark beetles often release 282 

a universal anti-attractant known as verbenone, acting as a switch signal that guides beetles to 283 

other nutrient resources [101] (Figure 3). 284 
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 285 
Figure 3: The attack dynamics of Ips bark beetles on host trees. Description: Step 1: Pioneer males 286 

locate the host tree hypothetically using host and non-host compounds. Step 2: Attraction to a male-287 
released aggregation pheromone blend along with host compounds. Step 3: The chemical blend attracts 288 
more conspecific beetles to the host tree. After mating, males can release additional compounds with 289 
attractive activity, resulting in a secondary aggregation blend. Step 4:  The tree defence is depleted with 290 
low resin flow, and other compounds, such as anti-attractants are released to direct further conspecific 291 
beetles towards new hosts. 292 

 293 

4.2. Biosynthesis of main aggregation pheromone components  294 

The pheromone production of bark beetles has been studied for decades [47,70,102–104]. 295 

Pheromone-resulting biosynthetic pathways have likely co-evolved with tree defense 296 

detoxification mechanisms possessed by beetles to enable successful host tree attacks [105]. 297 

Aggregation pheromones are formed in the beetle's body either via de novo synthesis from basic 298 

metabolic units or by modifying host-derived precursors.  With aggregation pheromones released 299 

in feces [106], the gut tissue is the primary site of biosynthesis for most pheromonal compounds 300 

in Ips species. 301 

Pheromone biosynthesis in bark beetles is naturally induced during feeding on a suitable 302 

host tree, which triggers a hormonal cascade involving juvenile hormone III (JH III), an insect 303 

hormone regulating different metabolic pathways, from metamorphosis to pheromone production. 304 

[47,107–109]. 305 

4.2.1. Role of the mevalonate pathway in de novo biosynthesis  306 

The major Ips aggregation pheromones are all isoprenoids (Figure 2), with some 307 

synthesized de novo in beetles via the mevalonate pathway (Figure 4), a process shared by most 308 

eukaryotes.  309 
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 310 
Figure 4: Overview of the mevalonate pathway and subsequent steps in the biosynthesis of 311 

aggregation pheromones in Ips bark beetles. The diagram illustrates the reaction sequences (precursors -312 
black, pheromone compounds  -red), and the enzymes or proposed enzymes that catalyze each step (blue). 313 

 314 

The mevalonate pathway starts with acetyl-CoA condensation, subsequently forming 315 

hydroxymethylglutaryl-CoA (HMG-CoA) and mevalonic acid. These steps are catalyzed by the 316 

enzymes HMG-CoA synthase (HMGS) and HMG-CoA reductase (HMGR), found as key 317 

regulators of Ips pheromone biosynthesis in I. pini males [47,72,110]. Mevalonic acid is then 318 

converted by isopentenyl diphosphate isomerase (IPPI) to isopentenyl diphosphate (IPP), which 319 

isomerizes to dimethylallyl diphosphate (DMADP), the universal C5 building blocks of all 320 

isoprenoids (Figure 4). 321 

In Ips males, when ipsdienol is produced, IPP and DMADP condense into geranyl 322 

diphosphate (GPP), which is then converted to myrcene by an insect-unique enzyme first 323 

identified in I. pini [111] and later characterized as GPPS/myrcene synthase[112] ; Figure 4). 324 

Recent studies also identified genes coding these mevalonate pathway enzymes in the guts 325 

of male I. typographus and I. hauseri. HMGS, HMGR, and IPPI transcripts were upregulated after 326 

pheromone induction via feeding or JH III treatment, aligning with HMGS's and HMGR's 327 
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regulatory roles. Additionally, these species also possess GPPS, which is involved in myrcene-328 

ipsdienol synthesis [55,65,109]. Exclusively in I. typographus, a newly identified isoprenyl 329 

diphosphate synthase gene (IPDS) has been reported, suggesting its role in synthesizing the 330 

hemiterpene 2-methyl-3-buten-2-ol [65,109]. On the other hand, in females, transcripts of 331 

mevalonate genes did not respond to any of the pheromone induction methods [55,109]. 332 

4.2.2. Specific steps in the formation of de novo-produced Ips pheromones  333 

In Ips species, myrcene produced by males is hydroxylated to ipsdienol by cytochrome P 334 

450 (CYP9T) enzymes, identified previously in I. paraconfusus [113], and in I. pini and I. 335 

confuses [114–116]. Recently, CYP9Ts were reported in I. hauseri [55] and I. typographus 336 

[65,109]. The mechanism underlying inter- and intraspecific variation in the enantiomeric 337 

composition of ipsdienol, defined by the ratio of (4R)-(−)-ipsdienol to (4S)-(+)-ipsdienol (Table 338 

1), remains a key focus of research. However, this variation is not driven by CYP9T-mediated 339 

hydroxylation, but is more likely influenced by subsequent steps in the ipsdienol-to-ipsenol 340 

conversion, a process occurring across all Ips species [117,118]; (Figure 4) Responsible are two 341 

enzymes: ipsdienol dehydrogenase (IDOLDH), which selectively oxidizes only (4R)-(−)-342 

ipsdienol to ipsdienone[65,71,119] and ipsdienone reductase (IDONER) converting ipsdienone to 343 

ipsenone [120]. Further characterization of these enzymes will give us new insights into what 344 

creates pheromone differences among Ips species and populations, knowledge that could improve 345 

trapping success. 346 

Amitinol (Figure 2), a second linear monoterpene alcohol, is typically a minor component 347 

alongside ipsdienol, except in I. amitinus, where it acts as the primary pheromone. Trace amounts 348 

also appear in the aggregation pheromones of I. paraconfusus [45,89] and I. duplicatus [90]. 349 

Amitinol is hypothesized to form either through ipsdienol allylic rearrangement [45] or 350 

cytochrome P450-mediated site-specific oxidation of myrcene (Figure 4).  351 

E-myrcenol, structurally related to ipsdienol and amitinol (Figure 2), is a pheromone 352 

component in I. duplicatus [121]. It likely forms de novo via myrcene hydroxylation, similar to 353 

ipsdienol [122] (Figure 4), as its production was suppressed by the HMGR inhibitor compactin 354 

[52,123]. 355 

Lanierone, a cyclic keto-enol compound (Figure 2), is found in the hindgut extracts of male 356 

I. pini [84]and functions as a pheromone in eastern U.S. populations [50]. It was found also in I. 357 

avulsus [75]. It is thought to originate from ipsdienol or ipsenol through cyclization, 358 

decarboxylation, and oxidation reactions (Figure 4). However, its biosynthetic pathway remains 359 

uncharacterized [103]. 360 

The hemiterpene 2-methyl-3-buten-2-ol is a pheromone component of I. typographus. 361 

Though hemiterpenoid biosynthesis was previously unknown in insects, it was hypothesized to 362 

form de novo via the mevalonate pathway, where DMADP is converted through a carbocation 363 

intermediate by the novel IPDS enzyme [65,109]. 364 

Another hemiterpene, 3-methyl-3-buten-1-ol, functions as an aggregation pheromone in 365 

male I. cembrae and I. subelongatus [88,89]. It is proposed to form de novo from IPP via 366 

dephosphorylation and double-bond rearrangement [87] (Figure 4), differing from 2-methyl-3-367 

buten-2-ol biosynthesis by not involving IPDS. 368 
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 369 
Figure 5: A. Pathways of pheromone biosynthesis in Ips using precursors sequestered from host conifers: (-370 

)-α-pinene or myrcene. B. Storage of cis-verbenol as fatty acid esters in the fat bodies of beetles for later pheromone 371 
supply.   372 

 373 

4.2.3 Pheromones made from host tree precursors  374 

Many Ips species use the cyclic hydroxylated monoterpene (S)-cis-verbenol (Figure 5) as 375 

an aggregation pheromone. However, neither cis-verbenol nor its pheromonally inactive 376 

stereoisomer, trans-verbenol, is produced de novo. Instead, beetles hydroxylate α-pinene, 377 

sequestered from spruce trees, via CYP450 enzymes [82] ; Figure 5. Since insects frequently 378 

hydroxylate host terpenes for detoxification, Ips bark beetles may have evolved to utilize cis-379 

verbenol, originally the detoxification product of α-pinene, as a pheromone [104]. 380 

The distinction between pheromone biosynthesis and detoxification CYP450 genes remains 381 

unclear, as both likely function in gut-adjacent cells. Recently, CYPP450 genes responsible for 382 

α-pinene hydroxylation were identified in the guts of I. hauseri and I. typographus [55,65]. As 383 

expected, the transcripts of these genes are induced by feeding on host trees [65,124] and, 384 

interestingly, also by topical treatment with JH III [55,109]. 385 

The ketone verbenone (Figure 2, 5A) co-occurs with cis-verbenol but increases in 386 

concentration late in the attack phase, acting as an anti-attractant for many bark beetles [101]. Its 387 

production is attributed to gut microbiota (fungi, yeast, bacteria), external symbionts [63,125–388 

127], or autooxidation, with no beetle enzyme identified for this conversion. Therefore, verbenone 389 

should not be classified as a pheromone. 390 

The monoterpenyl lipid conjugates (Figure 5B), namely cis-verbenol fatty acid esters, were 391 

detected in the fat body of I. typographus across various life stages, peaking in young, pre-392 

sclerotized adults before emergence [65]. In young beetles, ester formation likely serves as 393 
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monoterpene detoxification, catalyzed by multipurpose lipase/esterase enzymes. However, in 394 

mature beetles, these esters persist only in males and decrease during aggregation pheromone 395 

production. In calling males, they are proposed to function as pheromone precursors hydrolyzed 396 

into pheromonal cis-verbenol by a male-specific lipase/esterase enzyme when the α-pinene source 397 

is insufficient. This mechanism ensures a continuous pheromone supply during mass attacks 398 

[65,104]. The cleaving of esters, likely regulated by JH III, may explain how beetles release cis-399 

verbenol even before feeding, facilitating rapid attack buildup [109] (Figure 5B). 400 

Identified candidate genes for these enzymes in I. typographus could serve as other potential 401 

targets for controlling beetle infestations. 402 

4.2.4. Microbial involvement in Ips aggregation pheromone production  403 

Bark beetle microbial symbionts may contribute to pheromone production in various ways 404 

[128]. Labeling experiments indicated that gut microbiomes produce pheromones when exposed 405 

to precursors but not when inhibited by antibiotics [129,130]. More recently, exosymbiotic 406 

ophiostomatoid fungi, Grosmannia penicillata and Endoconidiophora polonica were found to 407 

synthesize pheromones like 2-methyl-3-buten-2-ol [131] and brevicomin [132] when growing on 408 

wood. These compounds, along with fungi metabolites of host tree terpenes [133–135], may 409 

influence beetle attraction [100]. Further research is needed to clarify microbes' role in Ips 410 

aggregation pheromone production, which could offer alternative targets for beetle management. 411 

 412 

5. Detection of aggregation pheromones by the bark beetle olfactory system 413 

5.1. Insect olfaction 414 

Like other insects, Ips bark beetles rely on highly specialized olfactory systems for precise 415 

odor detection, a critical function for locating food, mates, and suitable reproduction sites [136]. 416 

Bark beetles can detect and assess the concentrations of not only pheromones but also volatiles 417 

from host and non-host trees, as well as other components of their environmental niche, such as 418 

microbiota [133,134,137–139]. 419 

The main olfactory organ is the antennae (Figure 6A), which harbour sensilla in which 420 

olfactory sensory neurons (OSNs) reside (Figure 6B) [137,140]. The OSN dendrites house 421 

odorant receptors (ORs) [141], which transduce olfactory information in the environment into 422 

electrical signals that can be interpreted by the brain [142] (Figure 6D). The odor specificity of an 423 

OSN depends on which OR gene(s) it expresses [143]. Pheromone responsive ORs and OSNs are 424 

typically highly specific in their response, ensuring high-fidelity detection of mating signals 425 

[142,144,145]. Traditionally, it has been believed that each OSN expresses a single OR gene 426 

together with the conserved co-receptor ORCO [146] (Figure 6D); however, recent studies have 427 

found some exceptions to this rule [147–149]. The ORCO is necessary for signal transduction by 428 

forming a cation ion channel when the OR binds odour molecules [150–154] (Figure 6). 429 
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 430 

Figure 6. The peripheral olfactory system in bark beetles and its anatomical and molecular features. (A) 431 
Typical bark beetle with its antenna (here I. typographus), (B). Scanning electron micrograph of the antennal club 432 
of I. typographus antenna showing three sensory bands, A, B, and C with olfactory sensilla (C). Illustration of an 433 
olfactory sensillum with pores on its cuticular wall and the internal cellular arrangement with two OSNs and their 434 
cell bodies at the base (D) Schematic representation of olfactory detection including the entry of odor molecules 435 
through wall-pores, transport of odor molecules through the sensillar lymph facilitated by odorant binding proteins 436 
(OBPs), which release the odor molecules near the odorant receptor (OR) complexes. The cell membrane is 437 
depolarized through the opening of the non-selective cation channel of the OR-ORCO receptor complex upon ligand 438 
binding. The ORs and ORCOs are seven transmembrane domain proteins.  439 

 440 

5.2. Specific pheromone detection by OSNs in Ips 441 

The antennal club of Ips beetles is flattened, and the olfactory sensilla are located on its 442 

anterior surface, arranged as three undulating bands, labelled A, B, and C [137,140,155–159]. 443 

(Figure 6B). Olfactory sensilla of Ips beetles include the single-walled hair-like sensilla trichodea 444 

and basiconica, which are the most abundant, and the peg-like double-walled sensillum 445 

coeloconicum [140,157]. Each single-walled sensillum generally contains two OSNs with 446 

different odor specificities [137,140,160,161].  447 

Pioneering studies revealed OSNs with primary responses to (S)-(+)-ipsdienol, (R)-(−)-448 

ipsdienol, and (S)-(−)-ipsenol, respectively, in I. paraconfusus, I. pini, and I. typographus [162–449 

166]. Furthermore, OSNs responding to (racemic) ipsdienol and ipsenol were found in I. 450 

grandicollis [160]. The (S)-(+)- and (R)-(−)-ipsdienol-responsive OSNs are highly specific for 451 

their key enantiomer [167]. Additionally, OSNs responding to cis-verbenol, trans-verbenol, and 452 
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verbenone, respectively, have been identified [160,163]. In I. typographus, these OSNs respond 453 

to the enantiomers (S)-cis-verbenol, (+)-trans-verbenol, and (−)-verbenone [165]. Whereas the 454 

OSN class tuned to (S)-cis-verbenol is narrowly tuned [137], the OSN class responding to (−)-455 

verbenone responds strongly also to - and -isophorone [134]. -isophorone was identified in 456 

mated female I. typographus, but its behavioral effects have not been elucidated [63]. The neurons 457 

that in early studies were reported to respond primarily to (+)-trans-verbenol in I. typographus 458 

[165] were, however, not recovered in a recent study that screened >200 sensilla with a large test 459 

odor panel [134]. Ips typographus also has OSNs that primarily respond to amitinol, lanierone, 460 

and 2-methyl-3-buten-2-ol, respectively [137,161,165]. The lanierone-responsive OSNs respond 461 

exclusively to lanierone, rendering this OSN class the most specific one in I. typographus [161].  462 

 463 

5.3. Abundance and distribution of pheromone-specific OSNs in Ips 464 

Pheromone-responsive OSNs occupy a large proportion of the antennal sensilla of Ips 465 

beetles [137]. The abundance and spatial distribution of such OSNs have been mapped in I. 466 

typographus [133,137]. Neurons tuned to (S)-cis-verbenol are almost exclusively found in the 467 

distal sensory area C [137] (Figure 6B), whereas OSNs tuned to (−)-verbenone, ipsdienol, ipsenol, 468 

and amitinol are all found in both areas A and B, but not in C. Neurons for 2-methyl-3-buten-2-ol 469 

are found at the border between areas B and C [137]. In contrast, sensilla housing the lanierone 470 

OSN class are present in all three areas, which is unique among the described OSN classes in I. 471 

typographus [137,161]. 472 

In the study by Andersson et al. (2009) in which 150 I. typographus sensilla were randomly 473 

screened, the neurons tuned to the aggregation pheromone component (S)-cis-verbenol were 474 

reported as the most abundant, occupying 22 (15%) of the contacted sensilla. Similar patterns 475 

were found in I. pini and I. paraconfusus for OSNs tuned to components or their respective 476 

aggregation pheromones, that is, different enantiomers of ipsdienol [164,168]. However, a recent 477 

SSR study on I. typographus, which for the first time included lanierone, showed that the OSNs 478 

tuned to this compound are even more abundant than the OSNs for (S)-cis-verbenol; these neurons 479 

were present inside 42% of the contacted sensilla [161]. Lanierone elicits sex- and context-480 

dependent behavioral effects in I. typographus but it has never been shown to be produced by this 481 

species [63,161]. However, the beetles analyzed by Yuvaraj and colleagues also did not produce 482 

ipsdienol [161]. If ipsdienol indeed is the precursor for lanierone [103] (Figure 4), the lack of 483 

ipsdienol would explain the lack of lanierone in the investigated specimens. In contrast to the high 484 

abundance of OSNs tuned to lanierone and (S)-cis-verbenol, neurons for the more abundant 485 

aggregation pheromone component in I. typographus, 2-methyl-3-buten-2-ol, were only 486 

encountered in 2% of the sensilla [137].  487 

 488 

5.4. Function and evolution of pheromone receptors in Ips  489 

Genes encoding the OR proteins that underlie the responses of the OSNs have been 490 

identified in several scolytines [169–178], but only from two species in the Ips genus. Seventy-491 

three ORs were identified from antennal transcriptomes of I. typographus and 69 ORs in I. 492 

duplicatus [169,173,178]. A large proportion of these ORs show conserved orthology between the 493 

two species, potentially suggesting conserved olfactory functions [179]. 494 
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Pheromone receptors (PRs) are ORs with specificity for pheromone compounds. 495 

Functionally characterizing PRs is crucial for understanding the specificity and evolution of 496 

pheromone communication. Additionally, PRs may also be candidates for chemoreceptor-targeted 497 

insect control, thus forest management [180]; see also Chapters 7.2 and 7.3). To identify the PRs, 498 

the receptor genes need to be functionally tested in heterologous expression systems. To date, 499 

approximately 30 coleopteran ORs have determined functions [181]. Of these, 14 ORs belong to 500 

the bark beetles D. ponderosae (2 ORs) and I. typographus (12 ORs) [161,178,179,181–183]. In 501 

fact, I. typographus (‘Ityp’) has the highest number of functionally characterized ORs of all 502 

coleopterans investigated to date, including PRs. 503 

Functional showed that ItypOR46 responds to (S)-(−)-ipsenol, and ItypOR49 to (R)-(−)-504 

ipsdienol [178,183], with impressive discrimination between structurally related compounds and 505 

enantiomers, similar to the corresponding OSNs [165]. The ItypOR46 gene has the third highest 506 

antennal expression of all ItypOR, which is consistent with the abundance of OSNs that respond 507 

to (S)-(−)-ipsenol [137,178]. A third pheromone receptor (ItypOR28) was subsequently 508 

characterized, with primary responses to E-myrcenol [182] – an aggregation pheromone 509 

component in I. duplicatus [184]. Interestingly, OSNs responding to E-myrcenol have so far not 510 

been identified in I. typographus [137]. ItypOR28 belongs to the same Ips-specific OR clade as 511 

ItypOR46 and ItypOR49 [178,182], demonstrating a shared evolutionary origin of these PRs. 512 

However, this OR clade contains four additional ORs that respond to monoterpenoids produced 513 

by spruce trees and/or the symbiotic fungi of I. typographus. Hence, PRs in Ips bark beetles also 514 

share close relatednessith ORs detecting compounds with different ecological origins [182].   515 

Two recent studies focused on the ItypORs with the highest and second-highest antennal 516 

expression [178], namely ItypOR36 and ItypOR41, respectively. The ItypOR36 responds 517 

exclusively to lanierone [161]. ItypOR41 responds primarily to the aggregation pheromone 518 

component (S)-cis-verbenol, with minor responses elicited by (−)-verbenone and trans-verbenol 519 

enantiomers [181]. Both the high expression of these PR genes and their responses match with 520 

the antennal abundances and responses of the corresponding OSNs, suggesting that these ORs 521 

underlie the neuronal responses. ItypOR36 and ItypOR41 are phylogenetically well separated 522 

from each other and also from the clade that houses ItypOR28, ItypOR46, and ItypOR49, 523 

suggesting that bark beetle PRs have evolved on several independent occasions [181]. It is likely 524 

that the recently identified conserved receptor orthologues in I. duplicatus detect the same 525 

pheromones in this species [173,179].     526 

To understand the molecular interactions between PRs and their ligands, 3D models have 527 

been generated for ItypOR41 and ItypOR46, and ligand docking simulations with the active 528 

pheromones have been performed [178,181]. Two amino acid residues (Tyr84 and Thr205) were 529 

shown to be important for the interaction between (S)-(−)-ipsenol and ItypOR46 [178]. In 530 

ItypOR41, two other residues (Gln179 and Trp310) were predicted to be key for the binding of 531 

(S)-cis-verbenol in this receptor [181]. In both studies, the predicted binding residues were 532 

confirmed experimentally.  533 

In summary, our understanding of pheromone detection mechanisms in Ips bark beetles has 534 

progressed extensively in recent years, especially in I. typographus. The identification of 535 

pheromone binding sites in the PRs that are tightly linked to the reproductive success and mass 536 

attacks of bark beetles is essential for identifying receptor antagonists or agonists that could 537 

possibly be designed to interfere with bark beetle pheromone communication and hence 538 

contribute to the toolkit of bark beetle management strategies (see also sections 7.3 and 7.4).  539 

 540 
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6. Pheromone-Based Strategies for Managing Ips Bark Beetle Outbreaks: Current 541 

Approaches and Future Prospects 542 

6.1. Mass trapping 543 

The primary use of aggregation pheromones is to attract and eliminate target populations 544 

[185,241]. Attract-and-kill strategies, such as mass trapping, employ pheromone traps or 545 

natural/poisoned, baited/non-baited trap trees [8,126,186–189]. However, these methods remain 546 

controversial for several reasons. Treatment success varies widely from no effect [190] to 547 

significant infestation reduction [191]. Even without insecticides, non-target species, including 548 

predators and parasitoids of bark beetles, are frequently caught, potentially disrupting natural 549 

biological control [192,193]. Poor trap placement can also inadvertently trigger infestations in 550 

nearby trees, causing so-called spillover effect [194,195]. Additionally, mass trapping can be labor-551 

intensive. Non-insecticide-treated trees must be removed before brood development, and traps 552 

require frequent emptying, as bark beetles are deterred by the scent of dead conspecifics [196]. 553 

A major limitation of mass trapping is the lack of standardized protocols [194]. Research 554 

should establish guidelines for trap density based on infestation levels [197] and optimal inter-trap 555 

distances. Many studies focus on beetle capture rates without assessing impacts on surrounding 556 

stands [198,199]. Additionally, the conditions under which mass trapping is effective remain 557 

poorly understood, with population size likely playing a key role [200]. Further research is needed 558 

to determine environmental and population-related factors affecting trapping efficiency. 559 

6.2. Anti-aggregation signal 560 

Several formulations of anti-aggregation blends for tree protection are commercially 561 

available in North America, but their use is largely restricted to Dendroctonus bark beetles [187]. 562 

Although multiple attraction inhibitors exist for Ips species—such as the anti-aggregation signal 563 

verbenone [101] or plant-derived compounds like trans-4-thujanol, 1,8-cineole, C6 green leaf 564 

volatiles, C8-alcohols, and trans-conophthorin [100,201–204] no commercial formulation is 565 

currently available for Ips bark beetle management. A major limitation of push-only approaches is 566 

the uncertain fate of repelled beetles. Whereas reduced aggregation on suitable hosts may increase 567 

mortality due to exhaustion [205], it could also lead to spillover infestations in untreated areas 568 

([206]. Additionally, the high cost of anti-attractants, including verbenone, poses a challenge [207], 569 

especially since inhibition is strongest in the first weeks, requiring frequent dispenser replacements 570 

in multivoltine populations [205]. 571 

To improve anti-aggregation strategies, more effective and cost-efficient bait formulations 572 

are needed to ensure widespread application and reduce spillover risk. Additionally, like mass 573 

trapping, further research is required to understand the environmental factors influencing treatment 574 

success and to define optimal management scenarios where anti-aggregation pheromones can 575 

complement existing control methods [101]. 576 

 577 

6.3. Push-and-pull 578 

A proposed solution to the limitations of the push-only approach with anti-aggregation signal 579 

is the push-pull strategy, which combines aggregation and anti-attractant cues [208]. Here, anti-580 

attractants "push" bark beetles away from healthy stands, while traps baited with aggregation 581 

pheromones "pull" them in [209]. In North America, this method locally reduced I. paraconfusus 582 
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populations [208] and showed promise for protecting pine trees from I. pini [210,211]. In Europe, 583 

push-pull has been tested to protect forest edges from I. typographus. In Swedish boreal spruce 584 

forests, baited trap trees served as the pull component [199], while in Czech spruce forests, 585 

pheromone dispensers were used [206]. However, this method proved ineffective under severe 586 

drought and extreme beetle population densities [212].  587 

Interestingly, many studies reporting successful push-and-pull strategies only find a 588 

significant effect from either the push or pull component when tested individually [207,213–215]. 589 

It remains unclear whether anti-aggregation signal actively repel beetles or merely mask attractant 590 

cues (Byers and Levi‐Zada, 2022), although a recent study showed clear avoidance of verbenone 591 

or trans-4-thujanol by I. typographus in short-range laboratory walking bioassays[161,217]. If they 592 

only obscure attraction signals, their contribution to push-and-pull success may be limited. A 593 

deeper understanding of these mechanisms is essential to enhance future push-and-pull strategies. 594 

Despite its promise, evidence for successful tree protection remains limited for Ips species 595 

compared to Dendroctonus bark beetles [209]. 596 

 597 

7. Future Perspectives on Ips Bark Beetle Aggregation Pheromones: Advances in 598 

Research and Pest Management 599 

Based on the above-reviewed informations, we have identified key knowledge gaps in 600 

pheromone research that future studies should address. These gaps span from laboratory research 601 

utilizing advanced post-genomic tools to field studies directly applicable to practical forest pest 602 

management. 603 

7.1. Knowledge Gaps 604 

Intervention in Pheromone Production and Detection on Genetic Level 605 

• Identifying and characterizing additional genes involved in pheromone 606 

biosynthesis, including their regulatory mechanisms and genetic underpinnings. 607 

• Investigating additional genes encoding pheromone receptors (PRs) to understand 608 

their role in pheromone detection, especially in species other than I. typographus where 609 

information is entirely lacking. 610 

• Applying genetic manipulation techniques (e.g., RNAi-mediated silencing or 611 

CRISPR-Cas knockdown) to disrupt male pheromone production or alter pheromone 612 

detection in conspecifics. 613 

Development of Novel Techniques for Early Attack Detection 614 

• Utilizing OR-based or whole-antenna biosensors to detect pheromone release and 615 

identify early bark beetle infestations. 616 

Optimization of Pheromonal Lures and Push-pull strategy in Forest Management 617 

• Improving lure effectiveness by enhancing attraction efficiency, increasing 618 

selectivity for bark beetles while minimizing non-target captures, and adjusting the sex ratio 619 

of trapped individuals toward males. 620 

• Developing more effective and optimized push-pull strategies for bark beetle 621 

management. 622 

• Identifying additional olfactory receptors on bark beetle antennae that detect 623 

specific ecological compounds and integrating these compounds into synthetic lures to 624 

enhance attraction and control efficiency. 625 

 626 
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7.2. Intervention in Pheromone Production and Perception on Genetic Level 627 

Manipulating pheromone production in Ips bark beetles offers a promising strategy for 628 

disrupting their communication without removing them from ecosystems. This approach helps 629 

preserve their ecological roles in forest renewal and nutrient cycling while mitigating large-scale 630 

tree infestations [95,218]. Additionally, targeting their PRs using antagonists or highly potent 631 

agonists can prevent the beetles from detecting aggregation pheromones, thereby reducing their 632 

ability to locate and attack specific trees[180]. 633 

The key advantage of these approaches—though still largely speculative—lies in their 634 

species specificity and non-lethal nature. However, manipulating beetle behavior at the genetic 635 

level requires functional characterization of selected genes, which has only been completed for a 636 

few. Access to a complete genome of a target beetle significantly facilitates gene selection. Yet, to 637 

date, only the genomes of I. typographus and I. nitidus have been published [15,219]. 638 

Species-specific targeting of pheromone biosynthetic pathways depends on the careful 639 

selection of genes, particularly those involved in the terminal steps of biosynthesis. Several 640 

candidate genes for ipsdienol and ipsenol biosynthesis have already been characterized and could 641 

be studied for genetic manipulation in species where these compounds play a crucial role in 642 

attraction (Table 1). These genes include GPP/myrcene synthase [112], IDOLDH [220], IDONER 643 

[120]; Chapter 4.2.1), and CYP450 myrcene hydroxylase [71]; Chapter 4.2.3. 644 

In I. typographus, additional key genes require further characterization, including isoprenyl 645 

diphosphate synthase (IPDS) (Chapter 4.2.1), which is involved in 2-methyl-3-buten-2-ol 646 

biosynthesis, and lipases/carboxylesterases (Chapter 4.2.2), which are involved in verbenyl fatty 647 

acid ester metabolism. Characterizing these genes involves expressing them in bacterial, 648 

eukaryotic, or coleopteran cell lines to produce the relevant enzymes, followed by functional assays 649 

to validate their roles. 650 

Another knowledge gap lies in understanding the regulatory cascades that control pheromone 651 

production in bark beetles, offering a potential alternative for intervention. The roles of hormones 652 

like ecdysteroids and the specific receptors for JH III, which are known to induce de novo 653 

pheromone biosynthesis (Chapter 4.2), remain unclear. 654 

Regarding pheromone receptors of Ips species, five receptors have been functionally 655 

characterized from I. typographus, with specific responses to (S)-(−)-ipsenol, (R)-(−)-ipsdienol, E-656 

myrcenol, lanierone, and (S)-cis-verbenol, respectively (Chapter 5.4) [171,178,181,182] . 657 

However, receptors for other pheromone compounds, including hemiterpenes and (S)-(+)-658 

ipsdienol, as well as those in other Ips species, remain unidentified.  659 

When a gene's full sequence and function are known, its expression can be regulated through 660 

genetic manipulation. This can be achieved temporarily via RNA interference (RNAi), which 661 

degrades target mRNA using double-stranded RNA (dsRNA), or permanently through CRISPR-662 

Cas genome editing [221]. RNAi, offering greater specificity and environmental safety than 663 

traditional insecticides, has gained traction in agricultural pest control [222,223]. However, bark 664 

beetle outbreaks in forestry pose unique challenges, including vast forested areas, wide beetle 665 

dispersal, multiple generations per year, and delivery method limitations [224,225]. Despite these 666 

obstacles, progress has been made in RNAi-based bark beetle control [218,226]. Research into 667 

dsRNA delivery for coleopteran wood-feeding beetles includes methods such as spraying tree 668 

trunks, injecting dsRNA into the sap stream [227] or using polymer carriers [228]. These 669 

approaches could effectively silence pheromone biosynthetic genes during bark beetle feeding 670 

[229] 671 
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Additionally, the genetic approach to preventing bark beetle attacks may target their olfactory 672 

system to impair pheromone detection, conspecific recognition, and mass attack coordination 673 

[230]. RNAi silencing and CRISPR-Cas may also target OR and ORCO genes in Ips species, even 674 

though both have mainly been used to study receptor roles in pheromone-driven behaviour so far 675 

[231,232]. 676 

7.3. Development of Novel Techniques for Early Attack Detection employing biosensors 677 

based on bark beetle olfactory system 678 

Early detection of bark beetle-infested trees is crucial for timely salvage logging before 679 

beetles spread. The most effective method remains visual inspection for boring dust [233], but the 680 

vastness of forests limits it, and new approaches are being sought. To improve efficiency, UAVs 681 

equipped with various sensors are being tested for faster, large-scale detection. 682 

Properly characterized insect olfactory receptors (ORs) or entire antennae can be used to 683 

develop species-specific biosensors that convert pheromone-receptor interactions into readable 684 

signals [234–236]. While this has been applied to lepidopteran antennae, it remains unexplored for 685 

bark beetles. Potential instrumentation includes portable electroantennography (EAG) devices with 686 

insect antennae on plastic chips [237] or lighter BioFETs combining antennae with field-effect 687 

transistors [238].  688 

7.4. Optimization of Pheromonal Lures and Push-pull strategy in Forest Management 689 

To optimize pheromone lures, electrophysiological studies should identify new pheromonally 690 

active compounds [200,239], while improved dispenser designs and optimized blend compositions 691 

should be tested in pheromone traps to reduce non-target captures and adjust the trapped sex ratio 692 

toward males. Also, beetle-derived synergistic compounds can be added to lures to enhance 693 

dispenser effectiveness and maximize beetle capture [189,240]. Additionally, incorporating 694 

ecosystem-based attractants, such as high monoterpene concentrations from host trees [97,189] or 695 

symbiotic fungal compounds (e.g., fusel alcohols, fusel acetates, or oxygenated terpenes with 696 

synergistic properties) may further increase bait specificity [100,134,135]. More precise 697 

enantiomeric composition and purity of chiral compounds can also improve species specificity and 698 

overall efficacy (Table 1).  Enhanced lures could unlock the hidden potential of trap-and-kill 699 

strategies or serve as more selective monitoring tools. 700 

Push-and-pull strategies can be improved by optimizing both push (anti-attractants) and pull 701 

(aggregation pheromone) components. More than for mass trapping, practical spatial arrangements 702 

for these components need to be developed.  703 

8. Concluding remark. 704 

Recent research on Ips bark beetle aggregation pheromones has been driven by the increasing 705 

frequency and severity of outbreaks, as well as their expansion into new habitats. This review 706 

synthesizes insights from multiple disciplines, linking pheromone-based Ips management 707 

strategies with laboratory research on pheromone biosynthesis and detection at neuronal and 708 

genetic levels. Framed within the ecological and behavioral context of selected Ips species, it 709 

provides a comprehensive perspective on aggregation pheromones and their applications. 710 

While the initial promise of using aggregation pheromones for mass trapping in Ips pest 711 

management has diminished due to limited effectiveness and unintended consequences, these 712 
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pheromones remain valuable for monitoring bark beetle populations. Moreover, emerging research 713 

continues to explore novel applications, making it worthwhile to investigate their potential further. 714 

On the other hand, advancements in molecular and genomic techniques in the post-genomic 715 

era have significantly enhanced our understanding of pheromone biosynthesis, its regulation, and 716 

the olfactory mechanisms underlying pheromone detection. In the future, gene manipulation 717 

techniques—already applied in agricultural pest management—may offer innovative approaches 718 

to influence pheromone production and perception in Ips bark beetles. 719 

By bridging traditional forestry perspectives with cutting-edge molecular insights, this 720 

review aims to stimulate productive discussions and inspire novel control strategies—not to replace 721 

traditional, effective bark beetle management practices but to integrate new approaches that 722 

enhance their effectiveness in an eco-friendly manner. 723 
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Abstract

The double-spined spruce bark beetle, Ips duplicatus, has become an infamous sec-

ondary pest of Norway spruce, causing extensive ecological and economic destruc-

tion in many Central European countries. Antennae are the primary olfactory organs

that play a fundamental role in insect-host chemical communication; therefore,

understanding morphology is crucial before conducting electrophysiological investi-

gations. Here, we present our analysis of sensilla types on the antennal surface of

I. duplicatus for the first time, using high-resolution-scanning electron microscopy.

We studied the external morphological characteristics of antennae and the types,

numbers, and distribution of the antennal sensilla in males and females. Our results

revealed the presence of five different types of morphologically distinct sensilla: sen-

silla chaetica, sensilla basiconica, sensilla trichodea, sensilla coeloconica, and Böhm's

sensilla. We observed two subtypes of sensilla chaetica (SChI and SChII), four sub-

types of sensilla basiconica (SBI, SBII, SBIII, and SBIV), three subtypes of sensilla tri-

chodea (STrII, STrIII, and STrIV) and two subtypes of sensilla coeloconica (SCoI and

SCoII), respectively in I. duplicatus males and females. Minor differences in length and

numbers between the sexes for some sensilla types were found. Distribution maps

for different sensillar types were constructed, and specific areas for the respective

sensilla were found. Possible functions of observed sensilla types are discussed. The

present study provides a basis for future electrophysiological studies to understand

how I. duplicatus detects ecologically important olfactory cues.

Research Highlights

• The first report of morphology and distribution pattern of the antennal sensilla in

Ips duplicatus is discussed.
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• A total of 6 main types and 11 antennal sensilla subtypes were observed in male

and female Ips duplicatus.

• Minor sex-specific differences were seen in the length and numbers in several sen-

silla types.

K E YWORD S

antenna, Ips duplicatus, morphology, scanning electron microscopy, sensilla

1 | INTRODUCTION

Most bark beetles (Coleoptera: Curculionidae, Scolytinae) are natural

decomposers of dead and dying trees in forests, and several species

are considered economically significant conifer pests that also attack

living trees. The double-spined bark beetle, Ips duplicatus (Sahlberg,

1836), originally native to Fennoscandia, Siberia, and East Asia, has

spread recently to Central Europe and is expanding southward

(Wermelinger et al., 2020). The primary host tree of I. duplicatus is

Norway spruce (Picea abies (L.) Karst.), the most cultivated conifer in

Europe (Grodzki, 2012; Holuša et al., 2010). In endemic phases,

I. duplicatus colonizes the uppermost stem and the crown of the

weakened or dying spruce or spruce trees, often attacked by

European spruce bark beetle (Ips typographus [Linnaeus, 1758;

Schlyter & Olle, 1993]). However, in outbreaks, I. duplicatus can also

infest living trees (Kašák & Foit, 2015; Knížek et al., 2019). The cur-

rent I. duplicatus population increases in Central Europe, and its south-

west expansion has worsened the already problematic situation in

spruce forests (Wermelinger et al., 2020). I. duplicatus shares similar

biology as I. typographus; however, due to its specific host preferences

and different bionomy, its management is different and less effective

than that for I. typographus (Holuša et al., 2010).

In bark beetles, antennae are the primary sensory organ

(Faucheux, 1989, 1994; Hallberg, 1982; Shi, Zhang, Liu, Zhang,

et al., 2021). The antennal surface is covered with many hair-like

structures called sensilla, which are small sensory organs protruding

from the cuticle of the exoskeleton. The sensillum is the antenna's

basic functional unit and each one houses sensory receptor neurons.

Thus, sensilla are distinct sensory units defined by their shape, size,

wall ultrastructure, internal arrangements, and the number and modal-

ity of sensory neurons present. Usually, the olfactory sensilla are the

most numerous on insect antennae (Schneider, 1964). The morphol-

ogy of the antennal sensilla is very diverse. It often includes the hair-

or peg-shaped types (sensilla trichodea and basiconica, respectively),

types with pegs recessed in pits or surrounded by various cuticular

protrusions (sensilla coeloconica), pegs set at the bottom of a long

tube that appear as small round openings on the cuticular surface

(sensilla ampullacea), round-shaped porous setae (sensilla placodea)

and many others (Borden & Wood, 1966; Dickens et al., 1978; Gali-

zia & Rössler, 2010; Payne et al., 1973; Steinbrecht, 1997;

Whitehead, 1981). Usually, morphologically different sensillar types

accommodate physiologically different sensory neurons. For instance,

sensilla trichodea in many insects, such as flies and moths, mainly

house olfactory sensory neurons (OSNs) tuned to detect pheromone

components (Khallaf et al., 2021; Ljungberg et al., 1993; Pophof

et al., 2005; Steinbrecht, 1997). However, in some species, sensilla tri-

chodea detect other chemicals. For instance, in the tsetse fly Glossina

morsitans (Diptera: Glossinidae), OSNs housed in the trichodea sensilla

respond to a range of diverse chemicals, like 1-octen-3-ol,

2-heptanone, isoamyl acetate, and methyl laurate (Soni et al., 2019).

In ambrosia beetles, Biswas et al. (2023) showed that OSNs housed in

sensilla trichodea respond to a wide range of volatiles, including host,

non-host, and fungal-derived odors. Sensilla basiconica OSNs gener-

ally respond to plant volatiles, including various alcohols, aldehydes,

esters and, ketones (Cui et al., 2018; De Bruyne et al., 2001). OSNs in

coeloconic sensilla are known to be tuned to specific chemosensory

stimuli, including acids, aldehydes, ammonia, putrescine, and water

vapor (Prieto-Godino et al., 2017; Yao et al., 2005). There are reports

of sensilla coeloconica responding to the extent of temperatures and

humidity (Ruchty et al., 2010; Schneider et al., 2018).

Antennal morphology and the distribution of different sensillar

types have been published for several bark beetle species of the

genus Ips, including I. typographus, I. sexdentatus, I. pini, I. subelongatus,

I. confusus, and other Ips species (Faucheux, 1989, 1994;

Hallberg, 1982; Payne et al., 1973; Shi, Zhang, Liu, Xu, et al., 2021;

Shi, Zhang, Liu, Zhang, et al., 2021). However, we do not have any lit-

erature reporting morphological data about the sensilla types and dis-

tribution of I. duplicatus. Information about antennal morphology and

distribution of the sensillar types is essential for further physiological

studies related to the olfaction of I. duplicatus that govern the specific

behavior and host preferences. We provide external morphology of

different sensillar types on I. duplicatus antennae and maps of differ-

ent sensilla on the antennal surface. We compare and discuss our

morphological findings with the available literature for other Ips

species.

2 | MATERIALS AND METHODS

2.1 | Insects

Logs of Norway spruce (Picea abies) infested by I. duplicatus were col-

lected in the Kostelec nad Černými lesy (49�5903900, 14�5103300,

Czech Republic) and maintained in insect rearing chambers at the
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Faculty of Forestry and Wood Sciences, Czech University of Life Sci-

ences, Prague until beetles developed. Then the logs were debarked,

and adult beetles were collected and stored in plastic boxes with small

breathing holes in a refrigerator at 4�C until used for experiments.

Five individuals of each sex were selected for observations using

scanning electron microscopy (SEM).

2.2 | SEM analyses

Beetles were cleaned using an air blower to remove dirt from their

surfaces. The antennae of each individual beetle were dissected under

a stereomicroscope (Nikon, Japan). At first, antennae were primarily

fixed for 24 h in 2.5% glutaraldehyde in 0.5 M cacodylate buffer (pH -

7.2), followed by post-fixation in 2% OsO4 in the same buffer for 4 h.

Then, the antennae were washed twice with distilled water for

10 min. Fixed antennae were dehydrated by passing through a series

of ethanol with increasing ethanol concentrations in water (35%, 50%,

70%, 96%, and 100%, with 10 min of incubation at each step). Anten-

nae were further dried using a critical point dryer (Bal-Tec CPD 030).

Preparations were then sputter-coated with a gold layer (20 nm thick-

ness) in an ion sputter coater (Bal-Tec SCD 050) and observed under

a JEOL JSM-IT200 scanning electron microscope and JEOL IT800

high-resolution scanning electron microscope (high-resolution SEM) at

3, 5, 10, and 15 kV with a working distance of 3–5 mm. The antennal

morphology and sensilla types, numbers, and distribution were studied

on five antennae from adults of both sexes.

2.3 | Sensilla categorization

The general morphology of I. duplicatus is described using terminology

as per Hulcr et al. (2015). When classifying the sensilla, we combined

data from different papers that studied antennal sensillar equipment

of different bark beetles of the genus Ips (Faucheux, 1989, 1994;

Hallberg, 1982; Shi, Zhang, Liu, Xu, et al., 2021; Shi, Zhang, Liu, Zhang,

et al., 2021) and other insect species (Chen et al., 2010; L�opez

et al., 2018; Payne et al., 1982; Schneider, 1964; Whitehead, 1981).

Sensilla categorization was based on external morphological criteria

like size, shape, presence or absence of pores, and other features such

as the attachment of the sensilla with the cuticle (flexible or inflexible

socket) (Nowi�nska & Brożek, 2017).

2.4 | Statistical analyses

Image J v.1.53q (Schneider et al., 2012) was used to measure and

quantify each sensilla type. The software allows you to set a defined

scale and measure different parameters of selected region such as

length, width, diameter, and area, using the specific tools. The length

of the sensilla was measured from the sensilla tip to the base of the

sensilla, and basal width was determined at the bottom of the sensilla

(n = 10 per sensilla type per specimen in each sex). The length, basal

width, and total numbers of sensilla of each respective category were

compared between the sexes by Bonferroni multi-comparison test

using GraphPad Prism v.9.0 trial version for Windows, GraphPad Soft-

ware (www.graphpad.com).

3 | RESULTS

3.1 | General antennal morphology

The antennae of Ips duplicatus are elbowed with seven flexibly con-

nected segments: the scape (on the proximal side), five funicular seg-

ments (from proximal to distal: pedicel (F1), F2, F3, F4, F5), and the

antennal club (the most distal side) (Figure 1a). The segments between

the scape and the antennal club are smaller, flexible, and collectively

considered as funicle. The funicle has five bowl-shaped linked seg-

ments, with their depth increasing and diameter decreasing distally

from F5 to F (Figure 1a and Supplementary Table 1). The segment F1

connected to the scape is also known as the pedicel and is the largest

of all funicular segments. The pedicel of the left antenna is slightly bent

towards the left side, while the pedicel of the right antenna is curved to

the right side. The mean length of the whole antenna is approximately

755.99 ± 1.69 μm. The scape is the longest part of the antenna and is,

on average, 354.23 ± 2.05 μm long, followed by the antennal club

(220.66 ± 2.43 μm) and the funicular segments. The antennal club is

F IGURE 1 The general morphology of Ips duplicatus antenna (female). (a) Ventral side of the antennal club showing funicular segments (F1–
F5), pedicel (F1) and scape; (b) Three sensory bands on the antennal club (A, B, and C).
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wide and oval shaped with an average length of 220.66 ± 2.43 μm in

the direction of the antennal axis with an average width of 180.70

± 0.53 μm. The club is slightly bulging (convex) on both sides. The sur-

face of the scape, funicle, and dorsal surface of the club have a scale-

like layer on the outer surface. These scales are also visible on the prox-

imal area of the ventral side of the club. The sensilla on the surface of

the scape, funicular segments, and dorsal side of the antennal club are

sparse, and only a few types are present (Supplementary Figure 1). The

majority of sensilla are located on the ventral side antennal club, specifi-

cally in its most distal three-fourth area (Figure 1b). The sensilla are sys-

tematically organized into three sensory areas, referred to here as A, B,

and C bands here (distal sensory band C, middle sensory band B, and

proximal sensory band A) (Figure 1b). The sensory bands A and B form

two parallel wave-like stripes across antennal club separated by a strip

of the plain cuticle. The sensory band B has a deeper curve in the mid-

dle compared to sensory bands A and C. A hint of the third distal sensil-

lar band C almost merges with the middle sensory band B area on the

antennal club. Oval-shaped pit-like structures scattered randomly

among the sensilla, termed here as surface pores (SPs), were observed

on both the ventral side and the dorsal part of the club and other

antennal segments.

3.2 | Sensilla types and distribution

Two types of sensilla chaetica (SChI and SChII), four types of sen-

silla basiconica (SBI, SBII, SBIII, and SBIV), three subtypes of

sensilla trichodea (STrII, STrIII, and STrIV), two types of fluted

cone-shaped sensilla coeloconica (SCoI and SCoII), and Böhm's

sensilla (BS) were identified on I. duplicatus antennae in both sexes

(Table 1). Table 1 summarizes the respective features (length, basal

width, socket characterization, presence of pores in the sensillar

cuticular wall or at the tip, tip shape, etc.) and numbers of each

sensilla type present on the ventral area of the antennal club. On

the dorsal surface of the club, only sensilla chaetica type II, sensilla

trichodea type III, and Böhm's sensilla were seen (Supplementary

Figure 1).

3.3 | Sensillar types and distribution on the
antennal surface

3.3.1 | Sensilla chaetica

Sensilla chaetica (SCh) are long aporous sensilla with toothed projec-

tions and flexible (deep and wide) sockets (Figure 2). In I. duplicatus,

sensilla chaetica were generally projected at an angle greater than 45�

from the antennal club surface. They comprise 12% of the total

observed sensilla. Based on their length and branching pattern, sensilla

chaetica were categorized into two subtypes (Figure 2a, b). Shorter and

slender sensilla chaetica type I (SChI) with a length of 21.2–46.5 μm in

males and 21.9–38.9 μm in females, respectively, had toothed projec-

tion oriented in only one plane (saw-toothed with bilateral branching)

and visible longitudinal grooves on the wall surface (Figure 2c, f–h).

TABLE 1 General morphological characteristics based on external appearance and distribution of different sensilla types in Ips duplicatus.

Sensilla

type Distribution Pores Wall structure Tip Shape Socket

SChI Antennal club (A, B and C), funicular

segments (F1–F5) and scape

Aporous Longitudinal grooved wall,

bilateral branching

Sharp Straight Flexible

SChII Antennal club (C), funicular segments

(F1–F5) and scape

Aporous Longitudinal grooved wall,

multi-branching

Sharp Curved Flexible

SBI Antennal club (A, B, C) Multiporous Pitted Blunt Straight Inflexible

SBII Antennal club (A, B and C) Multiporous Grooved Blunt Straight Inflexible

SBIII Antennal club (B and C) Uniporous Smooth Blunt and

round

Peg shaped Inflexible

SBIV Antennal club (C) Uniporous Smooth Round Straight Inflexible

STrII Antennal club (B and C) Multiporous Smooth Pointed Slightly curved Inflexible

STrIII Antennal club (A, B, and C) Terminal pore Smooth Blunt Long and curved Flexible

STrIV Antennal club (A, B, and C) Multiporous Pitted Pointed Straight Inflexible

SCo I Antennal club (A, B, and C) Aporous Grooved Round Cone-shaped Inflexible

SCo II Antennal club (A, B, and C) Aporous Grooved Sharp Cone-shaped Inflexible

BS Scape Aporous Smooth Blunt and

round

Short and

straight

Flexible

SP Club (A, B, and C), funicle segments (F1–
F5) and scape

? Pit on the club surface — Oval —

Abbreviations: SChI, sensilla chaetica type I; SChII, sensilla chaetica type II; SBI, sensilla basiconica type I; SBII, sensilla basiconica type I; SBIII, sensilla

basiconica type III; SBIV, sensilla basiconica type IV; STrII, sensilla trichodea type II; STrIII, sensilla trichodea type III; STrIV, sensilla trichodea type IV; SCoI,

sensilla coeloconica type I; SCoII, sensilla coeloconica type II; BS, Böhm's sensilla; SP, surface pores.
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SChI are present on all antennal sections, including the dorsal and ven-

tral side of the club. Sensilla chaetica type II (SChII) were longer and

thicker, with a length range of 23.9–79.2 μm in males and 29.2–

221.3 μm in females, respectively, with multilateral branching

(Figure 2d, i–k). The socket shape was different in both types of sensilla

chaetica, with SChI having a deeper socket than SChII (Figure 2h, k).

SChII on the scape and funicular segments were remarkably longer than

those observed on the antennal club surface. SPs were often observed

close to both types of sensilla chaetica (Figure 2d).

3.3.2 | Sensilla basiconica

Sensilla basiconica (SB) were the most frequent sensilla type (66% of the

total sensilla) observed within the sensory epithelium of the club

(Figure 3). All SB have inflexible (fused) sockets. Sensilla basiconica were

categorized into four subtypes based on their length, basal width, poros-

ity, tip shape, and wall structure (Figure 3a). The most abundant sensilla

basiconica type were sensilla basiconica type I (SBI) (Figure 3b). These

sensilla types were straight, multiporous with a pointed tip. The pores of

SBI formed longitudinal slit-like depressions on the wall surface

(Figure 3c). The pore density was 40 pores/um 2. The SBI length was

around 9.3–11.7 μm long in males and 8.6–13.2 μm long in females. Sen-

silla basiconica (SBII) were also multiporous with pointed tips but compar-

atively shorter and thicker than SBI (Figure 3d and Table 2). SBII were

around 5.8–10.2 μm long in males and 6.3–10.9 μm in females. SBII have

a lower pore density of 20 pores/um2 compared to SBI. The pores collec-

tively resembled pit-like depressions on the sensillar wall surface

(Figure 3d). Sensilla basiconica type III (SBIII) were uniporous with peg-like

appearance (length and basal width range: 5.8–10.9 μm and 1.1–2 μm,

respectively), a slightly tapered tip, and a smooth wall with slight depres-

sions (Figure 3e, f). The range of length of SBIII was around 3.6–6.8 μm in

males and 3.3–7.1 μm in females, respectively. Sensilla basiconica type IV

(SBIV) were the shortest basiconica type with an inflexible (fused) socket,

smooth wall, and an uniporous round tip (Figure 3g) with the length rang-

ing from 3 to 5 μm in males and 3.4–6 μm in females.

3.3.3 | Sensilla trichodea

This category (STr) is rather non-homogeneous in its parameters and

covers around 19% of the total sensilla. Considering their length as a

F IGURE 2 Ips duplicatus antenna highlighting sensilla chaetica and its subtypes, (a) Sensilla chaetica type II (SChII) (b) Sensilla chaetica type I
(SChI), (c) Magnified view of SChI, (d) magnified view of SChII, inset (e) longitudinal grooved wall surface, (f–h) tip shape, branching pattern and,
basal socket of SChI, (i–k) tip shape, branching pattern and basal socket of SChII.
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classification parameter, ranging from 12.24 to 30.62 μm, they fit

between the sensilla basiconica and sensilla chaetica (Table 2). We

classified these sensilla types into three categories (Figure 4a). The

longest sensilla trichodea type III (STrIII) (length range: 21.5–44.8 μm

in males and 18.9–47.6 μm in females) were distinctly curved sensilla

with a flexible socket, smooth wall, and a single terminal pore

(Figure 4b, g, h). Sensilla trichodea type II (STrII) were shorter and

slender than STrIII (length range: 15.7–34.5 μm in males and 13.7–

36.4 μm in females, respectively), elongated and tapering towards the

tip (Figure 4e), with an inflexible (fused) socket, and a multiporous wall

(Figure 4f). The pore density calculated was 30 pores/um2 for STrII.

The shortest sensilla trichodea type IV (STrIV) with length range of

11.1–15.8 μm in males and 9.5–16.2 μm in females, respectively, had

a sharp pointed tip, porous wall surface, and fused sockets (Figure 4c,

d). STrIV were easily distinguishable from STrII since they bulged in

the middle and tapered towards the tip. The pore density was

15 pores/um2. We did not observe sensilla trichodea type I, which

was reported in previous studies in Ips species (Supplementary

Table 2).

3.3.4 | Sensilla coeloconica

Sensilla coeloconica (SCo) were fluted cone-shaped structures with

deep longitudinal grooves on their wall and inflexible (fused) sockets

(Figure 5) covering about 2% of the total number of sensilla. Two

types of SCo were classified based on the differences in their tip

shape. SCo type I had a pointed tip with a length range from 5.9–

8.1 μm in males and 5.5–8.3 μm in females (Figure 5a, b), whereas

SCo type II had a round and bulgy tip with a length range of 5.8–

7.4 μm in males and 5–7.9 μm in females, respectively (Figure 5c, d).

3.3.5 | Böhm's sensilla

The sensilla type, called Böhm's sensilla (BS), were present on the base

of the scape and pedicel (Figure 6a). They were short (length range:

3.9–6.9 μm in males and 8.4–15.5 μm in females, respectively),

straight or slightly curved hairs with their base in a flexible (deep and

wide) socket and a smooth wall surface, typically angled �45� to the

cuticle of the antennal surface (Figure 6b).

3.3.6 | Surface pores

The SPs were present homogeneously on the ventral side of the

antennal surface, the funicular segments, and the scape (Figure 6a, d).

Some were also observed on the dorsal surface (Supplementary

Figure 1). The pore diameter was 0.5 μm. We observed around 28 of

these pores in males whereas approximately 18 in females

(Supplementary Table 1). The exact number could not be estimated

since the pores were difficult to observe since they were often hidden

between different sensilla on the antennal surface. The pores were

sometimes associated with sensilla with flexible sockets but otherwise

F IGURE 3 Ips duplicatus antenna highlighting sensilla basiconica and its subtypes, (a) Antennal sensory band C showing clusters of sensilla
showing different types of sensilla basiconica (b) sensilla basiconica type I (SBI) with slit-like depressions on the wall surface and fused socket,
(c) magnified SBI tip showing pores (indicated by arrows), (d) sensilla basiconica type II (SBII) with the porous wall surface, (e) peg-shaped sensilla
basiconica type III (SBIII) with fused socket and a pointed tip, (f) closer look of SBIII tip with the pore-like structure on the tip and, (g) sensilla
basiconica type IV (SBIV) with the pore-like structure on the blunt tip.
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F IGURE 4 Ips duplicatus antenna highlighting sensilla trichodea and its subtypes, (a) Group of sensilla trichodea types on the antennal
club(indicated by arrows) including (b) sensilla trichodea type II (STrII) and sensilla trichodea type III (STrIII), (c and d) sensilla trichodea type IV
(STrIV) with fused socket, bulged middle, porous wall surface and pointed tip, (e) sensilla trichodea type II (STrII) with fused socket, pointed tips
and (f) multiporous wall surface, (g) sensilla trichodea type III (STrIII) with deep flexible socket, blunt tip and (h) terminal pore.

F IGURE 5 Ips duplicatus antenna
highlighting sensilla coeloconica and its
subtypes (a) sensilla coeloconica type I
(SCoI) with longitudinal grooved wall
surface and (b) sharp tip, (c) sensilla
coeloconica type II (SCoII) with
(d) round tip.
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F IGURE 6 Ips duplicatus antenna highlighting
(a) Böhm's sensilla (BS) on the scape (highlighted
square) and surface pore (SP) indicated by an
arrow, (b) detailed view of BS with a deep socket
and round tip, (c) SPs on the antennal club surface
(indicated by arrows) and, (d) magnified view
of SPs.

F IGURE 7 Graph showing the comparison of length (a), width (b), and numbers (c) of different sensilla types in Ips duplicatus antenna in
females and males. Bars represent means and SE. (Bonferroni's multiple comparisons tests; n = 5 per sex).
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diffusely scattered among sensilla on the antennal club surface

(Figure 6c).

3.4 | Distribution, dimensions, and numbers
among sexes

The structural features and distribution pattern of sensilla on the

antennal surface was approximately same in males and females. After

performing statistical analyses using Bonferroni's multicomparison

test, we noted minor variations concerning the length of a few sensilla

types and numbers among the sexes (Table 2). The total length of the

antenna and other antennal segments showed no significant differ-

ences between the sexes. The mean length of SChII was significantly

different when comparing females and males (p-value of <.0001);

however, the average length differences in other sensilla types were

non-significant (Figure 7a and Table 2). The mean basal width of SChII

was significantly higher in females than in males (p-value <.0058).

Similarly, the mean basal width of BS was considerably higher in

females than in males, with a p-value of .0058 (Figure 7b and Table 2).

The average number of SBI was significantly different in males than in

females (p < .0163), whereas the mean number of STrIV was signifi-

cantly higher in females than in males (p < .0026) (Figure 7c and

Table 2).

We mapped the distribution pattern of different sensilla types

present on the antennal surface in I. duplicatus (Figure 8). The two

types of sensilla chaetica, SChI and SChII, often can be seen as form-

ing the boundary within the sensory bands around the sensilla basico-

nica and sensilla trichodea, whereas SChII is primarily seen on the

funicular segments and scape and sometimes on Band A (Figure 8a).

BS was exclusively present at the base of the scape and pedicel with

only 1% of the total sensilla (Figure 8a). The sensilla basiconica types

SBI and SBII, were uniformly distributed on the sensory band A and

B. SBI were denser in the middle of the sensory bands A and B. Very

few were observed on the distal band C. Shorter types of sensilla basi-

conica (SBIII and SBIV) were primarily observed in most distal club

area C (Figure 8b). Among all the sensilla trichodea types, STrIII is typi-

cally present within the proximal boundaries of sensillar bands and at

the periphery of the club, and the distribution is quite distinct and uni-

form. STrII was more abundant in the antennal club's C and B sensory

areas, whereas STrIV was spotted more within A and B sensory bands.

STrIV were often seen around SBI and SBII forming a peripheral bor-

derline on the sensory band A and B (Figure 8c). Both types of sensilla

coeloconica (SCoI and SCoII) were more abundant on the sensory

bands B and C and sometimes observed on the sensory band A. These

sensilla often occurred in pairs close to each other, and the distribu-

tion pattern was quite interesting. Both sensilla coeloconica I and II

were more frequently distributed on the middle and to the right side

of the left antenna and vice versa; rarely, 1 or 2 sensilla coeloconica

were observed on the same side of the antenna (Figure 9a, b).

4 | DISCUSSION

We report the first study focused on the morphological characteristics

of the sensory equipment of I. duplicatus antenna. Our study shows

that the general morphology of I. duplicatus antenna is quite similar to

other Ips species (Faucheux, 1989, 1994; Hallberg, 1982; Payne

et al., 1973; Shi, Zhang, Liu, Xu, et al., 2021; Shi, Zhang, Liu, Zhang,

et al., 2021). We observed five morphologically distinct sensilla types

F IGURE 8 Maps of sensillar distribution on
ventral side of Ips duplicatus antenna. (a) Sensilla
chaetica type I (SChI), sensilla chaetica type II
(SChII), and Böhm's sensilla (BS); (b) sensilla
basiconica type I (SBI), sensilla basiconica type II
(SBII) sensilla basiconica type III (SBIII) sensilla
basiconica type IV (SBIV); (c) sensilla trichodea
type II (STrII), sensilla trichodea type III (STrIII) and
sensilla trichodea type IV (STrIV).

SHEWALE ET AL. 1619

 10970029, 2023, 12, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/jem

t.24397 by C
zech A

gricultural U
niversity, W

iley O
nline L

ibrary on [23/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



in I. duplicatus: sensilla chaetica with two subtypes, sensilla basiconica

with four subtypes, sensilla trichodea with two subtypes, sensilla coe-

loconica with two subtypes, and Böhm's sensilla. SPs were observed

occasionally. As it is typical for other species of the genus Ips,

I. duplicatus antenna is also seven-segmented, and the sensilla on the

club are arranged in three snake-shaped sensory bands (Payne

et al., 1973). Many, but not all sensillar types observed on the anten-

nal surface of I. duplicatus were like those described in other Ips spe-

cies (Faucheux, 1989, 1994; Hallberg, 1982; Payne et al., 1973; Shi,

Zhang, Liu, Xu, et al., 2021; Shi, Zhang, Liu, Zhang, et al., 2021). How-

ever, the sensillar nomenclature in the published studies is inconsis-

tent in all studied species (Supplementary Table 2). We found more

sensillar subtypes in the respective categories than previously pub-

lished studies. Specifically, we observed more subtypes of sensilla

basiconica, sensilla coeloconica, and sensilla trichodea in I. duplicatus.

Based on our study, it is not clear whether these differences reflect

specificities related to the technique used in previous studies or

whether they indicate a specific adaptation for I. duplicatus.

There have been several studies of Ips spp. sensilla so far, with

different classification and nomenclature (Faucheux, 1989, 1994;

Hallberg, 1982; Payne et al., 1973; Shi, Zhang, Liu, Zhang,

et al., 2021). Supplementary Table 2 summarizes the classification and

nomenclature of sensilla in the present study and previously studied

Ips species facilitating a clear understanding and avoiding any future

confusion. We kept our classification consistent with previous reports

and followed a new nomenclature only for those sensilla types which

were not reported previously and do not fit within the existing

classification.

As also observed for other Ips species (Faucheux, 1989, 1994;

Shi, Zhang, Liu, Xu, et al., 2021; Shi, Zhang, Liu, Zhang, et al., 2021)

and bark beetles in general, sexual dimorphism in I. duplicatus was not

too prominent, and if present, it generally refers to only minor differ-

ences in abundance and length of some sensillar types. This finding

indicates that in I. duplicatus the sensilla probably have similar func-

tions in both sexes. Interestingly, we observed significantly longer

sensilla chaetica with multilateral branching (SChII) in females, the

wider multiporous sensilla basiconica (SBI), and their higher number in

males. In addition, small sex-specific differences were determined for

multiporous sensilla trichodea STrIV, which were present in slightly

higher numbers in females. Further experiments are needed to deter-

mine whether these differences reflect sex-specific differences

related to mating or host selection. Morphologically different sensillar

categories are supposed to have specific physiological functions

(Hallberg, 1982; Hansson & Stensmyr, 2011; Keil, 1999;

Schneider, 1964). Below, we discuss the possible physiological roles

of the different morphological types observed in I. duplicatus.

4.1 | Sensilla chaetica

This sensillar type have a flexible socket and long, either bilaterally or

multilaterally branched hair that project outwards from the antennal

surface well above other sensillar types. Two types of sensilla chaetica

with the same morphology were also observed in other Ips species

(Faucheux, 1994; Shi, Zhang, Liu, Xu, et al., 2021; Shi, Zhang, Liu,

Zhang, et al., 2021), though there are differences when it comes to

nomenclature (Supplementary Table 2). The morphological description

and location of this sensilla type in I. duplicatus match with the previ-

ous studies in I. typographus and I. confusus (Borden & Wood, 1966;

Faucheux, 1989; Hallberg, 1982; Shi, Zhang, Liu, Zhang, et al., 2021).

The cross-sections of sensilla chaetica in I. typographus

(Hallberg, 1982); shows a basal cuticular ring of articulating mem-

brane, circular solid hair shafts filled with an electron dense material,

and a sensory process that terminates as a tubular body in the basal

part of the hair. These parameters suggest that sensilla chaetica

serves the mechanoreception function (Borg & Norris, 1971;

Hallberg, 1982; Moeck, 1968). Though we have not performed the

cross-section of sensilla chaetica in I. duplicatus, the external morpho-

logical similarity between sensilla chaetica in I. typographus and

I. duplicatus allows us to conclude that sensilla chaetica in I. duplicatus

also have a mechanoreceptive role. Their locations on the scape may

enable I. duplicatus to determine the positions of the antennae with

F IGURE 9 Map of sensilla coeloconica
distribution on ventral side of Ips duplicatus.
(a) Sensilla coeloconica type I (SCoI) and sensilla
coeloconica type II (SCoII) on the left antenna;
(b) sensilla coeloconica type I (SCoI) and sensilla
coeloconica type II (SCoII) on the right antenna.
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respect to its surroundings and detect wind movement (Payne

et al., 1973). It may also serve as “displacement detectors” as reported
in some beetle species (Borg & Norris, 1971; Henderson &

Wadhams, 1981; Moeck, 1968; Wadhams et al., 1982). Alternatively,

sensilla chaetica might be involved in fly speed detection during flying

as suggested by the electrophysiological recordings from bilaterally

branched sensilla chaetica in Scolytus scolytus showing that these types

of sensilla respond to airflow (Wadhams and Angst unpublished data

mentioned in Sivalinghem, 2012). Alternatively, sensilla chaetica might

possibly serve as auditory organs (Borden & Wood, 1966) and can be

involved in bark beetle acoustic communication that mediates beetle

interaction during mating, various social or defensive interactions, and

dispersion under the bark (Barr, 1969; Borden & Wood, 1966; Dobai

et al., 2018; Hofstetter et al., 2019; Rudinsky, 1979; Rudinsky

et al., 1976; Wilkinson et al., 1967). Until now, no tympanal organs in

bark beetles have been found (Borden & Wood, 1966). As long sensilla

on the antenna can easily vibrate (Yack & Hoy, 2003), sensilla chaetica

might be involved in the perception of sound and/or substrate vibra-

tions (Rudinsky et al., 1976; Schmitz, 1972; Sivalinghem, 2012; Swaby &

Rudinsky, 1976). Unilateral and bilateral branching may represent spe-

cific adaptations with respect to the perception of specific sound/

vibration parameters. We noted that in I. duplicatus, multilaterally

branched sensilla chaetica (SChII) are significantly longer and thicker in

females than in males. This may reflect the greater need by ovipositing

females to orient under the bark to ensure uniform dispersion. Similar

sex-specific differences were reported in I. typographus, I. sexdentatus

(Faucheux, 1989), and Tryptodendron lineatum (Moeck, 1968). These dif-

ferences may reflect the sex-specific differences in premating behavior

and/or during oviposition (Hofstetter et al., 2019; Rudinsky, 1979). As

compared to other bark beetle species (Bedoya, Brockerhoff,

et al., 2019; Bedoya, Nelson, et al., 2019), the genus Ips is characterized

by a relatively smaller number of sensilla chaetica (Faucheux, 1989; Shi,

Zhang, Liu, Xu, et al., 2021; Shi, Zhang, Liu, Zhang, et al., 2021), which

can reflect the relative importance in sound communication in different

taxonomic categories (Bedoya et al., 2020; Hofstetter et al., 2019).

4.2 | Sensilla trichodea

This morphological category is inconsistent among all sensillar types

found in I. duplicatus. The only common characteristic of I. duplicatus

is that they are longer than the sensilla basiconica type and shorter

than the sensilla chaetica type. Sensilla trichodea in I. duplicatus form

two distinct categories. The first category includes two subtypes of

multiporous sensilla with inflexible sockets that differ by wall struc-

ture (STrII are smooth-walled while STrIV are pitted). The second cat-

egory represents the long terminal pore sensillum with a flexible

socket (STrIII). STrII corresponds to trichodea type II in some Ips spe-

cies (Borden & Wood, 1966; Faucheux, 1989, 1994; Payne

et al., 1973) (Supplementary Table 2).

The cross-sections of the multiporous sensilla performed in

I. typographus (Hallberg, 1982) show single-walled sensilla with

numerous pores. The multiporous trichoid sensilla were described in

majority of investigated Ips species so far (Borden & Wood, 1966;

Faucheux, 1989, 1994; Payne et al., 1973). The multiporous sensilla

are expected to have an olfactory function (Andersson et al., 2009;

Borden & Wood, 1966; Hallberg, 1982; Payne et al., 1973). The wall

pores allow volatile molecules to penetrate the sensillar lumen to acti-

vate the olfactory receptor neurons. The olfactory function of multi-

porous sensilla has been confirmed by many electrophysiological

investigations performed in I. typographus (Andersson et al., 2009;

Kandasamy et al., 2019; Schiebe et al., 2019). Sensilla trichodea type

IV (STrIV) observed in I. duplicatus does not match with any trichodea

sensilla types reported previously. Because of its distinct structure

and characteristic pore features on the wall surface, the probability of

misclassification can be excluded. Further studies are needed to

determine the physiology of these two olfactory trichoid sensilla.

The terminal pore trichoid sensilla (STrIII) in I. duplicatus corre-

sponds with those described as terminal-pore sensillum by Hallberg

(1982) in I. typographus. The presence of structural characteristics

such as terminal pore and flexible socket suggests bimodal function in

chemoreception and mechanoreception (Hallberg, 1982). STrIII

observed in I. duplicatus corresponds with “TR3” in Shi, Zhang, Liu,

Zhang, et al. (2021) in I. typographus, “Trichodea III” in I. sexdentatus,

I. typographus, and I. pini (Faucheux, 1989, 1994) and in other Ips spe-

cies (Payne et al., 1973) (Supplementary Table 2), and with the “sen-
silla chaetica” classified in Ips paraconfusus (Borden & Wood, 1966).

In our study on I. duplicatus, we did not see sensilla trichodea

type I, which was observed previously at the base of the scape and

pedicel of many Ips species (Payne et al., 1973; Shi, Zhang, Liu, Zhang,

et al., 2021) and in T. lineatum (Moeck, 1968). Sensilla trichodea type I

are Böhm's sensilla with proprioceptive function, though no histologi-

cal information nor the characteristics of the socket are available.

4.3 | Sensilla basiconica

Our study provided evidence for four categories of sensilla

basiconica in I. duplicatus. This category is also not morphologically

homogenous. They are shorter and wider in comparison with sensilla

chaetica and trichodea and form two distinct groups. Sensilla basiconica

type I (SBI) are the most numerous type occupying about three-fourths

of the total area of the antennal club surface. They are highly dense in

the sensory bands A and B and represent multiporous sensilla with slit-

like depressions suggesting their possible role in olfactory detection.

SBI in I. duplicatus has features similar to single-walled sensillum type I

reported by Hallberg, 1982 in I. typographus. The sensilla basiconica

type II (SBII) is not described in Hallberg, 1982 in I. typographus but is

mentioned by Faucheux (1989) in I. sexdentatus and I. typographus. SBII

has lower pore density when compared to SBI. These two types of SB

are known to be sensitive to general odors like plant compounds and

pheromones validated by electrophysiological studies (Andersson

et al., 2009; Biswas et al., 2023; Borden & Wood, 1966; Dickens

et al., 1978). Sensilla basiconica type III and IV (SBIII and SBIV) are uni-

porous peg-shaped hairs with slight depressions on the wall surface

present predominantly in the distal club region. Only SBIII was reported
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previously in I. typographus (Shi, Zhang, Liu, Zhang, et al., 2021). The

exact function of these pegs is not known; however, their uniporous

nature indicates the contact chemoreception.

4.4 | Sensilla coeloconica

The sensilla coeloconica (SCo) has a distinct shape with longitudinal

grooves on the wall surface and have previously been reported in

many Ips species (Chen et al., 2010; Dickens et al., 1978; L�opez

et al., 2018; Whitehead, 1981). In most of the studied species so far,

only one type of sensilla coeloconica has been described. Our study is

the first to report two different types of sensilla coeloconica.

The cross-section performed on SCo in I. typographus

(Hallberg, 1982) shows a “double-walled sensilla” with finger-like

radial channels connecting the sensillar surface with neuronal sensory

processes within the hair lumen. The “double-walled sensilla” are

innervated by 2–6 sensory cells with unbranched sensory processes

terminating in the apical part of the hair. Below the hair, one of the

sensory processes exhibits a lamellar pattern like that of pore less sen-

silla in which thermoreception has been demonstrated (Altner, 1977).

On the other hand, the “double-walled sensilla” of I. typographus have
a similar structure as certain chemoreceptive sensilla (Altner, 1977;

Altner et al., 1977). Thus, in different insect species, SCo may have

various functions, such as hygroreception, thermo-hygroreception

and olfactory reception. SCo in moths and flies are known to have an

olfactory role and olfactory receptor neurons are tuned to compounds

like acids, aliphatic aldehydes, amines, and ketones (De Bruyne &

Baker, 2008; Pophof et al., 2005; Yao et al., 2005).

We observed the mirror arrangement of SCo on both antennal

clubs, with SCo more frequently distributed on the lateral regions of the

antennal clubs, indicating a potentially highly specific function. We found

no previous literature reporting this kind of arrangement. Further investi-

gation can explain this specific arrangement and modalities of SCo.

4.5 | Böhm's sensilla

BS are usually seen exclusively on the base of the scape and pedicel

of the antenna in I. duplicatus, also reported as “böhm's bristles” in

I. subelongatus (Shi, Zhang, Liu, Xu, et al., 2021) and as “böhm sensilla”
in I. typographus (Shi, Zhang, Liu, Zhang, et al., 2021). In Curculio

nucum, BS are present on the base of the scape and pedicel (Faucheux

et al., 2019). Their location and distribution suggest a propioceptive

role (Merivee et al., 1999). They possess a flexible deep socket and

smooth wall surface. These are known to monitor the antennal posi-

tioning and movements during the flight (Dong et al., 2020).

4.6 | Surface pores

The SPs were about 0.5 um wide and were present on both sides of

the club without any association with sensilla. These structures might

be similar to the previously reported “glandular pores” in

I. sexdentatus and I. typographus (Faucheux, 1989). However, the glan-

dular pore diameters were not provided, and were associated with

sensilla chaetica. Alternatively SP can represent “mechanosensory

cuticle sensillum” reported on the antennal club of I. typographus

(Hallberg, 1982). “Mechanosensory cuticle sensillum” terminates

within a cavity of the cuticle with an approximate diameter of 2–

2.5 um (Hallberg, 1982). Since I. typographus is significantly bigger in

overall size than I. duplicatus, we can say that the dimensions of SP

and “mechanosensory cuticle sensillum” are relatively similar. Alterna-

tively, SP might be glands meant for secretion of the antennal epicu-

ticular layer of the antennae and their sensilla (Bin et al., 1989;

Dahms, 1984; Faucheux, 1994; Faucheux & Kundrata, 2015; Romani

et al., 2019; Skilbeck & Anderson, 1994; Weiss et al., 2011).

5 | CONCLUSION

Ips duplicatus is a serious conifer pest that shares the same host and

has similar biology as compared with I. typographus, which is a model

bark beetle for studying olfaction. Numerous morphological and elec-

trophysiological investigations have been conducted for

I. typographus, but we have no information about the sensillar equip-

ment including the typology and functions of different sensilla in

I. duplicatus. The study addressed the research gap concerning the

types of sensilla and their distribution and possible role in I. duplicatus.

Our microscopic results revealed important information about the

general morphology and the distribution of various functionally impor-

tant sensilla in I. duplicatus. We found the sexual dimorphism in

I. duplicatus is unrelated to the general antennal morphology and con-

cerns only minor variations with the number and length of different

sensilla types. This discrepancy in morphological properties can be

associated with variation in the biophysical characteristics of different

hair types, allowing them to be sensitive to different mechanical stim-

uli. We also provided comparative information on sensilla typology

and its external characteristics in Ips species as an attempt to establish

the general sensilla nomenclature for future studies in this genus.

Overall, the present study provides a map of I. duplicatus olfactory

equipment and establishes a basis for future olfaction-based and elec-

trophysiological investigations of this destructive forest pest.
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Simple Summary: Bark beetles are small insects that depend on their antennae to detect odors 11 

from host trees, potential mates, and their environment. Two species of concern in European 12 

forests, the pine bark beetle (Ips acuminatus) and the larch bark beetle (Ips cembrae), have been 13 

linked to increasing forest damage. Despite their ecological and economic importance, little is 14 

known about how these species use their antennal structures to detect sensory cues. In this 15 

study, we used scanning electron microscopy to examine the antennae of both species, focus- 16 

ing on the structure and distribution of tiny, hair-like sensory organs known as sensilla. We 17 

identified five distinct sensillum types and described their location across the antennal surface. 18 

Subtle differences in the distribution and morphology of these structures were observed be- 19 

tween the two species, and in some instances, between males and females. By better under- 20 

standing these beetles’ sensory systems, we lay the groundwork for future studies exploring 21 

olfactory function and provide morphological insights that could inform the development of 22 

environmentally sustainable pest control strategies. 23 

 24 

Abstract: Bark beetles of the genus Ips rely heavily on olfactory cues for host selection, mate 25 

recognition, and orientation in complex environmental landscapes. Among them, Ips acumina- 26 

tus and Ips cembrae are significant conifer pests in Europe; however, their antennal morphology 27 

and sensory architecture remain poorly documented. This study presents a comparative, de- 28 

scriptive analysis of the microscopic structure and spatial distribution of antennal sensilla in I. 29 

acuminatus and I. cembrae using scanning electron microscopy (SEM). Adult beetles were col- 30 

lected from naturally infested Scots pine (Pinus sylvestris) and European larch (Larix decidua), 31 

then sexed and examined using SEM. Five morphologically distinct sensillum types were iden- 32 

tified in both species: sensilla chaetica, basiconica, trichodea, coeloconica, and Böhm’s sensilla. 33 

These were distributed primarily across the antennal club, organized into three distinct sen- 34 

sory bands (A, B, and C). Although the overall sensilla diversity was conserved, minor inter- 35 

specific and intersexual variations in sensillar morphology and spatial arrangement were 36 

noted. The findings provide a structural basis for studying olfactory-driven behaviors in I. 37 

acuminatus and I. cembrae and lay the groundwork for future electrophysiological studies. A 38 
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deeper knowledge of bark beetle antennal sensilla will contribute to more targeted pest 39 

management strategies by improving semiochemical-based monitoring and control methods. 40 

Keywords: bark beetles; antennal sensilla; antennal club; sensory structures; insect olfaction; 41 

morphology; scanning electron microscopy; Ips acuminatus; Ips cembrae; conifer pests 42 

 43 

1. Introduction 44 

Bark beetles of the genus Ips (Coleoptera: Curculionidae) are ecologically and economi- 45 

cally important forest pests, responsible for widespread damage to coniferous trees 46 

across Europe (Hulcr et al. 2015). Among these, the pine bark beetle (Ips acuminatus) and 47 

the larch bark beetle (Ips cembrae) are emerging concerns due to their expanding geo- 48 

graphic distribution and increasing outbreak frequency. I. acuminatus is primarily asso- 49 

ciated with Scots pine (Pinus sylvestris), while I. cembrae typically infests European and 50 

Japanese larch (Larix decidua and L. kaempferi), but may also colonize Norway spruce 51 

(Picea abies) under favorable conditions (Pffefer,1955; Postner,1974). Although historically 52 

classified as secondary pests, both species have shown increasing potential to attack 53 

healthy hosts, particularly under climate-induced stress conditions such as heat and 54 

drought (Wermelinger, 2004; Netherer et al. 2021). 55 

The success of bark beetles in locating suitable hosts and coordinating mass attacks is 56 

largely mediated through olfactory communication (Byers, 2007). Aggregation behavior 57 

is driven by pheromones released by pioneer males, which include components such as 58 

S-(−)-ipsenol, S-(+)-ipsdienol, and host-derived volatiles (Bakke, 1978; Francke et al. 59 

1986),. These chemical cues enable beetles to overcome host defenses collectively and fa- 60 

cilitate successful colonization(Byers, 2007). In addition, both species are associated with 61 

blue-stain fungi that may support beetle development and influence host tree mortality 62 

(Jankowiak et al. 2007, Kirisits, 2004). 63 

The antennae of Ips species serve as their primary olfactory organs and are critical for 64 

detecting a wide range of chemical signals, including host volatiles, pheromones, and 65 

environmental cues. Most olfactory sensilla are localized on the antennal club, arranged 66 

in three distinct sensory bands (A, B, and C) along the anterior surface (Payne et al. 1973). 67 

These sensilla house olfactory sensory neurons (OSNs) that vary in morphology and 68 

function. Structurally, sensilla are categorized into types such as chaetica, trichodea, 69 

basiconica, coeloconica, and Böhm’s sensilla, based on features like wall thickness, sur- 70 

face pores, and cuticular architecture (Schneider, 1964; Hallberg et al.1982). Single-walled 71 

sensilla (e.g., trichodea, basiconica) are often associated with pheromone detection, while 72 

double-walled sensilla (e.g., coeloconica) are implicated in sensing humidity, acids, and 73 

other environmental cues (Altner et al.1977; Hallberg et al. 1982). 74 
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Previous ultrastructural studies have described antennal sensilla in a number of Ips spe- 75 

cies, including I. typographus, I. sexdentatus, I. duplicatus and I. pini (Hallberg et al.1982; 76 

Shi et al. 2021; Shewale et al.2023; Faucheux et al. 1989, 1994). However, detailed compar- 77 

ative data on I. acuminatus and I. cembrae remain limited. Understanding the diversity, 78 

distribution, and structural features of their antennal sensilla is essential for interpreting 79 

species-specific olfactory capabilities and may inform the design of more effective semi- 80 

ochemical-based monitoring tools. 81 

This study presents a qualitative, comparative analysis of antennal sensilla morphology 82 

and distribution in I. acuminatus and I. cembrae, using scanning electron microscopy (SEM). 83 

Specifically, we aimed to: 84 

1. Describe the external morphology of the antennae in both species. 85 

2. Identify and classify the types of sensilla present, based on their surface architecture 86 

and wall structure. 87 

3. Map the distribution patterns of sensilla across the antennal club, particularly within 88 

the sensory bands A, B, and C. 89 

4. Document any observed sex-specific or interspecific differences in sensilla type, num- 90 

ber, or location. 91 

By characterizing the antennal sensilla of these two bark beetle species, this study provides 92 

essential morphological data to support future electrophysiological investigations and ad- 93 

vances our understanding of olfactory specialization in conifer-infesting bark beetles. 94 

2. Materials and Methods 95 

2.1. Study Organisms and Sample Collection: 96 

Logs of European larch (Larix decidua) infested with Ips cembrae and Scots pine (Pinus 97 

sylvestris) infested with Ips acuminatus were collected in late spring 2024 from the Rou- 98 

chovany region, Czech Republic. The logs were transported to the Faculty of Forestry 99 

and Wood Sciences, Czech University of Life Sciences, Prague, where they were placed 100 

in controlled rearing chambers. Following adult emergence, the logs were debarked, and 101 

adult beetles of both species were collected. 102 

Sex identification was conducted using morphological characteristics of the second and 103 

third elytral spines, following criteria established by Pfeffer (1955) and Zhang and Nie- 104 

meyer (1992). The beetles were stored at 4°C in sterile plastic containers until examina- 105 

tion. For scanning electron microscopy (SEM), five males and five females were randomly 106 

selected from each species. 107 

 108 

 109 
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2.2. Sample Preparation and Scanning Electron Microscopy: 110 

Prior to dissection, adult beetles were cleaned using a gentle air blower to remove exter- 111 

nal contaminants. Antennae were carefully dissected under a NIKON optical microscope 112 

(Japan) and processed using the protocol outlined by Shewale et al. (2023). The samples 113 

were fixed in 2.5% glutaraldehyde in 0.5 M cacodylate buffer (pH 7.2) for 24 hours, fol- 114 

lowed by post-fixation in 2% osmium tetroxide in the same buffer. Specimens were then 115 

dehydrated through a graded ethanol series, with each step lasting 30 seconds, and dried 116 

using a Bal-Tec CPD 030 critical point dryer. 117 

Dried antennae were sputter-coated with a 2 nm layer of gold using a Bal-Tec SCD 050 118 

ion sputter coater. Imaging was carried out using a JEOL JSM-IT200 scanning electron 119 

microscope and a JEOL IT800 high-resolution SEM. Micrographs were taken at acceler- 120 

ating voltages of 3, 5, 10, and 15 kV with a working distance of 5 mm. Antennal struc- 121 

tures, including overall morphology and sensillar types, were examined from five anten- 122 

nae per sex per species. 123 

2.3. Sensilla Identification and Categorization 124 

Sensilla were identified and categorized according to the criteria established by Schnei- 125 

der (1964), Nowińska and Brożek (2017), and Shewale et al. (2023). Classification was 126 

based on external morphology, including overall shape, length, base width, wall struc- 127 

ture (single- or double-walled), surface porosity, and socket flexibility (flexible or inflex- 128 

ible attachment to the cuticle). General antennal terminology followed Hulcr et al. (2015). 129 

2.4. Image Analysis 130 

All figures and image-based measurements were generated using ImageJ software (ver- 131 

sion 1.53q; Schneider et al., 2012). No statistical analysis was conducted, as the study was 132 

purely qualitative in nature and aimed at structural characterization rather than hypoth- 133 

esis testing. 134 

3. Results  135 

 136 

This study presents the first comparative morphological account of antennal sensilla in 137 

Ips cembrae and Ips acuminatus, two conifer-associated bark beetles of increasing ecologi- 138 

cal importance in European forests. Using scanning electron microscopy (SEM), we ex- 139 

amined the antennal club of both species, focusing on the types and spatial distribution 140 

of sensilla. The findings indicate that the general antennal architecture is conserved 141 

across the genus Ips, aligning with earlier studies in species such as I. typographus and I. 142 

duplicatus. 143 

 144 

 145 

 146 
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3.1. General Antennal Morphology 147 

Both I. cembrae and I. acuminatus possess the typical scolytine antennal structure, com- 148 

posed of four major segments: the scape, pedicel, funiculus, and the terminal club. The 149 

antennal club, serving as the principal olfactory organ, is structurally organized into 150 

three ventral sensory bands designated A, B, and C. This pattern is consistent with pre- 151 

viously documented arrangements in related Ips species (Hallberg, 1982a; Shewale et al., 152 

2023). 153 

The majority of sensilla were localized on the anterior (ventral) surface of the antennal 154 

club and followed a distribution pattern conforming to the boundaries of the three sen- 155 

sory bands. SEM micrographs (Figs. 1 and 2) provided high-resolution views of the sen- 156 

sillar arrangement and surface morphology, revealing structured groupings across the 157 

club. These initial visualizations serve as a morphological reference point for future func- 158 

tional studies. Due to the current qualitative scope of the study, evaluation of sexual di- 159 

morphism in sensilla traits was not conducted. 160 
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Figure 1. Scanning electron micrographs of the Ips cembrae antennal club. (A) General 161 

view of the antennal club showing its overall morphology. (B) Ventral surface of the club 162 

indicating the three distinct sensory bands (A–C), with representative sensilla types la- 163 

beled. (C) Higher magnification of sensilla trichodea subtypes STrIII and STrIV. (D) Sen- 164 

silla basiconica, including subtypes SBI, SBII, SBIII, and SBIV. (E) Böhm’s sensilla (BS) 165 

located at the articulation between scape and pedicel. (F) Sensilla chaetica, showing both 166 

SchI and SchII subtypes. (G) Sensilla coeloconica (SCo) with characteristic peg-in-pit 167 

morphology. (H) Detail of wall pores observed on sensilla basiconica subtype I (SBI). 168 

Figure 2. Scanning electron micrographs of the Ips acuminatus antennal club. (A) Over- 169 

view of the antennal club showing general structure and segmentation. (B) Ventral sur- 170 

face of the club illustrating sensory bands A–C with representative sensilla types labeled. 171 

(C–D) Surface topography and distribution of key olfactory sensilla, including sensilla 172 

trichodea and sensilla basiconica. (E) Böhm’s sensilla (BS) located near the base of the 173 

antenna at the scape–pedicel junction. (F) Sensilla chaetica (SchI and SchII) along the club 174 

margins. (G) Sensilla coeloconica (SCo) with distinct peg-in-pit morphology. 175 
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3.2. Classification of Sensilla Types 176 

Five major types of antennal sensilla were identified in both species: sensilla chaetica 177 

(SCh), sensilla basiconica (SB), sensilla trichodea (STr), sensilla coeloconica (SCo), and 178 

Böhm’s sensilla (BS). These were categorized based on external morphology, wall struc- 179 

ture, and apparent function, in accordance with established taxonomic criteria (Schneider, 180 

1964; Hulcr et al., 2015; Shewale et al., 2023). 181 

• Sensilla chaetica (SCh): 182 

These long, uniporous, hair-like structures were predominantly located along the pe- 183 

riphery and lateral margins of the antennal club. Two subtypes were distinguished 184 

based on the presence or absence of lateral branching. Their morphology is consistent 185 

with a mechanosensory role. 186 

• Sensilla basiconica (SB): 187 

Identified as short, thick, multiporous sensilla, sensilla basiconica exhibited four dis- 188 

tinct morphological subtypes. These were concentrated primarily within sensory 189 

bands A and B, although the most abundant subtype (SBI) was distributed across all 190 

three bands (A, B, and C). Their porous surface and central positioning suggest an im- 191 

portant role in olfactory detection. 192 

• Sensilla trichodea (STr): 193 

Slender, hair-like, and porous, sensilla trichodea were observed mainly in sensory 194 

band C. Three subtypes were recognized based on variations in length and curvature. 195 

Their structure supports a role in pheromone detection. 196 

• Sensilla coeloconica (SCo): 197 

Characterized by a peg-in-pit morphology, these sensilla were sparsely distributed and 198 

present in low numbers across the antennal surface. Their typical morphology suggests 199 

specialization in detecting environmental cues such as humidity or acidic volatiles. 200 

• Böhm’s sensilla (BS): 201 

These short, spine-like structures were located at the articulation between the scape 202 

and pedicel. Their rigid morphology and position are consistent with a mechanosen- 203 

sory function related to antennal movement and positioning. 204 

A summary of sensilla types and key morphological characteristics is provided in Table 1. 205 

Representative SEM images further illustrate these sensilla across the antennal surface. 206 

 207 

 208 

 209 

 210 
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Table 1: Morphological characteristics and distribution of sensilla types on the antennae of 211 

Ips acuminatus and I. cembrae.  212 

Sensill

a type 

Distribution Pores Wall 

structure 

Tip Shape Socket 

SchI Antennal club (A, B 

and C), 

funicular segments 

(F1-F5)  

and scape 

Aporous Longitudina

l grooved 

wall, 

bilateral 

branching 

Sharp Straight Flexible 

SChII Antennal club (A), 

funicular segments 

(F1-F5) and scape 

Aporous Longitudina

l grooved 

wall, multi-

branching 

Sharp Curved Flexible 

SBI Antennal club (A, 

B, C) 

Multiporou

s 

Pitted Blunt Straight Inflexibl

e 

SBII Antennal club (A, B 

and C) 

Multiporou

s 

Grooved Blunt Straight Inflexibl

e 

SBIII Antennal club (B 

and C) 

Uniporous Smooth Blunt 

and 

round 

Peg 

shaped 

Inflexibl

e 

SBIV Antennal club I Uniporous Smooth Round Straight Inflexibl

e 

STrIII Antennal club (A, B 

and C) 

Terminal 

pore 

Smooth Blunt  Long  

and 

curved 

Flexible 

Sco  Antennal club (A, B 

and C) 

Aporous Grooved Round Cone-

shaped 

Inflexibl

e 

BB Scape Aporous Smooth Blunt 

and 

round 

Short and 

straight 

Flexible 

SP? Club (A, B and C), 

funicle segments 

(F1-F5) and scape 

? Pit on the 

club surface 

- Oval - 

 213 

3.3. Observational summary and future directions  214 

This qualitative investigation establishes a foundational antennal sensilla map for I. cem- 215 

brae and I. acuminatus, contributing essential baseline data for upcoming single sensillum 216 

recording (SSR) studies. The conserved sensilla types and consistent sensory band ar- 217 

rangements observed in both species support the hypothesis that antennal morphology 218 

is a shared and evolutionarily stable trait within the genus Ips. 219 
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While the current analysis focuses exclusively on descriptive traits, future work will ex- 220 

pand into quantitative morphometrics, including sensillum dimensions, socket architec- 221 

ture, and potential sex-specific differences. These results will be detailed in a separate 222 

manuscript. The structural information provided here enables a better understanding of 223 

how bark beetles have adapted olfactory organs in relation to host ecology and offers 224 

morphological insights relevant for the development of species-specific pest monitoring 225 

strategies. 226 

4. Discussion  227 

 228 

This study provides the first comparative morphological assessment of antennal sensilla 229 

in Ips acuminatus and Ips cembrae, two conifer-associated bark beetles of growing im- 230 

portance in European forests. Our scanning electron microscopy (SEM) analysis revealed 231 

that both species share a highly conserved antennal architecture, consistent with previ- 232 

ous observations in related Ips species such as I. typographus and I. sexdentatus (Hallberg, 233 

1982; Faucheux, 1989). The club-shaped terminal segment in both I. acuminatus and I. 234 

cembrae houses sensilla arranged within three well-defined sensory bands (A, B, and C), 235 

a trait considered diagnostic for the genus. 236 

Across both species, we identified five major types of sensilla: chaetica, basiconica, tricho- 237 

dea, coeloconica, and Böhm’s sensilla, all of which have been previously reported in other 238 

scolytine bark beetles. Despite this general conservation, our observations also indicate 239 

interspecific differences in sensillar subtype diversity and distribution patterns, which 240 

may reflect ecological specialization or divergence in olfactory function. 241 

4.1 Conserved Antennal Organization with Subtle Differences 242 

The presence and arrangement of sensilla across the antennal surface were largely similar 243 

between I. acuminatus and I. cembrae. In both species, sensilla were densely localized 244 

within sensory bands A and B, with band C showing more restricted types such as tricho- 245 

dea. This organization parallels the sensory band pattern seen in I. typographus and I. 246 

duplicatus (Hallberg, 1982; Shewale et al. 2023), suggesting that the peripheral olfactory 247 

system in these beetles is evolutionarily stable. 248 

However, minor differences in sensilla subtypes were evident. For example, I. cembrae 249 

displayed more frequent lateral branching in sensilla chaetica, which could suggest an 250 

enhanced mechanosensory function. Similarly, the density and spatial distribution of 251 

sensilla basiconica subtypes appeared slightly more uniform in I. acuminatus than in I. 252 

cembrae, although this observation remains qualitative. 253 

This study demonstrates that the peripheral olfactory system in I. acuminatus and I. cem- 254 

brae is built upon a structurally conserved antennal basis, with consistent sensilla organ- 255 

ization across species. However, subtle morphological differences, such as distinct sen- 256 

silla subtypes and potentially species-specific olfactory sensory neuron (OSN) arrange- 257 

ments, may reflect adaptations linked to ecological specialization. 258 

4.2 Functional Implications of Sensilla Types 259 

The chaetica sensilla, concentrated along the margins of the antennal club, are likely 260 

mechanosensory, assisting in antennal orientation and contact-based navigation. The 261 

presence of multibranched subtypes in both species may indicate a conserved role across 262 

sexes or potentially a subtle dimorphism that requires further morphometric 263 
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investigation. Similar patterns of sexual dimorphism in chaetica sensilla have been re- 264 

ported in I. sexdentatus and T. lineatum (Moeck, 1968; Faucheux, 1989), often linked to 265 

mating or oviposition behavior. 266 

Basiconica sensilla, especially subtype SBI, were the most numerous in both I. acumina- 267 

tus and I. cembrae, forming dense clusters in sensory bands A and B. These sensilla are 268 

known to contain multiple olfactory sensory neurons and are thought to detect host vol- 269 

atiles and pheromonal cues, as demonstrated electrophysiologically in I. typographus (An- 270 

dersson et al., 2009; Kandasamy et al., 2019, 2023). Their prominence in both species un- 271 

derscores their likely central role in mediating host selection and aggregation behavior. 272 

Trichodea sensilla, primarily located in band C, exhibited three distinct morphological 273 

subtypes in both species. Their porous structure indicates an olfactory function, likely 274 

tuned to long-range semiochemicals such as sex or aggregation pheromones. Although 275 

similar subtypes have been reported in other bark beetles, one particularly elongated 276 

variant was more pronounced in I. acuminatus, which may reflect differences in commu- 277 

nication or host detection strategies. 278 

Coeloconica sensilla, though less abundant, were present in both species and followed 279 

a peg-in-pit morphology typical of thermo- and hygroreceptors (Altner et al., 1977; Hall- 280 

berg, 1982). Their sparse distribution suggests a specialized function, perhaps for detect- 281 

ing microclimatic conditions or volatile cues such as ketones or aldehydes, known to be 282 

relevant in host discrimination. 283 

Böhm’s sensilla, located at the base of the scape and pedicel, were consistently observed 284 

in both species. Their small size and fixed socket indicate a proprioceptive function, likely 285 

involved in monitoring antennal position during host exploration or flight behavior 286 

(Merivee et al., 1999). 287 

4.3 Evolutionary and Ecological Considerations 288 

The general pattern of sensilla types and their distribution observed in I. acuminatus and 289 

I. cembrae reflects the genus-wide conservation of antennal design. However, the ob- 290 

served morphological nuances such as branching in chaetica sensilla or subtype richness 291 

in basiconica and trichodea highlight how structural adaptations may fine-tune olfactory 292 

systems to meet species-specific ecological demands. 293 

These findings support the hypothesis that bark beetle olfactory systems balance struc- 294 

tural conservation with adaptive plasticity, allowing different species to respond to dis- 295 

tinct chemical environments while maintaining core functions. Comparative studies 296 

across additional Ips species, particularly with functional data such as single sensillum 297 

recordings (SSR), will be essential for mapping specific OSN classes to sensilla subtypes 298 

and determining their behavioral roles. 299 

 300 

5. Conclusion  301 

This study provides the first detailed comparative account of antennal sensilla morphol- 302 

ogy and distribution in Ips acuminatus and Ips cembrae, two ecologically important bark 303 

beetle species associated with conifer hosts in European forests. Using scanning electron 304 

microscopy, we identified five principal sensilla types—chaetica, basiconica, trichodea, 305 

coeloconica, and Böhm’s sensilla distributed across three distinct sensory bands on the an- 306 

tennal club. While the overall antennal architecture was conserved in both species, subtle 307 
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differences in sensilla subtype diversity and spatial arrangement suggest species-specific 308 

adaptations related to their ecological niches. 309 

These qualitative findings highlight a structurally stable peripheral olfactory system across 310 

the genus Ips, with microstructural variation likely supporting functional divergence in 311 

odor detection. The antennal sensilla maps generated here provide essential morphologi- 312 

cal groundwork for future electrophysiological studies aimed at characterizing olfactory 313 

sensory neuron (OSN) responses to pheromones, host volatiles, and environmental cues. 314 

By enhancing our understanding of antennal sensilla organization, this research contrib- 315 

utes to broader efforts in bark beetle sensory biology and supports the development of 316 

more targeted, species-specific semiochemical-based pest management strategies. 317 
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1 
 

Size-dependent behavioral and antennal responses to doses of (+)-isopinocamphone and 1 

1,8-cineole mixed with pheromone: a potential host selection strategy in female Ips 2 

typographus L. 3 

 4 

Key message 5 

 6 

This study revealed differing behavioral and antennal responses between large and small female 7 

I. typographus to two bioactive oxygenated monoterpenes, (+)-isopinocamphone and 1,8-8 

cineole, which serve contrasting ecological roles as aggregation pheromone synergist and 9 

inhibitor. Larger females were more attracted to (+)-isopinocamphone and had larger antennal 10 

clubs leading to enhanced antennal sensitivity, potentially improving their ability to select 11 

suitable host trees. In contrast, smaller females were less repelled by 1,8-cineole but had higher 12 

antennal sensitivity despite having smaller antennae. This discrepancy can be explained by 13 

behavioral decisions made after downstream olfactory signal processing in the central nervous 14 

system (CNS) and by the co-localization of 1,8-cineole with pheromone-sensitive neurons. 15 

Ecologically, small females may avoid competition with larger females by selecting less 16 

suitable trees. In conclusion, females' body size influences olfactory-driven response to 17 

potential host selection decisive volatiles, which can impact reproductive success and bark 18 

beetle population dynamics. 19 

 20 

Abstract 21 

 22 

Context: 23 

Ips typographus, a major pest of Norway spruce (Picea abies) in Europe, is experiencing more 24 

frequent outbreaks due to climate change. These outbreaks involve shifts in population 25 

dynamics and phenotypic traits, influencing beetle responses to olfactory cues from stressed 26 

host trees. 27 

 28 

Aims: 29 

The study examines the size-dependent behavioral and antennal responses of female I. 30 

typographus to two host selection–deciding volatiles with contrasting ecological roles: 1,8-31 

cineole, which inhibits attraction to unsuitable trees, and (+)-isopinocamphone, a pheromone 32 

synergist. Size-linked morphological and olfactory adaptations may influence females' ability 33 

to select suitable host trees for reproduction. 34 

Blinded Manuscript (excluding authors' names and affiliations)
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Methods: 35 

In field trap experiments conducted in 2019 and 2022, the body size of I. typographus females 36 

caught in response to different doses of (+)-isopinocamphone or 1,8-cineole in combination 37 

with pheromone was compared. Female Ips typographus were sorted based on body length, the 38 

size of the antennal club was measured, and size-dependent antennal responses to these volatiles 39 

were analyzed using electroantennography. 40 

 41 

Results: 42 

Larger females were more attracted to (+)-isopinocamphone in combination with pheromone 43 

in the field, showed stronger antennal detection, and had proportionally larger antennal clubs 44 

than smaller females. In contrast, smaller females were less repelled by 1,8-cineole added to 45 

pheromone but, in contradiction, antennally detected it more strongly than larger females 46 

despite having smaller antennal clubs. 47 

 48 

Conclusion: The total body length significantly influences semiochemical detection in I. 49 

typographus females. (+)-isopinocamphone was detected more effectively by larger females, 50 

implying an advantage in the selection of suitable host trees. In contrast, the discrepancy 51 

between behavioral and antennal responses to 1,8-cineole in smaller females suggests 52 

involvement of not only peripheral detection but also central nervous processing of olfactory 53 

signals driving behavior. This adaptation may enable smaller females to reduce competition 54 

with large ones by selecting less suitable trees. These findings provide new insights into the 55 

ecological relationship between beetle morphology and olfactory cues, with implications for 56 

tree–bark beetle interactions. 57 

 58 

Keywords: bark beetle, olfaction, pheromone, oxygenated spruce monoterpenes, phenotypic 59 

variations, host choice 60 
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1. Introduction 68 

 69 

The Eurasian spruce bark beetle, Ips typographus L. 1758 (Coleoptera: Curculionidae), is a 70 

major pest associated with the Norway spruce (Picea abies) in Europe (Hlásny et al. 2021; 71 

Powell et al. 2021). Outbreaks of this species have intensified in frequency and severity, mainly 72 

due to climate change, and are facilitated by its complex and sophisticated chemical 73 

communication system (Biedermann et al. 2019). Male I. typographus play a pivotal role in 74 

locating weakened or stressed spruce trees using a combination of visual and chemical cues 75 

across both long and short distances (Birgersson and Bergström 1989; Netherer et al. 2021; 76 

Lehmanski et al. 2023). After initiating attack by boring into the bark (Wermelinger 2004), 77 

males produce aggregation pheromones (Birgersson et al. 1984; Ramakrishnan et al. 2022) to 78 

attract conspecifics for coordinating mass attacks to colonize the host tree and overcome tree 79 

defenses (Franceschi et al. 2005; Raffa et al. 2016). The success of this colonization process is 80 

highly influenced by host-emitted volatile organic compounds. 81 

Norway spruce releases a range of monoterpenes, including highly abundant compounds such 82 

as α-pinene, β-pinene, β-phellandrene, and limonene (Netherer et al. 2021). These compounds 83 

have been tested to enhance the attraction of I. typographus (Erbilgin et al. 2007; Hulcr et al. 84 

2006). In addition to these dominant volatiles, many studies have identified several low-85 

abundance compounds emitted by spruce, comprising approximately 1% of the total volatile 86 

profile. While present in low amounts, these compounds elicit strong antennal responses in 87 

beetles (Kalinová et al. 2014; Schiebe et al. 2019), highlighting their ecological significance in 88 

tri-trophic interactions with beetles, its symbiotic microbiota, and the host tree (Netherer et al. 89 

2021). Most of these minor yet biologically active volatiles are oxygenated spruce 90 

monoterpenes, with a few exceptions such as estragole and styrene, which have phenolic 91 

character. Oxygenated monoterpenes are produced within the spruce–bark beetle–symbiotic 92 

microorganism niche through multiple mechanisms. They can be formed via the oxidation of 93 

major spruce monoterpene hydrocarbons, either naturally by air exposure or enzymatically by 94 

the spruce microbiome. This transformation becomes especially prominent when trees 95 

experience stress, such as after being cut, windthrown, or infested by bark beetles (Netherer at 96 

al.2021; Schiebe et al. 2019). Under these conditions, the levels of compounds such as 97 

isopinocamphone, camphor, pinocarvone, terpinen-4-ol, and terpineol significantly increase. 98 

However, they remain minor components of spruce volatile profile compared to the main 99 

terpenic hydrocarbons. 100 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 
 

Additionally, monoterpene hydrocarbons can be hydroxylated (introducing oxygen to 101 

molecule) by the beetles' enzymatic detoxification systems. For example, α-pinene can be 102 

converted into myrtenol or cis-verbenol (Blomquist and Vogt 2021), while limonene may be 103 

transformed into carvone (Duetz et al. 2001). Over evolutionary time, several of these oxidation 104 

products have been co-opted by bark beetles as pheromonal compounds e.g. cis-verbenol in I. 105 

typographus (Francke and Vite 1983). Moreover, the beetle-associated intestinal microbiome 106 

also plays a key role in modifying host volatiles. It contributes not only to the oxidation of tree 107 

hydrocarbons but also to the further oxidation of cis-verbenol into verbenone, a potent bark 108 

beetle anti-aggregation signal (Frühbort et al. 2023). In parallel, beetle-exosymbiotic 109 

ophiostomatoid fungi, which are inoculated into trees by boring beetles during colonization, 110 

also metabolize monoterpenes to their oxidative forms (Kandasamy et al. 2023). On the other 111 

hand, some oxygenated monoterpenes, namely 1,8-cineole, are directly de novo formed through 112 

the cyclization of oxygenated intermediates within the spruce tree enzymatic system and not by 113 

oxidation of hydrocarbon precursors (Celedon and Bohlmann 2019). 114 

Like many insects, bark beetles depend on highly specialized olfactory systems located in their 115 

antennae to navigate and interact with their environment (Hansson and Stensmyr 2011). In I. 116 

typographus, olfactory sensory neurons (OSNs) are housed within hair-like sensilla on the 117 

antennal surface. These neurons enable precise discrimination among a wide array of odor cues, 118 

including aggregation pheromones, host- and nonhost-derived tree volatiles, and volatiles 119 

produced by symbiotic microorganisms (Andersson et al. 2009). OSNs differ in their 120 

specificity. Some range from highly selective specialists detecting specific pheromones 121 

(Wojtasek et al. 1998) while some are broadly tuned generalists responsive to diverse 122 

environmental cues like host volatiles (Andersson et al. 2010; Binyameen et al. 2014). This 123 

specificity is determined by odorant receptors (ORs) located on their dendrites (Carey et al. 124 

2010; Hallem and Carlson 2006). Upon odor detection, signals are transmitted to the antennal 125 

lobes (ALs), where glomeruli integrate input (Vosshall et al. 2000), and projection neurons 126 

relay this information to the mushroom bodies, which are involved in learning and memory, 127 

and the lateral horn, associated with innate behavioral responses (Galizia 2014; Clark and Ray 128 

2016). This finely tuned chemosensory system plays a critical role in mediating behaviors such 129 

as host location, mate finding, and avoidance of unsuitable environments (Andersson et al. 130 

2009; Zhang and Schlyter 2004). 131 
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Functional mapping of these neurons in I. typographus has identified specific OSN classes that 132 

respond to oxygenated spruce monoterpenes, including 1,8-cineole and (+)-isopinocamphone 133 

((+)-IPC) (Andersson 2012; Kandasamy et al. 2023). Interestingly, OSNs activated by 1,8-134 

cineole are consistently co-localized within the same sensilla as those tuned to the pheromonal 135 

component cis-verbenol (Andersson et al. 2009; Andersson et al. 2010). This arrangement of 136 

OSNs enables peripheral-level signal integration, where exposure to high concentrations of 1,8-137 

cineole suppresses the neural response to cis-verbenol (Andersson et al. 2009; Binyameen et al. 138 

2014). In contrast, OSNs responsive to (+)-isopinocamphone in I. typographus are individually 139 

localized and have not been observed in co-localization with neurons detecting other 140 

compounds. The specificity of this response is attributed to the olfactory receptor ItypOR29, 141 

located on the OSN membrane, which binds selectively to (+)-isopinocamphone, as confirmed 142 

through receptor expression and functional characterization in I. typographus (Hou et al. 2021). 143 

Behavioral studies further support the ecological relevance of these olfactory interactions of 144 

oxygenated spruce monoterpenes. Field experiments have shown that 1,8-cineole, when added 145 

to pheromone blends containing cis-verbenol, inhibits beetle attraction in a clear dose-146 

dependent manner (Andersson et al. 2010; Jirošová et al. 2022). Moreover, studies on the 147 

functional role of neuronal co-localization, where one neuron within the same sensillum 148 

responds to an attractant and another to an inhibitor, have demonstrated that 1,8-cineole induces 149 

more precise spatial avoidance of beetles from the pheromone source than verbenone. 150 

Verbenone is a known anti-attractant (Frühbort et al. 2023), yet its corresponding neuron has 151 

never been found to be co-localized with those for pheromonal compounds (Binyameen et al. 152 

2014). Interestingly, a significantly higher content of 1,8-cineole has been found in spruce trees 153 

that are less susceptible to bark beetle attacks or that survived infestations more successfully 154 

(Schiebe et al. 2012). Additionally, preliminary feeding studies further indicate that 1,8-cineole 155 

exhibits greater toxicity to female I. typographus than to males (Zaman et al. 2024). This 156 

suggests that 1,8-cineole could serve as a potential chemical marker of bark beetle-resistant 157 

trees. In contrast to the inhibitory effects of 1,8-cineole, field studies showed that (+)-158 

isopinocamphone significantly enhanced I. typographus captures at pheromone-baited traps 159 

and acted as a synergist with pheromone activity (Moliterno et al. 2023). Among the several 160 

tested compounds including estragole, 1,8-cineole, (±)-camphor, (−)-carvone, α-terpineol, (−)-161 

terpinen-4-ol, (+)-pinocamphone, and (+)-isopinocamphone, each evaluated at three different 162 

doses; (+)-isopinocamphone was the only one to exhibit this relatively rare synergistic effect 163 

with pheromone. Additionally, (+)-isopinocamphone was also identified as a substantial 164 
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component of the volatile bouquet produced by Grossmania penicillata, 165 

Leptographium  europhioides and Ophiostoma bicolor which are beetle-associated fungi, when 166 

cultured on spruce phloem media. This fungal volatile blend was shown to attract beetles in 167 

short-range Petri-dish bioassays (Kandasamy et al. 2023). 168 

Variations in abiotic and biotic factors significantly influence tree physiology, which directly 169 

affects host suitability and selection by bark beetles (Netherer et al. 2024). During endemic 170 

population stages, beetles prefer high-quality trees with low competition, conditions that favor 171 

offspring growth and fitness. However, during epidemic outbreaks, beetles are often forced to 172 

colonize suboptimal hosts, leading to reduced offspring vigor, including smaller body size 173 

(Foelker and Hofstetter 2014; Sallé and Raffa 2007). This decline in body size has cascading 174 

effects, as it can negatively influence pheromone production (Anderbrant et al. 1985; 175 

Pureswaran and Borden 2003), ultimately reducing mating success (Dacquin et al. 2024). The 176 

reproductive biology of I. typographus is closely linked to chemical signals. Males produce 177 

pheromones that serve not only for aggregation but also function partially as sexual attractants. 178 

As polygynous species, males typically mate with up to four females, increasing their mating 179 

success and overall fecundity (Schebeck et al. 2023). Female beetles are central to reproductive 180 

success, as they are responsible for gallery construction and oviposition. Consequently, females 181 

play a more selective role in reproduction, evaluating both mate quality and host tree suitability 182 

to optimize offspring survival and fitness (Schlyter and Zhang 1996, Paynter et al. 1990), 183 

relying on signals from both male-produced pheromones and tree-emitted volatile cues. The 184 

precision of pheromone-based recognition is well documented at the interspecific level among 185 

Ips beetles, suggesting strong selective pressures on olfactory systems (Schlyter et al. 2015). 186 

Variations in female total body length, combined with pheromonal and host tree chemical cues, 187 

are crucial for understanding ecological adaptations, such as host selection strategies (Muller et 188 

al. 2020; Schlyter and Anderbrant 1993). 189 

This study explores size-specific behavior in female I. typographus, with a focus on their 190 

olfactory assessment of host tree quality, which is a critical factor for survival and reproductive 191 

success. We examine whether large and small females respond differently to two oxygenated 192 

spruce monoterpenes, 1,8-cineole and (+)-isopinocamphone, tested in combination with 193 

aggregation pheromones in a trap-capturing experiment. Additionally, we investigate if their 194 

antennae exhibit size-dependent differences in sensitivity to these compounds using 195 

electroantennographic analysis, and whether the antennal club shape differs between large and 196 

small females. Building on these objectives and the current understanding of bark beetle 197 
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chemical ecology, this study is guided by the core hypothesis: "Larger and smaller I. 198 

typographus females will exhibit distinct behavioural and electrophysiological responses to the 199 

two oxygenated spruce monoterpenes with contrasting ecological roles: 1,8-cineole, which 200 

inhibits attraction to unsuitable trees, and (+)-isopinocamphone, which enhances the attraction 201 

to aggregation pheromones. These behavioral differences could be caused by size-dependent 202 

variations in antennal sensitivity for these two compounds, which is potentially influenced by 203 

morphological differences in the antennal clubs."  204 

The ecological impact of these size-dependent differences, driven by morphological and 205 

olfactory adaptations, may affect I. typographus females' ability to select high-quality host 206 

trees. This, in turn, could have broader implications for the beetles' reproductive strategies and, 207 

consequently, their population dynamics. 208 

 209 

2. Material and methods 210 

2.1. Experimental approach  211 

 212 

We evaluated the responses of I. typographus females using two complementary assays. The 213 

first was a field assay involving traps baited with either 1,8-cineole or (+)-isopinocamphone at 214 

three different doses in combination with a pheromone, and we compared the sex-ratio and 215 

body length of beetle captures to those from traps baited with pheromone alone. The second 216 

assay included electroantennography (EAG) analysis to measure the antennal responses of 217 

small and large females to varying doses of 1,8-cineole or (+)-isopinocamphone. We also 218 

conducted a morphometric analysis of antennal club size in these two groups. 219 

 220 

2.2. Field experiment area and pheromone traps 221 

 222 

The trapping experiments were conducted in 2019 and 2022 at the Forest CZU property in 223 

Kostelec nad Černými lesy, Czech Republic. The experiments took place in a mature, 100-year-224 

old Norway spruce forest, a natural habitat for I. typographus, located at 600 meters above sea 225 

level. In 2019, the experiment was conducted at coordinates (49°56′02″N, 14°52′21″E), while 226 

the 2022 experiment took place at (49°55′57″N, 14°55′13″E). Both experiments were 227 

conducted during the same time frame: June 3 to July 28 of each year. In both the 2019 and 228 

2021 experiments, traps were set up approximately 30 meters from the forest edge in a two-229 
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year-old clearing. They were arranged in a row, with a minimum distance of 15 meters between 230 

each trap, and were installed on wooden poles 1.5 meters above the ground. 231 

In 2019, seven cross-vane Ecotraps (Fytofarm, Slovak Republic) were used for the collecting 232 

data for this experiment: three traps were baited with three different doses (low, medium, high) 233 

of 1,8-cineole or (+)-isopinocamphone, respectively, in combination with pheromone. One trap 234 

was baited with pheromone alone and served as a control (for baits composition see Table 1 for 235 

details). To minimize positional bias, the positions of the tested baits among these seven traps 236 

were changed seven times according to a randomization scheme based on a Latin square design 237 

(Evans et al. 2020). 238 

In 2022, for each compound (1,8-cineole and (+)-isopinocamphone), one block was set up, 239 

consisting of four traps arranged in a row: three traps baited with different doses of the tested 240 

compounds in combination with pheromone, and one trap with pheromone only (control). The 241 

positions of the tested baits among these four traps were changed four times according to a 242 

randomization scheme based on a Latin square design (Evans et al. 2020). These four rotations 243 

were repeated twice for each compound, resulting in a total of eight collections of catches for 244 

each treatment (Moliterno et al. 2023). Insects collected during the field experiment in both 245 

localities were preserved in ethanol for further analysis, including counting, sex sorting, and 246 

measurement. 247 

 248 

Table 1. Description of treatment bait characteristics used in the experiments conducted in 2019 and 2022 249 

Chemical Source 

 

Purity 

(%) 

Dose Nominal 
Field 2019 

±SEM (n=3) † 

Field 2022 

±SEM(n=3) † 

Dispenser 

design 

1,8-cineole 

 

Sigma-

Aldrich 

 

98 

L 

M 

H 

0.1 

1 

10 

0.1 ± 0.04 

0.84± 0.09 

6.03± 4.78 

0.1 ± 0.01 

0.92 ±0.12 

5.7 ± 6.7 

Kartell 731 

without hole 

plus 1 mL of 

paraffin oil; 

Glass vial of 

2mL, lid hole 

by syringe 

(1mm); 

Kartell 730, 

lid hole by 

syringe (2mm) 

(+)-

isopinoca

mphone 

* 99 

L 

M 

H 

0.1 0.61 ±0.18 0.40±0.11 

Foil sachet: 

hole by 

syringe 

(1mm); 

1 1.95 ±0.41 1.87±0.67 
Kartell 730 

without hole; 

10 7.82 ±1.63 8.21 ±1.41 
Kartell 731: 2 

mm lid hole 
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2-methyl-

3-buten-2-

ol 

Across 97 H 10 11.31± 8.9 9.10 ±16.1 

PE-vial 

(Kartell 731): 

1mm lid hole 

cis-

Verbenol 

Sigma-

Aldrich 
95 H 1 0.93± 1.17 0.85 ±1.34 

PE-vial 

(Kartell 731): 

9 mm lid hole 

Doses are represented by low dose (L), medium dose (M) and high dose (H). For further details (see Moliterno et 250 
al. 2023). *= synthesized compound by Dr. Prof. Unelius from Linnaeus University, Sweden. †-established by 251 
gravimetric analysis. SEM indicates standard error mean. 252 

 253 

2.3. Source and selection of beetles used for body length and antennal size measurement 254 

and electroantennographic detection analysis 255 

 256 

For further measurement, fifty beetles were randomly selected from the ethanol-stored beetles 257 

caught in one of three doses of 1,8-cineole or (+)-isopinocamphone combined with pheromone, 258 

or caught with pheromone alone (a total of 8 groups each consisting of 50 randomly selected 259 

beetles). These beetles were selected from each replication of the experiments conducted in 260 

2019 and 2021. Selected beetles were dried on tissue paper at 25°C for two hours, sorted by sex 261 

and measured for body length. Damaged specimens were excluded from the analysis. 262 

For antennal club size measurements and electroantennography studies, I. typographus (F0 263 

generation) emerged from naturally infested Norway spruce logs (n= 12; ±50 x 28 cm) collected 264 

in Kostelec nad Černými Lesy from June to July 2024 were used. The beetles were collected 265 

by placing naturally infested Norway spruce logs into fine mesh emergence cages under 266 

controlled laboratory conditions. The logs were monitored daily, and newly emerged adult 267 

beetles were collected manually from the mesh enclosures. Only females, ±3 days old, were 268 

selected after sorting by sex for further measurements and experiments. 269 

 270 

2.4. Morphometric Analysis 271 

 272 

The total body length of adult female I. typographus collected from field traps was measured 273 

in millimetres as demonstrated from the apical margin of the pronotum to the distal end of the 274 

elytra, using traditional linear morphometric analysis. The body size of the captured females 275 

was measured using a graticule (1–10 mm) integrated into a Nikon SMZ800N stereomicroscope 276 

at 30X magnification. Measurements were taken by the same researcher to ensure consistency, 277 

with recorded sizes ranging ranged from 4.2 to 5.3 mm millimetres. Based on this size range, 278 

two individuals were classified into two distinct size categories were established for further 279 

analysis. Female specimens selected for antennal club measurements and electroantennography 280 

were divided into: 281 
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1. Large-sized females: Body length ≥ 4.80 mm (n = 30) 282 

2. Small-sized females: Body length ≤ 4.70 mm (n = 30) 283 

To measure the antennal club measurements and electroantennography, excised antennae were 284 

mounted on borosilicate glass and imaged using a Nikon DFK 33UX250 camera (Imaging 285 

Source®, Germany) attached to a Nikon SMZ800N stereomicroscope. The antennal club length 286 

was measured from the apical end (ventral side) to the tip of the last antennomere, while the 287 

width was measured at the midpoint of the antennal club (ventral side). Measurements were 288 

obtained using IC Capture - Image Acquisition 4.0 software. The average measurements, 289 

calculated from the left and right antennae of each individual, were recorded in micrometres. 290 

 291 

2.5. Electroantennographic (EAG) analysis 292 

 293 

The sources and purity of the chemicals used for electroantennography (EAG) experiments 294 

were the same as described in Table 1. Dose-response tests were conducted using an aggregation 295 

pheromone in a 10:1 ratio of 2-methyl-3-buten-2-ol (MB) to cis-verbenol (cV), as well as the 296 

individual compounds 1,8-cineole and (+)-isopinocamphone. Antennae from large and small 297 

females were stimulated with odor stimuli at seven doses: 0.001 µg, 0.01 µg, 0.1 µg, 1 µg, 10 298 

µg, 100 µg, and 1000 µg. For odor cartridge preparation, 10 µl of each odor stimuli solution at 299 

the corresponding concentration (diluted in hexane) was applied to a 1×1 cm strip of Whatman 300 

No. 1 filter paper. The solvent was allowed to evaporate for 1 minute before the strip was 301 

inserted into a glass Pasteur pipette (10 cm in length, 6 mm outer diameter), which was then 302 

used as an odor delivery cartridge for stimulation. Electrophysiological analyses were 303 

conducted using I. typographus females (F0 generation), as previously described. The F0 304 

generation was chosen to directly represent the wild population of beetles originating from 305 

natural spruce forests. Prior to Analysis, insects were immobilized by cooling at 4°C for 5 306 

minutes. This approach ensured the selection of morphometrically classified females within two 307 

size categories: large (≥ 4.80 mm, n = 10) and small (≤ 4.70 mm, n = 10). 308 

Electroantennogram (EAG) analysis were conducted as described (Zhang et al. 2000). The sex 309 

of the beetles was determined through dissection, and the heads of female beetles were excised 310 

using a microblade. Two capillary glass electrodes filled with Ringer's solution were used: one 311 

electrode was connected to the antennal club, while the other served as a reference by being 312 

inserted into the excised beetle head. The electrodes were attached to holders with an EAG 313 
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probe (Syntech, Germany) and connected to a pre-amplifier. A constant stream of humidified 314 

air (200 ml/min) was directed over the antenna using a Syntech stimulus controller. 315 

Odor cartridges (prepared as described above) were used to stimulate the antenna, and responses 316 

were recorded using EAG Pro software (Syntech, IDAC-4). Each stimulus (odor or control) 317 

was delivered as a 0.5-second pulse into the airstream directed at the antennal preparation, 318 

ensuring brief and consistent exposure. Control and odor stimuli were presented sequentially, 319 

with a one-minute interval between stimulations, allowing for antennal recovery and avoiding 320 

adaptation. The EAG probe was configured with a 0–32 Hz filter and a sampling rate of 100 321 

Hz. Antennal responses were recorded as downward deflection signals in millivolts (mV), with 322 

response amplitudes defined as the peak depolarization of the olfactory sensilla of antennae 323 

measured during the 0.5-second odor stimulation. For each female beetle, recordings were made 324 

starting with the control stimulus and followed by sequential doses of the respective compound, 325 

increasing from the lowest to the highest concentration (0.001 µg to 1000 µg) to minimize 326 

sensory adaptation. Each biological replicate consisted of a single female beetle tested once per 327 

stimulus (n = 10 individuals per tested compound). The mean peak response amplitude across 328 

all replicates was calculated to assess antennal sensitivity to each compound. 329 

 330 

2.6. Statistical Analysis 331 

 332 

We tested normality within each treatment group from 2019 or 2022 using the Shapiro-Wilk 333 

test, and homogeneity of variances was assessed using Levene’s test. The raw data (total body 334 

length of adult female I. typographus) were exponentially transformed (Manly 1976), adjusting 335 

the assumption toward normality and equal variance. One-way ANOVAs were conducted 336 

separately for each year to assess whether insect body size differed significantly among 337 

treatment groups. Each ANOVA was followed by Tukey’s HSD test for post hoc comparisons, 338 

controlling the experiment-wise error rate.  The Pearson's Chi-squared test with Yates' 339 

continuity correction was applied to check whether female proportion diverge regardless the 340 

dosage tested (Zar 2014). 341 

 342 

The data obtained from small and large female I. typographus were compared using the 343 

Wilcoxon signed rank test (Harris and Hardin 2013; Hothorn et al. 2022). The two-sample 344 

analysis assessed differences in: 345 

 346 

1. total body length between large and small females;  347 
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2. antennal club length between large and small females;  348 

3. antennal club width between large and small females; 349 

 350 

The chosen test deal with non-normality assumption as described before, but also paired-351 

samples (the emerged adults insects collected from the same Norway spruce logs) and repeated 352 

measurement from antennal club length and width. The posterior analysis evaluated whether 353 

antennal club growth follows an isometric or allometric pattern relative to body size, we 354 

employed the Standardized Major Axis (SMA) regression using the "smatr" package in R 355 

(Warton, 2012). Before conducting an SMA regression, the length and width were log-356 

transformed (ln= log natural), providing comparability, addressing potential scale issues, and 357 

making the relationship linear for better interpretation (Legendre and Legendre 1998). SMA 358 

regression was selected because it accounts for measurement errors in body size and antennal 359 

club length. SMA evaluates slopes >1 indicated isometric relationships, while deviations from 360 

<1 indicated allometry (Jolicoeur 1990; Warton et al. 2006). To evaluate the dose-response in 361 

electroantennography (EAG) analysis between large (n = 10) and small females (n = 10), the 362 

Wilcoxon signed rank test for repeated measurements was applied. All statistical analyses were 363 

performed using RStudio version 4.1.1 (Core R Team 2015), with a significance level (alpha) 364 

of 0.05. The dataset and R script used for the analysis are publicly available in the Dryad Digital 365 

Repository: https://doi.org/10.5061/dryad.rxwdbrvn1 (Moliterno et al. 2025). All figures were 366 

created using GraphPad Prism (version 9.5.0) software for macOS. 367 

 368 

3. Results 369 

 370 

We analyzed the sex ratio of beetles caught in the field using pheromone traps baited with three 371 

doses of 1,8-cineole and (+)-isopinocamphone in combination with pheromone, collected in 372 

2019 (N=7) and 2022 (N=8) (Moliterno et al. 2023). In both years, females comprised 70–85% 373 

of the captures across treatments and pheromone-only groups (supplementary material, figure 374 

1A and table 1A). In 2022, the proportion of females was significantly higher for all three doses 375 

of (+)-isopinocamphone combined with pheromone compared to the appropriate doses of 1,8-376 

cineole combined with pheromone (Table 2, refer supplementary Table 1E and 1F for more 377 

details). 378 

 379 
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Table 2. Pearson's Chi-squared test with Yates' continuity correction comparing male and female Ips 380 

typographus catches for two compounds, (+)-isopinocamphone ((+)-IPC) and 1,8-cineole across different 381 

dose levels and years.  382 

Group 

Absolute catches per females and compound  (+)-IPC vs 1,8-cineole  

(+)-IPC females/total 

catches of beetles 

1,8-Cineole 

females/total catches 

of beetles 

Chi-sq df p-value 

2019 - Low 1267/1508 892/1059 0.008 1 0.9285 

2019 - 

Medium 
2329/2875 1682/2103 0.755 1 0.3848 

2019 - High 2031/2477 294/370 1.217 1 0.2699 

2022 - Low 1052/1267 482/651 21.152 1 <0.001** 

2022 - 

Medium 
1125/1406 389/519 5.488 1 0.0191* 

2022 - High 1495/1917 183/258 6.028 1 0.0141* 

 383 

Data represents absolute beetle catches pooled from the respective number of trap rotations per year (2019: 7 384 

rotations; 2022: 8 rotations). Chi-squared values indicate the results of contingency tests comparing female catches 385 

across treatments. Df represents degrees of freedom. p-values indicate the significance level of the observed 386 

differences between male respectively female catch proportions for respective compound and dose, with 387 

significance considered at p < 0.05 (*), p < 0.001 (**). Refer supplementary Table 1G for more details. 388 

 389 

3.1. Prevalence and total body length differences in female captures across treatments and 390 

years 391 

 392 

Females captured in control traps containing only pheromones had an average body length of 393 

4.82 mm (SD = 0.22) in 2019 and 4.90 mm (SD = 0.17) in 2022. In contrast, females captured 394 

in traps baited with a high dose of 1,8-cineole were smaller, with an average body length of 395 

4.69 mm (SD = 0.26), (F = 3.15, p = 0.026) in 2019 and 4.69 mm (SD = 0.23), (F = 9.59, p < 396 

0.001) in 2022 (Fig. 1A). For (+)-isopinocamphone, trap catches showed significant differences 397 

based on dose. In 2019, females captured in traps baited with a low dose of (+)-398 

isopinocamphone had an average body length of 4.75 mm (SD = 0.24) (F = 3.03, p = 0.03), 399 

while in 2022, the average was 4.75 mm (SD = 0.23) (F = 2.95, p = 0.03). Conversely, traps 400 

baited with a high dose of (+)-isopinocamphone attracted larger females, with average body 401 

lengths of 4.88 mm (SD = 0.19) in 2019 and 4.86 mm (SD = 0.20) in 2022 (Fig. 1B). Detailed 402 

data and statistical analyses, including results from ANOVA followed by Tukey's HSD test 403 

(supplementary material, Table 1B) and visualized in Fig. 1. 404 
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 405 

Figure 1. Mean body size of female I. typographus captured in response to three doses (low, medium, high) of (A) 406 

1,8-cineole and (B) (+)-IPC is (+)-isopinocamphone, along with a control (pheromone only = Ph), in 2019 and 407 

2022. Colors represent different doses or the control, with a sample size of n = 50 per group. Vertical bars show 408 

the standard error of the mean, and (*) indicates significant differences between groups based on Tukey's HSD test 409 

(p = 0.05). 410 

 411 

3.2. Total body length, antennal club size of large and small females is isometric to body 412 

size. 413 

The Wilcoxon signed rank for dependent sample analysis showed total body size (V= 465, p< 414 

0.001), length, antennal club in length (V= 416, p< 0.001), and width (V= 431, p< 0.001) 415 

measurements differed significantly between large versus small females (Table 3). 416 

Table 3. Means of measurements in total body length and antennal club (length and width) of large and 417 

small females of Ips typographus; mean ± SD.  418 

Parameters (mean ± SD) Large females (N=30) Small females (N=30) 

Body length (mm) 4.88 ± 0.079 4.59 ± 0.105 

Antennal club length (µm) 258.72 ± 20.05 233.59 ± 17.35 

Antennal club width (µm) 222.76 ± 16.11 198.75 ± 14.94 

Total body length data from females of Ips typographus was defined as large ≥ 4.80 mm (n = 30) versus small ≤ 419 

4.70 mm (n = 30) and its respective antennal club measurements. 420 

 421 

The standardized major axis (SMA) regression focusing on the correlation between length and 422 

width indicated significant and positive correlations (Large= R²= 0.43, p ≤ 0.001) and (Small= 423 

R²= 0.32, p= 0.001). The relationship between antennal club length and width log-transformed 424 

indicated that both were scaled isometrically, with slopes close to 1 (Large: 0.99, Small: 1.0) 425 
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(supplementary material, Table 1C). This suggests a proportional relationship between length 426 

and width in both groups, where the two variables increase at similar rates (Fig. 2). 427 

 428 

 429 
Figure 2. Standardized Major Axis (SMA) regression analysis representing positive trend in log (ln) length 430 
and width of categorized as "large females ≥ 4.80 mm" (n= 30) and "small females ≤ 4.70 mm" (n= 30) from 431 
antennal club of females of I. typographus. Each colour represents the measurements taken in length and width 432 
expressed in micrometers (µm). Blue line and dots represent the "large females" group. Orange line and dots 433 
represent the "small females" group. 434 

 435 

3.3. Larger females are more responsive to (+)-isopinocamphone, whereas smaller females 436 

have higher antennal sensitivity to 1,8-cineole  437 

 438 

EAG responses to the pheromone blend (MB:cV/ 10:1) did not differ significantly between 439 

large (n = 10) and small (n = 10) females (Exact Wilcoxon Rank Sum Test, Fig. 3A). Large 440 

females showed significantly stronger responses to four higher doses of (+)-isopinocamphone 441 

(1 µg to 1000 µg; log doses 0 to 3) (V= 48, p = 0.048; Fig. 3B). Conversely, small females 442 

exhibited significantly stronger EAG responses to three higher doses of 1,8-cineole (10 µg, 100 443 

µg, 1000 µg; log doses 1 to 3) compared to large females (V= 7, p = 0.037; Fig. 3C). Additional 444 

details are provided in supplementary material (Table 1D). 445 

 446 
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Figure 3. Dose–response curves based on electroantennographic (EAG) responses in female Ips typographus, 447 

categorized by body size: "large" (≥ 4.80 mm, n = 10) and "small" (≤ 4.70 mm, n = 10). Responses are shown 448 

for (A) Pheromone, (B) 1,8-cineole, and (C) (+)-isopinocamphone. Each compound was tested across a 449 

concentration range of 0.001 µg to 1000 µg, with hexane serving as the solvent control. EAG responses are 450 

expressed as the mean amplitude of antennal depolarizations (in millivolts), normalized by subtracting the response 451 

to hexane (blank). Error bars represent the standard error of the mean (SEM). Asterisks (*) indicate statistically 452 

significant differences between size groups at individual doses, based on the Exact Wilcoxon Rank Sum Test (p < 453 

0.05). 454 

 455 

4. Discussion 456 

 457 

Our findings demonstrate that large and small female I. typographus respond differently to two 458 

ecologically relevant oxygenated spruce monoterpenes, 1,8-cineole and (+)-isopinocamphone, 459 

which serve as a pheromone inhibitor and a pheromone synergist, respectively. These 460 

semiochemicals influence female attraction and decision-making, with clear size-dependent 461 

variation in both antennal responses and field behavior. 462 

 463 

4.1. Enhanced sensitivity and attraction of larger Ips typographus females to   464 

(+)-isopinocamphone may facilitate the selection of higher-quality host trees. 465 

 466 

In our field experiments, larger females were significantly more attracted to high doses of (+)-467 

isopinocamphone, a compound known to synergize pheromone attraction, when it was 468 

presented alongside the aggregation pheromone. This behavioral pattern was supported by 469 

electroantennography (EAG) analyses, which showed that larger females exhibited stronger 470 

olfactory responses to high doses of (+)-isopinocamphone compared to smaller females. 471 

Morphometric analysis further revealed that larger females possess proportionally broader and 472 
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longer antennal clubs. This increased antennal surface area likely improves their odour 473 

detection capabilities. Across various insect taxa, a correlation between antennal size and odour 474 

sensitivity has been widely documented (Makarova et al. 2022; Spaethe et al. 2007; Elgar et al. 475 

2018; Lockey and Willis 2015). Longer antennae can house longer sensilla with greater pore 476 

density, which enhances the detection of odorants and the resulting neural activation (Mohebbi 477 

et al. 2022; Steinbrecht 2007; Liu et al. 2021). Miniaturized insects often display reductions in 478 

the antennomere number and sensilla count, as well as have shorter sensilla (Makarova et al. 479 

2022; Steinbrecht 2007), although the diversity of sensilla types is typically maintained, 480 

allowing the detection of ecologically relevant odors (Polilov 2015; Diakova and Polilov 2020). 481 

These structural traits likely contribute to the higher sensitivity to (+)-isopinocamphone 482 

observed in larger females in our study.  483 

The ecological implications of stronger attraction to (+)-isopinocamphone in larger females are 484 

somewhat speculative but may confer adaptive advantages. Notably, several symbiotic 485 

ophiostomatoid fungi associated with bark beetles, G. penicillata, L. europhioides, and O. 486 

bicolor can metabolize host tree monoterpenes into substantial quantities of (+)-487 

isopinocamphone (Kandasamy et al. 2023). An increased olfactory response to this compound 488 

could help larger, dominant females locate trees where fungal symbionts have already 489 

detoxified monoterpenes, thereby increasing the likelihood of successful colonization. This 490 

relationship may also benefit the fungi. Larger females tend to excavate longer galleries and 491 

transport greater fungal spore loads, potentially enhancing both fungal dispersal and 492 

establishment (Foelker and Hofstetter 2014; Sallé and Raffa 2007; Sallé et al. 2005). These 493 

dynamics suggest a potential feedback loop in which fungal metabolites selectively attract the 494 

most fecund or competitive beetles, reinforcing mutualistic interactions. Future research should 495 

investigate whether larger I. typographus females exhibit specific preferences for fungal species 496 

producing (+)-isopinocamphone and how this might shape the evolution of beetle–fungus 497 

mutualisms. Additionally, natural enemies of I. typographus are responsive to 498 

isopinocamphone (Pettersson and Boland 2003), suggesting potential, yet unexplored, tri-499 

trophic interactions linking beetle body size, fungal volatiles, and predator attraction (Souza et 500 

al. 2024; Wegensteiner et al. 2015). Trap data also indicated a higher proportion of large 501 

females in 2022 compared to 2019 caught to treatments, even the mean size of all females 502 

caught to pheromone-only was the same in both years. We attribute a shift in the proportion of 503 

large females caught to treatments to the transition from the endemic bark beetle population in 504 

2019 to the epidemic population that occurred in 2022. During endemic periods, selective 505 
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pressure on host quality increases, potentially favouring larger females that can better 506 

discriminate among semiochemical cues (Sallé et al. 2005). These findings suggest that total 507 

body length-linked behavioral strategies are modulated by population density. 508 

 509 

4.2. The unexpectedly heightened antennal sensitivity of smaller Ips typographus females 510 

to 1,8-cineole contrasts with their higher behavioral attraction to this anti-attractant 511 

 512 

An interesting contradiction was observed in the response of smaller females to 1,8-cineole. 513 

Although this compound is well-documented as an anti-attractant and toxic to I. typographus 514 

(Andersson et al. 2010; Jirošová et al. 2022; Zaman et al. 2024), and its addition significantly 515 

reduced the overall number of beetles captured in our field experiment to pheromone (Moliterno 516 

et al. 2024), a size-dependent pattern in females was observed. Specifically, we observed a 517 

higher proportion of smaller females in catches when exposed to high doses of 1,8-cineole 518 

combined with pheromone, compared to larger females. This pattern could still align with the 519 

antennal size hypothesis discussed earlier: those larger females with larger antennae, may detect 520 

the anti-attractant more effectively and are, therefore, more strongly repelled. However, 521 

contrary to expectations, electroantennographic (EAG) data showed that smaller females 522 

exhibited greater antennal sensitivity to 1,8-cineole than larger females despite having shorter 523 

and narrower antennal clubs. 524 

One possible explanation for increased antennal sensitivity is that cineole-sensitive olfactory 525 

sensory neurons (OSNs) are co-localized with pheromone (cis-verbenol)-sensitive neurons, 526 

which suppress pheromone detection at high doses of 1,8-cineole (Andersson et al. 2010). 527 

Another explanation is that, while differences in peripheral sensitivity at the antennal surface 528 

between small and large females are influenced by antennal morphology, their host choice and 529 

decision-making may be shaped by higher-order processing in CNS regions, such as the 530 

mushroom bodies and lateral horns. These central brain areas integrate olfactory input with 531 

learning, memory, and behavioral context. Insects' age, mating status, and energy reserves can 532 

influence both odor detection and the downstream processing of olfactory signals (Wiesel et al. 533 

2022, Anton et al. 2007; Bodin et al. 2008; Martin et al. 2011). Consequently, the same odor 534 

may trigger different or even opposite behaviors within the same species, depending on the 535 

individual's internal factors. Smaller females may have stronger neural connections mediating 536 
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responses between cineole-sensitive OSNs and central brain regions, such as the lateral horn, 537 

which controls avoidance behaviors and suppresses their repulsive responses. 538 

A potential ecological rationale for this pattern is linked to findings that trees with higher levels 539 

of 1,8-cineole are generally more resistant to bark beetle attacks (Schiebe et al. 2012). Larger 540 

I. typographus females, typically associated with higher fitness and greater capacity to kill trees 541 

(Grodzki 2004), may actively avoid such trees, recognizing them as poor-quality hosts. Doing 542 

so may increase their chances of successful colonization and reproduction (Raffa et al. 2016). 543 

In contrast, smaller females, less competitive during outbreaks, may tolerate trees with high 544 

1,8-cineole levels as a form of competitive escape. This strategy allows them to occupy less 545 

suitable trees while avoiding competition from larger females despite the higher risks posed by 546 

the compound's toxicity.  Since our experiments were conducted in June-July, when the 547 

nutritional feeding of beetles and sister brood females from the first generation may overlap 548 

with the emergence of second-generation beetles searching for new hosts, we cannot precisely 549 

narrow down the ecological explanation solely to females seeking mates alongside suitable 550 

trees. However, we expect that the ecological principle of finding suitable host trees, where 551 

large females prefer trees with compromised defense, while smaller females avoid competition, 552 

will also apply to secondary-emerging and sister-brooding females. 553 

 554 

4.3. Expanding future research framework to include males 555 

 556 

Our analysis focused exclusively on females due to their central role in reproduction and host 557 

colonization. Additionally, field captures showed a female-biased sex ratio in traps baited with 558 

either synthetic oxygenated monoterpenes combined with pheromone or pheromone alone. This 559 

pattern is consistent with earlier reports of female-biased attraction to both aggregation 560 

pheromone (Franklin et al. 2000; Schlyter et al. 1987) and 1,8-cineole (Jirošová et al. 2022). 561 

However, it is also important to consider the potential implications for males. As the pioneer 562 

sex, males initiate host colonization and benefit from detecting semiochemicals related to the 563 

host tree's nutritional quality and the tree's defense ability. Unfortunately, in our catches of 564 

beetles with (+)-isopinocamphone and 1,8-cineole, there weren't enough males for body length 565 

measurements after sorting by sex through dissection, making it impossible to obtain a 566 

statistically significant dataset. However, similarly to the total beetle catches, we observed that 567 

more males were attracted to the combination of (+)-isopinocamphone and pheromone 568 
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(Moliterno et al., 2023) than to pheromone alone and in contrast, fewer males were attracted to 569 

the mixture of cineole and pheromone compared to pheromone alone. 570 

Interestingly, when focusing on the sex ratio, we found a lower proportion of males attracted to 571 

(+)-isopinocamphone than to 1,8-cineole. However, previous studies have identified olfactory 572 

sensory neuron classes in males and females of Ips typographus that are primarily tuned to both 573 

(+)-isopinocamphone and 1,8-cineole (Andersson et al., 2009; Kandasamy et al., 2023), 574 

suggesting that males are equally sensitive on the periphery to both compounds as females. To 575 

better understand the signal processing in the beetle's olfactory system and the ecological 576 

relevance of our findings, further research on sex-specific electrophysiological responses, as 577 

well as size-dependent behavior and detection abilities in males, is needed. 578 

 579 

5. Conclusion 580 

 581 

Our study demonstrates how body size influences adaptive responses in semiochemical-582 

mediated host selection among female bark beetles. We report clear size-dependent olfactory 583 

and behavioral strategies in female I. typographus, linking antennal morphology, olfactory 584 

sensitivity, and host-selection behavior. The de novo spruce-derived oxygenated monoterpene 585 

1,8-cineole and the multisource-derived hydroxylated (+)-isopinocamphone, with their 586 

contrasting ecological roles as pheromone synergist or inhibitor, respectively, may significantly 587 

influence responses in I. typographus females based on their size. Larger females exhibited 588 

greater olfactory sensitivity and attraction to (+)-isopinocamphone, allowing them to more 589 

effectively discriminate between suitable, more stressed, and/or fungus-colonized hosts. In 590 

contrast, smaller females were less repelled and, surprisingly, more antennally sensitive to 1,8-591 

cineole, possibly reflecting an alternative strategy to avoid competition with larger females by 592 

exploiting lower-quality or riskier habitats. These findings suggest that body size can influence 593 

olfactory detection and subsequent CNS processing, leading to behavioral decision-making that 594 

may impact reproductive success and population dynamics of bark beetles. While our focus was 595 

on females due to their crucial role in reproduction and colonization, future research should 596 

investigate whether similar size-dependent responses occur in males. 597 

 598 
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Supplementary data 599 

 600 

The additional data is uploaded as Supplementary material, and available via Dryad Digital 601 

Repository: https://doi.org/10.5061/dryad.rxwdbrvn1 602 

URL: http://datadryad.org/share/eMlJtgCcS32RG6YXPuE8Bhnm0CdgOpg3uX2hJlbpiks. 603 
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Comparative analysis of olfactory 
sensory neurons in two Ips 
species reveals conserved and 
species-specific olfactory 
adaptations
Mayuri Kashinath Shewale  1, Jaromír Bláha  1, Jiří Synek  1, 
Martin Schebeck  2, Martin N. Andersson  3†, 
Dineshkumar Kandasamy  3† and Anna Jirošová  1*†

1 Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia, 
2 Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Ecosystem 
Management, Climate and Biodiversity, BOKU University, Vienna, Austria, 3 Department of Biology, 
Lund University, Lund, Sweden

Introduction: Bark beetles spend most of their lives under the bark of trees, 
with some species being economically significant pests that cause widespread 
tree mortality. Their behavior is primarily driven by olfactory signals, with 
aggregation pheromones playing a prominent role alongside volatiles from 
hosts, non-host trees and associated microbes. These signals are detected by 
olfactory sensory neurons (OSNs) housed in hair-like sensilla on the antennae. 
In this study, we focused on two Ips species with distinct host preferences: Ips 
acuminatus, which infests pine species, and Ips cembrae, which primarily attacks 
European larch. To better understand species-specific adaptations and shared 
olfactory mechanisms, we compared their olfactory responses with those of Ips 
typographus, a major pest of Norway spruce. By investigating the frequency, 
specificity, and antennal distribution of various OSN classes, we  aimed to 
uncover both conserved and different olfactory mechanisms across Ips species 
with different host associations.

Methods: We conducted single sensillum recordings (SSR) to examine OSN 
responses in the antennal olfactory sensilla of I. acuminatus and I. cembrae. 
The responses were compared to existing data from I. typographus to identify 
potential species-specific adaptations and conserved olfactory mechanisms. A 
panel of 57 ecologically relevant odorants was tested, comprising interspecific 
and intraspecific pheromones, along with compounds associated with host- 
and non-host trees, as well as symbiotic fungi.

Results and discussion: Based on their response profiles, we identified nineteen 
OSN classes in both I. acuminatus and I. cembrae. A few selected OSN classes 
were further analyzed using dose–response tests to assess their specificity 
and sensitivity. Three OSN classes in I. acuminatus and four in I. cembrae were 
specific to host-related compounds. Two OSN classes responded to non-host 
volatiles, while one OSN class exhibited strong responses to microbial volatiles 
in both species. Several OSN classes specific to pheromone compounds, 
non-host and microbial volatiles showed similar response profiles in both I. 
acuminatus and I. cembrae as well as in OSN classes previously reported in I. 
typographus, potentially reflecting close phylogenetic relationships and shared 
ecological traits among these species.
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1 Introduction

Abiotic disturbances in forests are becoming more frequent and 
severe due to climate change, leading to increased bark beetle 
infestations (Jaime et al., 2024). Rising temperatures and prolonged 
droughts amplify disturbances such as wildfires or windthrow, 
creating more favorable conditions for bark beetles (Allen et al., 2015; 
Jakoby et al., 2019; Senf et al., 2018). Warmer climates accelerate beetle 
development and reproduction, resulting in outbreaks with significant 
ecological and economic impacts (Biedermann et al., 2019; Dobor 
et  al., 2020; Sommerfeld et  al., 2021; Hlásny et  al., 2021). The 
increasing frequency of droughts and extreme weather events will 
further impact forests, making them more vulnerable to infestations 
(Netherer et  al., 2024). Bark beetles (Coleoptera: Curculionidae: 
Scolytinae) comprise more than 6,000 species worldwide (Hulcr et al., 
2015; Knížek and Beaver, 2007), including some of the most 
destructive conifer pests, particularly in the northern hemisphere. 
Bark beetles spend most of their life cycle under the tree bark, where 
many species feed and develop in the phloem. Many bark beetle 
species vector symbiotic fungi (particularly ophiostomatoid blue-stain 
fungi), which further impair tree defenses and contribute to tree 
decline and potential mortality (Krokene, 2015).

Bark beetles rely on a diverse array of semiochemicals to 
coordinate their host selection, mass attack, and regulation of 
colonization density (Byers, 2007). The colonization process typically 
begins with the detection of host tree volatiles, which help beetles 
identify and locate suitable coniferous hosts (Jirošová et al., 2022a; 
Moliterno et al., 2023). In contrast, non-host volatiles (NHVs) emitted 
by deciduous trees act as repellents, helping beetles avoid unsuitable 
hosts (Zhang and Schlyter, 2004). Once a host is selected, pioneer 
beetles release aggregation pheromones, which attract conspecifics 
and facilitate coordinated mass attacks, a crucial strategy for 
overcoming tree defenses (Christiansen and Bakke, 1988; Wood, 1982; 
Raffa et al., 2016; Keeling et al., 2021). As colonization progresses, bark 
beetles also respond to volatiles produced by their symbiotic 
ophiostomatoid fungi, which can influence both aggregation behavior 
and host suitability assessment (Jirošová et al., 2022b; Kandasamy 
et al., 2019, 2023). To avoid overcrowding and resource depletion, 
beetles release anti-aggregation pheromones at later stages, which 
regulate colonization density and promote dispersal to uncolonized 
trees (Frühbrodt et al., 2024). Beyond intraspecific signaling, bark 
beetles are also capable of detecting volatiles emitted by other bark 
beetle species and associated fungi, suggesting a broader role for 
interspecific chemical communication in mediating competition and 
spatial distribution (Andersson et  al., 2009; Schiebe et  al., 2019; 
Yuvaraj et al., 2024; Zhao et al., 2019; Kandasamy et al., 2019, 2023).

The pine bark beetle, Ips acuminatus, and the larch bark beetle, Ips 
cembrae, are both ecologically significant species of coniferous forests 
in Europe (Papek et al., 2024; Postner, 1974). Ips acuminatus mainly 
infests stressed Scots pine (Pinus sylvestris), with outbreaks increasing 
due to drought and warming (Liška et al., 2021; Wermelinger et al., 
2008; Thabeet et al., 2009). It prefers the thin-barked upper trunk and 
crown, avoiding competition by I. sexdentatus (Pettersson, 2000; 

Pfeffer, 1955; Wood and Bright, 1992), and other bark beetle species 
such as Tomicus piniperda and T. minor (Foit and Čermák, 2014; 
Hlávková and Doležal, 2022). Males release a pheromone blend of 
S-(−)-ipsenol, S-(+)-ipsdienol, and (4S)-cis-verbenol to attract 
conspecifics (Bakke, 1978; Francke et al., 1986), with mating occurring 
in a polygynous system (Kirkendall, 1989, 1990). It is associated with 
ophiostomatoid fungi, including blue-stain species that may support 
beetle development and survival (Francke-Grosmann, 1965; Villari 
et al., 2012; Papek et al., 2024).

Similarly, I. cembrae primarily infests European (Larix decidua) 
and Japanese larch (Larix kaempferi) but can also colonize other 
conifer species (Postner, 1974). While typically a secondary pest of 
weakened or felled trees, warming and drought can trigger outbreaks 
(Grodzki, 2008; EFSA on Plant Health et al., 2017). It colonizes the 
entire trunk (Pfeffer, 1955) and competes in the crown with bark 
beetles from several genera, such as Pityophthorus, Pityogenes, and 
Cryphalus (Postner, 1974). Males emit S-(−)-ipsenol, S-(+)-ipsdienol, 
and 3-methyl-3-buten-1-ol to initiate aggregation (Kohnle et al., 1988; 
Stoakley et  al., 1978), followed by mating with 2–4 females in a 
chamber (Postner, 1974). I. cembrae also vectors Endoconidiophora 
laricola, a pathogenic blue-stain fungus that contributes to tree 
mortality (Redfern et al., 1987; Kirisits, 2004; Jankowiak et al., 2007).

The primary olfactory organ of bark beetles are the club-shaped 
antennae (Payne et al., 1973), covered with multi-porous sensilla that 
house olfactory sensory neurons (OSNs) (Hallberg, 1982a). In Ips 
species, the flattened antennal club has the most olfactory sensilla 
concentrated on the anterior surface, organized into three distinct 
sensory bands labeled A, B, and C (Hallberg, 1982a; Shewale et al., 
2023). Most bark beetle OSNs are narrowly tuned, responding strongly 
to a single or a few structurally similar compounds, while some exhibit 
broader tuning (Andersson et al., 2009; Kandasamy et al., 2019, 2023). 
The dendritic membrane of the OSNs contains chemoreceptor 
proteins, such as odorant receptors (ORs) (Clyne et al., 1999) and 
ionotropic receptors (IRs) (Benton et al., 2009), which translate odor 
information of the environment into electrical signals. These signals 
can be  interpreted by the brain, potentially leading to behavioral 
responses (Andersson et al., 2015).

Early single sensillum recording (SSR) experiments in bark beetles 
investigated OSN responses to pheromones and some host volatiles in 
I. typographus (Tømmerås, 1985). Studies on olfactory detection of 
mainly pheromone compounds are also available for other Ips species, 
such as Ips pini, Ips paraconfusus, and Ips grandicollis (Ascoli-
Christensen et al., 1993; Mustaparta et al., 1979; Mustaparta et al., 
1980, 1977). Ips typographus, a major pest of Norway spruce (Picea 
abies), is the most well-studied Ips species in terms of peripheral odor 
detection, with extensive research reporting the antennal abundance 
of different OSN classes and the spatial distribution of OSNs tuned to 
pheromones, host volatiles, NHVs, and microbial volatiles (Andersson 
et al., 2009; Kandasamy et al., 2019, 2023; Raffa et al., 2016; Schiebe 
et al., 2019; Yuvaraj et al., 2024). The comprehensive OSN data from 
I. typographus allows for detailed comparison with OSN data from 
other congeneric species with different host preferences to better 
understand their olfactory detection mechanisms. Although 
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semiochemicals are often classified as pheromones, allomones, or 
kairomones, these classes might be unclear in this study, given their 
overlapping ecological activities. Therefore, we classify compounds in 
this study based on their biosynthetic origin, i.e., beetle-produced, 
host-derived, or microbial, to maintain clarity and avoid confusion. 
The chemical communication mechanisms that underlie their 
behavior, including pheromone-mediated aggregation and detection 
of plant and microbial volatiles, are critical for understanding their 
success as pests. Addressing these knowledge gaps is especially 
important given the increasing risks posed by these species under 
changing environmental conditions.

This study aimed to functionally characterize the OSN classes in 
two Ips species with different host preferences, specifically 
I. acuminatus on pine and I. cembrae on larch. By comparing our 
findings with existing data for the spruce bark beetle, I. typographus, 
we investigated whether the OSN frequencies and response patterns 
vary between species, and which of these patterns are conserved 
across Ips species. Using SSR, we  examined OSN responses to 57 
ecologically relevant odorants, including pheromones and volatiles 
from host trees, non-host trees, and fungi. Gas chromatography-
electroantennographic detection (GC-EAD) using essential oils was 
also performed to investigate whether the antennae of the studied 
species respond to host volatiles. This study advances our 
understanding of olfactory adaptations in Ips species, particularly in 
pheromone communication and host detection. Additionally, our 
findings provide new insights that could be useful for species-specific 
monitoring and pest management, essential for maintaining forest 
health under climate change.

2 Materials and methods

2.1 Bark beetle collection

Both bark beetle species were collected from forests near the 
village of Rouchovany in central Czech  Republic (49.0704°N, 
16.1076°E) during late spring 2024. Species identification was 
conducted directly in the field. Branches of P. sylvestris (DBH 
2–10 cm) infested by I. acuminatus were collected, along with logs of 
L. decidua (DBH 20–50 cm) infested by I. cembrae. Infested logs were 
maintained in university rearing facilities (FFWS, CULS) within insect 
cages (60 × 60 × 110 cm) under controlled laboratory conditions 
(25°C during the day, 19°C at night, 60% RH, and a 16:8 light/dark 
photoperiod). Adult beetles began emerging three to 4 weeks after 
field collection. The emerged beetles were collected and sexed under 
a stereomicroscope based on external morphology, specifically by the 
shape of elytral spines (Pfeffer, 1955; Zhang and Niemeyer, 1992). 
Before use in experiments, adult beetles were individually stored in 
Falcon tubes lined with moist paper at 4°C for at least 1 week. Each 
adult beetle was used for ten screenings using single sensillum 
recordings, whereas each beetle was used only once for dose–response 
studies. To obtain enough beetles, another batch of I. acuminatus was 
collected in spring 2024 from naturally infested P. sylvestris in 
northeastern Austria (Schönberg am Kamp; 48.5185°N, 15.7322°E) 
due to unavailability at the original location. Colonized logs (60 cm in 
length) were transferred to incubators at BOKU University, Vienna, 
where they were maintained at 25° C with a 16:8 light/dark 
photoperiod and monitored daily for newly emerged beetles. The 

emerged beetles were sexed and then express-mailed to Lund 
University, Sweden, for subsequent SSR experiments.

2.2 Chemical stimuli

The odor panel included 57 ecologically relevant compounds, 
including beetle pheromones, host-, non-host-, and microbial-related 
volatiles (Supplementary Table 2). These compounds were selected 
based on previous studies on Ips species, including I. typographus 
(Andersson et al., 2009; Kandasamy et al., 2023). Stock odor solutions 
(10 μg/μL) were prepared in paraffin oil and further diluted for use in 
experiments. For stimulation, 10 μL of the solution was applied to a 
piece of filter paper placed inside glass Pasteur pipettes. Control 
stimuli consisted of paraffin oil alone. Pipettes were stored at −18°C 
between experiments and replaced frequently to minimize odor 
depletion (Andersson et  al., 2012b). For GC-EAD experiments, 
essential oils of L. decidua and P. sylvestris were purchased from 
Oshadhi Ltd. (United Kingdom). Stock odor solutions (10 μg/μL) 
were prepared in hexane and further diluted for use. For GC-EAD 
experiments, 1 μL of the solution was directly injected into GC.

2.3 Single-sensillum recordings (SSR)

SSR was performed on live adult individuals of I. acuminatus and 
I. cembrae to investigate OSN response profiles using previously 
described procedures (Andersson et  al., 2012a). Beetles were 
immobilized in a 200 μL pipette tip, leaving the antennae and head 
exposed. One antenna was carefully secured with dental wax onto a 
microscope slide, ensuring optimal positioning for electrode insertion 
and light penetration from below. Mounted antennae were observed 
using a light microscope (Nikon Eclipse E6000FN) at ×500 
magnification. Electrophysiological recordings were conducted using 
tungsten microelectrodes that were electrolytically sharpened with 
10% KNO₃. The reference electrode was inserted into a pre-made hole 
in the beetle’s pronotum, while the recording electrode was inserted 
at the base of an olfactory sensillum. The recording electrode was 
mounted on a Sensapex micromanipulator (uMp-3, Oulu, Finland) 
for precise positioning. Signals were amplified and digitized using an 
IDAC4 interface (Syntech), and real-time recordings were visualized 
in AutoSpike v. 3.9 (Syntech). A continuous stream of charcoal-filtered 
and humidified air (1.2 L/min) was directed onto the antenna via a 
6 mm inner diameter glass tube positioned 15 mm from the antenna. 
Odor stimuli were delivered as 0.5 s puffs (0.3 L/min) using a stimulus 
controller (CS-02, Syntech), allowing the odorant to mix into the 
continuous airflow and reach the antenna. Odor pipettes for screening 
experiments were used for a maximum of two consecutive days or ten 
stimulations per compound. Dose–response pipettes were freshly 
prepared daily and used for a maximum of two stimulations. To 
characterize OSN response profiles, a high-dose stimulus (10 μg; 
10 μL of a 1 μg/μL solution) was used for initial screening. Odor 
compounds were tested in random order, and OSNs were allowed to 
regain basal spontaneous activity between stimulations. OSNs were 
classified based on their response profiles during the screening 
experiments. Additionally, five OSN classes for I. acuminatus and 
three OSN classes for I. cembrae were selected for dose–response tests. 
Compounds were tested in increasing concentrations (10 pg. to 10 μg) 
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to minimize sensory adaptation, starting with the least active 
compound identified during the screening phase.

2.4 Data analysis

Neuronal responses were quantified offline in AutoSpike v3.9 by 
calculating spike frequencies during the first 0.5 s of the odor response 
and subtracting the pre-stimulation activity. Responses to the paraffin 
oil control were also subtracted. At the screening dose, responses 
below 20 Hz were considered biologically non-significant. Excitatory 
responses were categorized as intermediate responses (40–60 Hz) and 
strong responses (>80 Hz). Poor-quality recordings or incompletely 
screened neurons were excluded. All data graphs and heatmaps were 
generated using GraphPad Prism (version 10.1.2, GraphPad Software, 
San Diego, CA, USA). The venn diagram was created using 
InteractiVenn (Heberle et al., 2015).

2.5 Gas chromatography coupled 
electroantennographic (GC-EAD) 
experiments

For GC-EAD, the head of the beetle with antennae was prepared 
and connected between glass microelectrodes filled with Ringer’s 
solution (Olsson and Hansson, 2013). Signals from the antenna were 
recorded using a Universal probe (Syntech) and integrated with 
IDAC 2 (Syntech). The results were processed using the software 
GcEad v. 4.6.1 (Syntech). At least five recordings were made for each 
sample, and a volatile was considered active if at least two antennal 
responses were recorded in I. acuminatus and I. cembrae. For the 
experiments, an Agilent 7890B GC was used, equipped with an HP-5 
column (Agilent Technologies, Inc), 30 m in length, 0.32 mm in 
diameter, and with a film thickness of 0.25 μm, ending in a splitter. 
From the splitter, 5 m of the same column was led to the FID detector 
and 1 m of the column on the antenna. At the column outlet, the 
chemical components were mixed with humidified air at a flow rate 
of 2 L/min and blown onto the prepared antenna. Samples were 
injected splitless, and the carrier gas for the GC was helium with a 
constant column flow rate of 3 mL/min. The inlet temperature was 
set to 250°C, the initial oven temperature was set to 40°C for 1 min, 
then increased by 10°C/min to 100°C, held for 0.5 min, then 
increased by 20°C/min to 150°C, and then increased by 40°C/min to 
a final temperature of 300°C, with 3 min hold. The FID temperature 
was set to 300°C.

3 Results

3.1 General classification of OSN types

The responses of OSN in I. acuminatus (IAc) and I. cembrae (IC) 
were examined using single sensillum recordings (SSR) from 
antennal olfactory sensilla. Most sensilla housed two OSNs, 
distinguishable by their spike amplitudes (A neuron: large amplitude 
cell; B neuron: small amplitude cell). Some sensilla appeared to house 
a single OSN, while a few seemed to house three. However, the 
presence of three neurons was rare and sometimes difficult to confirm 

due to suboptimal signal quality. The OSNs frequently responded to 
multiple compounds, but the primary compounds elicited the 
strongest responses, frequently exceeding 80 Hz. The compounds 
that triggered weaker secondary responses were often structurally 
similar to the primary compounds. The OSN response activity 
generally followed a phasic-tonic pattern with a sharp initial rise in 
firing rate, followed by a gradual decline to baseline levels 
(Supplementary Figure  1). However, most responses were rather 
tonic, with increased firing well beyond stimulus offset, whereas 
some neurons responded in a phasic manner, with responses quickly 
returning to baseline activity. The highest response frequencies 
reached 150 Hz in I. acuminatus and 200 Hz in I. cembrae. Notably, 
the compounds that elicited the strongest responses at the high 
screening dose (10 μg on the filter paper) were also associated with 
the lowest detection thresholds.

A screening experiment using 57 ecologically relevant odorants at 
10 μg revealed that 69 out of 82 contacted sensilla (~84%) in 
I. acuminatus (males, n = 17; females, n = 23) and 62 out of 85 sensilla 
(~73%) in I. cembrae (males, n = 28 and females, n = 18), responded 
to at least one compound. The remaining sensilla (12 in I. acuminatus 
and 23 in I. cembrae) did not respond to any of the tested compounds. 
Additionally, a small number of sensilla (three in I. acuminatus and 
two in I. cembrae) were excluded due to poor recording quality or 
signal loss during the experiment, which prevented OSN classification. 
OSNs responding strongly (>80 Hz) to at least one compound were 
categorized into OSN classes based on their response profiles 
(Figures 1, 2). In contrast, OSNs with weak to intermediate responses 
(20–80 Hz) were not assigned to any OSN class because their primary 
compounds were likely missing from the test odor panel 
(Supplementary Table 1 shows detailed OSN responses).

3.2 Olfactory sensory neuron responses in 
I. acuminatus

3.2.1 OSNs responding to aggregation 
pheromone components in I. acuminatus

Three OSN classes in I. acuminatus were strongly activated by its 
aggregation pheromone components, with distinct ligand specificities 
and dose-dependent responses. The IAc1 class (I. acuminatus OSN 
class 1) responded strongly (>80 Hz) to (4S)-cis-verbenol (n = 5) 
which is the major aggregation component in this species. Weaker 
secondary responses (<60 Hz) were elicited by structurally similar 
compounds, including (+)-trans-verbenol, (−)-trans-verbenol, 
(−)-verbenone, and chalcogran. These A neuron OSNs were 
co-localized with a B neuron OSN class (IAc2), which strongly 
responded (>80 Hz) to 1,8-cineole, a host tree defense compound 
(Figure  3A). Sensilla housing IAc1 neurons were predominantly 
located on the distal antennal club in the sensory band C (Figure 4A).

The IAc3 class responded primarily (>80 Hz) to S-(−)-ipsenol 
(n = 6), which is the naturally occurring enantiomer of ipsenol. These 
A neurons showed weak secondary responses (<60 Hz) to R-(+)-
ipsenol and ipsdienol enantiomers. Dose–response tests confirmed 
the high specificity for S-(−)-ipsenol, with a response threshold as 
low as 100 pg. (Figure  4E). The OSNs of this class were mainly 
distributed in the sensory band B (Figure 4A). The IAc4 class also 
exhibited enantiomer-specific detection, responding strongly 
(>80 Hz) to R-(−)-ipsdienol (n = 3). These A neurons were 
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co-localized with lanierone-responsive B neurons (IAc9 class, 
described below). Weaker secondary responses were observed for the 
S- (+)-enantiomer, the racemic mixture, and amitinol. This class was 
distributed on the sensory bands A and B on the antennal surface 
(Figure 4A) and was observed only in females. In contrast to the 
screening experiments, dose–response studies demonstrated the 
strongest response to the other enantiomer, to S-(+)-ipsdienol, with 
minimal responses to secondary compounds at lower concentrations 
(Figure  4E). Interestingly, during initial screening experiments, 
we did not identify any sensilla that strongly responded to S-(+)-
ipsdienol. This discrepancy between the screening and dose–response 
data suggests that two distinct OSN classes likely exist in 
I. acuminatus, each specifically tuned to either S-(+)-ipsdienol or 
R-(−)-ipsdienol.

Additionally, OSN class IAc13, (n = 1, A neuron) responded 
strongly (>80 Hz) to racemic ipsdienol, with intermediate secondary 

responses to amitinol, E-myrcenol and ipsdienol enantiomers. 
Another OSN class, IAc14 (n = 1, A neuron), responded most 
strongly to amitinol with weaker secondary responses to racemic 
ipsdienol and its enantiomers (Figure 1; Supplementary Table 1).

3.2.2 OSNs responding to other beetle-produced 
compounds in I. acuminatus

Five OSN classes were tuned to additional beetle-produced 
compounds. The IAc5 class responded strongly (>80 Hz) to 
(−)-verbenone (n = 7) and exhibited weaker secondary responses to 
α-isophorone, (+)-trans-verbenol, and (−)-trans-verbenol. These A 
neurons, primarily distributed across the sensory bands A and B, 
mostly in the middle region of the antennal club, displayed dose-
dependent responses with a response threshold at ~1 ng (Figure 4E). 
This was the most abundant OSN class in this species (Figure 4B) 
and was found exclusively in females (n = 7). The IAc6 class showed 

FIGURE 1

Heat map representing response profiles of identified OSN classes responding strongly (>80 Hz) to one or more compounds at a 10 μg stimulus dose 
in Ips acuminatus. The stimulus eliciting the primary response in the 19 OSN classes are as follows: IAc1: (4S)-cis-verbenol, IAc2: 1,8-cineole, IAc3: 
(±)-ipsenol, IAc4: R-(−)-ipsdienol, IAc5: (−)-verbenone, IAc6: α-isophorone, IAc7: (+)-isopinocamphone, IAc8: styrene, IAc9: lanierone, IAc10: 
2-phenylethanol, IAc11: 2-methyl-3-buten-2-ol, IAc12: 1-hexanol, IAc13: (±)-ipsdienol, IAc14: amitinol, IAc15: (−)-limonene, IAc16: 1-octen-3-ol, 
IAc17: (±)-chalcogran, IAc18: γ-terpinene, and IAc19: (5S,7S)-trans-conophthorin. A and B illustrate the co-localization of IAc1 with IAc2, while C shows 
the co-localization of IAc9 with IAc4 and IAc5.
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high specificity (>80 Hz) to α-isophorone (n = 6). These A neurons 
did not respond to verbenone or any other compounds from the 
odor panel, and dose–response tests revealed an exceptionally low 
response threshold at 10 pg., indicating high sensitivity (Figure 4E). 
This OSN class was distributed mainly in the sensory band B on the 
antennal club (Figure 4A). Additional pheromone-responsive OSN 
classes included IAc9, a B neuron class strongly responding (>80 Hz) 
to lanierone (n = 2, both females), with one B-neuron co-localized 
with an R-(−)-ipsdienol-responsive A neuron and the other 
B-neuron with a non-responsive A neuron. The IAc10 class, also an 
A neuron, responded strongly (>80 Hz) to 2-phenylethanol (n = 2). 
Another OSN class, IAc11, a B neuron, strongly responded to 
2-methyl-3-buten-2-ol (n = 2, both males) with secondary responses 
to 3-methyl-3-buten-1-ol (Figure 4C). These OSNs were co-localized 
with non-responsive A neurons (Figure  4D). Most of these 
pheromone-sensitive OSN classes were distributed in all three 
sensory bands on the antennal surface (Figure  4A). Another A 
neuron class, IAc17, showed a strong response (>80 Hz) to 
chalcogran followed by intermediate secondary responses (>50 Hz) 

to (±)-exo-brevicomin and weaker responses (<40 Hz) to (5S,7S)-
trans-conophthorin (Figure 4D).

3.2.3 OSN classes responding to host, non-host, 
and microbial volatiles in I. acuminatus

We observed three OSN classes with strong primary responses 
(>80 Hz) to host volatiles. OSN class IAc2 was a B neuron which 
showed strong responses to only 1,8-cineole. OSN class IAc15 was 
an A neuron which responded strongly (>80 Hz) to (−)-limonene 
and (+)-limonene followed by intermediate (>50 Hz) secondary 
responses to myrcene, p-cymene, terpinolene, and ∆-3-carene, and 
weak responses (<40 Hz) to (+)-terpine-4-ol and (−)-β-pinene 
(Figure 1). OSN class (IAc18) was an A neuron, which primarily 
responded strongly (>80 Hz) to γ-terpinene and secondarily to 
(+)-isopinocamphone, (−)-isopinocamphone, (+)-pinocamphone 
and racemic camphor (Figure  4D). Most of the OSN classes 
responding to host volatiles were distributed on the sensory band 
B (Figure 4A). Notably, pheromone-sensitive and host-specific OSN 
classes were generally not spatially segregated across the antennal 

FIGURE 2

Heat map showing response profiles of identified OSN classes responding strongly (>80 Hz) to one or more compounds at the 10 μg stimulus dose in 
Ips cembrae. The stimulus eliciting the primary response in the 19 OSN classes are as follows: IC1: (4S)-cis-verbenol, IC2: 1,8-cineole, IC3: (±)-ipsenol, 
IC4: R-(−)-ipsdienol, IC5:S-(+)-ipsdienol, IC6: amitinol (B neuron), IC7: (±)-exo-brevicomin, IC8: 1-hexanol, IC9: (±)-camphor, IC10: (−)-α-pinene, 
IC11: styrene, IC12: 2-phenylethanol, IC13: 1-octen-3-ol, IC14: lanierone, IC15: (±)-chalcogran, IC16: amitinol (A neuron), IC17: α-isophorone, IC18: 
p-cymene, and IC19: estragole. A indicates IC1 co-localized with IC2, B illustrates IC2 co-localized with IC1 and IC10, C represents IC5 co-localized with 
IC4 and IC10, and D highlights IC14 co-localized with IC8.
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surface, with the exception of (4S)-cis-verbenol-responsive neurons, 
which were exclusively localized within sensory band 
C. (Figure 4A).

Three OSN classes, all A neurons, exhibited strong responses 
(>80 Hz) to non-host volatiles. OSN class IAc12 responded strongly 
to 1-hexanol. Secondary responses (<50 Hz) were observed for other 
compounds, such as racemic 1-octen-3-ol and chalcogran. OSN class 
IAc16 displayed strong responses to racemic 1-octen-3-ol and weak 
responses to racemic 3-octanol (Figure 1). Another OSN class, IAc19, 
responded strongly (>80 Hz) to the bicyclic ketal (5S,7S)-trans-
conophthorin (n = 1). Two OSN classes exhibited strong responses 
(>80 Hz) to microbial volatiles (Figure 4B). The IAc7 class was an A 
neuron which responded strongly to (+)-isopinocamphone (n = 3). 
Secondary responses (60–80 Hz) were observed to related oxygenated 
monoterpenes from trees and microbes, including 
(−)-isopinocamphone, (+)-pinocamphone, (−)-pinocamphone, and 
racemic camphor. These responses suggest broad tuning to 
structurally similar oxygenated host monoterpenes (Figure 4D). The 
IAc8 class was an A neuron specific to styrene, with secondary 
responses to benzaldehyde and racemic camphor (n = 3).

3.3 Olfactory sensory neuron responses in 
I. cembrae

3.3.1 OSN classes responding to aggregation 
pheromone components of I. cembrae

We identified two OSN classes specific to the aggregation 
pheromone components of I. cembrae. OSN class IC1 was an A neuron 
(n = 6), which responded primarily (>80 Hz) to (4S)-cis-verbenol with 
dose-dependent responses and a response threshold of 100 pg. Weaker 
secondary responses (40–60 Hz) to (+)-trans-verbenol and (−)-trans-
verbenol were observed (Figure 5E). Five out of six of these (4S)-cis-
verbenol-responsive OSNs were co-localized with IC2, which was a B 
neuron responding to 1,8-cineole (Figure 6A). The distribution was 
mostly in the distal antennal club region on sensory band C, while few 
were located on sensory band B (Figure 5A). (4S)-cis-Verbenol is a 
male-produced aggregation pheromone component in both 
I. typographus and I. acuminatus but not reported as an aggregation 
pheromone component in I. cembrae.

The OSN class IC3 (A neuron) was the most frequently observed 
class (found in ~14% of the responding sensilla), responding strongly 

FIGURE 3

Single sensillum recordings from Ips acuminatus reveal co-localization of OSN classes with different spike amplitudes and response profiles. (A) The 
response pattern of the large-spiking A neuron with primary response to (4S)-cis-verbenol, co-localized with a small-spiking B neuron responding 
primarily to 1,8-cineole (n = 3 sensilla). Response frequencies (Hz) to the 10 μg compound dose are shown as mean ± the standard error of the mean 
(SEM). Representative action potential traces display the A neuron responses to (4S)-cis-verbenol and the B neuron responses to 1,8-cineole. 
(B) Responses of B neurons to both 2-methyl-3-buten-2-ol and 3-methyl-3-buten-1-ol (10 μg), co-localized with an unresponsive A neuron in the 
same sensillum (n = 3 sensilla). Representative action potential traces show the B neuron responses to these compounds.
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FIGURE 4

(A) Distribution of identified OSN classes in Ips acuminatus on the antennal surface with three sensory bands A, B and C. (B) Total number of each of 
the 19 OSN classes identified in I. acuminatus, with primary responses to compounds from different ecological origins. (C) Total number of OSN that 
were only found in one of the sexes of I. acuminatus. (D) Mean response (Hz) of the different OSN classes, including their secondary responses; from 
left to right: OSN classes IAc7: (+)-isopinocamphone (n = 3), IAc3: S-(−)-ipsenol (n = 6), IAc11: 2-methyl-3-buten-2-ol (n = 3), IAc5: (−)- verbenone 
(n = 6), IAc1: (4S)-cis-verbenol (n = 3), IAc4: R-(−)-ipsdienol (n = 3), and IAc8: styrene (n = 3). Error bars indicate standard error of the mean (SEM). 
(E) Dose–response curves of five OSN classes in I. acuminatus; IAc3 class: S-(−)-ipsenol (n = 4); IAc5 class: (−)-verbenone (n = 6); IAc? class: S-(+)-
ipsdienol (n = 3)[the IAc? OSN class was observed only in dose–response tests and not while screening]; IAc1 class: (4S)-cis-verbenol (n = 4), and IAc6 
class: α-isophorone (n = 4). Mean response values are shown, with error bars indicating the standard error of the mean (SEM).
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(>80 Hz) to racemic ipsenol and S-(−)-ipsenol (n = 9) (Figure 5B). 
Ipsenol is the major component of the aggregation pheromone in 
I. cembrae. The response threshold of these OSNs was around 100 pg. 
(Figure 5E). R-(+)-ipsenol elicited minimal responses in this OSN 
class, consistent with its absence in the natural pheromone blend 
(Stoakley et  al., 1978). This OSN class was uniformly distributed 
across sensory bands A and B (Figure 5A). The OSN class IC4, which 
was an A neuron, responded strongly to R-(−)-ipsdienol (n = 3) and 

weaker to the S-enantiomer and the racemic mixture (Figure 5D). 
However, we did not find this OSN class during dose–response tests. 
Additionally, OSN class IC5 (n = 4), also an A-neuron, responded 
specifically to S-(+)-ipsdienol, with a response threshold of 1 ng 
(Figure 5E). Another OSN class, IC6, was a B neuron responding 
strongly to amitinol (n = 5); this class was always co-localized with 
OSN class IC5 (Figure 6B). The S-(+)-ipsdienol specific OSN class and 
R-(−)-ipsdienol specific OSN class were distributed across the sensory 

FIGURE 5

(A) Distribution of identified OSN classes in the three sensory bands (A, B, C) on the antennal surface of Ips cembrae. (B) Total number of each of the 19 
OSN classes identified in I. cembrae, with primary responses to compounds from different ecological origins (C) Total number of OSNs that were only 
found in males of I. cembrae. (D) Mean responses (Hz) of different OSN classes, including their secondary responses; from left to right: OSN classes 
IC8: 1-hexanol (n = 4), IC3: S-(−)-ipsenol (n = 9), IAc7: (±)-exo-brevicomin (n = 3), IC1: (4S)-cis-verbenol (n = 4), IC5: S-(+)-ipsdienol (n = 4), and IC4: 
R-(−)-ipsdienol (n = 3). Error bars indicate the standard error of the mean (SEM). (E) Dose–response curves of three pheromone-specific OSN classes 
in I. cembrae; IC3 class: S-(−)-ipsenol (n = 4); IC5 class: S-(+)-ipsdienol (n = 4), and IC1 class: (4S)-cis-verbenol (n = 3). Mean response values are 
shown, with error bars indicating the standard error of the mean (SEM).
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band C on the antennal club surface and rarely on sensory band B 
(Figure 5A). It is noteworthy that during our screening, we did not 
detect neurons that responded to 3-methyl-3-buten-1-ol, which is a 
pheromone component of I. cembrae.

3.3.2 OSNs responding to other beetle-produced 
compounds in I. cembrae

We observed four additional OSN classes strongly responding to 
different beetle-produced compounds. The OSN class IC7 (A neuron) 
strongly responded (>80 Hz) to (±)-exo-brevicomin (n = 3), with 
secondary responses to chalcogran and (5S,7S)-trans-conophthorin 
(Figure 5D). Another OSN class, IC14, a B neuron, responded strongly 
to lanierone (n = 2). These neurons were co-localized with OSN class 
IC9 or a non-responsive A neuron. Additionally, OSN class IC12 class 
(A neuron) responded strongly (>80 Hz) and specifically to 
2-phenylethanol (n = 2) with no secondary responses. OSN class IC15 
was an A neuron primarily tuned to chalcogran with secondary 
responses to 1-hexanol, 1-octen-3-ol, and (5S,7S)-trans-conophthorin 
(n = 1). OSN class IC16 (A neuron) displayed strong responses 

(>80 Hz) to amitinol with secondary responses to racemic ipsdienol 
(n = 1). Lastly, OSN class IC17 was an A neuron, which responded 
strongly to α-isophorone followed by secondary responses to 
(−)-verbenone, (+)-trans-verbenol and (−)-trans-verbenol (n = 1). 
These OSN classes were mostly found in the distal region of the 
antennal surface (Figure 5A).

3.3.3 OSN classes responding to host, non-host 
and microbial volatiles in I. cembrae

Five OSN classes were specifically tuned to host volatiles, 
including OSN class IC2, a B neuron specific for 1,8-cineole. The OSN 
class IC9 showed strong responses (>80 Hz) to camphor (n = 3), with 
strong secondary responses to (+)-isopinocamphone (>80 Hz) and 
weaker secondary responses to other related oxygenated 
monoterpenes, such as (−)-isopinocamphone, (+)-pinocamphone, 
(−)-pinocamphone and borneol (Figures 4, 5D). This IC9 A neuron 
was co-localized with B neurons responding specifically (>80 Hz) to 
lanierone (IAc14). Additionally, the OSN class IC10 was an A neuron 
specific for (−)-α-pinene (n = 4, all males). This class also showed 

FIGURE 6

Single sensillum recordings from Ips cembrae, demonstrating co-localization of large spiking (A cell) and small-spiking (B cell) olfactory sensory 
neurons (OSNs) with responses to various pheromone compounds, volatiles from host- and non-host plants, as well as fungal symbionts (10 μg 
stimulus dose). (A) The response of A neurons primarily to (4S)-cis-verbenol, co-localized with B neurons that respond to 1,8-cineole (n = 3 sensilla). 
The representative action potential traces show A neuron response to (4S)-cis-verbenol and B neuron response to 1,8-cineole. (B) The response profile 
of A neurons responding to S-(+)-ipsdienol, which are co-localized with B neurons responsive to amitinol (n = 3). Representative action potential 
traces showing A neuron response to S-(+)-ipsdienol and B neuron response to amitinol. Response frequencies (Hz) are displayed as mean ± standard 
error of the mean (SEM).
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weak to intermediate (20–40 Hz) secondary responses to (4S)-cis-
verbenol, (+)-α-pinene, (−)-β-pinene and (+)-trans-verbenol. 
Another OSN class, IC18 (A neuron), showed strong responses 
(>80 Hz) to p-cymene (n = 1). Lastly, OSN class IC19 strongly 
responded (>80 Hz) to estragole (n = 1). The OSN classes 
corresponding to host volatiles were distributed on the sensory bands 
B and C on the antennal surface (Figure 5A).

Two OSN classes responded to non-host volatiles. The OSN class 
IC8 (A neuron) responded primarily to the green leaf volatile 
1-hexanol (n = 4). This class also showed weak to intermediate 
secondary responses (<50 Hz) to other compounds, including 
chalcogran, racemic 1-octen-3-ol and 2-phenylethanol. The IC13 class 
was also an A-neuron responding to racemic 1-octen-3-ol (n = 2), 
with weaker secondary responses to racemic 3-octanol. These OSN 
classes were observed on sensory bands B and C on the antennal 
surface (Figure 5A). Additionally, the OSN class IC11 (A neuron) 
responded to microbial volatile styrene (n = 2, both males) (Figure 4), 
with weak secondary responses (<40 Hz) to benzaldehyde.

3.4 Comparative analysis of OSN profiles 
and distribution among I. acuminatus and 
I. cembrae with previously characterized 
I. typographus

Our comparative analysis revealed that I. acuminatus, I. cembrae, 
and I. typographus show both conserved olfactory adaptations and 
species-specific differences (Table 1, Supplementary Figure 2). Of the 
23 OSN classes identified in I. typographus (Andersson et al., 2009; 
Kandasamy et al., 2019, 2023; Yuvaraj et al., 2024) and the 19 OSN 
classes found in both I. cembrae and I. acuminatus, 11 were shared 
among all three species based on similarities in response profiles. 
These shared OSN classes were tuned to beetle-produced compounds, 
host or non-host tree, and microbial volatiles (See Table 1 for details 
on OSN classes). Four OSN classes, specific to 2-methyl-3-buten-2-ol, 
(−)-verbenone, α-isophorone, (+)-isopinocamphone and (5S,7S)-
trans-conophthorin, respectively, were found exclusively in 
I. typographus and I. acuminatus (Andersson et al., 2009; Kandasamy 
et al., 2019, 2023), while two OSN classes tuned to p-cymene and 
estragole were shared between I. typographus and I. cembrae 
(Andersson et al., 2009; Raffa et al., 2016). Additionally, OSN classes 
specific to racemic chalcogran and α-isophorone were shared between 
I. acuminatus and I. cembrae. Species-specific OSN differences were 
particularly evident in responses to host and fungal volatiles. 
I. cembrae had four unique OSN classes tuned to amitinol (B neuron), 
racemic camphor, racemic exo-brevicomin, and (−)-α-pinene, 
respectively, whereas I. acuminatus had two unique OSN classes tuned 
to (−)-limonene and γ-terpinene (Supplementary Figure 2).

3.5 Antennal responses of pine and larch 
essential oils in I. acuminatus and 
I. cembrae using GC-EAD

Since only a few OSN classes specific to host monoterpenes were 
identified in I. acuminatus (OSN classes IAc2, IAc15 and IAc18) and 
I. cembrae (OSN classes IC2 and IC9, IC18 and IC19), we further 
evaluated the antennal responses of both species to monoterpenes 

using GC-EAD analysis. We tested the antennae of I. acuminatus with 
pine essential oil and I. cembrae with larch essential oil, both with 
known chemical compositions, to assess their olfactory sensitivity to 
host-related compounds. GC-EAD analyses with pine essential oil 
revealed four potential chemical cues that elicited antennal responses 
from I. acuminatus, whereas I. cembrae responded to five potential 
cues in the larch essential oil (Figure 7). The EAD active compounds 
that elicited antennal response in I. acuminatus were identified as 
α-pinene, limonene, linalool and isobornyl acetate (Figure 7A) while 
I. cembrae responded to β-pinene, p-cymene, linalool, terpinen-4-ol 
and camphor (Figure  7B). Surprisingly, no EAD responses were 
observed in I. acuminatus to highly abundant pine host volatiles, such 
as 3-carene, terpinolene, and β-phellandrene. Similarly, I. cembrae 
showed no responses to key larch volatiles, including α-pinene, 
limonene, β-phellandrene, and myrcene.

4 Discussion

This study provides the first electrophysiological characterization 
of olfactory sensory neuron (OSN) responses in I. acuminatus and 
I. cembrae. By testing a comprehensive panel of ecologically relevant 
compounds, including pheromones, volatiles from the hosts and 
non-host trees, and associated microbes, we identified 19 OSN classes 
in both species. Most OSN classes exhibited narrow tuning, 
responding strongly to only one or a few structurally similar 
compounds, while fewer were broadly tuned. Furthermore, several of 
our dose–response tests in both species revealed greater OSN 
specificity at lower doses, consistent with findings in I. typographus, 
where OSNs exhibited high specificity to either pheromones or to 
compounds from the host or non-host trees and microbes (Andersson 
et al., 2009; Kandasamy et al., 2019, 2023).

Ips acuminatus and I. cembrae have several OSNs tuned to the 
enantiomers of ipsenol and ipsdienol, their key aggregation 
pheromone components (Francke and Vité, 1983; Renwick and 
Dickens, 1979). Interestingly, the ipsenol-responsive OSNs were 
highly specific, showing the strongest responses to the naturally 
occurring enantiomer, S-(−)-ipsenol, the main pheromone 
component in both species. This finding is consistent with previous 
studies in I. typographus and other Ips species such as I. pini and 
I. paraconfusus (Mustaparta et al., 1979; Mustaparta et al., 1980; 
Tømmerås, 1985). Also, the ipsdienol-responsive OSNs 
demonstrated enantiomer-specific tuning, suggesting two distinct 
OSN classes responding to R-(−)-ipsdienol and S-(+)-ipsdienol, 
respectively, in both species. In I. acuminatus, initial screenings 
identified only one OSN class primarily tuned to R-(−)-ipsdienol. 
However, dose–response tests revealed a stronger response to S-(+)-
ipsdienol, suggesting the presence of distinct OSN classes tuned to 
each ipsdienol enantiomer. In I. cembrae, screenings identified 
distinct OSN classes specifically tuned to each ipsdienol enantiomer. 
However, dose–response testing was conducted only for S-(+)-
ipsdienol, which exhibited high sensitivity. These results align with 
earlier reports of two enantiomer-specific ipsdienol-responsive 
OSN classes in I. typographus and other Ips species (Mustaparta 
et al., 1980; Tømmerås, 1985). Behavioral studies in I. acuminatus 
suggest that S-(+)-ipsdienol and S-(−)-ipsenol function as 
attractants, while R-(−)-ipsdienol likely serves as an attraction 
inhibitor in field (Bakke, 1978; Kohnle et  al., 1986). 
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(4S)-cis-Verbenol elicited strong responses in an OSN class in both 
I. acuminatus and I. cembrae. While this compound serves as a key 
aggregation pheromone component in I. acuminatus, it does not 
play a similar role in I. cembrae, despite the detection of trace 
amounts in this species (Kohnle et  al., 1988). Interestingly, the 
presence of (4S)-cis-verbenol disrupts I. cembrae aggregation in 
field studies, possibly serving as an interspecific signal from 

I. typographus, which relies on this compound as a key aggregation 
pheromone (Schlyter et al., 1989).

A few examples of OSN co-localization were observed in both 
I. acuminatus and I. cembrae. The co-localization patterns of ipsdienol-
responsive OSNs differed between the two species. In I. cembrae, 
S-(+)-ipsdienol-responsive A neurons were co-localized with 
amitinol-responsive B neurons. In contrast, in I. acuminatus, 

TABLE 1  Olfactory sensory neurons (OSNs) classified based on their response profiles at a 10 μg screening dose in I. acuminatus and I. cembrae and 
comparison to previously characterized OSN classes in I. typographus.

Biological origin OSN class↓/Species→ I. typographus (IT) I. acuminatus (IAc) I. cembrae (IC)

Beetle (4S)-cis-Verbenol ✓a,b ✓ ✓

Beetle S-(+)-Ipsdienol ✓a ✓ ✓

Beetle R-(−)-Ipsdienol ✓a ✓ ✓

Beetle S-(−)-Ipsenol ✓f ✓ ✓

Beetle R-(+)-Ipsenol - - -

Beetle Amitinol ✓a ✓ ✓(A and B neuron)

Beetle 2-Methyl-3-buten-2-ol ✓a,c (B neuron) ✓ (B neuron) -

Beetle 3-Methyl-3-buten-1-ol - - -

Beetle Lanierone ✓e(B neuron) ✓ (B neuron) ✓ (B neuron)

Beetle (±)-Chalcogran - ✓ ✓

Beetle α-isophorone - ✓ ✓

Beetle/fungi (−)-Verbenone ✓a,d ✓ -

Beetle/ fungi (±)-exo-Brevicomin - - ✓

Beetle/fungi 2-Phenylethanol ✓c ✓ ✓

Host (+)-3-Carene ✓a - -

Host Myrcene ✓a,b,c - -

Host (+)-α-Pinene ✓a - -

Host (−)-α-Pinene - - ✓

Host p-Cymene ✓a - ✓

Host (−)-Limonene - ✓ -

Host γ-Terpinene - ✓ -

Host 1,8-Cineole ✓a(B neuron) ✓(B neuron) ✓(B neuron)

Host/fungi (±)-Camphor - - ✓

Host/fungi (+)-Isopinocamphone ✓d ✓ -

Host/fungi Estragole ✓g - ✓

Host/fungi (+)-trans-4-Thujanol ✓b,d - -

Non-host 1-Hexanol ✓a ✓ ✓

Non-host/fungi (±)-3-Octanol ✓a - -

Non-host/fungi (±)-1-Octen-3-ol ✓a ✓ ✓

Non-host/fungi Geranyl acetone ✓c - -

Non-host/fungi (5S,7S)-trans-Conophthorin ✓a ✓ -

Fungi Styrene ✓b,d ✓ ✓

✓ OSN class identified; − OSN class not found yet.
aAndersson et al. (2009).
bSchiebe et al. (2019).
cKandasamy et al. (2019).
dKandasamy et al. (2023).
eYuvaraj et al. (2024).
fTømmerås (1985).
gRaffa et al. (2016).
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R-(−)-ipsdienol-responsive A neurons were co-localized with 
lanierone-responsive B neurons, corresponding to the observations in 
I. typographus (Yuvaraj et al., 2024). Additionally, in both species, 
(4S)-cis-verbenol- and 1,8-cineole-responsive OSNs were co-localized 
within the same sensilla, consistent with the co-localization pattern 
previously reported in I. typographus (Andersson et  al., 2009). In 
I. typographus, such co-localization is thought to enhance the ability 
to differentiate odors based on spatial and temporal cues. It may also 
improve sensitivity to ecologically relevant odor blends by detecting 
specific ratio differences and regulating olfactory signaling at the 
peripheral level (Andersson et al., 2010; Baker et al., 1998; Binyameen 
et al., 2014; Bruce et al., 2005). Similar mechanisms may play a role in 
I. acuminatus and I. cembrae. Although the OSN responses in our 
study were characterized using pure compounds, it is well established 
that most insect semiochemicals function as multicomponent blends, 
with specific behavioral roles determined by the precise ratio and 
combination of constituents (Silverstein and Young, 1976). Such 
blends can activate distinct combinations of neurons depending on 
the ecological context, ultimately shaping behavioral outcomes.

Additionally, several OSN classes in I. cembrae and I. acuminatus 
responded to pheromone components produced by other Ips species, 
suggesting conserved detection mechanisms (Andersson et al., 2009; 
Tømmerås, 1985; Yuvaraj et al., 2024). Amitinol is not an aggregation 
pheromone component in either I. acuminatus (Bakke, 1978; Francke 
et al., 1986) or I. cembrae (Kohnle et al., 1986; Stoakley et al., 1978), 
despite one earlier report mentioning its presence in I. cembrae 
(Kohnle et al., 1986). Amitinol-responsive OSNs were identified in 
both species, exhibiting strong secondary responses to racemic 
ipsdienol, likely due to structural similarity and the presence of trace 
amounts of amitinol in the ipsdienol stimulus, corresponding to OSNs 

observed in I. typographus (Andersson et al., 2012b; Andersson et al., 
2009). Interestingly, field studies indicate that amitinol enhances 
aggregation in I. cembrae but reduces attraction in I. acuminatus, 
potentially mediating interspecific interactions (Francke et al., 1986; 
Kohnle et al., 1986). Lanierone-responsive OSNs were identified in 
both species studied here, but the frequency of these OSNs was low. 
This is in absolute contrast to I. typographus, in which lanierone-
specific OSNs represent the most abundant of all OSN classes (Yuvaraj 
et al., 2024). In I. acuminatus, OSN B neurons responsive to 2-methyl-
3-buten-2-ol occurred at relatively low abundance, similar to 
observations in I. typographus (Kandasamy et  al., 2019, 2023). 
Although this compound serves as an aggregation pheromone 
component in I. typographus (Lanne et al., 1989), its ecological role in 
I. acuminatus remains uncertain.

The OSN class responsive to (−)-verbenone, a known bark beetle 
anti-attractant (Frühbrodt et al., 2024), was the most abundant in 
I. acuminatus. Notably, we observed this OSN class only in female 
I. acuminatus and not at all in I. cembrae. Ips typographus possesses 
fewer (−)-verbenone-responsive OSNs than I. acuminatus; however, 
it exhibits strong behavioral avoidance in both sexes in laboratory 
assays (Yuvaraj et al., 2024) and in field studies (Schlyter et al., 1989). 
In I. typographus, (−)-verbenone-responsive neurons also show 
secondary responses to α- and β-isophorone, of which the latter 
compound was reported from hindguts of mated females (Birgersson 
et al., 1984). However, dose–response tests indicate that this OSN class 
is sensitive to α-isophorone (Kandasamy et al., 2023). In contrast, 
I. acuminatus possesses two distinct OSN classes: one specifically 
tuned to (−)-verbenone and another primarily responding to 
α-isophorone, with weak secondary responses to (−)-verbenone. 
Similarly, in I. cembrae, an OSN class specific to α-isophorone was also 

FIGURE 7

GC-EAD antennal responses at 10 ug of essential oil. (A) Ips acuminatus responses to pine essential oil, with peaks 1, 2, 3, and 4 corresponding to 
α-pinene, limonene, linalool, and isobornyl acetate, respectively (n = 2). (B) Responses of Ips cembrae to larch essential oil, with peaks 1, 2, 3, 4, and 5 
corresponding to β-pinene, p-cymene, linalool, camphor and, terpinen-4-ol, respectively, (n = 4).
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observed, exhibiting secondary responses not only to (−)-verbenone 
but also to trans-verbenol enantiomers, corresponding to an OSN 
class previously observed in I. typographus (Kandasamy et al., 2023). 
The behavioral role of α- and β-isophorone remains unclear.

Ips acuminatus and I. cembrae exhibited OSN responses to 
pheromones produced by non-Ips bark beetles, differing from OSN 
responses in I. typographus. Both species had an OSN class highly 
responsive to chalcogran, a pheromone of many Pityogenes species 
(Francke, 1977; Francke et  al., 1995). Additionally, I. cembrae 
possessed a separate OSN class tuned to (±)-exo-brevicomin, which is 
a pheromone of Dendroctonus species and is also produced by a beetle 
symbiotic fungus (Zhao et  al., 2019). This broader heterospecific 
pheromone detection in I. cembrae may reflect its ability to colonize 
different hosts, including Abies, Picea, and Pinus trees and frequent 
interactions with bark beetles from other genera such as Pityophthorus, 
Pityogenes, and Cryphalus (Postner, 1974; Pfeffer, 1955). In contrast, 
I. typographus OSNs primarily responsive to the non-host volatile 
(5S,7S)-trans-conophthorin exhibit strong secondary responses to 
both chalcogran and exo-brevicomin, likely due to structural 
similarities (Andersson et al., 2009).

Major monoterpene hydrocarbons such as α-pinene, β-pinene, 
limonene, and myrcene are key volatiles in coniferous trees, the 
primary hosts of Ips bark beetles (Wajs et al., 2007). However, OSN 
classes responding to monoterpenes were relatively rare in both 
species. In I. acuminatus, one OSN class responded mostly to 
(−)-limonene, with secondary responses to myrcene, p-cymene, 
terpinolene, and β-pinene. Another distinct OSN class was tuned 
specifically to γ-terpinene. Notably, we did not identify OSN classes 
for key pine volatiles such as α-pinene, 3-carene, β-pinene, and 
myrcene. In contrast, I. cembrae had an OSN class that responded 
primarily to (−)-α-pinene, with weak secondary responses to 
β-pinene. Another OSN class was specifically tuned to p-cymene. 
However, no OSN class was identified for major larch volatiles such as 
β-pinene, 3-carene, limonene, and myrcene. Given the suggested role 
of monoterpenes in bark beetle behavior (Erbilgin et  al., 2007), 
we conducted GC-EAD analyses using pine and larch essential oils. 
Ips acuminatus antennae exhibited weak responses to α-pinene, 
limonene, linalool, and isobornyl acetate, whereas I. cembrae 
responded to β-pinene, p-cymene, linalool, and terpinen-4-ol. The 
absence or inconsistency of responses to major host volatiles, 
combined with the finding that I. acuminatus does not exhibit 
attraction to host trees in field studies (Brattli et al., 1998), suggests 
that these compounds may not play a primary role in host tree 
attraction for these species. Volatile compounds produced in minor 
amounts by Norway spruce, such as 1,8-cineole (Jirošová et al., 2022a; 
Schiebe et al., 2019) and estragole (Moliterno et al., 2023; Joseph et al., 
2001), elicit antennal responses in I. typographus and function as anti-
attractants. In this study, we identified OSNs specifically responsive to 
1,8-cineole in both I. acuminatus and I. cembrae, while estragole-
responsive OSNs were observed only in I. cembrae. Given that 
1,8-cineole has been previously linked to conifer resistance against 
I. typographus attack (Schiebe et al., 2012), its detection by OSNs in 
the two species examined here suggests a similar ecological role in 
their host interactions.

Low-abundance oxygenated host monoterpenes, whose 
concentrations increase in stressed or fungus-infected conifers, likely 
play a crucial role in beetle discrimination of suitable hosts 
(Lehmanski et al., 2023). Although present only in trace amounts, 

these metabolites of monoterpene hydrocarbons can be produced via 
microbial activity or the tree’s own metabolism and may significantly 
influence bark beetle host selection and colonization strategies 
(Moliterno et  al., 2023; Kandasamy et  al., 2023). In our study, 
I. acuminatus exhibited strong OSN responses primarily to 
(+)-isopinocamphone and secondarily to structurally similar 
pinocamphone and camphor, closely resembling the OSN responses 
described in I. typographus (Kandasamy et al., 2019, 2023). In contrast, 
I. cembrae had OSNs primarily responsive to racemic camphor, with 
secondary responses to pinocamphone and isopinocamphone 
enantiomers. Isopinocamphone, an oxygenated metabolite of pinene 
(the main component of pine resin), and camphor, a hydroxylated 
metabolite of borneol from larch-derived bornyl acetate, are produced 
by beetle-symbiotic fungi (Kandasamy et al., 2023), which can also 
be associated with stressed host trees (Schiebe et al., 2019).

Ips acuminatus and I. cembrae vector different ophiostomatoid 
fungi (Papek et  al., 2024; Jankowiak et  al., 2007), whose volatile 
profiles have not yet been characterized but are likely to differ. Both 
species exhibited strong OSN responses to fungal volatiles 
(2-phenylethanol, styrene, 1-octen-3-ol), while (5S,7S)-trans-
conophthorin-responsive OSNs were detected only in I. acuminatus. 
These OSN classes have previously been identified in I. typographus 
(Andersson et  al., 2009; Kandasamy et  al., 2019, 2023). trans-
Conophthorin has been shown to disrupt aggregation pheromone 
activity in conifer-infesting bark beetles, including I. typographus, in 
field studies (Huber et al., 2000; Zhang et al., 2002; Zhang and Schlyter, 
2004). These compounds, along with oxygenated host monoterpenes 
(Kandasamy et al., 2023) and (±)-exo-brevicomin (Zhao et al., 2019), 
are also produced by fungi. They likely indicate fungus-colonized or 
weakened host trees, potentially guiding beetles towards suitable 
hosts. Additionally, fungi may produce volatiles that elicit a positive 
response from beetles, as they potentially act as nutritional resources 
for bark beetles (Kandasamy et al., 2019, 2023). However, further 
research is needed to clarify their precise ecological roles and the 
mechanisms by which beetles interpret these chemical cues. Both 
species exhibited OSN responses to NHVs, helping conifer-feeding 
bark beetles avoid unsuitable angiosperm trees. OSNs in I. acuminatus 
and I. cembrae responded selectively to 1-hexanol, a known anti-
attractant emitted by green leaves of non-host trees (Schlyter et al., 
1989, 2000; Zhang et al., 1999).

Some OSN classes were only found in one of the sexes of 
I. acuminatus and I. cembrae, which may suggest differences in 
olfactory-driven behaviors between males and females. In 
I. acuminatus, OSN classes for (−)-verbenone, R-(−)-ipsdienol, and 
lanierone were observed in females, whereas 2-methyl-buten-2-ol 
OSNs were found in males. These female-biased responses may 
be  associated with the species’ polygynous mating system, where 
males form large harems (2–12 females per male), and pseudogamous 
females breed independently (Kirkendall, 1989, 1990). Thus, these 
olfactory cues may help females to avoid overcrowded trees and 
reduce interspecific competition with other conifer bark beetle species 
(Papek et  al., 2024). In I. cembrae, OSN classes specific to (−)-α-
pinene and styrene were found in males, suggesting a role in host 
location. However, further recordings from additional sensilla and 
behavioral experiments are needed to determine whether these OSN 
classes are sex-specific, sex-biased, or simply missed during sampling.

The antennal distribution of OSNs varies among species. Ipsenol-
responsive OSNs in I. cembrae were located mainly in sensory bands 
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A and B, similar to I. typographus (Andersson et  al., 2009), but 
restricted to band B in I. acuminatus, unless we failed to find them in 
band A. Conversely, ipsdienol-responsive OSNs occurred 
predominantly in bands B and C in I. cembrae, while in I. acuminatus 
they were distributed across bands A and B, resembling the 
distribution reported in I. typographus (Andersson et al., 2009). OSNs 
responding to (4S)-cis-verbenol are predominantly located in band C 
in all three species. These differences in OSN distribution may reflect 
species-specific olfactory adaptations related to their pheromone 
detection, distinct host selection, and chemical communication within 
their distinct ecological contexts. While our study was confined to 
OSNs housed in the antennae, it is noteworthy to point out that Ips 
beetles also possess chemosensory sensilla on the maxillary palps 
(Hallberg, 1982b; Hallberg et  al., 2003), potentially capable of 
detecting less volatile or contact-mediated compounds, a subject of 
interest which needs further investigation.

The olfactory responses we  observed in I. acuminatus and 
I. cembrae are consistent with broader insect patterns, where selective 
olfactory systems are shaped by evolutionary pressures. OSNs are 
frequently specifically tuned to ecologically important stimuli also in 
non-beetle species, such as moths and Drosophila, whereas other 
neurons may be more broadly tuned (Hallem et al., 2004; de Bruyne 
and Baker, 2008; Andersson et  al., 2015). Additionally, other 
congeneric species often share several conserved OSN classes, and 
display a few species-specific ones. This has been shown, for example, 
in beetles from other families, such as clover seed weevils (Apionidae) 
in the Protapion genus (P. fulvipes and P. trifolii) and scarab beetles 
(Scarabaeidae) in the Pachnoda genus (P. interrupta and P. marginata) 
(Bengtsson et al., 2011; Andersson et al., 2012a; Carrasco et al., 2019). 
At a molecular level, 12 odorant receptors (ORs) have been 
functionally characterized in I. typographus (Hou et al., 2021; Roberts 
et al., 2021, 2022; Yuvaraj et al., 2021, 2024; Biswas et al., 2024), with 
responses resembling several of the OSN responses observed in this 
study. While many OSN classes identified here exhibit response 
patterns similar to I. typographus, it remains unknown whether 
conserved ORs are responsible. Given that I. typographus and 
I. duplicatus share numerous conserved OR orthologs (Johny et al., 
2024), similar conservation is likely in I. acuminatus and I. cembrae. 
Further OR characterization and comparative genomic analyses across 
Ips species could provide deeper insights into OSN specificity and 
pheromone detection mechanisms.

Overall, our findings provide valuable insights for improving bark 
beetle management by refining pheromone-based strategies. Although 
the pheromone-baited “trap and kill” approach has shown limited 
success due to spillover infestations and low overall efficacy (Jakuš 
et al., 2003), pheromone traps remain useful for monitoring beetle 
activity. Cross-attraction among Ips species has been observed (Byers, 
1989; Etxebeste et al., 2012), emphasizing the need for species-specific 
approaches. Several anti-aggregation compounds show potential for 
spruce protection, including verbenone (Frühbrodt et  al., 2024), 
spruce volatiles like trans-4-thujanol and 1,8-cineole (Andersson 
et al., 2010; Jirošová et al., 2022a), and others such as hexanol, 1-octen-
3-ol, and trans-conophthorin (Schiebe et al., 2011; Zhang and Schlyter, 
2004; Unelius et  al., 2014). These have been repeatedly tested in 
various combinations against I. typographus (Schiebe et al., 2011; 
Zhang and Schlyter, 2004; Unelius et al., 2014; Jakuš et al., 2024), 
though they also suffer from spillover effects due to their repellent 
nature (Jakuš et al., 2003; Schiebe et al., 2011). Push-pull strategies, 

which combine anti-attractants with pheromone traps (Jakuš et al., 
2022) or baited trap trees (Lindmark et al., 2022), offer a potential 
improvement. However, their effectiveness decreases under high 
beetle population density and severe tree stress (Deganutti et  al., 
2024). The use of anti-attractants for I. acuminatus and I. cembrae 
remains untested (Frühbrodt et al., 2024), highlighting the need for 
further behavioral studies with compound combinations designed 
according to this study to evaluate their field efficacy.

5 Conclusion

This is the first electrophysiological study to functionally 
characterize OSNs in I. acuminatus and I. cembrae, identifying 19 
OSN classes in each species. These OSNs exhibited distinct tuning to 
aggregation pheromones, host monoterpenes, NHVs, and fungal-
derived odors, highlighting their crucial role in bark beetle ecology. 
Comparative analysis with I. typographus revealed both conserved and 
species-specific OSN response patterns. While certain OSN profiles 
were shared across Ips species, suggesting common olfactory strategies 
for aggregation and host detection, species-specific differences likely 
reflect adaptations to their respective host tree preferences. The 
detection of heterospecific pheromones, along with fungal volatiles, 
further supports the role of multiple chemical cues in species 
coexistence and host colonization. Although OSN response profiles 
were generally similar between sexes, further research is needed to 
determine whether subtle differences influence mate and host 
selection behaviors. From an applied perspective, our findings support 
the use of specific compositions of ipsenol and ipsdienol mixtures, 
including their enantiomeric ratios, in combination with other 
detected compounds for species-specific Ips beetles monitoring and 
pest management. Integrating NHVs and host volatiles into conifer 
tree protection strategies could enhance its efficiency. Furthermore, 
future studies should explore a broader range of volatile compounds 
to identify additional OSN classes and incorporate molecular analyses 
of olfactory receptor function to refine our understanding of olfactory 
coding mechanisms in bark beetles. A deeper disentangling of these 
mechanisms could enable targeted interventions by disrupting the 
detection of key compounds by beetles at the gene level. This study 
lays the groundwork for further exploration of bark beetle olfactory 
systems, offering insights into ecological interactions and improved 
pest management strategies.
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