

Olfactory Coding in Bark Beetles: Understanding morphology and neurophysiology

by

Mayuri Kashinath Shewale

Supervisor: Ing. Anna Jirošová, Ph.D.

Field of study: Global Change Forestry

**A dissertation thesis submitted for the degree of Doctor of
Philosophy**

to

Department of Forest Protection and Entomology

Faculty of Forestry and Wood Sciences

Czech University of Life Sciences

2025

Ph.D. THESIS ASSIGNMENT

Mayuri Kashinat Shewale

Global Change Forestry

Thesis title

Olfactory coding in bark beetles: Understanding the morphology and neurophysiology

Objectives of thesis

Bark beetles are significant pests in coniferous forests, relying on olfactory communication to find hosts, mate, and regulate population density. Their host selection process is challenging, as unsuitable choices reduce offspring fitness. Olfactory sensory neurons (OSNs) on their antennae play a crucial role in detecting volatile signals. While *I. typographus* olfactory physiology is well-researched, the olfactory mechanisms of other *Ips* species remain largely unknown.

The aims of this research are:

1. To characterize the morphological types of olfactory sensilla in bark beetle *Ips* species by using scanning electron microscopy and map their distribution on the antennal surface.
2. To characterize the olfactory receptor neurons (ORNs) in *Ips* species using electrophysiological techniques and compare these findings to the well-studied model species *I. typographus*.

Methodology

Microscopic techniques will be employed to thoroughly examine the bark beetle antennal morphology and olfactory sensilla distribution. The antennae of selected *Ips* species will undergo chemical processing and will be examined using a scanning electron microscope. Electrophysiological techniques, such as single sensillum recording, will be performed to gain more information about the olfactory sensory neuron responses in bark beetles. Chemicals from various ecological sources and at different concentrations will be applied to measure neuronal responses, based on their recorded action potentials.

Schedule:

2021-2022: Understanding research problem, finalizing ISP and study objectives, dissertation methodology, literature review defense, coursework submission

The proposed extent of the thesis

70 pages

Keywords

Bark beetles, *Ips* species, single sensillum recordings, antennal morphology, olfaction, electrophysiology, olfactory receptor neurons

Recommended information sources

Andersson et al., 2009 Specificity and redundancy in the olfactory system of the bark beetle *Ips typographus*: Single-cell responses to ecologically relevant odors. *Journal of Insect Physiology* 55 (2009) 556–567 doi:10.1016/j.jinsphys.2009.01.018

Andersson et al., 2013 Antennal transcriptome analysis of the chemosensory gene families in *Ips typographus*. *BMC Genomics* 2013, 14:198 <http://www.biomedcentral.com/1471-2164/14/198>

Andersson et al., 2015 Insect olfaction and the evolution of receptor tuning. *Frontiers in Ecology and Evolution* 3, Article 53. doi: 10.3389/fevo.2015.00053

Andersson, M. N., Larsson, M. C., & Schlyter, F. (2009). Specificity and redundancy in the olfactory system of the bark beetle *Ips typographus*: Single-cell responses to ecologically relevant odors. *Journal of Insect Physiology*, 55(6), 556–567.

Biswas, T., Yuvaraj, J. K., Hansson, B. S., Löfstedt, C., Anderbrant, O., & Andersson, M. N. (2023). Characterization of olfactory sensory neurons in the striped ambrosia beetle *Trypodendron lineatum*. *Frontiers in Physiology*, 14, 1155129.

Kalinová, B., Brázová, R., Knížek, M., Turčáni, M., & Hoskovec, M. (2014). Volatiles from spruce trap-trees detected by *Ips typographus* bark beetles: chemical and electrophysiological analyses. *Arthropod-Plant Interactions*, 8, 305–316.

Kandasamy, D., Gershenzon, J., Andersson, M. N., & Hammerbacher, A. (2019). Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle (*Ips typographus*) with its fungal symbionts. *The ISME journal*, 13(7), 1788–1800.

Kandasamy, D., Zaman, R., Nakamura, Y., Zhao, T., Hartmann, H., Andersson, M. N., ... & Gershenzon, J. (2023). Conifer-killing bark beetles locate fungal symbionts by detecting volatile fungal metabolites of host tree resin monoterpenes. *PLoS biology*, 21(2), e3001887.

López, M. F., Armendáriz-Toledano, F., Sámano, J. E. M., Shibayama-Salas, M., & Zúñiga, G. (2014). Comparative study of the antennae of *Dendroctonus rhizophagus* and *Dendroctonus valens* (Curculionidae: Scolytinae): sensilla types, distribution and club shape. *Annals of the Entomological Society of America*, 107(6), 1130–1143.

Shi, X., Zhang, S. F., Liu, F., Zhang, Z., Xu, F. Y., Yin, S. Y., & Kong, X. B. (2021). Sensilla on antennae and mouthparts of adult spruce bark beetle *Ips typographus* (Coleoptera: Curculionidae). *Microscopy Research and Technique*, 84(7), 1484–1497.

Expected date

2024/25 WS – FFWS – Doctoral Thesis Defense

The Dissertation Thesis Supervisor

Ing. Anna Jirošová, Ph.D.

Supervising department

Department of Forest Protection and Entomology

Electronic approval: 09. 10. 2024

prof. Ing. Jaroslav Holuša, Ph.D.

Head of department

Electronic approval: 10. 03. 2025

prof. RNDr. Tomáš Hlásny, PhD.

Chairperson of Field of Study Board

Electronic approval: 11. 03. 2025

prof. Ing. Róbert Marušák, PhD.

Dean

Prague on 11. 03. 2025

1906

Certificate of Authorship

I hereby declare that this dissertation, titled "*Olfactory coding in bark beetles: Understanding the morphology and neurophysiology*", was created independently and ethically. I declare that all the information sources and literature are indicated accordingly, and the thesis was prepared under the direct supervision of my scientific supervisors.

I agree with the disclosure of this Ph.D. Thesis according to Czech Law (Act No. 111/1998 Coll. Sb.) regardless of the Defence of thesis results.

June 2025, Prague

Mayuri Kashinath Shewale

List of publications included in this thesis:

1. Ramakrishnan, R.†, **Shewale, M. K.**†, Strádal, J.†, Hani, U., Gershenzon, J., Andersson, M. N., Frühbrodt, T., Doležal, P., Jirošová, A. (2025). Aggregation Pheromones in the Bark Beetle Genus *Ips*: Advances in Biosynthesis, Sensory Perception, and Forest Management Applications. Manuscript submitted to *Current Forestry Reports*, under revision.
2. **Shewale, M. K.**, Nebesářová, J., Grosse-Wilde, E., & Kalinová, B. (2023). Microscopic morphology and distribution of the antennal sensilla in the double-spined bark beetle, *Ips duplicatus* (Coleoptera: Curculionidae). *Microscopy Research and Technique*, 86(12), 1610-1625. <https://doi.org/10.1002/jemt.24397>
3. **Shewale, M.K.**, Dusek, J., Jirošová, A. (2025) Microscopic morphology and distribution of the antennal sensilla in the larch bark beetle, *Ips cembrae* (Coleoptera: Curculionidae). Manuscript under preparation.
4. Moliterno, A. A. C. †, **Shewale, M.K.** †, Basile, S., Synek, J., Jirošová, A. (2025) Size- and dose-dependent behavioral responses to 1,8-cineole and (+)-isopinocamphone: a potential host selection strategy in female *Ips typographus* L. Submitted to *Annals of Forest Science*. under revision.
5. **Shewale, M. K.**, Bláha, J., Synek, J., Schebeck, M., Andersson, M. N., Kandasamy, D., & Jirošová, A. (2025) Comparative analysis of olfactory sensory neurons in two *Ips* species reveals conserved and species-specific olfactory adaptations. *Frontiers in Forests and Global Change*, 8, 1588866. [doi: 10.3389/ffgc.2025.1588866](https://doi.org/10.3389/ffgc.2025.1588866)

†Equal contribution as first author

*Please note that all the manuscripts are attached at the end in the appendix.

List of publications not included in this thesis:

1. Manjesh, G. N., Kaipa, H., Upreti, K. K., Sharma, D., Puttegowda, M. G. A., Manjunathagowda, D. C., Chinapolaiah, A., **Shewale, M.K.**, & Kusuma, D. K. (2022). Diversity of flavonoids profile in sexually dimorphic clones of betle vine [Piper betle L.] genotypes based on liquid chromatography-mass spectrometry [LCMS/MS]. *Industrial Crops and Products*, 187, 115363.
<https://doi.org/10.1016/j.indcrop.2022.115363>
2. Johny, J., Diallo, S., Lukšan, O., **Shewale, M.**, Kalinová, B., Hanus, R., & Große-Wilde, E. (2023). Conserved orthology in termite chemosensory gene families. *Frontiers in Ecology and Evolution*, 10, 1065947.
<https://doi.org/10.3389/fevo.2022.1065947>

Popular Science Summary

How do bark beetles use their sense of smell to find and attack trees?

Bark beetles are small wood-boring insects that play a natural role in forest ecosystems, helping to recycle and decompose dead trees. However, they can become aggressive pests under certain conditions, causing widespread damage to conifer forests. In recent years, bark beetle infestations have become increasingly problematic. Climate change, particularly rising temperatures and prolonged droughts, has made these forests more vulnerable by weakening tree defenses, creating ideal conditions for beetle outbreaks. While much research has focused on *Ips typographus*, and other species, such as *Ips duplicatus*, *Ips acuminatus*, and *Ips cembrae*, also contribute to forest damage. Yet, much less is known about their peripheral olfactory system. Like many insects, bark beetles rely on their sense of smell to find suitable hosts and communicate with each other. Their antennae are covered with sensilla, specialized hair-like structures that detect chemical signals in the environment. These sensilla house olfactory sensory neurons (OSNs) that recognize and respond to different volatile compounds. Bark beetles use this system to detect stress-related compounds released by weakened trees, indicating suitable colonizing trees. Once a tree is selected, aggregation pheromones are released, attracting more beetles to the site and leading to a mass attack that can overwhelm the tree's defenses. This study investigates how different *Ips* species with diverse hosts and ecology respond to host, non-host tree, and microbial volatiles, by comparing their antennal morphology and OSN function. It also explores whether body size influences olfactory detection, particularly in *Ips typographus* females, where larger and smaller individuals may detect these semiochemicals differently. Using scanning electron microscopy (SEM), electrophysiological recordings, and field experiments, this research aims to map the antennal sensilla and neuronal responses involved in olfactory detection across these species. Understanding the olfactory adaptations of bark beetles is crucial for developing better pest management strategies. Identifying the specific compounds that attract or repel these beetles can help to improve semiochemical-based control methods, such as traps and repellents, to protect forests more effectively. By expanding knowledge beyond *Ips typographus* and considering species-specific and size-dependent olfactory responses, this research provides a broader perspective on how bark beetles locate and infest trees, helping to manage future outbreaks.

Popular science summary (in Czech)

Jak kůrovci využívají čich k nalezení a napadení stromů?

Kůrovci jsou drobní dřevokazní brouci, kteří hrají přirozenou roli v lesních ekosystémech, zejména tím, že se podílejí na rozkladu a recyklaci odumřelých stromů. Za určitých podmínek se však mohou stát závažnými škůdci, kteří způsobují rozsáhlé poškození, zejména v porostech jehličnatých dřevin. V posledních letech představují gradace kůrovčů čím dál větší problém. Klimatická změna, zejména rostoucí teploty a prodlužující se období sucha, vede ke snižující se obranyschopnosti lesních porostů, čímž vznikají optimální podmínky pro gradace populací kůrovčů. Zatímco velké množství výzkumů se zaměřilo na lýkožrouta smrkového (*Ips typographus*), další druhy, jako *Ips duplicatus*, *Ips acuminatus* a *Ips cembrae*, rovněž významně přispívají k narušování lesních porostů. O jejich periferním čichovém ústrojí však zatím víme podstatně méně.

Stejně jako mnoho jiných druhů hmyzu spoléhají i kůrovci na čichové vjemy při lokalizaci vhodného hostitele a při vzájemné komunikaci. Jejich tykadla jsou pokryta senzilami, specializovanými chloupkovitými strukturami sloužícími k detekci chemických signálů v prostředí. Tyto senzily obsahují čichové smyslové neurony (OSNs), které rozpoznávají a reagují na různé těkavé sloučeniny. Kůrovci využívají tento systém k detekci stresových látek uvolňovaných oslabenými stromy, jež signalizují vhodné jedince k napadení a kolonizaci. Po výběru hostitelského stromu samci začnou produkovat agregační feromon, který přiláká více jedinců a vedou k hromadnému útoku, pomocí něhož jsou kůrovci schopni překonat obranné mechanismy stromu.

Tato studie zkoumá, jak různé druhy z rodu *Ips* s odlišnou ekologickou specializací reagují na těkavé látky hostitelských, nehostitelských a mikrobiálních původů, pomocí porovnání morfologie tykadel a funkce OSN. Součástí výzkumu je i posouzení vlivu tělesné velikosti na schopnost detekce pachových podnětů, zejména u samic kůrovce *Ips typographus*, kde mohou existovat rozdíly mezi menšími a většími jedinci ve vnímání specifických semiochemikálií. Za využití rastrovací elektronové mikroskopie (SEM), elektrofyziologických měření a terénních experimentů se tato práce zaměřuje na mapování tykadlových senzil a neuronální aktivity spojené s čichovým vnímáním u vybraných druhů. Pochopení čichových adaptací kůrovčů je zásadní pro vývoj efektivnějších metod ochrany lesů. Identifikace specifických těkavých látek, které kůrovce přitahují nebo odpuzují, může přispět k optimalizaci využití semiochemikálií

v kontrolních metodách ochrany lesa, jako jsou lapače, lapáky či různé repelenty, s cílem lépe chránit lesní ekosystémy. Rozšířením výzkumu i na další druhy rodu *Ips* mimo *Ips typographus* a zahrnutím druhově specifických i velikostně podmíněných čichových odezv nabízí tato práce komplexnější pohled na to, jak kůrovci vyhledávají a napadají hostitelské stromy, což v konečném důsledku přispívá k účinnějšímu zvládání budoucích gradací populací kůrovčů.

लोकप्रिय विज्ञान सारांश (मराठी अनुवाद).

झाडांना शोधण्यासाठी आणि त्यांच्यावर हल्ला करण्यासाठी साल भुंगे त्यांच्या गंधाच्या भावनेचा कसा वापर करतात?

साल बीटल हे लहान लाकूड-भोके पाडणारे कीटक आहेत जे वन परिसंस्थांमध्ये नैसर्गिक भूमिका बजावतात, मृत झाडांचा पुनर्वापर आणि विघटन करण्यास मदत करतात. तथापि, विशिष्ट परिस्थितीत, ते आक्रमक कीटक बनू शकतात, ज्यामुळे शंकुधारी जंगलांचे मोठ्या प्रमाणात नुकसान होते. अलीकडच्या वर्षात, साल बीटलचा प्रादुर्भाव दिवसेंदिवस समस्याग्रस्त बनला आहे. हवामान बदल, विशेषत: वाढते तापमान आणि प्रदीर्घ दुष्काळ यामुळे झाडांचे संरक्षण कमकुवत होऊन ही जंगले अधिक असुरक्षित झाली आहेत, ज्यामुळे बीटलच्या उद्रेकासाठी आदर्श परिस्थिती निर्माण झाली आहे. बरेच संशोधन (*ips typographus*) वर केंद्रित केले गेले आहे, परंतु इतर प्रजाती, जसे की *ips duplicatus*, *ips acuminatus*, आणि *ips cembrae* देखील जंगलाच्या न्हासाची हातभार लावतात. तरीही त्यांच्या परिघीय घ्राण प्रणालीबद्दल फारच कमी माहिती उपलब्ध आहे. इतर बन्याच कीटकां प्रमाणे, साल बीटल योग्य यजमान शोधण्यासाठी आणि एकमेकांशी संवाद साधण्यासाठी त्यांच्या गंधज्ञानावर (olfactory sense) अवलंबून असतात. त्यांच्या अँटेना सेन्सिला, विशेष केसांसारख्या रचनांनी झाकलेले असतात, जे वातावरणातील रासायनिक सिग्नल शोधतात. हे सेन्सिला घ्राण संवेदी न्यूरॉन्स (ओएसएन) ठेवतात जे वेगवेगळ्या अस्थिर संयुगे ओळखतात आणि प्रतिसाद देतात. साल बीटल कमकुवत झाडांनी सोडलेल्या तणाव-संबंधित संयुगे शोधण्यासाठी या प्रणालीचा वापर करतात, जे वसाहतीसाठी योग्य झाडाचे संकेत म्हणून काम करतात. एकदा झाड निवडले की, एकत्रीकरण फेरोमोन (aggregation pheromone) सोडले जातात, ज्यामुळे साइटवर अधिक बीटल आकर्षित होतात आणि मोठ्या प्रमाणात एकत्रित हल्ला होतो ज्यामुळे झाडाच्या संरक्षणावर परिणाम होऊ शकतो. हा अभ्यास त्यांच्या अँटेनल मॉर्फोलॉजी आणि ओएसएन फंक्शनची तुलना करून, विविध यजमान आणि पारिस्थितिकी असलेल्या वेगवेगळ्या (*ips* प्रजाती यजमान, नॉन-होस्ट वृक्ष आणि मायक्रोबियल वाष्पशीलांना कसा प्रतिसाद देतात याची तपासणी करतो. विशेषत: *ips typographus* स्त्रियांमध्ये आकार घ्राण धारणेवर परिणाम करतो की नाही हे देखील शोधते, कारण मोठ्या व लहान व्यक्तींमध्ये सेमिओकेमिकल रेकॉर्डिंग आणि फील्ड प्रयोगांचा वापर करून, या संशोधनाचे उद्दीष्ट या प्रजातींमध्ये घ्राण शोधण्यात गुंतलेल्या संवेदी संरचना आणि न्यूरोनल प्रतिक्रियांचा नकाशा तयार करणे आहे. जर आपण या भुंगेना आकर्षित करणारी किंवा मागे हटविणारी विशिष्ट संयुगे ओळखू शकलो तर आपण जंगलांचे अधिक प्रभावीपणे संरक्षण करण्यासाठी सापडे आणि प्रतिकारक यासारखा सेमिओकेमिकल-आधारित नियंत्रण पद्धती परिष्कृत करण्यास सक्षम होऊ शकतो. आयपीएस टायपोग्राफसच्या पलीकडे झानाचा विस्तार करून आणि प्रजाती-विशिष्ट आणि आकार-अवलंबून घ्राण प्रतिक्रियांचा विचार करून, हे संशोधन साल बीटल झाडांना कसे शोधतात आणि संक्रमित करतात याबद्दल विस्तृत दृष्टीकोन प्रदान करतात आणि शेवटी भविष्यातील उद्रेक व्यवस्थापित करण्यास मदत करतात.

Annotation

Bark beetles (Coleoptera: Curculionidae: Scolytinae) are key components of forest ecosystems but can also cause severe economic and ecological damage during population outbreaks. Climate change has worsened bark beetle infestations, resulting in extensive tree mortality. These beetles rely predominantly on their olfactory system to detect suitable host trees, locate conspecifics, and coordinate mass infestations. Their antennae, which serve as the primary olfactory organs, are densely covered with hair-like sensilla that house olfactory sensory neurons (OSNs) responsible for detecting environmental chemical cues. While *Ips typographus* has been extensively studied, little is known about the olfactory adaptations of *Ips duplicatus*, *Ips acuminatus*, and *Ips cembrae* despite their ecological and economic significance. This thesis investigates olfactory coding in *Ips* bark beetles, focusing on antennal morphology, size-dependent olfactory detection, and OSN function. Using scanning electron microscopy (SEM), the antennae of *I. duplicatus*, *I. acuminatus*, and *I. cembrae* were visualized to observe the general morphology and distribution of sensilla types. We observed six main types of antennal sensilla in *I. duplicatus*. Although males are the pioneers in colonization, females play a critical role in selecting suitable oviposition sites, which directly influences offspring fitness. Electrophysiological experiments in *I. typographus* females also investigated how body size influences semiochemical olfactory detection and host preferences in field. Electrophysiological recordings of OSNs in *I. acuminatus* and *I. cembrae* compared their frequency and responses to beetle-produced compounds, host-, non-host trees, and microbial volatiles with that of existing data from *I. typographus*. Results indicate that the distribution of antennal sensilla is largely conserved across the studied species, suggesting that olfactory adaptations primarily occur at the neuronal level rather than at the morphological level. In *I. typographus*, larger females exhibited stronger responses to synergist compounds.

In contrast, smaller females strongly responded to repellent compounds, revealing a contrasting size-dependent olfactory strategy for host tree choice. OSN characterization in *I. cembrae* and *I. acuminatus* identified shared and species-specific responses, reflecting conserved olfactory strategies related to their host specialization. This research enhances our understanding of bark beetle olfactory coding by integrating

morphological, electrophysiological, and behavioral approaches, offering novel insights for developing semiochemical-based pest management strategies.

Keywords: bark beetles, olfaction, chemical communication, semiochemicals, pheromones, olfactory sensory neurons, host selection

Acknowledgment

First and foremost, I express my deepest gratitude to RNDr. Blanka Kalinová and Ewald Grosse-Wilde for the opportunity to pursue my PhD at CZU. My heartfelt thanks to Dr. Anna Jirošová for welcoming me into her group and her unwavering support throughout the journey and its completion. I am also thankful to the Ministry of the Czech Republic, EXTEMIT-K, GAČR, IGA, the ERASMUS program, and the Faculty of Forestry and Wood Sciences for their financial support.

I sincerely appreciate my team members, Sara, Barča, Jibin, Souleymane, Raj, Jarda, and Hani, for making this experience pleasant. Special thanks to Jaromír Hradecký and Jaromír Bláha for their assistance with GC-MS and GC-EAD, and to Jakub Dusek for help with electron microscopy. I sincerely thank Jiří Synek for his assistance with the beetle rearing and maintenance. I also thank Gopal and Sandeepan for their insightful suggestions throughout my PhD. I am grateful to Hana Ayad, Andrea, and Mrs. Hovorková for their help with administrative matters.

I extend my thanks to Dr. Markus Knaden and Venkatesh at the Max Planck Institute for hosting me during my visit. I also thank Ing. Jana Nebesářová and RNDr. Miroslav Hyliš at Univerzita Karlova for their assistance with high-resolution microscopy. A very special thanks to the Pheromone Biology Group at Lund University, Sweden, especially Dr. Martin N. Andersson and Dr. Dinesh for their supervision and support in successfully completing my SSR experiments. I also appreciate the warm welcome and support from the entire Pheromone Biology group during my stay in Lund, Sweden.

To my coffee buddies, Agnish and Prosper, thank you for the great conversations, laughter, and beers. Tony, I am grateful for your lab guidance, suggestions, and unforgettable dance moves! To my CZU friends: Gokul, Carol, Joan, Sandra, Astrid, Arka, Aditya, Arunabha, and the Forest People Group, thank you for making Prague feel like home. A special thanks to Mirka and the CZU Welcome Centre for your support and wonderful trips that created lasting memories.

Lastly, I thank my amazing family- my parents, siblings, nieces, and in-laws for their unconditional support. Pappa and Mumma, your encouragement has been my greatest strength. To my friends back home in India, thank you for always being there to listen, cheer me on, and pull me through the tough days. And most of all, my deepest thanks to

my best friend and husband, Shravan. Your support has been the rock I've leaned on throughout this entire journey. Thank you for always being there, no matter the time difference, and for inspiring, cheering, and standing by me through everything. If I've missed anyone, please know your kindness and help are deeply appreciated.

“What you do makes a difference, and you have to decide what kind of difference you want to make.” - Jane Goodall

Dedication

To the incredible women in my family, especially my mother and my sisters, whose love, resilience, and support have shaped my journey. It is also for all the women in STEM, past, present, and future, who challenge barriers, push boundaries, and inspire generations.

"स्वतःवर विश्वास ठेवा आणि सतत मेहनत करा, मग कुठलीही अडचण तुम्हाला रोखू शकत नाही." -**सिंधुताई सपकाळ**

Translation: *"Believe in yourself and keep working hard, and no obstacle will ever stop you."* - **Sindhutai Sapkal**

Contents

Popular Science Summary.....	1
Popular science summary (in Czech).....	2
लोकप्रिय विज्ञान सारांश (मराठी अनुवाद).....	4
Annotation.....	5
Contents.....	11
List of figures	14
List of tables	18
List of abbreviations and symbols	19
Chapter 1. Introduction	21
1.1. Research background.....	21
1.2. Research aims and objectives.....	23
1.3. Scope of the thesis	24
Chapter 2: Review of literature.....	26
2.1. Abiotic disturbances in forest ecosystems.....	26
2.2. . Bark beetle ecology	27
2.3. Impact of bark beetle outbreaks on forest ecosystems	28
2.4. Bark beetle chemical communication.....	30
2.5. Bark beetle outbreak control and management	33
2.5.1. Mass Trapping ("Attract-and-Kill")	34
2.5.3. Anti-Aggregation Signals	35
2.5.4. Push-Pull Strategy	35
2.5.5. Toward Integrated Pest Management (IPM)	36
2.6. Insect olfactory system	36
2.6.1. Olfactory Organization in Bark Beetles	37
2.6.2. Structure and Function of the Antennae	39
2.6.3. Sensilla types and functional diversity	39
2.6.4. Central Olfactory Processing in Bark beetles	41
2.7. Influence of Beetle Size on Behavior	41
2.8. Olfactory Systems and Sensory Perception in <i>Ips typographus</i>	42
2.9. Study species	46
2.9.1. <i>Ips duplicatus</i> (Double-Spined Bark Beetle).....	46
2.9.2. <i>Ips acuminatus</i> (Pine Bark Beetle)	46
2.9.3. <i>Ips cembrae</i> (Larch Bark Beetle).....	47
2.9.4. Current Research Gaps	49

2.9.5. Study species.....	49
Chapter 3: Summarized workflow of methodology.....	50
3.1. Study Species (Collection, maintenance, and rearing).....	50
3.2. Morphological Studies	51
3.2.1. Scanning electron microscopy (SEM) analyses and sensilla categorization.....	51
3.2.2. Morphometric analysis (Paper IV).....	51
3.3. Electrophysiological studies	52
3.3.1. Chemical stimuli (Papers IV & V).....	52
3.3.2. Electroantennographic detection (EAD) Experiments (Paper IV).....	53
3.3.3. Gas chromatography coupled with electroantennographic detection (GC-EAD) Experiments (Paper V)	53
3.3.4. Single-Sensillum Recordings (SSR) (Paper V).....	54
3.4. Field experiments and pheromone traps	55
3.5. Data interpretation and statistical analysis.....	56
Chapter 4: Results.....	57
Subchapter 4.1: Review of aggregation pheromones and olfactory mechanisms in <i>Ips</i> bark beetles (Paper I)	57
4.1.1. Chemical composition of aggregation pheromones in <i>Ips</i> species	58
4.1.2. Pheromone biosynthesis and regulatory mechanisms.....	60
4.1.3. Olfactory detection and sensory specialization in <i>Ips</i>	61
4.1.4. Pheromone-based management approaches.....	62
Subchapter 4.2: Antennal morphology is highly conserved across <i>Ips</i> Species, with minor differences in sensilla frequency and distribution (Paper II)	63
4.2.1. General antennal morphology of <i>Ips duplicatus</i>	64
4.2.2. Sensilla types and distribution on the antennal surface.....	65
4.2.3. Distribution, dimensions, and sex-based differences in sensilla	68
Subchapter 4.3: Comparative descriptive morphology of antennal sensilla in <i>Ips cembrae</i> and <i>Ips acuminatus</i> (Paper III).....	71
4.3.1. General antennal morphology	72
4.3.2. Classification of sensilla types	75
4.3.3. Current scope and future directions of this study.....	77
Subchapter 4.4: Size-dependent olfactory responses in female <i>Ips typographus</i> (Paper IV)	78
4.4.1 Prevalence and body size differences in female trap captures	79
4.4.2 Antennal club dimensions scale with body size.....	79
4.4.3 Size-dependent antennal sensitivity to oxygenated monoterpenes	80
Subchapter 4.5: Electrophysiological characterization of Olfactory Sensory Neurons in <i>I. acuminatus</i> and <i>I. cembrae</i> (Paper V).....	81
4.5.1 General classification of OSN types	82

4.5.2 OSN responses in <i>Ips acuminatus</i>	83
4.5.3. OSN responses in <i>Ips cembrae</i>	87
4.5.4 Comparative analysis of OSN profiles and distribution among <i>Ips acuminatus</i> , <i>I. cembrae</i> , and <i>I. typographus</i>	90
4.5.5 Antennal responses to host essential oils for further validation (GC-EAD).....	92
Chapter 5: Discussion	94
5.1 Overview	94
5.2. Conserved antennal morphology and potential function of sensilla types in <i>Ips</i> bark beetles	95
5.3 Size-dependent olfactory perception and host selection in <i>I. typographus</i>	96
5.4 Conserved OSN classes and evolutionary constraints across <i>Ips</i> species	98
5.5 Species-specific OSN tuning in <i>I. acuminatus</i> and <i>I. cembrae</i>	99
5.6 Integration of morphological and functional insights into bark beetle olfaction.....	100
5.7. Methodological considerations and study limitations	101
5.8. Recommendations for future research and applied perspectives in forest pest management	102
Chapter 6: Concluding remarks	104
7. References	106

List of figures

Figure 1: Map showing key abiotic (wildfire, windstorm, drought, flood, snow damage) and biotic (bark beetle outbreaks, root rot) stressors affecting tree growth in European forests in the context of global climate change.....	26
Figure 2. Cumulative volume of Norway spruce (<i>Picea abies</i>) mortality attributed to <i>Ips typographus</i> and other bark beetle species across selected European countries over recent decades.....	27
Figure 3. Host selection behavior of <i>Ips typographus</i> on Norway spruce. Long-range attraction involves visual and VOC cues; short-range selection depends on tree stress signals. During outbreaks, aggregation pheromones trigger mass attacks (a–b), followed by egg laying and fungal inoculation in the phloem (c–d)	29
Figure 4. Schematic representation of <i>I. typographus</i> host location and acceptance behaviour. The process times from long-range dispersal to host entry, integrating olfactory signals from host volatiles, non-host volatiles (NHVs), beetle pheromones, and fungal associates.....	30
Figure 5. Chemical structures of major <i>Ips</i> pheromones (ipsenol, ipsdienol, and cis-verbenol) and their proposed precursors myrcene and α -pinene from conifer monoterpenes.....	31
Figure 6. Peripheral olfactory system in <i>I. typographus</i> . (A) Adult beetle with antennae. (B) SEM image of antennal club showing sensory bands A–C. (C) Structure of an olfactory sensillum with two OSNs. (D) Schematic of odor detection: odorants enter via pores, are transported by OBPs, and activate OR-ORCO complexes to trigger neural signals.....	37
Figure 7. Schematic overview of insect chemosensory receptor classes and peripheral olfactory signal transduction. ORs, IRs, and GRs form the molecular basis of odor detection, translating chemical signals into electrical activity in OSNs.....	38
Figure 8. Scanning electron micrograph showing <i>I. typographus</i> antennae showing major types of olfactory sensilla. Labeled structures include sensilla trichodea (TR), sensilla basiconica (BA), and sensilla chaetica (CH).	40

Figure 9. Basic electrophysiological setup for recording bark beetle OSN responses to semiochemicals using SSR.....	43
Figure 10: Structures of pheromone compounds from <i>Ips</i> species with the known biological activity.....	58
Figure 11: General antennal morphology of <i>Ips duplicatus</i> (female). (a) Ventral view showing scape, pedicel (F1), funicle (F2–F5), and club. (b) Distinct sensory bands (A, B, C) on the ventral side of the antennal club.....	64
Figure 12: Sensilla basiconica subtypes on <i>Ips duplicatus</i> antenna: (a) Clustered distribution on band C; (b–g) Morphological details of SBI–SBIV showing differences in shape, wall texture, and pore structures.....	65
Figure 13. Sensilla trichodea subtypes on <i>Ips duplicatus</i> antenna: (a) Grouped distribution; (b–h) STrII–STrIV showing variations in socket type, wall porosity, and tip morphology.....	66
Figure 14. Comparative bar graphs of sensilla length (a), width (b), and abundance (c) between sexes in <i>I. duplicatus</i> (Bonferroni test, $n = 5$ per sex)	68
Figures 15. a–e. Sensilla distribution maps across the antennal club in <i>I. duplicatus</i> : chaetica (SchI and SchII) and Bohm sensilla (BB) (a); coeloconica (Sco I and II) (b); trichodea (STr II, I and III) (c), and basiconica (SBI, II, III and IV)	69
Figure 16. SEM image of <i>Ips cembrae</i> antennal club indicating general structure (A) and the three bands (A–C) with sample types of sensilla labeled (B); sensilla trichodea (C); sensilla basiconica (D); Bohm sensilla (E); sensilla chaetica (F); sensilla coeloconica (G); and wall pores on sensilla basiconica type I (I).....	73
Figure 17. SEM image of <i>Ips acuminatus</i> antennal club showing general structure (A) and the three bands (A–C) with sample types of sensilla labeled surface(B); topography and distribution of important sensilla types sensilla trichodea and sensilla basiconica (C, D); Bohm sensilla (E); sensilla chaetica (F); sensilla coeloconica (G)	74
Figure 18. Body length of female <i>I. typographus</i> captured with different doses of (A) 1,8-cineole and (B) (+)-isopinocamphone vs. pheromone-only controls in 2019 and 2022.	79

Figure 19. EAG responses of large and small <i>I. typographus</i> females to (A) pheromone blend (MB:cV, 10:1), (B) (+)-isopinocamphone, and (C) 1,8-cineole across increasing doses. Asterisks denote significant differences (Wilcoxon test, $p < 0.05$)	80
Figure 20. Olfactory sensory neurons (OSNs) exhibit distinct phasic-tonic responses to 10 μ g of each compound. Two OSNs (A and B), differing in spike amplitude, are typically present in one sensillum. Panel (A) shows <i>I. acuminatus</i> responses to six odorants; panel (B) shows <i>I. cembrae</i> responses to four.....	82
Figure 21. (A) Spatial distribution of olfactory sensory neuron (OSN) classes across sensory bands A, B, and C on the antennae of <i>Ips acuminatus</i> . (B) Total counts of 19 identified OSN classes, categorized by primary response to ecologically relevant compounds.....	84
Figure 22. Number of OSNs uniquely identified in <i>I. acuminatus</i> , indicating primary and secondary responses. Primary OSN classes (A-G) labeled <i>IAc7</i> , <i>IAc5</i> , <i>IAc1</i> , <i>IAc11</i> , <i>IAc4</i> , <i>IAc8</i> and <i>IAc3</i> correspond to compounds (+)-isopinocamphone, (-)-verbenone, (4S)-cis-verbenol, 2-methyl-3-buten-2-ol, R-(-)-ipsdienol, styrene and racemic ipsenol.....	85
Figure 23. Mean dose responses (Hz) of selected OSN classes in <i>I. acuminatus</i> , showing both primary and secondary responses: <i>IAc3</i> : S-(-)-ipsenol, <i>IAc5</i> : (-)-verbenone, <i>IAc6</i> : α -isophorone, <i>IAc7</i> : R-(-)-ipsdienol, and <i>IAc1</i> : (4S)-cis- verbenol.....	86
Figure 24. (A) Distribution of olfactory sensory neuron (OSN) classes across sensory bands A, B, and C on the antenna of <i>Ips cembrae</i> . (B) Total counts of the 19 OSN classes, grouped by primary responses to compounds from various ecological origins.....	87
Figure 25. Dose-response profiles of three pheromone-specific OSN classes in <i>I. cembrae</i> : <i>IC3</i> responding to S-(-)-ipsenol, <i>IC5</i> to S-(+)-ipsdienol, and <i>IC1</i> to (4S)-cis-verbenol. Mean responses are presented with SEM error bars	88
Figure 26. Mean response rates (Hz) of selected OSN classes in <i>I. cembrae</i> , including secondary responses: <i>IC8</i> responding to 1-hexanol, <i>IC3</i> to S-(-)-ipsenol, <i>IAc7</i> to (±)-exo-brevicomin, <i>IC9</i> to racemic camphor, <i>IC1</i> to (4S)-cis-verbenol, <i>IC5</i> to S-(+)-ipsdienol, and <i>IC4</i> to R-(-)-ipsdienol. Error bars indicate standard error of the mean (SEM)	89

Figure 27. Venn diagram illustrating the overlap of identified olfactory sensory neuron (OSN) classes in *Ips acuminatus* and *Ips cembrae* compared to previously reported OSN classes in *Ips typographus* 90

Figure 28. GC-EAD traces showing antennal responses of *Ips acuminatus* and *Ips cembrae* to pine and larch essential oils at a dose of 10 µg 93

* All figures used from previously published work were used with proper legal permission and are appropriately cited in the respective sections.

List of tables

Table 1:

Overview of current control strategies: effectiveness and limitations.....34

Table 2:

Identified OSN classes in *I. typographus* and their responses to ecologically relevant chemical compounds from different sources44

Table 3:

Ips species aggregation pheromone blends compositions including enantiomeric ratio of components and host distribution.....48

Table 4:

Aggregation pheromone blends compositions including enantiomeric ratio of components in selected *Ips* species.....59

Table 5:

General morphological characteristics based on external appearance and distribution of different sensilla types in *Ips duplicatus*.....67

Table 6:

Morphological characteristics and distribution of sensilla types on the antennae of *Ips acuminatus* and *I. cembrae*.....76

Table 7:

Olfactory sensory neurons (OSNs) classified based on their response profiles at a 10- μ g screening dose in *I. acuminatus* and *I. cembrae* and their comparison to previously characterized OSN classes in *I. typographus*.....91

List of abbreviations and symbols

µg: micrograms

µm: micrometers

BB: Bark beetles

°C: degree Celsius

EAG: electroantennography

GC-EAD: Gas chromatography coupled with electroantennographic detection

GC-MS: Gas chromatography coupled with mass spectrometry

GRs: gustatory receptor

Hz: Hertz

IAc: *Ips acuminatus*

IC: *Ips cembrae*

ID: *Ips duplicatus*

IR: ionotropic receptors

IT: *Ips typographus*

JHIII: Juvenile Hormone III

mg: milligrams

mL: millilitres

mm: millimeters

mV: millivolts

nm: nanometres

OBP: odorant binding proteins

OR: olfactory receptor

OSN: olfactory sensory neuron

SEM: scanning electron microscopy

SEM: standard error mean

SNMP: single nucleotide membrane proteins

SSR: single sensillum recording

Chapter 1. Introduction

1.1. Research background

Forests cover nearly one-third of Europe's landmass, with coniferous species playing a dominant ecological and economic role across many regions. In Central and Northern Europe, Norway spruce (*Picea abies*), Scots pine (*Pinus sylvestris*), and European larch (*Larix decidua*) constitute the backbone of conifer-dominated forest ecosystems. However, large-scale planting of spruce monocultures outside their natural range forced by historical economic forestry has reduced ecosystem resistance. Combined with climate change-induced stressors such as drought and warming, these simplified stands have become highly susceptible to bark beetle outbreaks. This interaction between past management practices and climate extremes is a key driver of the unprecedented bark beetle epidemics observed in recent decades.

Bark beetles (Coleoptera: Curculionidae: Scolytinae) are diverse wood-boring weevils, comprising around 220 genera and 6000 species distributed worldwide. Many bark beetles contribute positively to forest health by facilitating dead wood's decomposition and nutrient recycling, primarily through their mutualistic associations with wood-degrading fungi that colonize host trees. However, several conifer-infesting species have emerged as serious pests, particularly under climate-driven stress. Trees already weakened by climate-induced stress are particularly vulnerable to beetle infestation. The Eurasian spruce bark beetle, *Ips typographus*, stands out as the most destructive species, especially in mature spruce trees at higher elevations. Other species such as the glossy bark beetle, *Pityogenes chalcographus*, and the double-spined bark beetle, *Ips duplicatus*, also target spruce but are considered less aggressive. In contrast, the pine bark beetle, *Ips acuminatus*, and the larch bark beetle, *Ips cembrae* primarily infest stressed pine and larch trees and are often regarded as secondary pests. The latter species have been less extensively studied, mainly because the damage they cause is typically less severe than that of *I. typographus*. Nonetheless, they often coexist with other bark beetles during infestations, particularly in disturbed or weakened forest stands.

A key feature of bark beetle ecology is their reliance on chemical communication to mediate host selection, aggregation, and reproduction. Volatile organic compounds (VOCs) released by host trees provide crucial information on species identity, physiological condition, and defense status. These chemical cues, in combination with

beetle-produced aggregation pheromones, coordinate mass-attacking behavior which is a critical strategy for overcoming tree defenses. Bark beetles rely on a highly evolved chemosensory system to detect and interpret these complex olfactory environments. Their primary sensory organ for odor detection is the club-shaped antennae, which are densely packed with specialized cuticular sensilla. These sensilla house olfactory sensory neurons (OSNs) within a lymph-filled cavity. Odor molecules first pass through porous sensillum walls, bind to odorant-binding proteins (OBPs), and subsequently interact with specific receptors on the dendritic membrane of OSNs. Individual OSNs can be narrowly or broadly tuned to ecological cues such as host volatiles, pheromones, or inhibitory cues from non-hosts or microbes.

Electrophysiological studies on *I. typographus* have identified at least 26 OSN classes, each with distinct response spectra and distribution patterns on antennae. These findings have deepened our understanding of how chemical information is processed at the peripheral level. Furthermore, detailed morphological studies of antennal sensilla in *I. typographus* and other *Ips* species have also revealed structural diversity, likely reflecting ecological specializations. Although these species coexist within the same forest ecosystems, they typically prefer different conifer host trees. For example, *I. typographus* and *I. duplicatus* primarily target spruce, *I. acuminatus* prefers pine, and *I. cembrae* specializes in larch trees.

Despite their overlapping distributions and potential ecological interactions in conifer forests, most research have been focused on *I. typographus*, leaving significant knowledge gaps in understanding the olfactory adaptations and sensory ecology of the other *Ips* species. Understanding how these species detect and respond to chemical cues is key to uncovering host adaptation mechanisms and the dynamics of tritrophic interactions involving beetles, host trees, and microbial associates. In addition to interspecific differences, individual-level traits such as body size may influence olfactory sensitivity and host preference, potentially shaping ecological strategies. While *I. typographus* have been intensively studied due to its high economic impact, extending investigations to *I. acuminatus* and *I. cembrae*, and incorporating individual variation, offers valuable opportunities to uncover overlooked sensory adaptations. Such insights are increasingly important as climate change influences host availability, beetle behavior, and pest management challenges.

1.2. Research aims and objectives.

Peripheral olfactory mechanisms are fundamental to key behaviours in bark beetles, such as host recognition and communication. These processes are mediated by OSNs housed within antennal olfactory sensilla, enabling detection of behaviorally relevant chemical cues such as host tree volatiles and aggregation pheromones. Although *Ips typographus* have been extensively studied, the olfactory systems of other *Ips* species, namely *I. duplicatus*, *I. acuminatus*, and *I. cembrae*, remain poorly characterized, despite their differing host preferences and ecological roles.

This thesis adopts a comparative, multi-method approach integrating scanning electron microscopy, electrophysiology, and behavioral assays to address these gaps. The study focuses on mapping antennal morphology, assessing intraspecific factors such as body size in olfactory-mediated behavior, and functionally classifying OSN responses to ecologically relevant chemical cues. The study system consists of four closely related conifer-feeding bark beetles, including the Eurasian spruce bark beetle (*Ips typographus*), the double-spined bark beetle (*Ips duplicatus*), the pine bark beetle (*Ips acuminatus*), and the larch bark beetle (*Ips cembrae*).

1.2.1. Research aims:

The following broad research aims serve as the foundation for this thesis:

1. To broaden understanding of species-specific olfactory adaptations in the studied conifer-feeding bark beetles.
2. To provide insights into the structural and functional organization of the peripheral olfactory system with ecological and behavioral traits in the studied *Ips* species.

1.2.2. Research hypothesis:

Given that these *Ips* species inhabit similar coniferous environments and encounter overlapping chemical landscapes, we hypothesize that these species share similar morphological and functional olfactory systems. Specifically, we expect conserved patterns in antennal morphology, olfactory detection mechanisms, and OSN profiles, with low species-specific differentiation.

1.2.3. Research objectives:

This thesis employed a combination of various techniques, such as scanning electron microscopy and electrophysiological recordings, and literature analysis; this thesis aimed to achieve the following specific objectives:

- 1) To investigate the antennal morphology and distribution of sensilla types in *I. duplicatus*, *I. acuminatus*, and *I. cembrae* (**Papers II and III**)
- 2) To examine the influence of body size on the olfactory behavior of *I. typographus* females, particularly focusing on responses to stress-related oxygenated host monoterpenes (**Paper IV**)
- 3) To identify and classify olfactory sensory neuron (OSN) classes in *Ips acuminatus* (pine host) and *Ips cembrae* (larch host) and compare their response profiles with those of *Ips typographus* (spruce host) (**Paper V**)

1.3. Scope of the thesis

This thesis builds upon both established literature and recent advances to explore comparative functional aspects of olfactory coding in *Ips* bark beetles. The research specifically investigates whether variations exist in antennal morphology, sensilla diversity, and the functional profiles of olfactory sensory neurons (OSNs) among *I. duplicatus*, *I. acuminatus*, and *I. cembrae*. In addition, it examines the presence of size-dependent olfactory perception within populations of *I. typographus* females, with a focus on their antennal responses to oxygenated host monoterpenes. Taken together, these investigations aim to enhance our understanding of peripheral olfactory processing in conifer-specialist bark beetles and contribute to the broader field of insect chemosensory biology.

To establish a strong scientific foundation, the thesis is organized into the following structure:

- **Chapter 2** presents a comprehensive literature review summarizing the current state of knowledge regarding bark beetle pheromone communication, peripheral olfactory mechanisms, and OSN functional organization. This chapter also identifies key research gaps that form the basis for the experimental objectives pursued in the subsequent chapters.

- **Chapter 3** describes the methodological approaches used across the studies, including scanning electron microscopy (SEM) for morphological analysis, single sensillum recordings (SSR) and electroantennography (EAG) for electrophysiological profiling, and gas chromatography-electroantennographic detection (GC-EAD) for chemical stimulus identification. It details the techniques employed to investigate antennal structure, sensilla types, and functional neuronal responses across the target species.
- **Chapter 4** is the results section, organized into five sub-chapters, each addressing specific research questions derived from the literature review in Subchapter 4.1 (corresponding to Paper I):
 - **Subchapter 4.2** focuses on the antennal morphology and spatial distribution of sensilla in *I. duplicatus* (Paper II).
 - **Subchapter 4.3** presents a preliminary morphological analysis of antennal sensilla in *I. acuminatus* and *I. cembrae* (Paper III).
 - **Subchapter 4.4** examines size-dependent antennal sensitivity and behavioral responses to oxygenated monoterpenes in *I. typographus* females (Paper IV).
 - **Subchapter 4.5** characterizes OSNs in *I. acuminatus* and *I. cembrae*, with comparisons to the OSN profiles of *I. typographus* (Paper V).
- **Chapter 5** provides an integrated discussion of the experimental findings, relating them to existing studies and identifying major olfactory system structure and function patterns. The chapter also addresses the ecological relevance of the observed variations and outlines the limitations of the research.
- **Chapter 6** concludes the thesis by summarizing key findings, evaluating the main hypotheses, and offering recommendations for future research directions, particularly in the context of forest pest monitoring and management strategies.

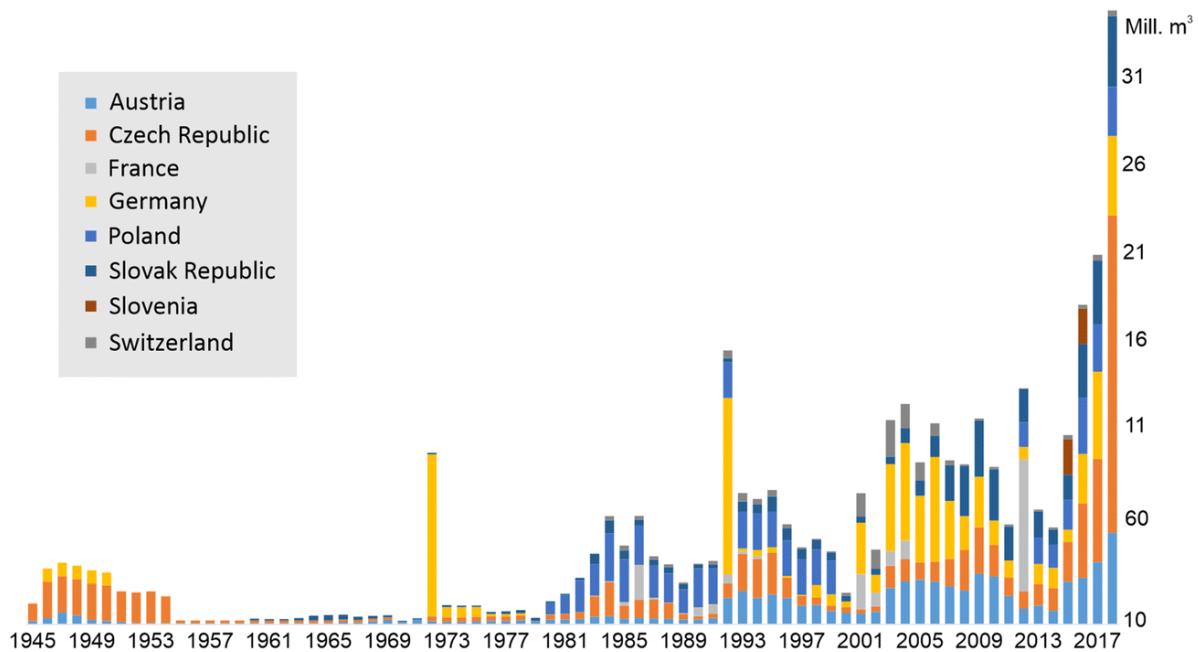
Through the integration of morphological, electrophysiological, and behavioral data, this thesis offers new insights into the diversity and specificity of olfactory coding in *Ips* bark beetles. The work contributes to a deeper understanding of species- and size-related differences in chemosensory function. It supports the development of targeted approaches in applied entomology, particularly in managing bark beetle outbreaks and forest health monitoring.

Chapter 2: Review of literature

2.1. Abiotic disturbances in forest ecosystems

Recent shifts in global climate are having a serious impact on forest ecosystems. Rising temperatures, frequent droughts, and declining precipitation levels have increasingly weakened tree defenses, making forests more susceptible to bark beetle infestations (Jaime et al., 2024; Fig.1). Additionally, environmental disturbances such as windthrows, wildfires, and snow damage create large amounts of weakened or dying host material. These disturbances offer ideal breeding grounds for bark beetles and encourage population growth (Allen et al., 2015; Senf et al., 2018; Jakoby et al., 2019).

High temperatures minimize generation times, promote dispersal, and speed up bark beetle development and reproduction, all of which increase the frequency and severity of outbreak incidents (Biedermann et al., 2019; Dobor et al., 2020; Sommerfeld et al., 2021). As climate zones shift, several bark beetle species are expanding into higher elevations and northern latitudes, colonizing previously unsuitable habitats and further altering forest dynamics.

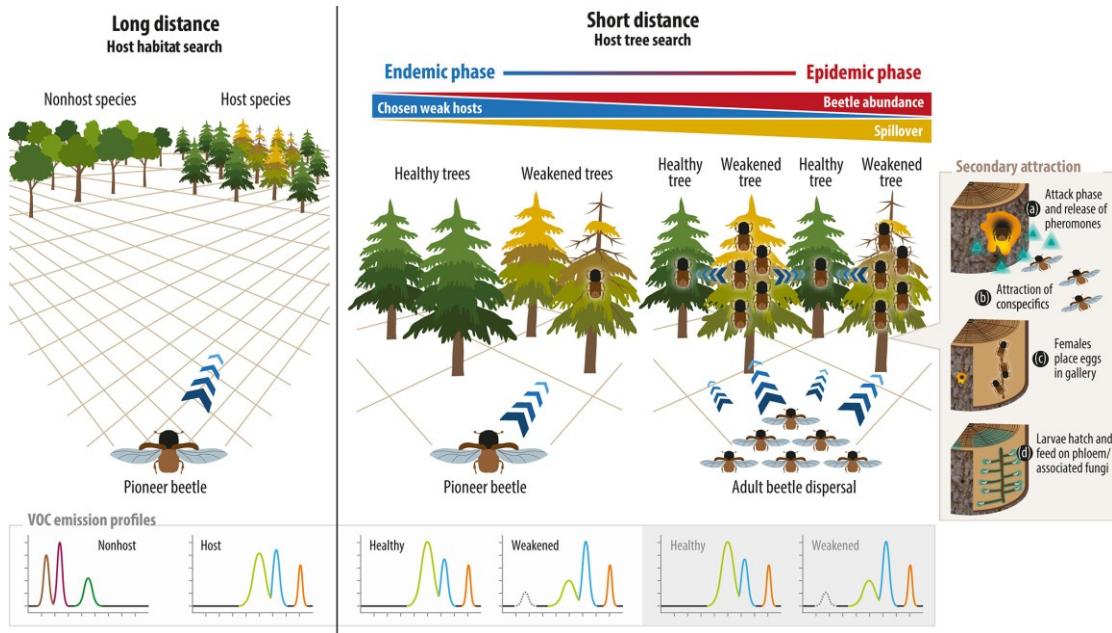

Figure 1: Map showing key abiotic (wildfire, windstorm, drought, flood, snow damage) and biotic (bark beetle outbreaks, root rot) stressors affecting tree growth in European forests, in the context of global climate change. Adapted from Vacek et al. (2023).

Long-term environmental stress compromises tree vigor and reduces resistance to herbivore attack. This interaction between abiotic and biotic stressors strongly influences beetle population dynamics (Netherer et al., 2024). Bark beetles usually target weaker or less competitive trees in endemic conditions to maximize offspring success. However, during outbreaks, even healthy or suboptimal trees are colonized. This often results in smaller beetles, lower pheromone

production, and reduced mating success (Pureswaran & Borden, 2003; Sallé & Raffa, 2007; Foelker & Hofstetter, 2014; Dacquin et al., 2024). Coniferous tree species in the *Pinaceae* family, including *Picea* (spruce), *Pinus* (pine), and *Larix* (larch), are especially at risk. These species rely on constitutive defense mechanisms, such as resin production, which can be compromised under prolonged heat and drought stress (McNichol et al., 2021; Netherer et al., 2021). As a result, climate-induced abiotic stressors weaken trees directly and amplify the risks posed by insect herbivores like bark beetles.

2.2. Bark beetle ecology

Bark beetles (Coleoptera: Curculionidae, Scolytinae) play a dual role in forest ecosystems. Under natural conditions, many species contribute positively to forest health by colonizing dead or dying trees. They facilitate nutrient cycling and support habitat creation, helping maintain ecological balance in mature forests (Knížek & Beaver, 2007; Hulcr et al., 2015). However, several bark beetle species, particularly in the Northern Hemisphere, have become serious forest pests. Some of these species can attack living, healthy trees, and during outbreaks, they can cause widespread mortality. Such events disturb forest dynamics, leading to substantial economic losses (Wermelinger, 2004; Hlásny et al., 2021; Jaime et al., 2024; Fig.2).


Figure 2. Cumulative volume of Norway spruce (*Picea abies*) mortality attributed to *Ips typographus* and other bark beetle species across selected European countries over recent decades. Adapted from Hlásny et al., 2021.

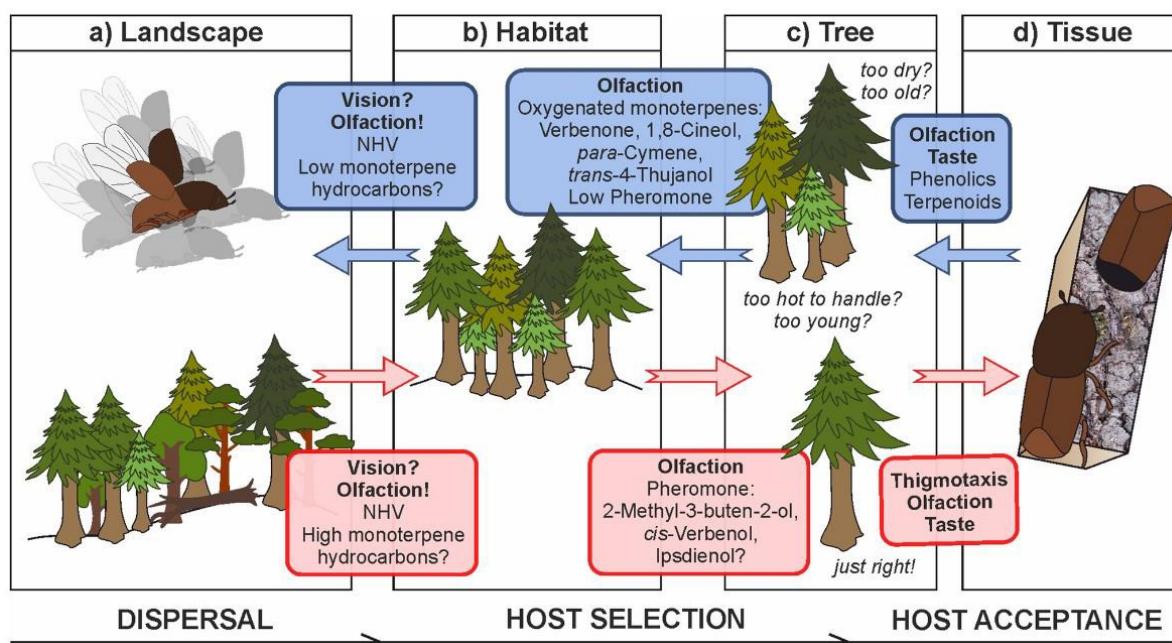
Majority of bark beetle species spend most of their life cycle beneath tree bark, where they bore galleries to feed, reproduce, and develop in the phloem. Some species also carry symbiotic blue-stain fungi, particularly from the *Ophiostomatales* group. These fungi invade the host tree's vascular tissue, reducing water transport and accelerating tree decline (Krokene, 2015). The symbiotic relationship benefits both partners; the beetles gain assistance in overcoming tree defenses while the fungi gain transport and access to new hosts, which weaken tree defenses and contribute to host decline and mortality. Associations between fungi and bark beetles are important for the environment because they can change the dynamics of competition between insect species and accelerate tree mortality. During outbreak seasons, when tree defenses are overwhelmed and both beetles and fungi reproduce quickly, these mutualistic associations are strongest. Therefore, bark beetles have a significant centralized influence on the successional patterns and composition of forests, especially in systems dominated by conifers.

2.3. Impact of bark beetle outbreaks on forest ecosystems

As already described in Section 2.1, climate-induced abiotic stress, such as drought and increased temperatures, creates conditions that increase bark beetle activity. However, the broader ecological impact of outbreaks is influenced by the beetles' behavior, reproductive strategies, and interactions with host trees. When populations shift from endemic to epidemic levels, they can cause extensive mortality in conifer forests, reshaping ecosystem structure, function, and resilience.

One of the marking attributes of bark beetle outbreaks is the ability of some species to coordinate mass attacks through aggregation pheromones. Pioneering male individuals release species-specific pheromones that attract conspecifics to the same host, facilitating them to overcome the tree's defense mechanisms. This strategy is particularly effective in physiologically stressed trees but can also work in otherwise healthy trees under high beetle pressure (Christiansen & Bakke, 1988; Byers, 2007; Raffa et al., 2016; Keeling et al., 2021). Large-scale bark beetle infestations can have great ecological consequences (Fig. 3). Outbreaks can lead to extensive dieback, significantly lowering forest biodiversity, altering population dynamics, and disrupting nutrient flow and carbon cycles. Accumulated deadwood after outbreaks often increases wildfire risk by acting as fuel, intensifying the ecological disturbance (Allen et al., 2010).

Figure 3. Host selection behavior of *Ips typographus* on Norway spruce. Long-range attraction involves visual and VOC cues; short-range selection depends on tree stress signals. During outbreaks, aggregation pheromones trigger mass attacks (a–b), followed by egg laying and fungal inoculation in the phloem (c–d), adapted from Lehmann et al., 2023.


Some of the bark beetle species in the *Ips* genus are considered among the most aggressive pests, with a strong preference for conifers. Many *Ips* species show significant flexibility in their reproductive strategies, altering their voltinism (the number of generations per year) depending on environmental conditions. While some species are univoltine or bivoltine, others, particularly in North and Central America, are polyvoltine and may produce up to five generations annually (Wood, 1982; Byers, 2007). This reproductive plasticity gives them a strong advantage in warmer climates, where longer growing seasons and higher temperatures support faster development and higher population growth (Christiansen & Bakke, 1988; Raffa et al., 2016).

Recent observations support this pattern. In parts of Central Europe, rising temperatures have enabled *I. cembrae*, which was previously restricted to low-elevation forests, to produce up to two generations per year (Byers, 2007). At the same time, *I. typographus* is expanding its range into higher-elevation forests, formerly less suitable for its development. Warmer temperatures facilitate increased voltinism, which is closely associated with this ascending trend (Keeling et al., 2021). These variations imply that, in addition to making bark beetle outbreaks more severe, climate change is also making

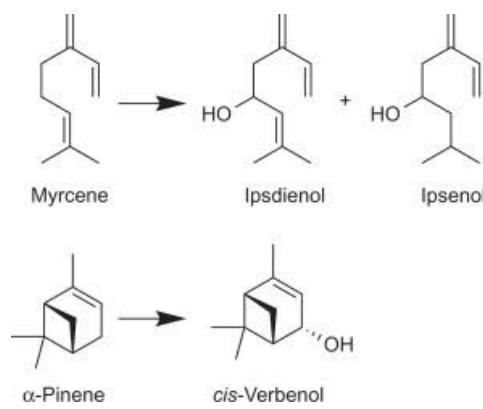
it possible for them to spread into previously unsuitable environments, which could have long-term effects on the management and health of forests.

2.4. Bark beetle chemical communication

Chemical communication is central to bark beetle ecology, mediating crucial behaviors such as host selection, aggregation, mating, and avoidance of unsuitable host trees. These beetles primarily use volatile organic compounds (VOCs) emitted by trees to assess host identity, physiological conditions, and stress status (Jirošová et al., 2022a; Moliterno et al., 2023). Host-emitted volatiles act as attractants, guiding beetles toward weakened or susceptible trees. In contrast, non-host volatiles (NHVs), typically released by deciduous trees, function as repellents, helping beetles avoid unsuitable trees and boosting host specificity in mixed-species forests (Zhang and Schlyter, 2004, Fig.4).

Figure 4. Schematic representation of *I. typographus* host location and acceptance behaviour. The process shows from long-range dispersal to host entry, integrating olfactory signals from host volatiles, non-host volatiles (NHVs), beetle pheromones, and fungal associates. Adapted from Netherer et al. (2021).

In addition to host- and non-host volatiles, bark beetles respond to chemical signals from their symbiotic fungi, mainly ophiostomatoid species, which colonize host tissues following beetle entry. These microbial VOCs influence beetle behavior by enhancing aggregation and signaling successful colonization, further supporting beetle development within the host (Jirošová et al., 2022b; Kandasamy et al., 2019, 2023). At the same time,


anti-aggregation pheromones help regulate colonization density by signaling resource saturation, thus reducing competition and overexploitation of host resources (Frühbrodt et al., 2024).

Beetles also respond to volatiles produced by other bark beetle species and their associated microbes. This broader and complex network of interspecific chemical signaling likely reflects the ecological complexity of forest environments, where multiple species interact and compete within shared habitats (Andersson et al., 2009; Schiebe et al., 2019; Yuvaraj et al., 2024).

2.4.1. Aggregation Pheromones in *Ips* Bark Beetles

Aggregation pheromones are central to the successful colonization strategy of *Ips* bark beetles. In *Ips* bark beetles, pioneering males release aggregation pheromones during the initial phase of host colonization. These compounds attract both sexes to the same tree, enabling coordinated mass attacks to overcome the tree's defenses. These same pheromones also act as mating signals, enhancing reproductive success alongside colonization efficiency.

The first bark beetle pheromones identified, i.e., ipsenol, ipsdienol, and *cis*-verbenol, were isolated from *I. paraconfusus* (Silverstein et al., 1966). Their structures are similar to host-derived monoterpenes such as myrcene and α -pinene, suggesting beetles may synthesize these pheromones from tree-derived precursors (Hughes, 1973, 1974, Fig.5). This metabolic link reflects the close ecological association between pheromone signaling and host volatile chemistry.

Figure 5. Chemical structures of major *Ips* pheromones (ipsenol, ipsdienol, and *cis*-verbenol) and their proposed precursors myrcene and α -pinene from conifer monoterpenes. Adapted from Keeling et al. (2021).

Most *Ips* pheromones are oxygenated hemi- and monoterpenes that closely resemble the resin compounds of their conifer hosts. Some of the components include ipsdienol, ipsenol, *E*-myrcenol, amitinol, and *cis*-verbenol, as well as byproducts like lanierone and 3-methyl-3-buten-1-ol (Byers, 2007; Cognato, 2015). Despite the limited number of structural components, species-specific pheromone blends have variations through differences in overall composition, relative concentration, and stereochemistry, especially enantiomeric ratios (Cognato, 2015; Keeling et al., 2021). Even minor variations in enantiomeric ratios minimize cross-attraction between sympatric species and contribute to reproductive isolation within the *Ips* genus (Table 3).

2.4.2. Enantiomeric Specificity of *Ips* aggregation pheromones

Many pheromone components used by *Ips* spp. exist in enantiomeric forms, with species often showing strict preferences for specific stereoisomers. These preferences are critical for maintaining species recognition and reproductive isolation, especially in habitats where multiple *Ips* species co-occur and where similar compounds may be shared. For example, most *Ips* species rely predominantly on (*S*)-(*-*)-*cis*-verbenol and (*S*)-(*-*)-ipsenol as main aggregation pheromone components (Byers, 2007), while their response to the opposite enantiomers is much weaker or entirely absent. Ipsdienol, another component, shows significant variability in its enantiomeric ratios between different species (Table 3). In particular, the enantiomeric ratio of ipsdienol varies among species and sometimes even in populations within the same species, highlighting its role in prezygotic isolation (Byers & Levi-Zada, 2022).

2.4.3. Host Tree Volatiles and Bark Beetle Attraction

The volatile organic compounds (VOCs) emitted by host trees play a fundamental role in guiding bark beetles towards suitable habitats. These airborne signals can help beetles navigate in the environment. In *Ips typographus*, for example, host trees such as Norway spruce (*Picea abies*) emit common monoterpenes, including α -pinene, β -pinene, limonene, and β -phellandrene, all of which are known attractants (Hulcr et al., 2006; Netherer et al., 2021). Recently, studies have identified oxygenated monoterpenes, though present in trace amounts (less than 1% of total emissions), for their exceptionally strong influence on beetle behavior. Compounds like isopinocamphone and 1,8-cineole elicit strong antennal responses and appear central as short-range host acceptance cues (Kalinová et al., 2014; Schiebe et al., 2019). These volatiles are regularly linked with

stressed or recently felled trees, making them markers for host targeting. They are produced not only from the host tree but also from fungal symbionts, adding further complexity to the chemical interface between beetles and their environment (Celedon & Bohlmann, 2019; Kandasamy et al., 2023).

2.5. Bark beetle outbreak control and management

One of the main challenges is controlling bark beetle outbreaks across large forest landscapes. Traditional techniques, such as applying pesticides, are typically used cautiously because of their impracticality. Environmental problems, legal limits (particularly in the EU), and potential effects on non-target organisms render them unsuitable for landscape-level control, despite their potential effectiveness in high-value or local small-scale environments (Hlásny et al., 2021).

On the other hand, semiochemical-based approaches, especially those involving pheromones, offer more directed and eco-friendly alternatives. Aggregation pheromone composition has been identified in more than 20 *Ips* species, which include some of the most economically important pests (El-Sayed, 2025). Nonetheless, most pheromone-based approaches have been directed at monitoring rather than active population control.

Semiochemical-based techniques often yield inconsistent results when used alone, especially under outbreak conditions. Their efficacy varies greatly depending on location characteristics, beetle population density, and the presence of competing attractants or host material. To improve efficiency, pheromone-based methods can be combined with silvicultural practices, such as thinning and sanitation harvesting, that reduce host availability and improve forest resistance (Lubojacky et al., 2014; Gallo et al., 2020; Table 1). This integrated approach is increasingly favored in forest health strategies, balancing ecological considerations with operational feasibility.

Modern forest pest management is based on this integrated approach, representing an increasing trend toward multidimensional, environmentally based tactics. These techniques seek to strike a compromise between environmental sustainability and controlling outcomes, especially because of the growing rate of climate change and the rise in disturbance regimes.

Table 1: Overview of current control strategies: effectiveness and limitations

Strategy	Effectiveness	Challenges	References
Silviculture (thinning, sanitation)	Moderate	Requires timely detection and proactive action	Gallo et al., 2020; Holuša and Fiala 2025
Pheromone-based (mass trapping, push–pull)	Variable	Site- and species-specific outcomes; deployment complexity	Lubojacký et al., 2014, Jakuš and Zhang, 2003, Deganutti et al., 2024
Biological control (predators, entomopathogens)	Limited	Not fully scalable; mixed success in field trials	Hajek and Delalibera, 2010, Mann and Davis, 2021
Insecticides (Last option, banned in Europe)	Localized effectiveness	Environmental impact; non-target risk	Gillete and Fettig et al., 2021

2.5.1. Mass Trapping ("Attract-and-Kill")

Pheromone-baited traps or trap trees are used in mass trapping to draw in and catch bark beetles before they infest living hosts. This approach can lower local beetle populations, but its effectiveness has been inconsistent, especially in small-scale applications or the early stages of epidemics (Byers, 2007; Lubojacký et al., 2014). Its efficiency, however, varies greatly depending on the situation and is affected by beetle pressure, trap density, and spatial arrangement. Inadequate implementation may unintentionally draw in additional beetles without successfully eliminating them, raising the possibility of infestation. Another issue is non-target by-catch, since traps can collect beneficial insects like pollinators and predators (Brokerhoff et al., 2023). For large-scale control, mass trapping is therefore rarely enough. It works best when combined with insecticides, repellents or silvicultural techniques as part of an integrated pest management (IPM) approach to improve overall efficacy and ecological compatibility.

2.5.3. Anti-Aggregation Signals

Anti-aggregation pheromone derivatives, such as verbenone, non-host compounds, or defensive compounds from conifers (Schiebe 2011), serve as chemical repellents, preventing beetles from further colonization of already attacked or healthy trees. These “push” cues are useful in controlling beetle density and protecting uninfested hosts. While such compounds have shown promising efficacy in some *Dendroctonus* species, their use in *Ips* beetles is still under development (Schebeck et al., 2024). One main limitation is that push-only strategies can relocate beetles to untreated areas, especially in fragmented forests or under high beetle pressure. Improving cost-effectiveness and application precision will be important steps toward broader implementation. Nonetheless, anti-aggregation signals are a promising part of integrated pest management. Ongoing research aims to improve utilization strategies, improve compound formulations, and evaluate context-specific outcomes to support more reliable and sustainable bark beetle control (Frühbrodt et al., 2024).

2.5.4. Push-Pull Strategy

The push–pull strategy combines repellent cues (“push”) with attractive pheromones (“pull”) to divert bark beetles away from vulnerable trees and toward traps or baited trap trees. This technique has proven effective in North American species like *Ips paraconfusus* and *Ips pini* by disrupting host colonization (Byers & Levi-Zada, 2022). In Europe, similar approaches using anti-attractants with pheromone traps or trap trees show promise for *Ips typographus* management (Jakuš et al., 2022; Lindmark et al., 2022). However, their efficacy declines under high beetle pressure or during severe drought, when stressed trees become more attractive despite repellent cues (Deganutti et al., 2024; Keeling et al., 2021). Additionally, success depends on factors such as the timing, spatial deployment, and release rates of semiochemicals and the surrounding landscape structure.

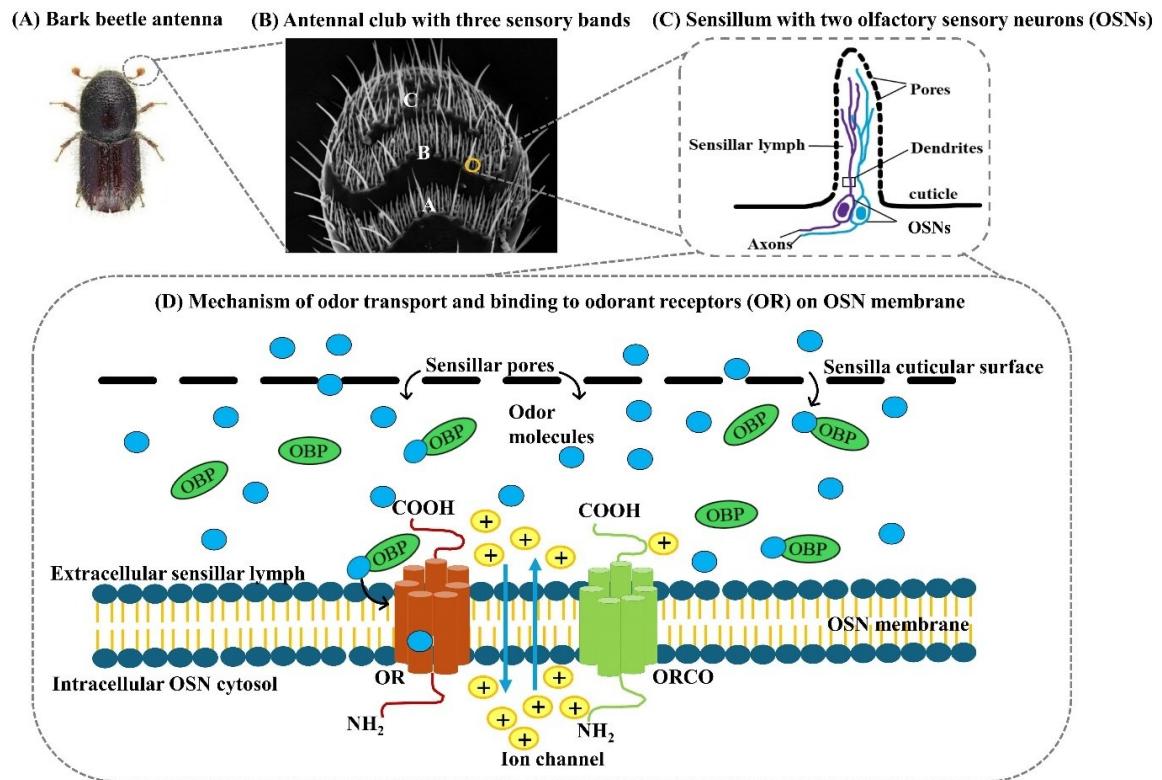
Despite these drawbacks, push-pull tactics are valued for their flexibility and low environmental impact. Together with silvicultural practices, they improve the overall resilience of forests and could provide effective alternatives for chemical pesticides in environmentally vulnerable locations (Keeling et al., 2021).

2.5.5. Toward Integrated Pest Management (IPM)

Multilayered approaches are needed to manage bark beetle epidemics effectively over the long run. IPM aims to minimize environmental damage while achieving sustainable control by combining ecological, behavioral, and silvicultural techniques. Pheromone-based strategies, including mass trapping or push-pull techniques, work best when combined with habitat changes, thinning, or sanitation harvesting (Gallo et al., 2020).

Biological control remains limited despite its potential due to its uneven field results and application issues. Similarly, insecticides are now rarely used in Europe due to environmental regulations and concerns over non-target effects (Gillete and Fettig et al., 2021). IPM acknowledges that no single strategy works alone. Early identification, site-specific adaptability, and the capacity to combine complementary approaches are ultimately essential for success. Continued research into species-specific behavior, olfactory ecology, and ecosystem interactions will be essential for developing resilient, adaptive forest pest management strategies.

2.6. Insect olfactory system


Olfaction plays a fundamental role in the lives of insects, guiding them in essential behaviors like finding hosts, locating mates, avoiding predators, and selecting habitats. These tiny creatures depend on volatile chemical signals to navigate in their complex ecological landscapes.

These signals can come from various sources, including plant-emitted volatiles, pheromones, associated microbes, and even volatiles released by their predators or natural enemies (Visser, 1986; Bruce & Pickett, 2011). The process of olfactory detection starts at the periphery (Fig. 6). Airborne odor molecules diffuse via porous, specialized structures called sensilla. These sensilla are predominantly located on the antennae (Hallberg, 1982a) and sometimes on mouthparts and other appendages (Hallberg, 1982b). Inside each sensillum, olfactory sensory neurons (OSNs) detect and process these odorants. The dendritic membranes of OSNs contain membrane-bound chemoreceptors: primarily odorant receptors (ORs) (Clyne et al., 1999), ionotropic receptors (IRs) (Benton et al., 2009), and occasionally gustatory receptors (GRs) (Wicher, 2018). These receptors convert chemical signals into neural impulses that travel to the antennal lobes and are further interpreted by the brain (Martin et al., 2011), leading to behavior (Andersson et al., 2015).

The insect olfactory system is both evolutionarily conserved and ecologically diverse. The insect olfactory system is often finely tuned to meet the specific needs and behaviors of different insects. Given the ecological importance of olfaction, insect olfactory systems have evolved remarkable diversity and sensitivity, adapting to the specific needs and habitats of different species (Hansson & Stensmyr, 2011; Carraher, 2015).

2.6.1. Olfactory Organization in Bark Beetles

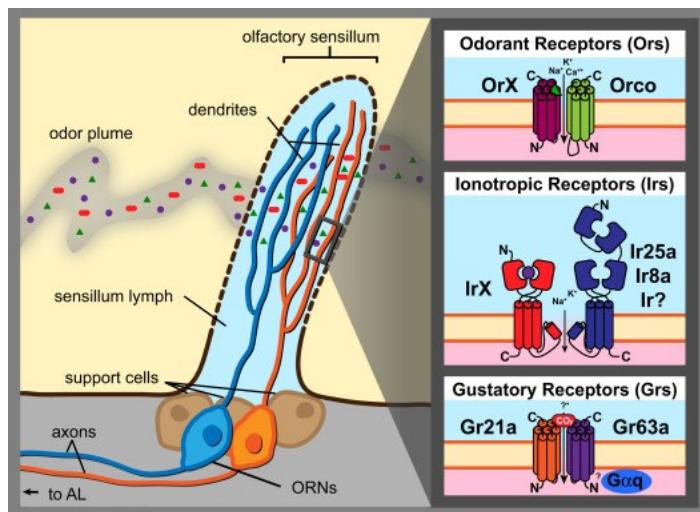

Bark beetles rely heavily on their sense of smell to find suitable hosts and coordinate aggregation and mass-attack. Their primary olfactory organs, the club-shaped antennae (Payne et al., 1973), are densely covered with porous sensilla, each housing OSNs tuned to detect volatiles from host trees, conspecifics, and symbiotic fungi (Hansson & Stensmyr, 2011; Fig. 6). These sensilla contain one to three olfactory sensory neurons (OSNs) placed in a lymph-filled chamber. Odorant molecules pass through tiny pores on the sensillum surface and are transported by odorant-binding proteins (OBPs) to receptors on the dendritic membranes of olfactory sensory neurons (OSNs).

Figure 6. Peripheral olfactory system in *I. typographus*. (A) Adult beetle with antennae. (B) SEM image of antennal club showing sensory bands A–C. (C) Structure of an olfactory sensillum with two OSNs. (D) Schematic of odor detection: odorants enter via

pores, are transported by OBPs, and activate OR-ORCO complexes to trigger neural signals. Adapted from Ramakrishnan *et al.*, unpublished.

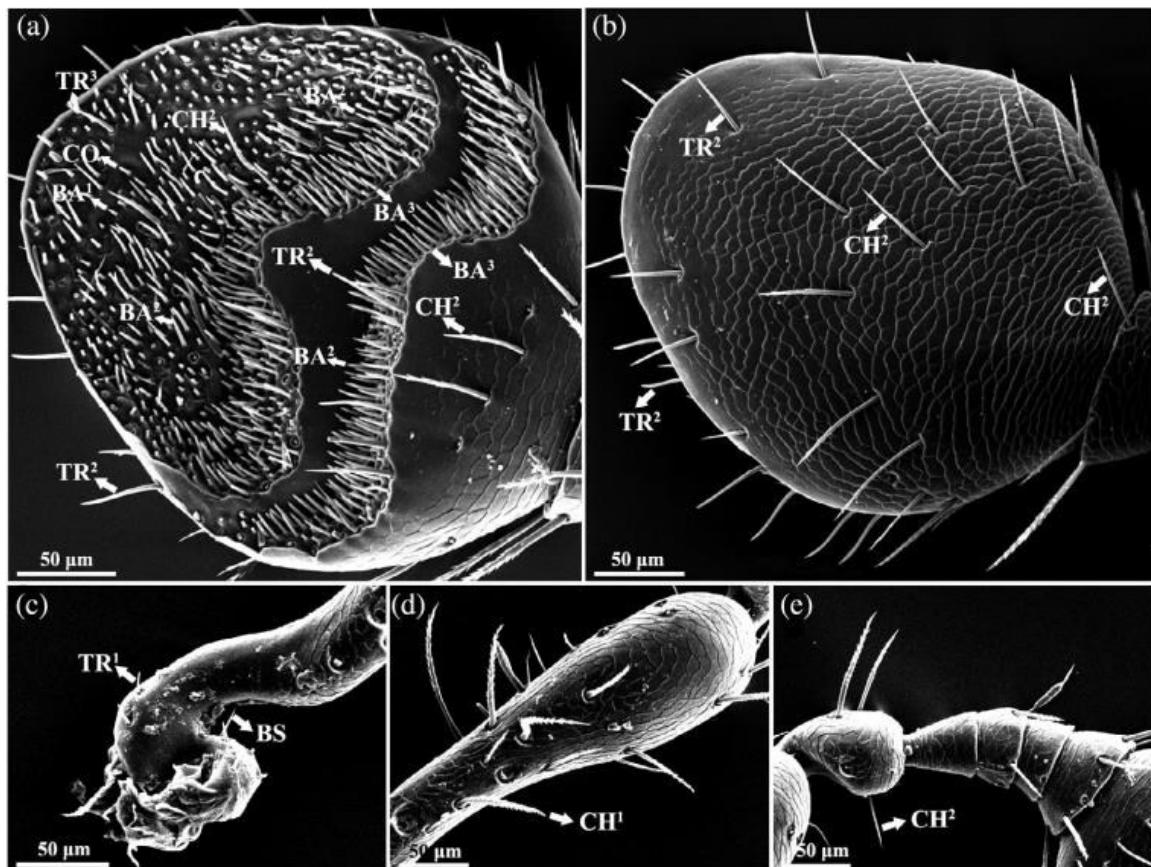
Each OSN is functionally tuned, with some acting as specialists, responding only to a narrow range of compounds (e.g., specific pheromone enantiomers), while others function as generalists, reacting to broader sets of structurally related volatiles (Hallem & Carlson, 2006; Binyameen *et al.*, 2014). This balance between precision and flexibility allows beetles to discriminate among complex odor blends in dynamic environments. OSNs express different classes of chemoreceptors, including odorant receptors (ORs) (Clyne *et al.*, 1999) that detect host volatiles and pheromones, ionotropic receptors (IRs) that respond to acids and amines, and gustatory receptors (GRs) which are typically associated with taste but also implicated in CO₂ and bitter odorant detection (Clyne *et al.*, 2000; Wicher, 2018; Fig. 7). ORs tend to function together with a co-receptor, ORCO, to form ligand-gated ion channels. These receptors generate action potentials that initiate the olfactory signal cascade upon activation.

Figure 7. Schematic overview of insect chemosensory receptor classes and peripheral olfactory signal transduction. ORs, IRs, and GRs form the molecular basis of odor detection, translating chemical signals into electrical activity in OSNs. Adapted from Pask & Ray (2016).

OSNs in bark beetles exhibit variable specificity, ranging from specialists that are highly selective neurons tuned to specific pheromones or enantiomers to generalists that respond to broader environmental cues (Hallem & Carlson, 2006; Carey *et al.*, 2010). Specialist OSNs detect sex pheromones at extremely low concentrations, capable of enantiomeric discrimination (Wojtasek *et al.*, 1998). Generalist OSNs are typically tuned to host

volatiles and non-pheromonal cues, playing a role in host selection (Andersson et al., 2010; Binyameen et al., 2014). Together, this diversity supports both precise pheromone-mediated behaviors and flexible environmental sensing.

The organization of sensilla and OSNs is not random. In *Ips* species, the antennal club contains three distinct sensory bands (A, B, and C), each having specific sensillum types (Hallberg, 1982a; Shewale et al., 2023). These bands are densely populated with olfactory sensilla. OSNs within these sensilla vary in tuning breadth, with narrowly tuned OSNs responding selectively to host volatiles or pheromones, while some neurons exhibit broader tuning, reacting to structurally related compounds (Andersson et al., 2009; Kandasamy et al., 2019, 2023). This highly tuned system enables bark beetles to respond with great specificity to environmental cues, discriminating between tree species and physiological status and between pheromone enantiomers and microbial volatiles.


2.6.2. Structure and Function of the Antennae

Antennae are the main olfactory sensory organs in *Ips* bark beetles (Hallberg, 1982a; Faucheux, 1989, 1994). The appendages are abundantly equipped with sensilla-carrying sensory neurons that detect chemical, mechanical, thermal, and humidity stimuli (Hallberg, 1982; Faucheux, 1989, 1994; Hallberg et al., 2003). The antennal surface is dominated by olfactory sensilla responsible for host volatile and pheromone detection. Additional sensory modalities are supported by mechanoreceptors and thermoreceptors within the antennae. In certain behavioral contexts, particularly during host evaluation or oviposition, secondary sensory organs such as maxillary palps and ovipositors may also contribute to chemical perception (Payne et al., 1973; Hallberg, 1982b).

2.6.3. Sensilla types and functional diversity

The diversity of sensilla on bark beetle antennae reflects their ecological specialization and chemical sensitivity. Each sensillum is a small, morphologically distinct structure with specific functional roles, enabling beetles to detect a wide range of semiochemicals. Olfactory sensilla are central to odor detection (Schneider, 1964). Their morphological diversity is closely linked to functional specialization, enabling insects to discriminate among the various chemical cues (Hallberg et al., 2003). Among the most common sensilla are sensilla trichodea, elongated, hair-like, which are involved in pheromone detection. Sensilla basiconica are generally shorter and peg-like, highly sensitive to host

and food-related volatiles. These two types dominate the antennal surfaces in many *Ips* species and house most OSNs (Hallberg et al., 2003; Shewale et al., 2023; Fig. 8).

Figure 8. Scanning electron micrograph showing *I. typographus* antennae showing major types of olfactory sensilla. Labeled structures include sensilla trichodea (TR), sensilla basiconica (BA), and sensilla chaetica (CH). Adapted from Shi et al. (2021).

Other sensilla types, although not strictly olfactory, contribute to the insect's broader sensory perception. Sensilla coeloconica are peg-like, double-walled structures that detect amines, carboxylic acids, ammonia, and humidity (Yao et al., 2005; Prieto-Godino et al., 2017). Sensilla chaetica are mechanosensory and gustatory, largely involved in tactile and taste perception. Sensilla styloconica and sensilla ampullacea are typically associated with thermoreception and hygroseception, allowing the insect to sense temperature and humidity changes (Ruchty et al., 2010; Schneider et al., 2018). Böhm's bristles are located near the antennal base, show mechanoreceptive function, and respond to antennal movement and wind flow. This structural and functional diversity allows bark beetles to process complex chemical landscapes with high specificity, combining cues related to host tree identity, condition, and interspecies interactions (Suh et al., 2014; Pelosi et al., 2018).

While antennal sensilla have been well-characterized in species like *I. typographus*, *I. sexdentatus*, *I. pini*, and *I. subelongatus*, detailed studies on *I. duplicatus* remain limited (Payne et al., 1973; Hallberg, 1982a; Faucheux, 1989). Investigating sensilla distribution and morphology in this species is critical for understanding its olfactory perception and host selection mechanisms.

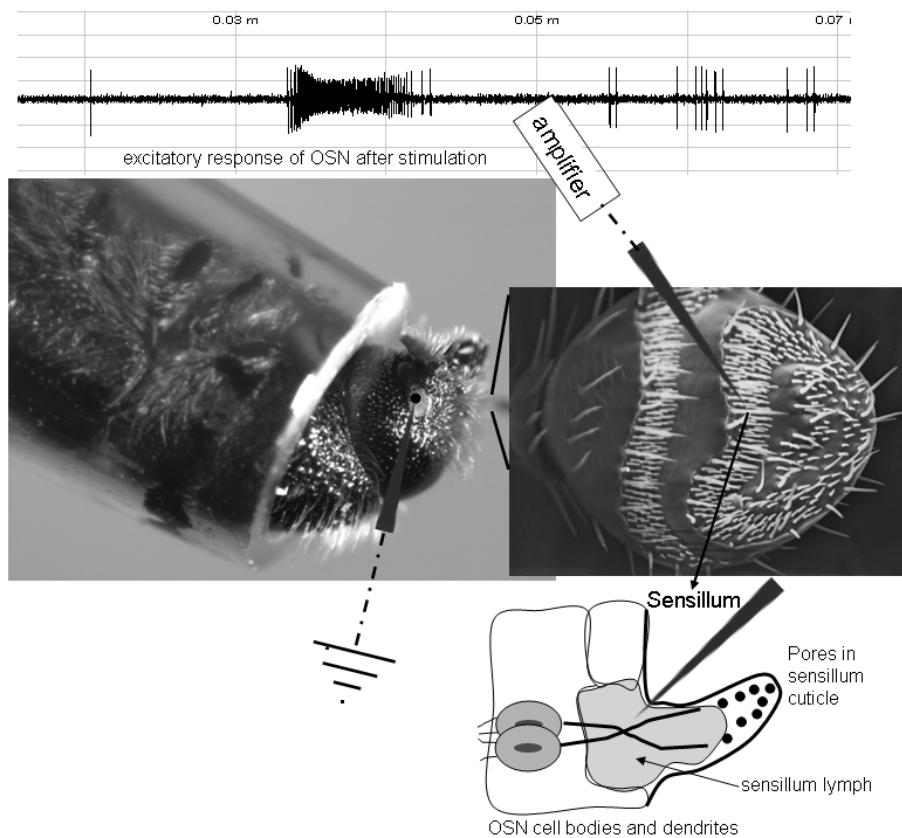
2.6.4. Central Olfactory Processing in Bark beetles

When odor molecules are detected by OSNs on the antennae, they are transmitted to the antennal lobes (ALs), the primary olfactory center of the insect brain. There, OSN axons target specialized structures called glomeruli, which are separate processing units for individual odorants (Vosshall et al., 2000; Gao et al., 2000). OSNs that share a receptor type send input to a given glomerulus, and the antennal lobe thereby spatially translating odor quality and intensity. Output from the processed information in the antennal lobes is sent via projection neurons (PNs) to higher-order brain regions. These include the mushroom bodies (MBs), which mediate learning, memory, and decision-making, and the lateral horn (LH), which controls more reflex and instinctual behaviors (Galizia, 2014; Clark & Ray, 2016).

This neural structure allows bark beetles to combine olfaction-based data with other sensory modalities, like visual or mechanosensory information, thereby allowing context-dependent behavioral responses. It also enhances the capacity for odor discrimination with high accuracy, showing the capacity to discriminate between pheromone enantiomers or slight differences in the volatile organic compound profiles of the host trees. Understanding this critical processing system is crucial to understanding how to correlate peripheral olfactory perception with behavioral response. Additionally, it provides valuable insights into the mechanisms by which bark beetles make rapid, ecologically relevant decisions in chemically complex environments (Raffa et al., 2016).

2.7. Influence of Beetle Size on Behavior

Bark beetle body size is a key trait that determines behavior, reproductive success, and olfactory sensitivity. It is determined by developmental conditions, especially resource quality and competition in the host, and is both interspecific and intraspecific, sometimes even brood-specific. In *I. typographus*, it can influence the beetle host location, responses to pheromone, and reproductive success (Foelker & Hofstetter, 2014; Dacquin et al., 2024).


Small males, often the products of inadequate larval nutrition or high brood densities, are typically associated with diminished aggregation pheromone production. This also consequently lowers their attractiveness to females and their capacity for inducing mass attack, thereby removing mating success and offspring quality (Anderbrant et al., 1985; Pureswaran & Borden, 2003). Dominant males, on the other hand, produce more pheromones and have better chances of acquiring mates in polygynous systems like that of *I. typographus* (Schebeck et al., 2023).

Female beetles also have size-dependent differences in behavior. The larger females are more selective in host and mate choice and respond more strongly to semiochemicals (Müller et al., 2020). As the primary task of constructing maternal galleries relies on females, their host selection choice directly affects larval survival and development. Overall, intraspecific size variation adds yet another aspect of complexity to bark beetle olfactory ecology. Besides impacting signal production and detection, it influences ecological strategies, including competition, reproduction, and host use.

2.8. Olfactory Systems and Sensory Perception in *Ips typographus*

Ips typographus is the most economically important forest pest in Europe, being the primary pest of *P. abies* (Norway spruce). In the past decade alone, it has been responsible for losing over 70 million cubic meters of spruce timber on the continent (Hlásny et al., 2021).

Male beetles are pioneers, using a combination of visual and chemical cues to locate physiologically stressed trees. Once a host is located, the male bores into the bark and releases aggregation pheromones, such as (−)-*cis*-verbenol and 2-methyl-3-buten-2-ol, which attract conspecifics and lead to mass attacks (Franceschi et al., 2005; Raffa et al., 2016). This strategy enables beetles to overcome tree defenses and colonize (Schebeck et al., 2023). The role of the female is also equally crucial. Females construct maternal galleries and inoculate symbiotic ophiostomatoid fungi, which assist in overcoming tree defenses and provide a source of nutrition to the developing larvae (Paynter et al., 1990; Kandasamy et al., 2023).

Figure 9. Basic electrophysiological setup for recording bark beetle OSN responses to semiochemicals using SSR or EAG. Adapted from Schiebe (2012).

Electrophysiological studies have revealed a remarkably varied repertoire of olfactory sensory neurons (OSNs) in *I. typographus*, comprising at least 26 functionally different classes of OSNs (Fig. 9; Table 2 for identified OSN classes in *I. typographus*). They are spatially distributed across the entire antennal club and are selectively tuned to various stimuli. Some neurons respond strongly to oxygenated monoterpenes such as 1,8-cineole and (+)-isopinocamphone, which are linked to host stress and may enhance pheromone signaling. Others are tuned to fungal volatiles or green leaf volatiles (GLVs), supporting host selection and reproductive isolation. Refer to Table 1: OSN classes in *I. typographus* and their response profiles. One of the first electrophysiological studies suggests that *I. typographus* can distinguish between enantiomers of key compounds, supporting high olfactory decision-making (Tömmérås 1985). This capacity likely underpins both mating specificity and host discrimination. Field experiments have further demonstrated that *I. typographus* can spatially distinguish between these compounds, highlighting the beetle's refined olfactory discrimination abilities (Binyameen et al., 2014). Its thoroughly characterized OSN map and behavioral responses offer a standard against which to

compare other *Ips* species and determine both conserved and species-specific features of bark beetle chemoreception.

Table 2: Identified OSN classes in *I. typographus* and their responses to ecologically relevant chemical compounds from different sources (Modified from Raffa et al., 2016 and updated to recent findings)

OSN classes	Biological sources	OSN class (Primary responses)	OSN class (Secondary responses)	References
1.	Beetle	($-$)- <i>cis</i> -Verbenol	($-$)-Verbenone (\pm) camphor	(Andersson et al. 2009; Schiebe et al. 2019)
2.	Beetle	Ipsenol	(\pm) ipsdienol	(Tömmérås 1985)
3.	Beetle	Ipsdienol A and B	(\pm) ipsenol, aminitol	(Andersson et al., 2009)
4.	Beetle	2-methyl-3-buten-2-ol	Aminitol 2-methyl-1-butanol pinocarvone	(Andersson et al., 2009; Kandasamy et al., 2019)
5.	Beetle	Aminitol	(\pm)ipsdienol	(Andersson et al., 2009)
6.	Beetle	Lanierone	-	(Yuvaraj et al., 2024)
7.	Beetle/fungi	($-$)-Verbenone	($-$)- <i>trans</i> -verbenol α -isophorone	(Andersson et al., 2009; Kandasamy et al., 2023)
8.	Beetle/fungi	2-Phenylethanol	2-phenethyl acetate 3-methyl-1-butanol Chavicol Benzyl alcohol	(Kandasamy et al., 2019)
9.	Host	($+$)- α -Pinene	($-$)- β -pinene, ($-$)- <i>cis</i> -verbenol	(Andersson et al., 2009)
10.	Host	Myrcene	Terpinolene, 4-terpineol Phenethyl acetate Isoamyl acetate	(Andersson et al., 2009; Kandasamy et al., 2019; Schiebe et al., 2019)
11.	Host	p-cymene	(\pm) limonene, Δ 3-carene ($+$) borneol Terpinolene γ -terpinene (\pm)-Carvone	(Andersson et al., 2009; Schiebe et al., 2019)

12.	Host	1,8-cineole	(\pm)chalcogran, <i>trans</i> -conophthorin	(Andersson et al., 2009)
13.	Host	Δ 3-carene	<i>trans</i> -conophthorin, (\pm) <i>exo</i> -brevicomin, methyl-2,4-decadienoate	(Andersson et al., 2009)
14.	Host	Pinocarvone	($-$)- β -pinene (\pm) camphor 4-allylanisole (estragole)	(Schiebe et al., 2019)
15.	Host/fungi	Estragole	?	(Raffa et al., 2016)
16.	Host/fungi	($+$)- <i>trans</i> -4-thujanol	Terpine-4-ol 3-octanol	(Kandasamy et al., 2023; Schiebe et al., 2019)
17.	Host/fungi	($+$) isopinocamphone	($+$)-pinocamphone	(Kandasamy et al., 2023)
18.	Non-host	GLV-OHs (green leaf volatile alcohols) 1-Hexanol (<i>E</i>)-2-Hexenol (<i>Z</i>)-3-Hexenol	2-methyl-3-buten-2-ol Hexanal (\pm)-1-Octen-3-ol <i>E2</i> -Hexenol	(Andersson et al., 2009)
19.	Non-host/fungi	3-octanol	($-$)Bornyl acetate (\pm)-1-Octen-3-ol	(Andersson et al., 2009)
20.	Non-host/fungi	1-octen-3-ol	(\pm)chalcogran 3-octanol	(Andersson et al., 2009)
21.	Non-host/fungi	(5 <i>S</i> , 7 <i>S</i>)- <i>trans</i> -conophthorin	(\pm)chalcogran (\pm) <i>exo</i> -brevicomin (<i>R,R</i>)- <i>trans</i> -conophthorin Dehydro-conophthorin	(Andersson et al., 2009; Unelius et al., 2014)
22.	Non-host/fungi	Geranyl acetone	Geranyl acetate	(Kandasamy et al., 2019)
23.	Fungi	3-Methyl-1-butanol	?	?
24.	Fungi	2-Methyl-1-butanol	?	?
25.	Fungi	3-Methyl-1-butyl acetate	?	?
26.	Fungi	Styrene	2-phenylethanol	(Schiebe et al., 2019; Kandasamy et al., 2023)
27.	Fungi	2-Phenethyl acetate	?	?

?: Responses not yet identified/unknown.

2.9. Study species

2.9.1. *Ips duplicatus* (Double-Spined Bark Beetle)

Ips duplicatus is a secondary bark beetle species primarily associated with Norway spruce (*P. abies*), though it occasionally occurs in other coniferous hosts. Originally distributed in areas like Fennoscandia, Siberia, and East Asia, its range has extended southward over time into Central Europe, where it often occurs together with *I. typographus*, particularly in spruce stands at higher elevations (Holuša et al., 2010; Wermelinger et al., 2020).

Unlike *I. typographus*, *I. duplicatus* generally infests the upper sections of affected trees (Schlyter and Anderbrant, 1993) or residual wood debris after harvest. Its subtle infestation patterns, in shaded locations or inner parts of stands, often preclude early detection and confuse management strategies (Davídková et al., 2023). However, it can substantially contribute to spruce mortality under outbreak conditions, especially when present with *I. typographus* in mixed infestations (Kasák & Foit, 2015; Knízek et al., 2019).

Males produce aggregation pheromones with a structure similar to other *Ips* species, and beetles utilize host volatiles of stressed trees (Schlyter et al., 1992; Zhang et al., 2007). The species remains underinvestigated in terms of antennal morphology and OSN diversity. Little has been reported regarding its sensilla organization or functional olfactory tuning, highlighting the primary knowledge gap. Knowledge of *I. duplicatus* olfactory biology is critical for developing species-specific monitoring tools and elucidating olfactory adaptations among sympatric *Ips* species that occupy equivalent ecological niches.

2.9.2. *Ips acuminatus* (Pine Bark Beetle)

The pine bark beetle, *Ips acuminatus*, is a common secondary pest of Scots pine (*Pinus sylvestris*) across European forests (Liška et al., 2021; Papek et al., 2024). While it mostly colonizes stressed or felled trees, climate change, especially heat stress and droughts, has increased the number of susceptible hosts, adding outbreak potential (Wermelinger et al., 2008; Thabeet et al., 2009). This species coexists with other pine bark beetles, including *I. sexdentatus*, *Tomicus piniperda*, and *Tomicus minor*, but exhibits distinct microhabitat preferences.

Ips acuminatus inhabits the upper sections of tree trunks and crowns, while *I. sexdentatus* prefers thicker lower trunks (Pfeffer, 1955; Petterson, 2000). Upon host location, males produce aggregation pheromones composed of *S*(-)-ipsenol, *S*(+)-ipsdienol, and (4*S*)-*cis*-verbenol, which attract both sexes for mass colonization (Bakke, 1978; Francke et al., 1986). Like its relatives, *I. acuminatus* is polygynous (Kirkendall, 1989, 1990) and maintains close associations with blue-stain fungi (*ophiostomatoid fungi*), which may aid in nutrition and host degradation (Francke-Grosmann, 1965; Villari et al., 2012).

Despite its ecological importance, *I. acuminatus* is understudied regarding olfactory morphology and physiology. Its antennal sensilla structure and OSN responses to host or fungal volatiles have not been fully characterized. This gap hinders our understanding of how this species navigates chemically complex pine forests and responds to environmental change. In this thesis, *I. acuminatus* will serve as a comparison to the well-studied *I. typographus* and the less characterized *I. cembrae* to uncover patterns of olfactory adaptation across host-specialized bark beetles.

2.9.3. *Ips cembrae* (Larch Bark Beetle)

The larch bark beetle, *Ips cembrae*, usually infests European larch (*Larix decidua*) and Japanese larch (*L. kaempferi*); it can also attack Norway spruce (Postner, 1974). *Ips cembrae* is generally described as a secondary pest because it infests weakened and felled trees, but when conditions are suitable, it can infest healthy larches as well (Grodzki, 2008; EFSA, 2017). This bark beetle species often colonizes the entire trunk, including the canopy, with widespread co-occurrence with *Pityogenes*, *Pityophthorus*, and *Cryphalus* species (Pfeffer, 1955; Postner, 1974). Unlike *I. acuminatus*, which limits colonization to the crown part of the tree, *I. cembrae* utilizes a larger portion of its host and is more destructive during outbreaks. The aggregation pheromone of *I. cembrae* consists of a mix of *S*(-)-ipsenol, *S*(+)-ipsdienol, and 3-methyl-3-buten-1-ol that attracts both sexes to weakened hosts (Stoakley et al., 1978; Kohnle et al., 1988). This species is also known to vector the pathogenic fungus *Endoconioiphora laricola*, which could accelerate host decline (Redfern et al., 1987; Kiristis, 2004; Jankowiak et al., 2007).

Studying the olfactory system of *I. cembrae* is ecologically relevant, but very little is known about this species. The antennal sensillum types and their OSN responses have

not been reported, making *I. cembrae* one of the least studied Ips species in chemosensory biology. Given the increasing importance of this species in larch forest dynamics, this species presents a valuable model for studying the divergence and specificity of olfactory coding in bark beetles (Table 3 for details on selected species).

Table 3: *Ips* species aggregation pheromone blends compositions including enantiomeric ratio of components and host distribution. From Ramakrishnan et al., unpublished manuscript.

Species	Pheromone composition	Enantiomeric ratio of pheromone components	Host/ Distribution region
<i>Ips duplicatus</i> (C.R. Sahlberg, 1836)	ipsdienol: <i>E</i> -myrcenol 5:1:0.01	ipsdienol (<i>S</i>)-(+)-:(<i>R</i>)-(-)- 50:50	<i>Picea abies</i> (L.) H. <i>Karst.</i> Central Europe
<i>Ips typographus</i> (Linnaeus, 1758)	2-methyl-3-buten-2-ol <i>cis</i> -verbenol ipsdienol 9:1:0.1	ipsdienol (<i>S</i>)-(+):(<i>R</i>)-(-)- 5:95 (<i>S</i>)-(-)- <i>cis</i> -verbenol 100	<i>Picea abies</i> (L.) H. <i>Karst.</i> Europe and Asia
<i>Ips acuminatus</i> (Gyllenhal, 1827)	<i>cis</i> -verbenol:ipsdienol:ipsenol 2:5:3	ipsdienol (<i>S</i>)-(+)-:(<i>R</i>)-(-)- 95:5	<i>Pinus</i> spp. (<i>Pinus nigra</i> J.F. Arnold; <i>Pinus sylvestris</i> L.), Europe and Asia
<i>Ips cembrae</i> (Heer, 1836)	ipsenol:ipsdienol: 3-methyl-3-buten-1-ol ~ 68:28:4	ipsenol (<i>S</i>)-(-)-:(<i>R</i>)-(+)- 99:1 ipsdienol (<i>S</i>)-(+)-:(<i>R</i>)-(-)- 96:4	<i>Larix</i> spp. (<i>L. decidua</i> Mill.; <i>L. kaempferi</i> (Lamb.), <i>Picea abies</i> (Karst.) Europe

2.9.4. Current Research Gaps

While there has been substantial investigation regarding *I. typographus*, there are still critical knowledge gaps for the other *Ips* species. The antennal morphology and olfactory sensory neuron profiles for *I. duplicatus*, *I. acuminatus*, and *I. cembrae* are understudied, limiting our knowledge of interspecific sensory adaptations. The role of intraspecific variability, such as body size, on olfactory perception is also largely unstudied. These knowledge gaps limit our ability to develop species-specific monitoring techniques and also limit potential ecological comparisons. This thesis aims to address these issues through a comparative study that includes morphology, electrophysiology, and behaviour across three *Ips* species that feed on conifers.

2.9.5. Study species

Our study mainly focused on four species of bark beetles, *I. typographus*, *I. duplicatus*, *I. acuminatus*, and *I. cembrae*, which are key conifer pests in European forests.

Ips typographus

Ips duplicatus

Ips acuminatus

Ips cembrae

Chapter 3: Summarized workflow of methodology

3.1. Study Species (Collection, maintenance, and rearing)

For Paper II, *I. duplicatus* were collected from infested *Picea abies* logs near Kostelec nad Černými lesy (49°59'39", 14°51'33", Czech Republic), maintained in rearing chambers at the Czech University of Life Sciences, Prague until beetles developed. After debarking, adult beetles were collected and stored at 4°C. Five males and five females were selected for SEM.

For Paper III, *I. acuminatus* and *I. cembrae* were collected from forests near Rouchovany (Czech Republic) in late spring 2024. Beetles were identified in the field, sexed in the laboratory (Pfeffer, 1955; Zhang & Niemeyer, 1992), and reared in butterfly cages under controlled conditions until development (25°C Day, 19°C night, 60% RH, 16/8 light/dark). Five males and five females from each species were selected for SEM.

For Paper IV, *I. typographus* adults were obtained from ethanol-stored specimens and from newly emerged beetles reared under controlled conditions. For body size measurements, 50 undamaged beetles per replicate were randomly selected, dried at 25°C for two hours, sexed, and measured for body length. A total of eight groups (each with 50 beetles) were selected from ethanol-stored individuals captured using pheromone alone or pheromone combined with either 1,8-cineole or (+)-isopinocamphene during field experiments conducted in 2019 and 2021. For antennal club measurements and electroantennography (EAG), only females of the F0 generation, aged approximately three days, were used. These individuals emerged from naturally infested *Picea abies* logs ($n = 12$; $\sim 50 \times 28$ cm) collected in Kostelec nad Černými lesy between June and July 2024. Logs were placed in fine-mesh emergence cages monitored daily, and freshly emerged beetles were collected by hand. Only undamaged females were selected for further analyses.

For Paper V, *I. acuminatus* and *I. cembrae* were again collected in 2024 from pine and larch hosts, respectively, in Rouchovany. Beetles were reared under identical lab conditions at CULS. A separate *I. acuminatus* population from Schönberg am Kamp (Austria) was reared at BOKU University and shipped to Lund University for SSR recordings. Adults were stored at 4°C and tested across a standard odor panel. Beetles from both locations were used for single sensillum recordings (SSR) and dose-dependent

response experiments. Each individual was screened across ten odorant stimuli during SSR, while separate individuals were used for each dose-response trial.

3.2. Morphological Studies

3.2.1. Scanning electron microscopy (SEM) analyses and sensilla categorization (Paper II, III)

Scanning electron microscopy (SEM) was used to investigate the antennal morphology and sensilla structures of beetles.

Beetles were cleaned with an air blower to remove surface dirt. Antennae were dissected under an optical microscope (NIKON, Japan), fixed in 2.5% glutaraldehyde for 24 hours, post-fixed in 2% OsO₄ for 4 hours, and washed twice with distilled water. The antennae were then dehydrated through an ethanol series (35%, 50%, 70%, 96%, 100%) for 10 minutes at each step, and dried using a critical point dryer (Bal-Tec CPD 030). The samples were sputter-coated with gold (thickness: 20 nm) using a Bal-Tec SCD 050 ion sputter coater and observed under a JEOL JSM-IT200 scanning electron microscope and JEOL IT800 high-resolution SEM at 3, 5, 10, and 15 kV with a working distance of 3-5 mm at the University of Karlova, Prague. Images were obtained using a JEOL SU3500 scanning electron microscope at 5 kV at the FFWS Microscopy Facility, CZU Prague. The antennae and sensilla types, their numbers, and distribution were examined on five antennae from both sexes.

The general antennal morphology of *I. duplicatus*, *I. cembrae* and *I. acuminatus* was described as per Hulcr et al. (2015). Sensilla classification was based on external morphological criteria such as size, shape, presence or absence of pores (Schneider, 1964), and attachment to the cuticle (flexible vs. inflexible socket) (Nowińska & Brożek, 2017). Further classification followed the guidelines of Chen et al. (2010), Shewale et al. (2023), and Schneider (1964).

3.2.2. Morphometric analysis (Paper IV)

The total body length of adult female *I. typographus* was measured from the pronotum to the distal end of the elytra. Females ranged from 4.2 to 5.3 mm in size, with two categories established for further analysis:

1. Large females: ≥ 4.80 mm ($n = 30$)

2. Small females: ≤ 4.70 mm ($n = 30$)

Excised antennae were mounted on borosilicate glass slides for antennal club measurements and imaged using a Nikon DFK 33UX250 camera attached to a Nikon SMZ800N stereomicroscope. Antennal club length was measured from the apical end (ventral view) to the distal tip of the final antennomere, and width was determined at the midpoint of the club (ventral view). Measurements were conducted using IC Capture - Image Acquisition 4.0 software. For each individual, the average value from both the left and right antennae was calculated and recorded in micrometres.

3.3. Electrophysiological studies

3.3.1. Chemical stimuli (Papers IV & V)

For Paper IV, electroantennography (EAG) experiments were conducted using an aggregation pheromone mix of 2-methyl-3-buten-2-ol (MB) and *cis*-verbenol (cV) in a 10:1 ratio, along with individual compounds such as 1,8-cineole and (+)-isopinocamphone. All chemicals were procured from Sigma Aldrich, except (+)-isopinocamphone, which was a gift from Prof. Unelius from Linnaeus University, Sweden. The compounds were presented in seven doses ranging from 0.001 μ g to 1000 μ g in decadic concentrations. For odor cartridge preparation, 10 μ L of each odor solution, diluted in hexane, was applied to a 1×1 cm strip of Whatman No. 1 filter paper. The solvent was allowed to evaporate for 1 minute before the strip was placed into a glass Pasteur pipette, which served as the odor delivery cartridge for stimulation.

For Paper V, a broader odor panel was used for screening experiments using single sensillum recordings, including 57 ecologically relevant compounds such as beetle pheromones, host and non-host volatiles, and microbial-related compounds. These compounds were selected based on previous studies of *Ips* beetles, including *I. typographus*. Stock odor solutions were prepared at 10 μ g/ μ L in paraffin oil and diluted as needed. A 10 μ L volume of each solution was applied to filter paper inside glass Pasteur pipettes. Control stimuli consisted of paraffin oil alone. Pipettes were stored at -18°C between experiments and replaced regularly to prevent odor depletion. The essential oils of *P. sylvestris* and *L. decidua* were acquired from Oshadhi Ltd. (United Kingdom) for the GC-EAD studies. For use, the stock odor solutions (10 μ g/ μ L) were

made in hexane and then further diluted. GC was directly injected with 1 μ L of the solution for GC-EAD studies.

3.3.2. Electroantennographic detection (EAD) Experiments (Paper IV)

In Paper IV, electrophysiological analyses were performed on F0 female *Ips typographus* beetles, selected for their representative status in wild populations from natural spruce forests. Females were classified into two size categories: large (≥ 4.80 mm) and small (≤ 4.70 mm). The beetles were immobilized at 4 °C for 5 minutes before dissection.

Electroantennograms (EAGs) were recorded by excising the head and connecting two capillary electrodes filled with Ringer's solution: one electrode was placed on the antennal club, and the other served as a reference inserted into the excised head. The EAG probe was connected to a pre-amplifier, and a constant stream of humidified air (200 mL/min) was directed over the antenna. Odor cartridges were used to deliver the stimuli, and responses were recorded using EAG Pro software (Syntech, IDAC-4). Control and odor stimuli were presented sequentially with a 1-minute interval between stimulations. The EAG probe was configured with a 0–32 Hz filter and a sampling rate of 100 Hz. Antennal responses were recorded as downward deflections in millivolts (mV), with response amplitudes representing antennal peak depolarizations. Ten biological replicates were conducted for each stimulus, and mean response amplitudes were calculated to assess antennal sensitivity.

3.3.3. Gas chromatography coupled with electroantennographic detection (GC-EAD) Experiments (Paper V)

For Paper V, Gas chromatography was carried out using an Agilent 7890B GC system with an HP-5 column (Agilent Technologies, Inc.), measuring 30 m in length, 0.32 mm in diameter, and with a 0.25 μ m film thickness. GC setup was combined with standard EAD setup (Syntech, IDAC-4). For the GC-EAD analysis, beetle heads with antennae were mounted between glass microelectrodes filled with Ringer's solution, following the procedure described by Olsson and Hansson (2013). Antennal signals were captured using a Universal probe (Syntech) and processed through the IDAC 2 data acquisition system (Syntech). Data were analyzed using GcEad software version 4.6.1 (Syntech). A minimum of five replicates per sample was conducted. A volatile compound was

considered electrophysiologically active if at least two antennal responses were detected in *Ips acuminatus* and *I. cembrae*.

The column was split, with 5 m directed toward the flame ionization detector (FID) and 1 m toward the insect antenna. At the end of the column, effluents were mixed with humidified air flowing at 2 L/min before being delivered to the antenna. Samples were introduced in splitless mode, using helium as the carrier gas at a constant flow rate of 3 mL/min. The GC oven was programmed to start at 40 °C (held for 1 minute), ramping at 10 °C/min to 100 °C (held for 0.5 minutes), then at 20 °C/min to 150 °C, and finally at 40 °C/min to a final temperature of 300 °C, held for 3 minutes. The FID temperature was maintained at 300 °C.

3.3.4. Single-Sensillum Recordings (SSR) (Paper V)

To characterize the olfactory sensory neuron (OSN) response profiles in *I. acuminatus* and *I. cembrae*, single-sensillum recordings were performed on live adult beetles using established electrophysiological protocols. Individual insects were immobilized in modified pipette tips, exposing the head and antennae. One antenna was fixed onto a microscope slide using dental wax to allow stable electrode access and optimal light transmission. Under a light microscope at 500 \times magnification (NIKON), recordings were carried out using electrolytically sharpened tungsten microelectrodes.

The reference electrode was inserted into the pronotum, and the recording electrode was precisely positioned at the base of an olfactory sensillum using a micromanipulator. Neural signals were amplified and digitized using an IDAC4 system (Syntech) and visualized in real time with AutoSpike software. A continuous flow of humidified, charcoal-filtered air (1.2 L/min) was directed toward the antenna, and odor stimuli were introduced as brief (0.5 s) pulses via a stimulus controller, mixed into the airstream at 0.3 L/min. Odor pipettes used in the screening phase were reused under controlled conditions, while dose-response pipettes were freshly prepared daily to maintain stimulus integrity. Screening was conducted with a high-dose application (10 μ g) to identify OSN classes based on differential spike activity. Compounds were stimulated in randomized order, and sufficient time was allowed between stimulations to avoid adaptation. Selected OSNs from each species (five classes in *I. acuminatus*, three in *I. cembrae*) were subsequently subjected to dose-response assays using increasing concentrations (10 pg

to 10 µg). This approach allowed precise assessment of OSN sensitivity and tuning breadth for key odorant stimuli.

3.4. Field experiments and pheromone traps

Field experiments for **Paper IV** were conducted in 2019 and 2022 to investigate the behavioral responses of *I. typographus* to semiochemical treatments under natural conditions. Both studies were carried out in a mature (~100-year-old) Norway spruce forest at the Czech University of Life Sciences research site in Kostelec nad Černými lesy, Czech Republic (600 m a.s.l.), a natural habitat of the target species. The 2019 experiment took place at coordinates 49°56'02"N, 14°52'21"E, and the 2022 experiment at 49°55'57"N, 14°55'13"E. Each trial spanned from early June to late July, coinciding with peak beetle flight activity.

Traps were deployed approximately 30 meters inside a two-year-old forest clearing and positioned 1.5 meters above ground on wooden poles, with a minimum spacing of 15 meters to reduce inter-trap interference. In 2019, seven cross-vane Ecotrap (Fytofarm, Slovak Republic) were used in a Latin square design. Six traps were baited with three concentration levels (low, medium, high) of either 1,8-cineole or (+)-isopinocamphone, each combined with a standard pheromone blend; one trap with pheromone only served as a control (See **Paper IV**). Trap positions were rotated seven times to control for location effects.

In 2022, a randomized complete block design was employed separately for the two compounds. Each block included four traps: three baited with varying doses of the test compound plus pheromone, and one control trap with pheromone alone. Trap positions within each block were rotated four times, and each block was replicated twice, yielding eight replicates per treatment.

Captured beetles were preserved in ethanol for post-collection analyses, including species confirmation, sex determination, and morphometric measurements.

3.5. Data interpretation and statistical analysis

For Paper II,

Morphometric measurements of antennal sensilla were performed using ImageJ v1.53q (Schneider et al., 2012). The software enabled calibration to a defined scale, allowing precise quantification of sensilla length and basal width ($n = 10$ per sensilla type per sex). Data were analyzed using Bonferroni multiple comparison tests in GraphPad Prism v9.0 to assess sex-based differences in sensilla dimensions and abundance.

In Paper IV,

Normality and variance were tested using Shapiro–Wilk and Levene’s tests. ANOVA with Tukey’s post hoc tests analyzed year-wise treatment effects. Chi-square tests (Yates’ correction) compared female proportions. Wilcoxon signed-rank tests were used for paired morphometric comparisons.

Standardized major axis (SMA) regression (R package “smatr”) was applied to log-transformed antennal data to test allometric relationships (Jolicoeur, 1990). EAG dose-response differences between size classes were tested using Wilcoxon tests. All analyses used $p = 0.05$.

For Paper V,

Neuronal activity was analyzed offline using AutoSpike v3.9 by measuring spike rates during the initial 0.5 seconds of odorant exposure, from which the baseline (pre-stimulus) activity was subtracted. Any activity recorded in response to the paraffin oil control was also deducted. At the screening concentration, responses below 20 Hz were deemed biologically insignificant. Excitatory responses were classified into intermediate (40–60 Hz) and strong (>80 Hz) categories. Recordings of insufficient quality or neurons that were not fully assessed were omitted from further analysis. Data visualizations, including graphs and heatmaps, were produced with GraphPad Prism version 10.1.2 (GraphPad Software, San Diego, CA, USA). The Venn diagram was generated using InteractiVenn (Heberle et al., 2015).

Chapter 4: Results

Subchapter 4.1: Review of aggregation pheromones and olfactory mechanisms in *Ips* bark beetles (Paper I)

Article type and status:

Review article (*Submitted to Current Forestry Reports (under revision)*)

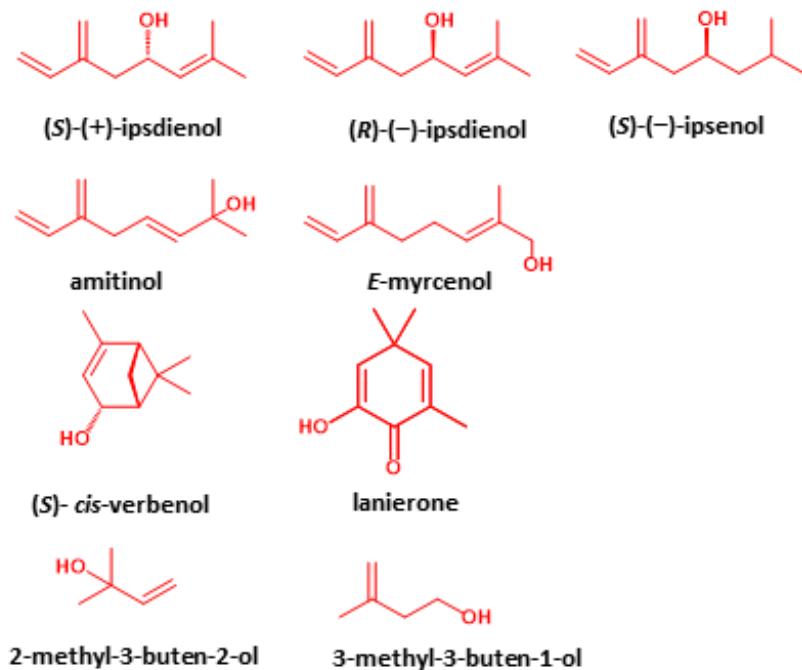
Based on: Ramakrishnan, R.†, **Shewale, M.K.**†, Strádal, J.†, Hani, U., Gershenzon, J., Andersson, M.N., Frühbrodt, T., Doležal, P., Jirošová, A. (2025). Aggregation Pheromones in the Bark Beetle Genus *Ips*: Advances in Biosynthesis, Sensory Perception, and Forest Management Applications.

† *Equal contribution as first author*

My contribution: Compiled literature on olfactory perception in *Ips* species, interpreted pheromone composition data, prepared figures and tables, and authored sections on antennal morphology and pheromone-based management.

Article Summary

This review provides an in-depth synthesis of the current understanding of aggregation pheromones in *Ips* bark beetles. It emphasizes their chemistry, biosynthetic origins, olfactory detection, and application in forest pest control. It includes key pest species such as *Ips typographus*, *I. duplicatus*, and *I. cembrae*, alongside others of ecological and economic relevance. Although this thesis did not directly investigate pheromone biosynthesis, this section reviews essential pathways relevant for interpreting species-specific blends studied in Paper V.


The review outlines the molecular structures of pheromone compounds, their enantiomeric specificity, and the biochemical pathways involved in their production. Furthermore, it discusses how olfactory sensory neurons (OSNs) detect these semiochemicals and their use in integrated pest management. The article also highlights several knowledge gaps and suggests directions for future research to improve species-specific monitoring and control strategies. This review directly supports the primary aims of the dissertation by providing the theoretical framework for understanding species-specific olfactory adaptations in conifer-feeding *Ips* bark beetles. It bridges the literature

analysis in Chapter 2 and the experimental findings presented in Chapters 4.2 to 4.5, guiding both the species selection and methodological choices in this thesis. Moreover, the insights gathered here inform future research on semiochemical-based management and underscore the ecological complexity of pheromone-mediated behaviors in bark beetles.

4.1.1. Chemical composition of aggregation pheromones in *Ips* species

Key message: *Ips* species use species-specific blends of structurally similar pheromones, with enantiomeric variation ensuring clear communication and reproductive isolation.

In *Ips* bark beetles, the aggregation pheromone blends consist predominantly of a few structurally related compounds. However, they exhibit species-specificity through subtle pheromone blend ratios and enantiomeric composition variations. The most common pheromone components include ipsenol and ipsdienol, which are produced exclusively within the genus, alongside compounds such as amitinol, *E*-myrcenol, lanierone, and hemiterpenes like 2-methyl-3-buten-2-ol. Additionally, monoterpenoid alcohols such as *cis*-verbenol (a derivative of host compound α -pinene) also frequently contribute to aggregation pheromone blends.

Figure 10: Structures of pheromone compounds from *Ips* species. Adapted from Ramakrishnan et al. unpublished manuscript.

Despite their structural similarities (Fig. 10), these compounds' specific combinations and enantiomeric configurations contribute to distinct pheromone blends for each species, giving them a distinct olfactory signature. These variations support reproductive isolation and reduce cross-attraction in sympatric environments where multiple *Ips* species co-occur. A comparative overview of pheromone compositions for nine *Ips* species is provided in Table 4 (also more details in section 2.5).

Table 4: Aggregation pheromone blends compositions including enantiomeric ratio of components in selected *Ips* species. From Ramakrishnan et al., unpublished manuscript.

Species	Composition of pheromone	Enantiomeric ratio of pheromone components
<i>Ips amitinus</i> (Eickhoff, 1872)	ipsdienol:ipsenol:amitinol 4:2:4	ipsdienol (S)-(+)-:(R) -(-) 5:95
<i>Ips duplicatus</i> (C.R. Sahlberg, 1836)	ipsdienol: <i>E</i> -myrcenol 5:1:0,01	ipsdienol (S)-(+)-:(R) -(-) 50:50
<i>Ips hauseri</i> (Reitter, 1895)	ipsenol: <i>cis</i> -verbenol 95:5	(S)-(-)-ipsenol 100 (S)-(-)- <i>cis</i> -verbenol 100
<i>Ips nitidus</i> (Eggers, 1933)	2- methyl-3-buten-2-ol: ipsdienol: (S)- (-)- <i>cis</i> -verbenol 7:2:1	ipsdienol (S)-(+)-:(R) -(-) 74:26
<i>Ips perturbatus</i> (Eichhoff, 1869)	ipsdienol: <i>cis</i> -verbenol: ipsenol 1:0,8:1	ipsenol (S)-(-)-:(R) -(+)- 99:1 ipsdienol (S)-(+)-:(R) -(-) 90:10
<i>Ips shangrila</i> (Cognato & Sun, 2007)	ipsenol:ipsdienol: <i>cis</i> -verbenol 1:5:4	ipsdienol (S)-(+)-:(R) -(-) 99:1 (S)-(-)- <i>cis</i> -verbenol 100
<i>Ips typographus</i> (Linnaeus, 1758)	2-methyl-3-buten-2-ol <i>cis</i> -verbenol ipsdienol 9:1:0,1	ipsdienol (S)-(+)::(R) -(-) 5:95 (S)-(-)- <i>cis</i> -verbenol 100
<i>Ips acuminatus</i> (Gyllenhal, 1827)	<i>cis</i> -verbenol:ipsdienol:ipsenol 2:5:3	ipsdienol (S)-(+)-:(R) -(-) 95:5
<i>Ips confusus</i> (LeConte, 1876)	ipsenol:ipsdienol 9:1	ipsenol (S)-(-)-:(R) -(+)- 99:1 ipsdienol (S)-(+)-:(R) -(-) 95:5
<i>Ips grandicollis</i> (Eichhoff, 1868)	ipsenol	ipsenol (S)-(-)-:(R) -(+)- 99:1
<i>Ips lecontei</i> (Swaine, 1924)	ipsdienol:ipsenol 2:1	Ipsdienol (S)-(+)-:(R) -(-) 95:5 ipsenol (S)-(-)-:(R) -(+)- 99:1

<i>Ips paraconfusus</i> (Lanier, 1970)	ipsenol:ipsdienol: <i>cis</i> -verbenol 1:1:0,1	(<i>S</i>)-(-)- <i>cis</i> -verbenol 100 ipsenol (<i>S</i>)-(-)-:(<i>R</i>) -(+)- 99:1 ipsdienol (<i>S</i>)-(+)-:(<i>R</i>) -(-)- 90:10
<i>Ips pini</i> (Say, 1826)	ipsdienol: lanierone 99:1	Ipsdienol (<i>S</i>)-(+)-:(<i>R</i>) -(-)- 35:65 ipsdienol† (<i>S</i>)-(+)-:(<i>R</i>) -(-)- 95:5
<i>Ips sexdentatus</i> (Börner, 1776)	ipsdienol:ipsenol 1:0,5	Ipsdienol (<i>S</i>)-(+)-:(<i>R</i>) -(-)- 50:50
<i>Ips cembrae</i> (Heer, 1836)	ipsenol:ipsdienol: 3-methyl-3-buten-1-ol ~ 68:28:4	ipsenol (<i>S</i>)-(-)-:(<i>R</i>) -(+)- 99:1 ipsdienol (<i>S</i>)-(+)-:(<i>R</i>) -(-)- 96:4
<i>Ips subelongatus</i> (Motschulsky, 1860)	ipsenol: ipsdienol:3-methyl-3- buten-1-ol 3:1	ipsenol (<i>S</i>)-(-)- 100 ipsdienol (<i>S</i>)-(+)-:(<i>R</i>) -(-)- 96:4
<i>Ips avulsus</i> (Eichhoff, 1868)	ipsdienol:lanierone 10:1 [91]	Ipsdienol (<i>S</i>)-(+)-:(<i>R</i>) -(-)- 96:4 (Texas) Ipsdienol (<i>S</i>)-(+)-:(<i>R</i>) -(-)- 75:25 (Alabama)

†Ratio varies within eastern and western populations

4.1.2. Pheromone biosynthesis and regulatory mechanisms

Key message: Pheromone production is hormonally regulated and involves both beetle enzymes and microbial symbionts, reflecting a complex biosynthetic network.

This section discusses the biochemical and molecular pathways through which *Ips* beetles produce aggregation pheromones. Two primary biosynthetic origins are described as follows: 1) *de novo* biosynthesis through the mevalonate pathway, and 2) from host compounds, like α -pinene. The former occurs mainly in the gut and fat body, with hormonal regulation through juvenile hormone III and several enzymes.

Hormonal regulation of this pathway permits species- and sex-specific pheromone output. In most *Ips* species, the site of pheromone production is limited to the gut where biosynthetic activity is initiated when the insect feeds. At the same time, juvenile hormone III (JH III) appears to be the primary regulator of pheromone synthesis and has a major role in triggering pheromone biosynthesis, metabolism, and release.

Interestingly, some of the pheromone compounds, such as (*S*)-*cis*-verbenol, which is part of several species' pheromone signaling systems, is not produced *de novo*, but is instead formed through the hydroxylation of α -pinene. This is done by cytochrome P450 monooxygenases (CYP450s), indicating that pheromone production may have developed as an evolutionary extension of host terpenes detoxification (Figure 10, see earlier section 4.1.1).

Beyond endogenous biosynthesis, there is also the potential for both gut-resident microbes and exosymbiotic fungal symbionts to influence or contribute to the pheromone profile produced by bark beetles. For example, antibiotic inhibition studies have suggested that gut microbiota can convert host compounds into active pheromones. Examples of fungal associates, *Grosmannia penicillata* and *Endoconidiophora polonica*, were shown to produce compounds such as 2-methyl-3-buten-2-ol and brevicomin from wood substrates (i.e., implicating fungi in semiochemical signaling).

4.1.3. Olfactory detection and sensory specialization in *Ips*

Key message: *Ips* bark beetles detect pheromones using finely tuned sensory systems that enable species-specific mate and host recognition under complex forest environments.

This subsection summarizes advances in our understanding of how *Ips* beetles detect pheromone signals using specialized olfactory sensory neurons (OSNs) located in antennal sensilla. While antennal morphology in Coleoptera has generally received less focused research attention than in Lepidoptera, recent investigations of *I. typographus* have greatly advanced our understanding of beetle chemosensation. Multiple classes of OSNs have been identified, with responses selective to particular key pheromone components, including their enantiomers. These OSNs are organized into two functionally distinct classes: some are narrowly tuned to specific pheromone compounds, and the other class is much more broadly tuned. This OSN function reflects the ecological needs and diversity of the semiochemicals of the species.

Recent molecular and electrophysiological data suggest that detection occurs through a conserved set of similar odorant receptors across *Ips* species. These may partly represent evolutionary balance and also species-level adaptation. The results presented here complement the literature reviewed in Chapter 2 (specifically Section 2.6 and Fig. 6),

which contribute toward the ecological role of antennal coding in the expression of aggregation behavior and patterns of reproductive isolation.

4.1.4. Pheromone-based management approaches

Key message: Semiochemical tools offer targeted and eco-friendly alternatives, but optimizing their effectiveness requires species-specific strategies.

Aggregation pheromones have been widely employed in *Ips* bark beetle management, particularly for population monitoring and outbreak control. Some common methods include mass trapping and push–pull systems, and there are several options for using anti-aggregation compounds, such as verbenone, but effectiveness varies because of beetle pressure, design of the trap, release rates of the lure, and forest condition. In reviewing this chapter, we have focused on best practices in semiochemical use, and it is critical that there is increased species specificity, particularly in forestry situations where there are multiple co-occurring *Ips* species. Future directions that show promise include making region-specific blends, using volatiles of the host or fungus to increase lure attractiveness, and exploring pheromone disruption as a novel pest control strategy (section 2.4).

Subchapter 4.2: Antennal morphology is highly conserved across *Ips* Species, with minor differences in sensilla frequency and distribution (Paper II)

Article type and status:

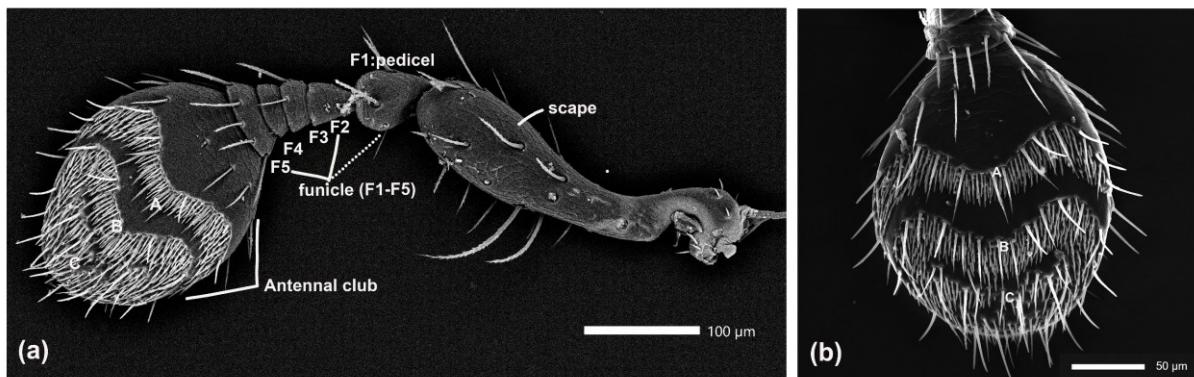
Original research article (Published in *Microscopy Research and Technique*)

Based on: Shewale et al., 2023 – *Microscopy Research and Technique*:

Shewale, M. K., Nebesářová, J., Grosse-Wilde, E., & Kalinová, B. (2023). Microscopic morphology and distribution of the antennal sensilla in the double-spined bark beetle, *Ips duplicatus* (Coleoptera: Curculionidae). *Microscopy Research and Technique*, 86(12), 1610–1625. <https://doi.org/10.1002/jemt.24397>

My contribution: Conceptualization, data curation, investigation, funding acquisition, methodology, formal analysis, data visualization, original drafting, and editing.

Article Summary


This study directly addresses the second objective of the thesis, which was to examine antennal morphology and sensilla distribution across important *Ips* species, as the first detailed description of the antennal morphology of *Ips duplicatus*. As an important pest of *Picea abies* in Central Europe, *I. duplicatus* acts as comparison species to consider the conservation and divergence of olfactory sensilla at the genus-level.

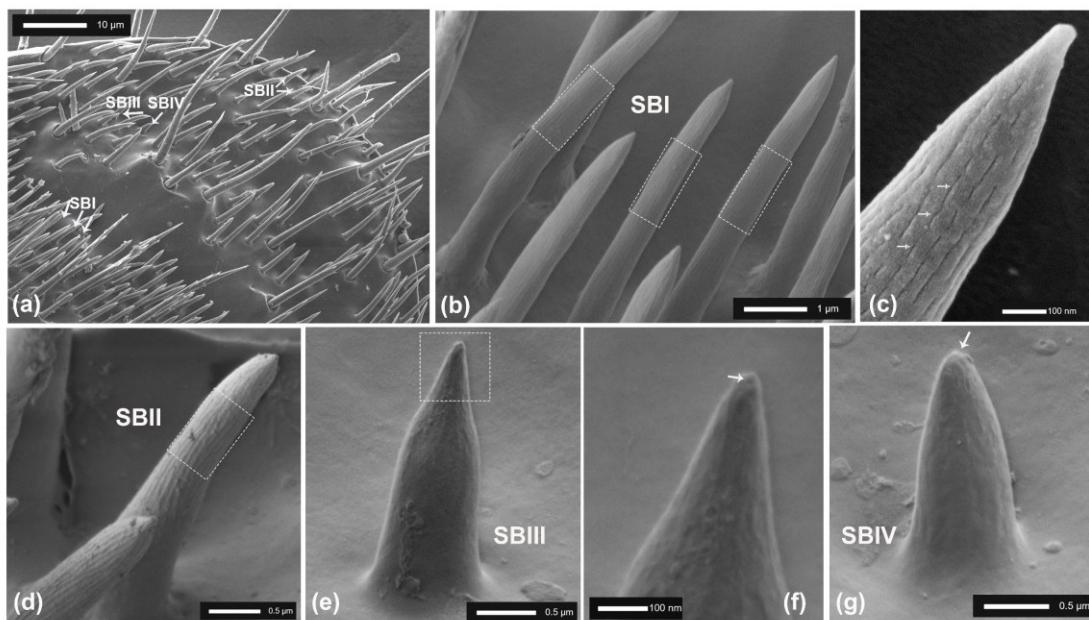
Using scanning electron microscopy (SEM), the five major sensilla chaetica, basiconica, trichodea, coeloconica, and Böhm's sensilla were characterized on the antennal clubs in both sexes. The five types of sensilla occurred across the three sensory bands (A–C) found across all *Ips* species. *Ips duplicatus* also possesses a richer diversity with more subtypes of observed sensilla, with some subtle patterns of sexual dimorphism of sensilla distributions. These results provide further support for the hypothesis that general olfactory architecture is largely conserved across *Ips* species with slight variations that show elements of the respective ecological niches. These results also provide a morpho-functional framework for a future study investigating olfactory detection in *I. duplicatus* and its close relatives, as well as the structural framework for comparative analysis in subchapter 4.3 with *I. acuminatus* and *I. cembrae*.

4.2.1. General antennal morphology of *Ips duplicatus*

Key message: The antennal structure of *I. duplicatus* follows the conserved *Ips* species morphological pattern yet displays subtle differences in sensilla density and organization.

The antennae of *I. duplicatus* are made up of seven segments: the scape (proximal), the five funicular segments (the pedicel is represented by F1 and is followed by F2 - F5), and club-shaped terminal segment (Fig. 11a). The five funicular segments are bowl-shaped and flexibly attached to one another, whose depth gradually increases while the diameter decreases toward the distal end of the antenna. The pedicel (F1) is the largest segment with slight lateral curvature, opposite in both antennae.

Figure 11. General antennal morphology of *Ips duplicatus* (female). (a) Ventral view showing scape, pedicel (F1), funicle (F2–F5), and club. (b) Distinct sensory bands (A, B, C) on the ventral side of the antennal club. Shewale et al., 2023


The club, along with the anterior face, are oval in shape (Fig. 11b), slightly convex on each side, and covered with scale-like structures, particularly prominent on the scape, funicle and proximal club surface. Most of the olfactory sensilla occur on the ventral side of the antennal club concentrated on the distal three-fourths of the club's surface (Figure 11b). These sensilla are organized in three distinct sensory bands (A, B, and C) which are previously described in other species of *Ips*, including *I. typographus*, *I. pini*. Bands A and B were arranged in a wave pattern (stripes) with a plain cuticle in between these bands; this was used to indicate band C because characteristics in the distal area were partly fused to band B. Surprisingly, oval-shaped surface pore (SP) structures were present over the dorsal and ventral surfaces of the club and other segments, distributed among sensilla.

Ips duplicatus has a higher number of sensilla basiconica, coeloconica, and trichodea compared to other *Ips* species. Additionally, *I. duplicatus* has two types of sensilla coeloconica, a feature not found in the other examined *Ips* species. It is impossible to determine whether these distinctions reflect true species-specific adaptations or simply methodological differences; however, this could represent ecological or behavioral specializations unique to *I. duplicatus*.

4.2.2. Sensilla types and distribution on the antennal surface

Key message: *Ips duplicatus* antennae exhibit a rich diversity of sensilla subtypes, reflecting a complex sensory landscape that likely supports chemical detection.

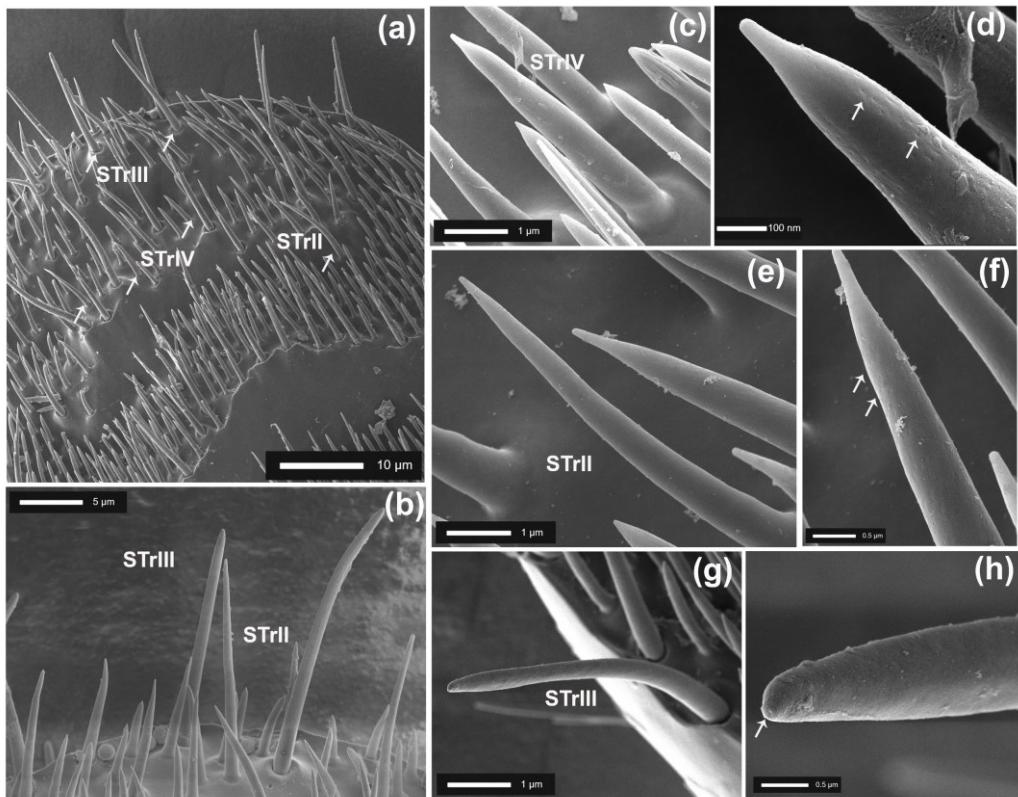

Five main sensilla categories were identified on the antennal club of *I. duplicatus*, including chaetica, basiconica, trichodea, coeloconica, and Böhm's sensilla, which had further subtypes. These sensilla appeared primarily on the ventral surface and were arranged into three sensory bands. Some sensilla (e.g. the sensilla chaetica and sensilla trichodea) were also located on the dorsal areas. Sensilla chaetica were long, aporous, and branched and likely act as mechanosensory or gustatory sensilla members. There were two identifiable subtypes based on their length and surface texture (SchI and SchII), along with their branching pattern (Table 5).

Figure 12. Sensilla basiconica subtypes on *Ips duplicatus* antennae: (a) Clustered distribution on band C; (b–g) Morphological details of SBII–SBIV showing differences in shape, wall texture, and pore structures. Shewale et al., 2023.

Basiconica represented the most abundant group of antennal sensilla and was composed of four morphologically distinct porous subtypes, mainly SBI, SBII, SBIII, and SBIV (Fig. 12). The presence of multiple pores across their cuticular walls strongly indicates an olfactory role, likely involved in detecting a wide range of odor molecules. These subtypes varied slightly in size and distribution but shared the common feature of being structurally adapted for chemoreception.

Sensilla trichodea were classified into three subtypes, mainly STrII, STrIII, and STrIV (Fig. 13), based on differences in socket structure and the presence or absence of wall pores. These morphological distinctions suggest functional specialization, with some subtypes likely acting as generalist olfactory sensilla capable of detecting broad odor profiles, while others may serve more specialized roles in recognizing specific pheromones or environmental cues.

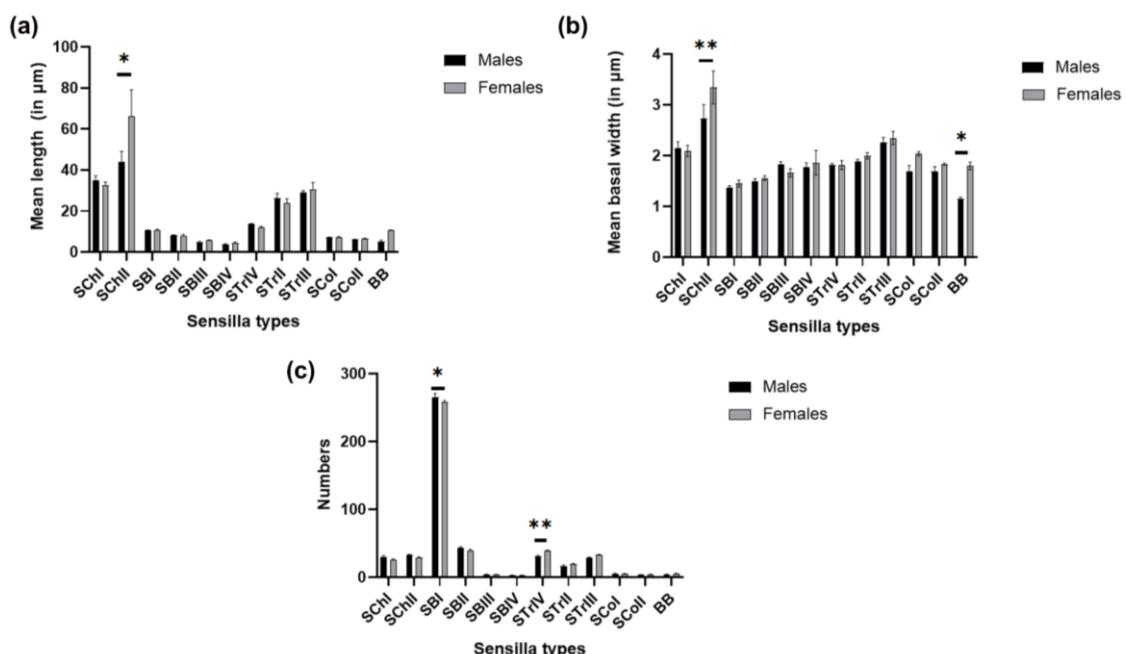
Figure 13. *Sensilla trichodea* subtypes on *Ips duplicatus* antennae: (a) Grouped distribution; (b–h) STrII–STrIV showing variations in socket type, wall porosity, and tip morphology. Shewale et al., 2023.

Two of the more interesting sensory types identified in *I. duplicatus* were shallow coeloconica with two mostly distinct subtypes: fluted with either pointed or rounded tips (ScoI and ScoII), both of which were newly described in *Ips* and could suggest some

form of sensory specialization. On the other hand, Böhm's sensilla (BS), portal structures appear mechanoreceptive and were only located at the antennal base. Shallow surface pores (SP) were found in diffuse distribution and were predominantly associated with flexible socket sensilla, although their exact function remains uncertain. Overall, these results reveal both conserved and localized components of the antennal morphology of *I. duplicatus*. Table 5 shows sensilla types and subtypes, their locations across antennal regions, and external features.

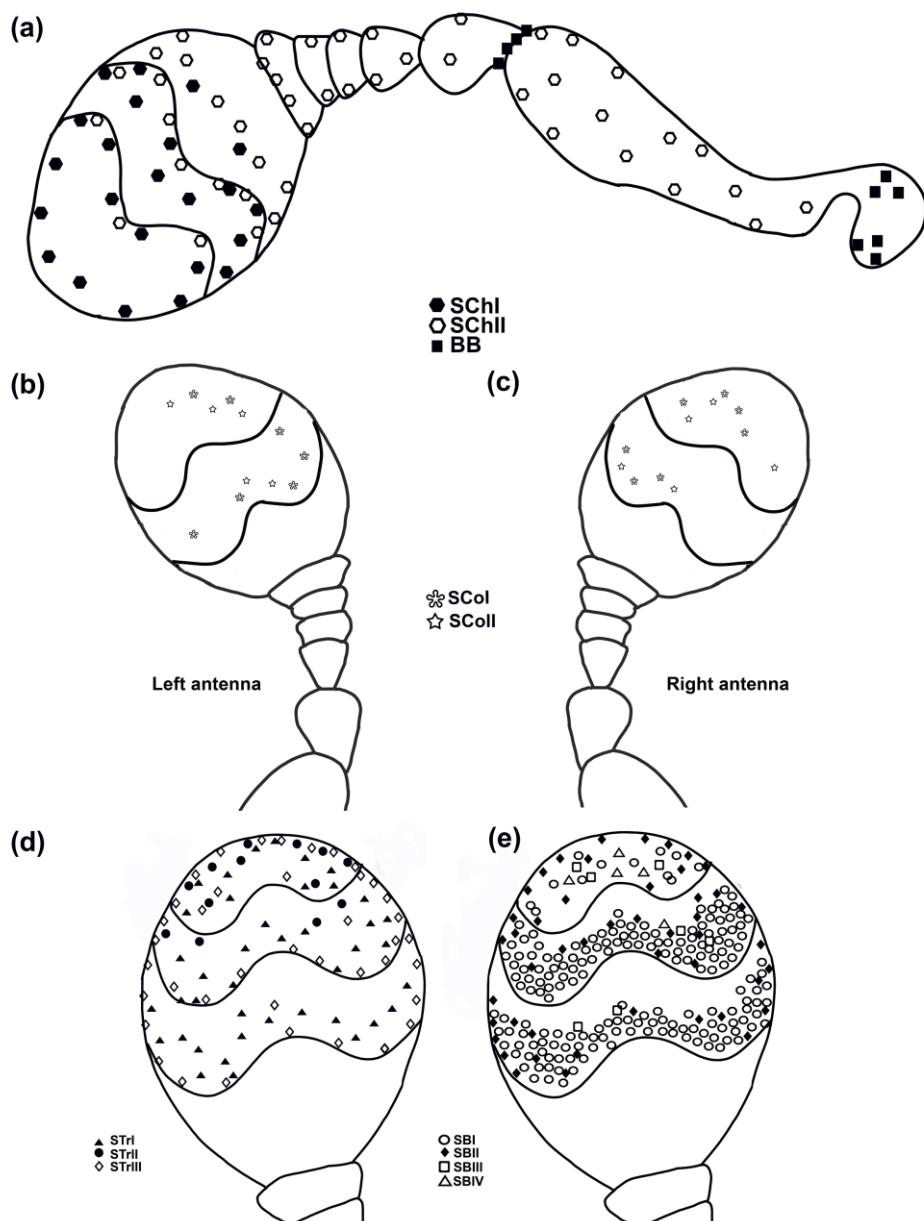
Table 5. Morphological characteristics and distribution of sensilla types on the antennae of *Ips duplicatus*. Shewale et al.,2023

Sensilla type	Distribution	Pores	Wall structure	Tip	Shape	Socket
SchI	Antennal club (A, B and C), funicular segments (F1-F5) and scape	Aporous	Longitudinal grooved wall, bilateral branching	Sharp	Straight	Flexible
SChII	Antennal club (A), funicular segments (F1-F5) and scape	Aporous	Longitudinal grooved wall, multi-branching	Sharp	Curved	Flexible
SBI	Antennal club (A, B, C)	Multiporous	Pitted	Blunt	Straight	Inflexible
SBII	Antennal club (A, B and C)	Multiporous	Grooved	Blunt	Straight	Inflexible
SBIII	Antennal club (B and C)	Uniporous	Smooth	Blunt and round	Peg shaped	Inflexible
SBIV	Antennal club I	Uniporous	Smooth	Round	Straight	Inflexible
StrII	Antennal club (B and C)	Multiporous	Smooth	Pointed	Slightly curved	Inflexible
STrIII	Antennal club (A, B and C)	Terminal pore	Smooth	Blunt	Long and curved	Flexible
StrIV	Antennal club (A, B and C)	Multiporous	Pitted	Pointed	Straight	Inflexible
Sco I	Antennal club (A, B and C)	Aporous	Grooved	Round	Cone-shaped	Inflexible


Sco II	Antennal club (A, B and C)	Aporous	Grooved	Sharp	Cone-shaped	Inflexible
BB	Scape	Aporous	Smooth	Blunt and round	Short and straight	Flexible
SP?	Club (A, B and C), funicle segments (F1-F5) and scape	?	Pit on the club surface	-	Oval	-

SchI: sensilla chaetica type I, SChII: sensilla chaetica type II, SBI: sensilla basiconica type I, SBII: sensilla basiconica type I, SBIII: sensilla basiconica type III, SBIV: sensilla basiconica type IV, StrII: sensilla trichodea type II, STriIII: sensilla trichodea type III, StrIV: sensilla trichodea type IV, ScoI: sensilla coeloconica type I, ScoII: sensilla coeloconica type II, BB: Böhm's bristles, and SP: Surface Pores

4.2.3. Distribution, dimensions, and sex-based differences in sensilla


Key message: While overall antennal structure is similar in both sexes of *I. duplicatus*, minor differences in sensilla size and abundance suggest subtle sexual dimorphism.

The organization of sensilla on the male and female *I. duplicatus* antennae was relatively similar, although statistical analyses indicated slight but significant sexual dimorphism in several sensilla characteristics. While total length and major segment dimensions showed no significant differences between sexes, SChII and BS had greater width in females, and some SBI and STriIV showed different abundance in either sex (Fig. 14).

Figure 14. Comparative bar graphs of sensilla length (a), width (b), and abundance (c) between sexes in *I. duplicatus* (Bonferroni test, $n = 5$ per sex). Shewale et al., 2023.

Sensilla mapping revealed that SChI and SChII were primarily distributed along the outer edges of sensory bands A, B, and C (Fig. 15a). Böhm sensilla (BS) were localized exclusively to the scape and pedicel. Long basiconica sensilla types SBI and SBII were widely distributed across sensory bands A and B. In contrast, the shorter basiconica types SBIII and SBIV were restricted to the distal sensory band C (Fig. 15e). Trichoid sensilla showed subtype-specific patterns, with STrIII notably concentrated near the margins of bands A and B (Fig. 15d).

Figure 15. *a–e. Sensilla distribution maps across the antennal club in *I. duplicatus*: chaetica (SChI and SChII) and Bohm sensilla (BB) (a); coeloconica (Sco I and II) (b); trichodea (STr II, I and III) (c), and basiconica (SBI, II, III and IV). Shewale *et al.*, 2023.*

Interestingly, both types of coeloconic sensilla (SCoI and SCoII) were more consistently distributed in bands B and C and were often present in pairs. SCoI and SCoII also exhibited asymmetric lateral distributions occurring more frequently on one side or the other, more often on the side (right or left) of the antennal club, depending on the antenna side (Fig. 15 b,c). Why there is an asymmetry of SCoI and SCoII is unknown and may suggest some lateralized processing, indicating there is different processing based on where the sensory information is received.

Subchapter 4.3: Comparative descriptive morphology of antennal sensilla in *Ips cembrae* and *Ips acuminatus* (Paper III)

Based on:

Shewale, M.K., Dusek, J., Jirošová, A. (2025). Microscopic morphology and distribution of the antennal sensilla in the larch bark beetle, *Ips cembrae*, and pine bark beetle, *Ips acuminatus* (Coleoptera: Curculionidae). Manuscript in preparation.

***Note:**

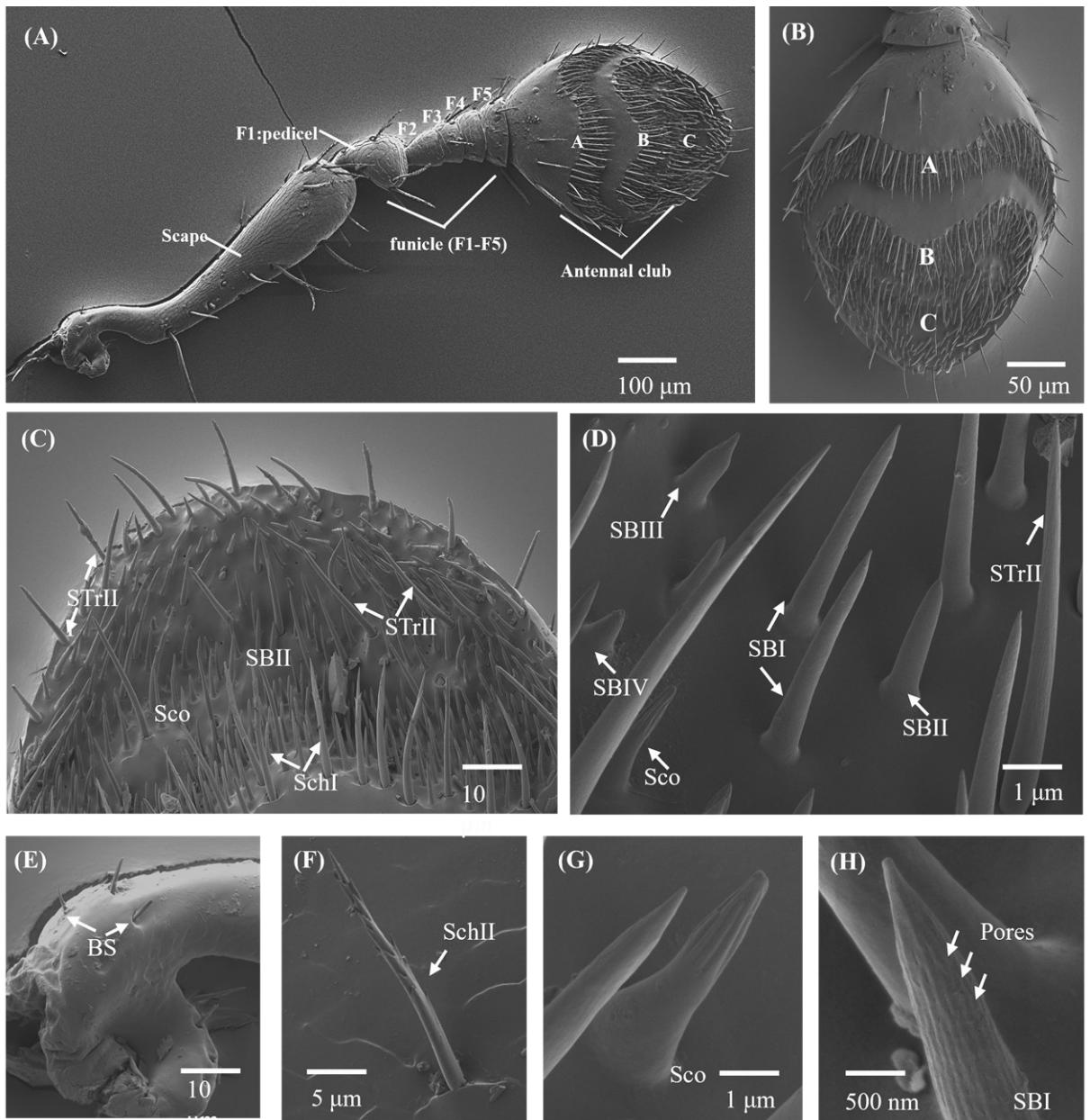
This chapter presents preliminary results from ongoing research. Quantitative morphometric data and statistical analyses will be incorporated into the final manuscript.

My contribution: Conceptualization, sample preparation, SEM imaging, data curation, morphological classification, figure and table preparation.

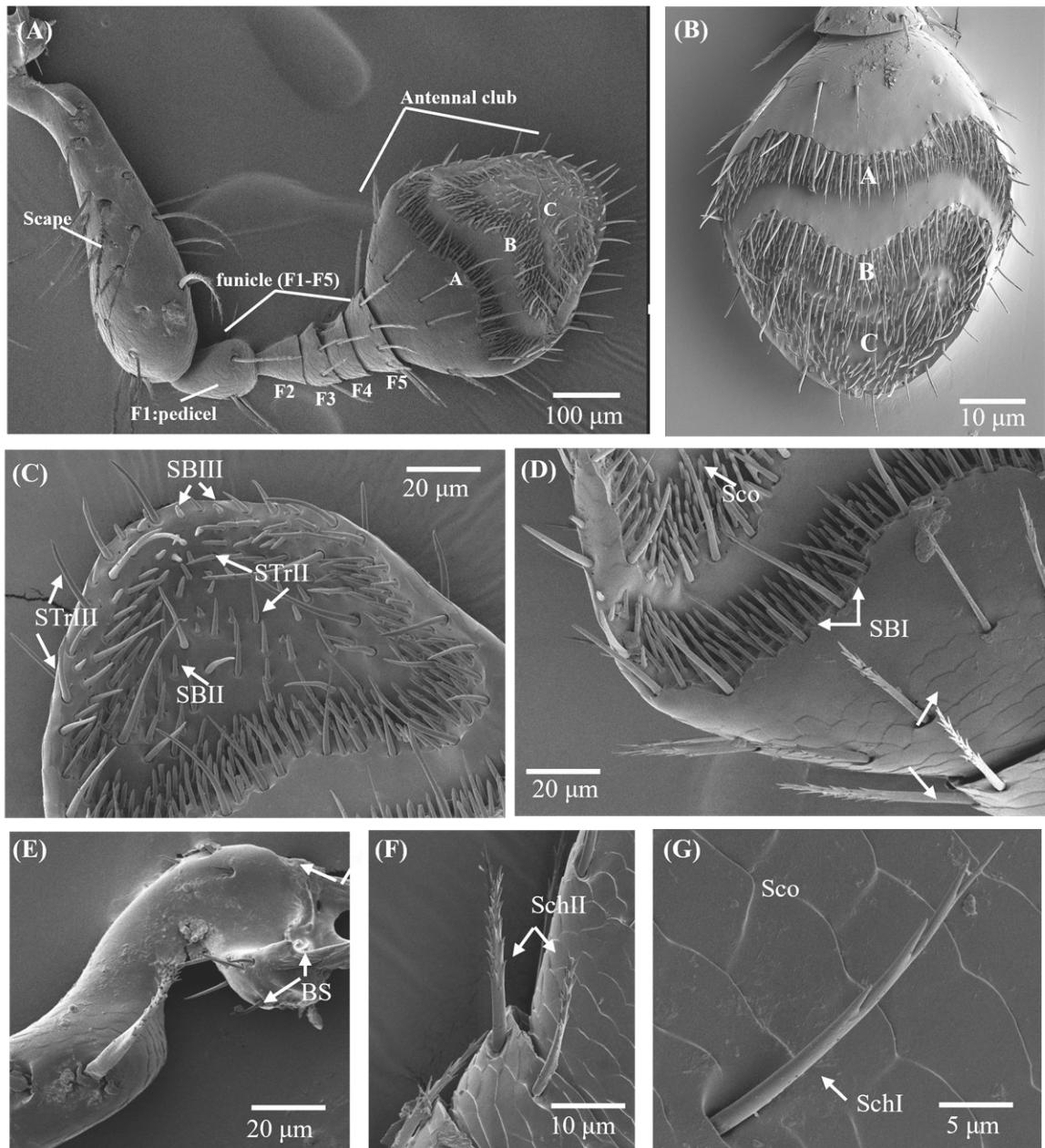
Key message:

Despite species-specific host preferences, *Ips cembrae* and *Ips acuminatus* display a conserved antennal sensilla architecture, providing a foundational map for future electrophysiological studies.

Article Summary


This study is the first comparative account of antennal sensilla morphology in *I. cembrae* and *I. acuminatus* conifer-associated bark beetles of ecological significance within European forests. A scanning electron microscope (SEM) was used to view the antennal club of each species to examine sensilla types and their distribution patterns. These preliminary findings showed that antennal architecture is conserved within the genus *Ips*. The major sensilla types included in each species are sensilla chaetica, trichodea, basiconica, coeloconica and Böhm's sensilla, and all were present in both species. These morphological sensilla map will help to inform future electrophysiological studies and advance our understanding of olfactory specialization in the genus. The general observations are consistent with the conserved antennal architecture observed in other *Ips* species, including *I. typographus* and *I. duplicatus* (see Chapter 4.2).

4.3.1. General antennal morphology


Key message: Both species display a conserved antennal architecture, supporting genus-level patterns in sensilla distribution across *Ips* bark beetles.

Both *I. cembrae* and *I. acuminatus* exhibit the characteristic scolytine antennal structure, consisting of four main segments: the scape, pedicel, funiculus, and the club or terminal segment. The antennal club serves as the primary olfactory organ and is structurally organized into three distinct ventral sensory bands, designated as bands A, B, and C. This organization is consistent with previous descriptions in other *Ips* species, such as *I. typographus* and *I. duplicatus* (Hallberg, 1982a; Shewale et al., 2023).

The majority of sensilla are located on the anterior (ventral) surface of the antennal club and show a clear pattern of distribution that aligns with the defined sensory bands. Scanning electron microscopy (SEM) images (Figs. 16 and 17) provide detailed views of the surface morphology and the arrangement of sensilla within each band. These initial images highlight the grouping and structural characteristics of sensilla across the club surface. At this stage, evaluation of sexual dimorphism was not possible, as detailed quantitative morphometric analyses have not yet been conducted.

Figure 16. SEM image of *Ips cembrae* antennal club indicating general structure (A) and the three bands (A–C) with sample types of sensilla labeled (B); sensilla trichodea (STrIII & IV) (C); sensilla basiconica (SBI, II, III & IV) (D); Bohm sensilla (BS) (E); sensilla chaetica (SchI & II) (F); sensilla coeloconica (Sco) (G); and wall pores on sensilla basiconica type I (SBI) (H). Shewale et al., unpublished.

Figure 17. SEM image of *Ips acuminatus* antennal club showing general structure (A) and the three bands (A–C) with sample types of sensilla labeled surface (B); topography and distribution of important sensilla types sensilla trichodea and sensilla basiconica (C, D); Bohm sensilla (E); sensilla chaetica (F); sensilla coeloconica (G). Shewale et al., unpublished.

4.3.2. Classification of sensilla types

Key message: The sensilla types and their arrangement that we have characterized further illustrate the conserved structure of the peripheral antennal morphology in *Ips*.

A total of five main categories of antennal sensilla were identified and characterized in both *Ips cembrae* and *Ips acuminatus* (Table 6). Sensilla chaetica (SCh), identified as long, uniporous mechanosensory hairs, were predominantly located along the peripheral edges and outer margins of the antennal club. Two distinct subtypes were differentiated based on the presence or absence of lateral branching structures.

Sensilla basiconica (SB) were observed as a short, thick, multiporous sensilla with four morphologically distinct subtypes. These were primarily arranged within sensory bands A and B. Among them, subtype SBI was the most numerous and densely distributed, appearing across all three sensory bands (A, B, and C).

Sensilla trichodea (STr) were slender, hair-like, porous structures, and three subtypes were recognized. These were mainly confined to the sensory band C. Sensilla coeloconica (SCo), recognized by their characteristic peg-in-pit morphology, appeared in low numbers and were sparsely distributed across the antennal surface.

Lastly, Böhm's sensilla (BS), known for their mechanosensory function, were identified at the articulation between the scape and pedicel. Their presence and morphology were consistent with those previously reported in other species of the *Ips* genus.

Table 6: Morphological characteristics and distribution of sensilla types on the antennae of *Ips acuminatus* and *I. cembrae*. Shewale et al., unpublished.

Sensilla type	Distribution	Pores	Wall structure	Tip	Shape	Socket
SchI	Antennal club (A, B and C), funicular segments (F1-F5) and scape	Aporous	Longitudinal grooved wall, bilateral branching	Sharp	Straight	Flexible
SChII	Antennal club (A), funicular segments (F1-F5) and scape	Aporous	Longitudinal grooved wall, multi-branching	Sharp	Curved	Flexible
SBI	Antennal club (A, B, C)	Multiporous	Pitted	Blunt	Straight	Inflexible
SBII	Antennal club (A, B and C)	Multiporous	Grooved	Blunt	Straight	Inflexible
SBIII	Antennal club (B and C)	Uniporous	Smooth	Blunt and round	Peg shaped	Inflexible
SBIV	Antennal club I	Uniporous	Smooth	Round	Straight	Inflexible
STrIII	Antennal club (A, B and C)	Terminal pore	Smooth	Blunt	Long and curved	Flexible
Sco	Antennal club (A, B and C)	Aporous	Grooved	Round	Cone-shaped	Inflexible
BB	Scape	Aporous	Smooth	Blunt and round	Short and straight	Flexible
SP?	Club (A, B and C), funicle segments (F1-F5) and scape	?	Pit on the club surface	-	Oval	-

4.3.3. Current scope and future directions of this study

Key message: This preliminary map presents a significant starting point for SSR-based OSN classification and future comparative sensory ecology studies.

In this section, we have set the foundational map morphology for subsequent SSR studies set to functionally characterize OSN classes in *I. cembrae* and *I. acuminatus* (see Chapter 4.5). While only qualitative data are presented here, future analyses will explore more detailed morphometrics, i.e., sensillum length, socket type, and sex differences, and they will be submitted as a separate manuscript.

The consistency of the sensory band patterns and sensilla types across the species supports the hypothesis that antennal morphology is a conserved trait across the genus *Ips*. This data give a better understanding of how bark beetles have evolved olfactory structures related to their ecological characteristics in conifer forests.

Subchapter 4.4: Size-dependent olfactory responses in female *Ips typographus* (Paper IV)

Article type and status: Original Research Article (Submitted to *Annals of Forest Science*, under revision)

Based on: Moliterno, A. A. C. †, **Shewale, M.K.** †, Basile, S., Synek, J., Jirošová, A. (2025). Size- and dose-dependent behavioral responses to 1,8-cineole and (+)-isopinocamphone: a potential host selection strategy in female *Ips typographus*. Manuscript submitted to *Annals of Forest Science*.

† Equal contribution as first author

My contribution: Conceptualization, electroantennography experiments, data analysis and visualization, writing of original draft, and review and editing of manuscript.

Key message: Body size in female *Ips typographus* significantly influences antennal sensitivity and behavioral responsiveness to host-related semiochemicals, suggesting size-linked adaptive roles in host selection.

Article summary:

This research investigated whether body size variation among female *I. typographus* may influence their olfactory sensitivity to two chemically related oxygenated monoterpenes: 1,8-cineole and (+)-isopinocamphone. These two compounds are ecologically relevant because they are both emitted by a drought-stressed host and symbiotic fungi, respectively. Field experiments conducted using pheromone-baited traps added with varying doses of either monoterpenes resulted in size-dependent reaction in females, which may indicate greater behavioral sensitivity and possible preference during host selection.

Along with the behavioral experiments, complementary electroantennography (EAG) recordings confirmed these patterns at the physiological level. The antennae of large females demonstrated significantly stronger responses to (+)-isopinocamphone than small females when responding to the same stimuli and with respect to the dose gradient. In contrast, smaller females showed stronger responses to a high dose of 1,8-cineole than larger females. Morphometric data also confirmed size-related variation in the antennal club structure, providing further evidence of a relationship between morphology and

olfactory function. Taken together, these findings illustrate intraspecific variability in chemical perception and evidence suggesting that female body size can be a criterion for olfactory responsiveness and ecological role when colonizing hosts.

4.4.1 Prevalence and body size differences in female trap captures

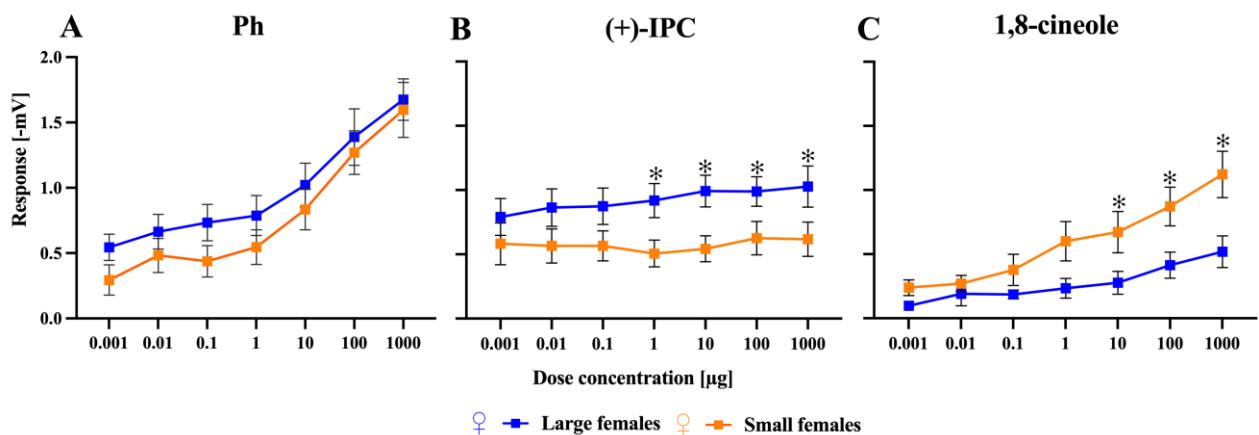
Key message: Female *I. typographus* of varying sizes respond differently to semiochemical treatments, suggesting a size-linked preference or sensitivity in host cue recognition.

Field trapping data collected in 2019 and 2022 demonstrated significant variation in female body size across different chemical treatment groups. Traps baited with higher concentrations of 1,8-cineole consistently captured smaller females (Fig. 18A). In contrast, traps containing elevated doses of (+)-isopinocamphone were associated with the capture of larger females (Fig. 18B). These observations indicate a measurable, compound-specific difference in the size distribution of captured females depending on the type and dose of the chemical lure.

Figure 18. Body length of female *I. typographus* captured with different doses of (A) 1,8-cineole and (B) (+)-isopinocamphone vs. pheromone-only controls in 2019 and 2022. Moliterno *et al.*, unpublished.

4.4.2 Antennal club dimensions scale with body size

Key message: Antennal club morphology scales isometrically with body size in female *I. typographus*, preserving proportional structure regardless of individual size class.


Morphometric analysis comparing large and small *Ips typographus* females revealed that antennal club dimensions, specifically length and width, scaled isometrically with total

body length in both size groups. Statistical comparisons confirmed significant differences in overall body and antennal size between the large and small individuals. However, the relationship between antennal length and width remained consistent, indicating isometric scaling. This finding shows that while absolute sizes varied, the proportional dimensions of the antennal club were maintained across individuals of different sizes.

4.4.3 Size-dependent antennal sensitivity to oxygenated monoterpenes

Key message: Female body size in *I. typographus* correlates with differential antennal sensitivity to specific semiochemicals, possibly affecting individual-level host selection strategies.

Electroantennography (EAG) recordings revealed size-dependent differences in antennal responses among *Ips typographus* females. No significant variation in pheromone sensitivity was observed between large and small females across size classes (Fig. 19A). However, larger females exhibited significantly higher antennal responses to increasing concentrations of (+)-isopinocamphone (Fig. 19B). In contrast, smaller females showed stronger antennal responses to higher doses of 1,8-cineole (Fig. 19C). These data demonstrate a compound- and size-specific variation in olfactory response intensity.

Figure 19. EAG responses of large and small *I. typographus* females to (A) pheromone blend (MB:cV, 10:1), MB: 2-methyl-3-buten-2-ol and cV: cis-Verbenol, (B) (+)-isopinocamphone (IPC), and (C) 1,8-cineole across increasing doses. Asterisks denote significant differences (Wilcoxon test, $p < 0.05$). Moliterno et al., unpublished.

Subchapter 4.5: Electrophysiological characterization of Olfactory Sensory Neurons in *I. acuminatus* and *I. cembrae* (Paper V)

Article type and status: Original research article (Accepted for publication)

Authors: Shewale, M. K., Bláha, J., Synek, J., Schebeck, M., Andersson, M. N., Kandasamy, D., & Jirošová, A. (2025) Comparative analysis of olfactory sensory neurons in two *Ips* species reveals conserved and species-specific olfactory adaptations. *Frontiers in Forests and Global Change*, 8, 1588866.

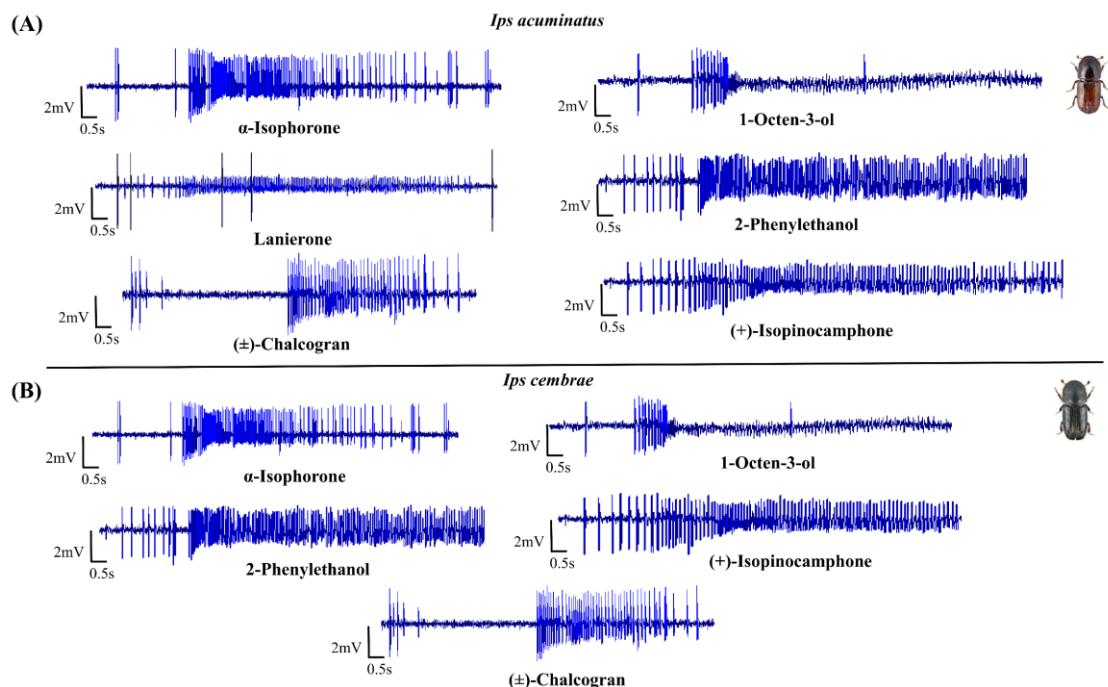
doi: 10.3389/ffgc.2025.1588866

My contribution: Conceptualisation, data curation, investigation, formal analysis, writing original draft, visualisation, methodology, review and editing.

Article summary

This work is the first detailed electrophysiological mapping of olfactory sensory neurons (OSNs) in *Ips acuminatus* and *Ips cembrae* using single sensillum recordings (SSR), and details 19 OSN classes between the two species that responded to a variety of ecological odorants, including pheromones, host-, non-host, and microbial volatiles.

The findings reveal conserved and species-specific olfactory adaptations across the compared *Ips* bark beetles, deepening our understanding of their peripheral olfactory coding systems and identifying OSN in pheromone and host volatile detection. This study presents a comprehensive olfactory profile for two economically important bark beetle species, establishing a reference for their peripheral sensory systems.


Despite morphological similarities, their OSN tuning diversity highlights ecological specialization and evolutionary divergence. These results provide essential groundwork for designing semiochemical-based pest management strategies and future neurogenetic research into *Ips* olfactory mechanisms.

4.5.1 General classification of OSN types

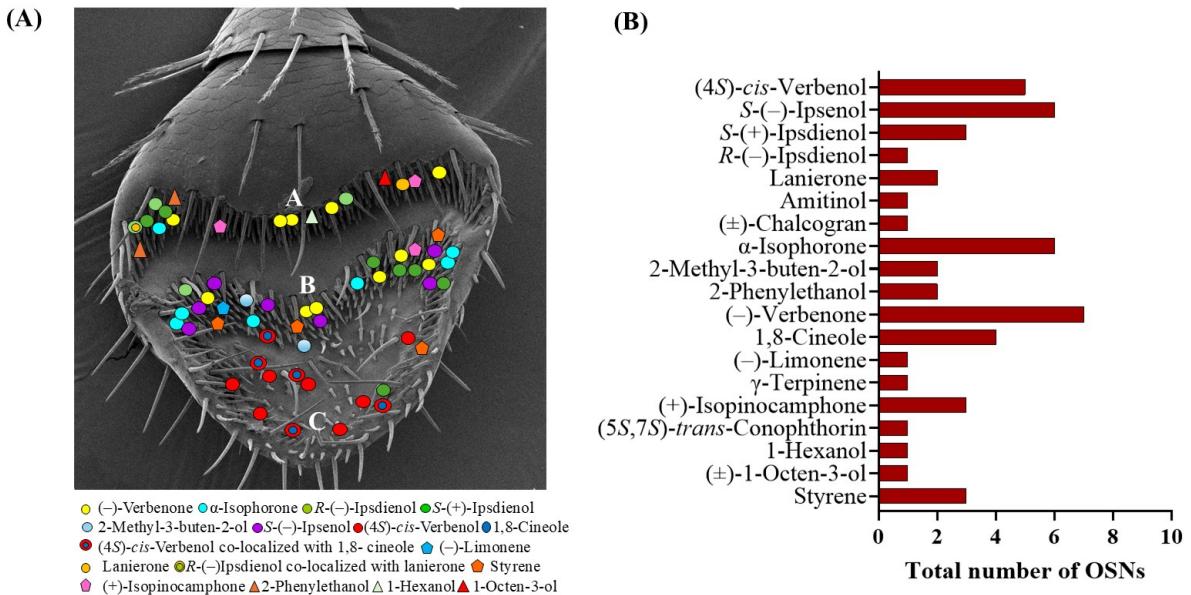
Key message: *I. acuminatus* and *I. cembrae* exhibit complex and highly responsive peripheral olfactory systems, with most antennal sensilla housing multiple OSNs tuned to ecologically relevant volatiles.

Using single sensillum recordings (SSR), we characterized 19 classes each of olfactory sensory neurons (OSNs) in *I. acuminatus* and *I. cembrae* and identified different response profiles to a wide range of 57 ecologically relevant odorants (Fig. 21A and 24A).

In both species, most sensilla had two OSNs, distinguished by different spike amplitudes: A neuron with larger spike amplitudes and B neuron with smaller ones. Occasionally, a few sensilla housed only one or at most three neurons. Responses exhibited tonic or phasic-tonic response patterns, with firing rates consistently above 80 Hz for their primary ligands (Fig. 20A and B).

Figure 20. Olfactory sensory neurons (OSNs) exhibit distinct phasic-tonic responses to 10 µg of each compound. Two OSNs (A and B), differing in spike amplitude, are typically present in one sensillum. Panel (A) shows *I. acuminatus* responses to six odorants; panel (B) shows *I. cembrae* responses to four.

OSNs generally responded to multiple compounds, but primary ligands consistently triggered the highest firing rates, often exceeding 80 Hz, with secondary responses typically elicited by structurally similar compounds. Maximum response frequencies reached 150 Hz in *I. acuminatus* and 200 Hz in *I. cembrae*. Compounds that exhibited the strongest responses also displayed the lowest detection thresholds.

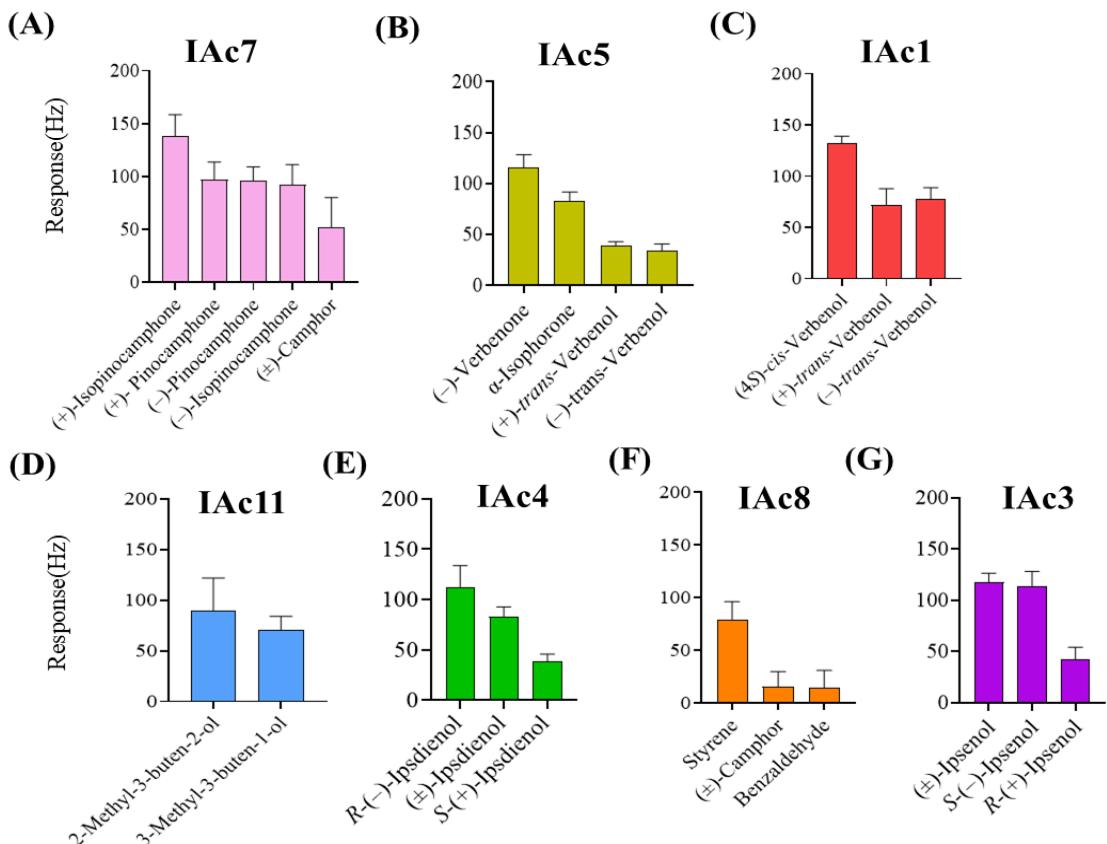

In both *Ips* species, a good percentage of sensilla responded to at least one of the compounds, with 84% of sensilla in *I. acuminatus* and 73% of sensilla in *I. cembrae*. Strongly responsive OSNs (>80 Hz) were grouped into distinct OSN classes based on their tuning profiles. In contrast, OSNs with moderate responses (20–80 Hz) remained unclassified, as we could not clearly identify the ligand specificity. These results provide the first foundational OSN map for peripheral olfactory detection for these species and allow for comparative study with existing data for *I. typographus* (see Section 4.5.4).

4.5.2 OSN responses in *Ips acuminatus*

Key message: *Ips acuminatus* exhibits specialized OSNs that selectively respond to pheromones, host-, non-host and microbial volatiles, highlighting its complex chemosensory adaptations for host selection and intraspecific communication.

OSNs responding to aggregation pheromone components in *I. acuminatus*

In *I. acuminatus*, at least five OSN classes responded strongly to aggregation pheromone components, each demonstrating high ligand specificity and dose-dependent activity. IAc1 neurons were strongly responsive to (4S)-*cis*-verbenol, the major pheromone component. This class also showed weak responses to secondary compounds such as *trans*-verbenol isomers, verbenone, and chalcogran (Fig. 22C). These A neurons were co-localized with IAc2 B neurons, which responded to the host volatile 1,8-cineole. Both were primarily located in sensory band C of the distal antennal club (Fig. 21A).


Figure 21: (A) *Spatial distribution of olfactory sensory neuron (OSN) classes across sensory bands A, B, and C on the antennae of *Ips acuminatus*.* (B) *Total counts of 19 identified OSN classes, categorized by primary response to ecologically relevant compounds. Shewale et al., 2025.*

Class IAc3 had a strong response to *S*-(*-*)-ipsenol and weak responses to *R*-(*+*)-ipsenol and ipsdienol (Fig.22G). The sensitivity of this neuron was confirmed at 100 pg (Fig.23E). These neurons were localized in sensory band B. IAc4 neurons were exclusively found only in females, responded strongly to *R*-(*-*)-ipsdienol, with weaker responses to its *S*-(*+*) enantiomer, racemic ipsdienol, and amitinol (Fig.22E). These were co-localized with IAc9 B neurons, which responded to lanierone, and were distributed in bands A and B. Dose-response tests later revealed stronger tuning to *S*-(*+*)-ipsdienol, suggesting the presence of two enantiomer-selective OSN classes (Fig.23D). OSN class IAc13 responded most to racemic ipsdienol, with secondary responses to amitinol, *E*-myrcenol, and ipsdienol enantiomers. Another OSN class IAc14 showed strong activation by amitinol, followed by weaker responses to racemic ipsdienol and its enantiomers.

OSN responses to other beetle-produced compounds in *I. acuminatus*

Five OSN classes in *I. acuminatus* were specifically tuned to beetle-produced semiochemicals beyond its own aggregation pheromones. IAc5 was the most abundant class and responded strongly to (*-*)-verbenone, with a 1 ng threshold (Fig. 23B). This class was also exclusively found in females.

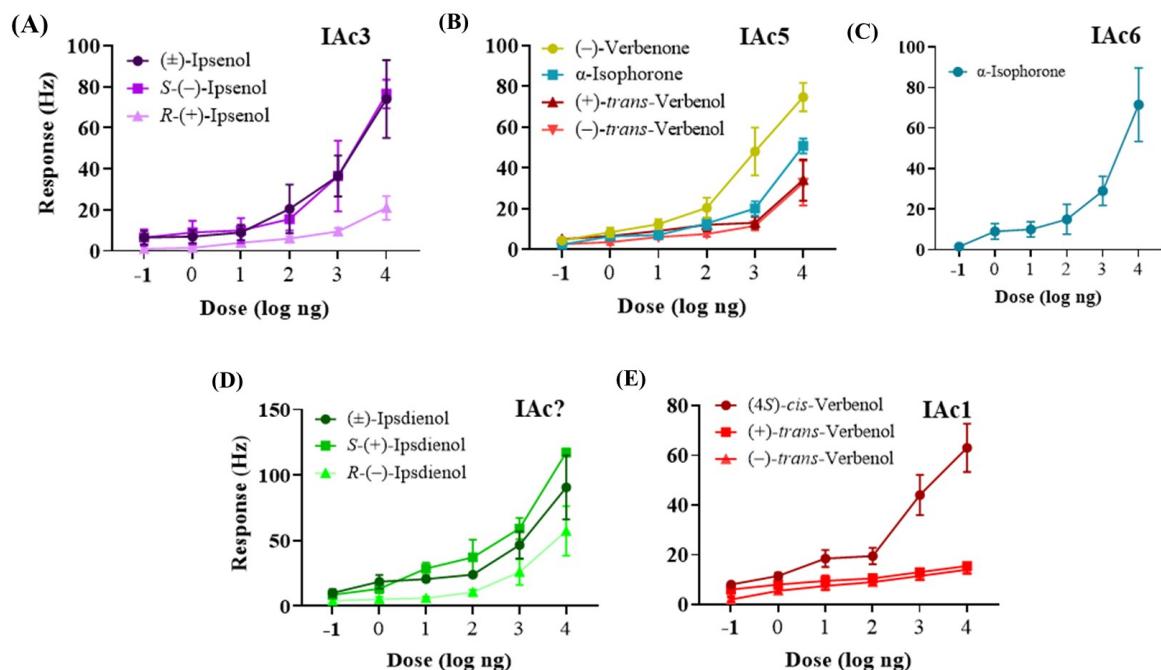

Furthermore, another very specific OSN class, IAc6, was tuned to α -isophorone and was very sensitive, with detection thresholds at the picogram level (Fig. 23C). IAc9 responded strongly to lanierone, co-localized with either *R*-(-)-ipsdienol-responsive or non-responsive A neurons. IAc10 strongly responded to 2-phenylethanol, and IAc11 to 2-methyl-3-buten-2-ol, with weaker responses to 3-methyl-3-buten-1-ol. IAc17 strongly responded to chalcogran, with intermediate responses to (\pm) -*exo*-brevicomin and weaker activity to *trans*-conophthorin. These OSNs were broadly distributed across sensory bands A, B, and C.

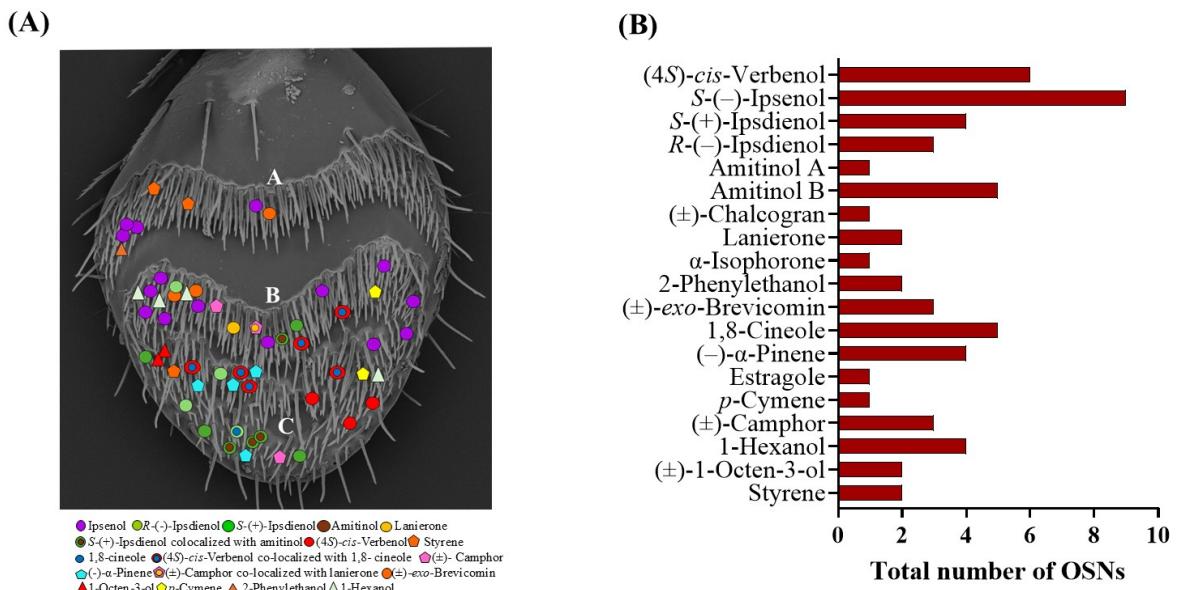
Figure 22. Number of OSNs uniquely identified in *I. acuminatus*, indicating primary and secondary responses. Primary OSN classes (A-G) labeled IAc7, IAc5, IAc1, IAc11, IAc4, IAc8 and IAc3 correspond to compounds (+)-isopinocamphone, (-)-verbenone, (4S)-*cis*-verbenol, 2-methyl-3-buten-2-ol, *R*-(-)-ipsdienol, styrene and racemic ipsenol. Shewale et al., 2025.

OSN responses to host-, non-host, and microbial volatiles

Three OSN classes were highly responsive to host tree-derived volatiles. The B neuron of class IAc2 responded exclusively and robustly to 1,8-cineole. The A neuron class IAc15 was activated by both (−)- and (+)-limonene, with additional secondary responses to myrcene, p-cymene, terpinolene, and Δ-3-carene, and weaker activity to (+)-terpine-4-ol and (−)-β-pinene. Another A neuron class, IAc18, responded strongly to γ-terpinene and showed secondary responses to several structurally related oxygenated monoterpenes, including both isomers of isopinocamphone and pinocamphone, as well as racemic camphor. These OSNs were predominantly located in sensory band B of the antennal club. While most pheromone- and host-volatile-responsive neurons were not spatially segregated, (4S)-*cis*-verbenol-sensitive neurons (IAc1) were always located exclusively to sensory band C.

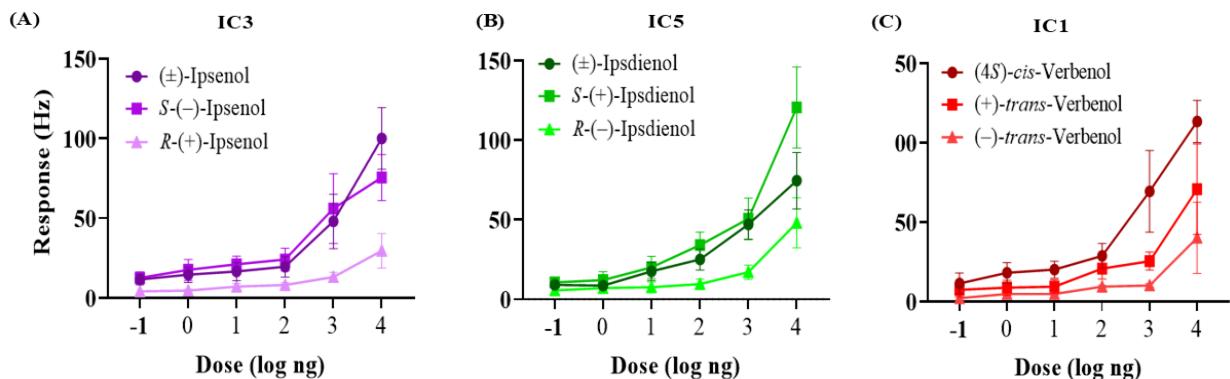
Figure 23. Mean dose responses (Hz) of selected OSN classes in *I. acuminatus*, showing both primary and secondary responses: IAc3: S-(−)-ipsenol, IAc5: (−)-verbenone, IAc6: α-isophorone, IAc?: R-(−)-ipsdienol, and IAc1: (4S)-*cis*-verbenol. Shewale et al., 2025.

In response to non-host volatiles, three OSN classes were identified. OSN class IAc12 responded strongly to 1-hexanol, with weaker secondary responses to racemic 1-octen-3-ol and chalcogram. IAc16 was activated by racemic 1-octen-3-ol and showed minor responses to racemic 3-octanol. The IAc19 class responded specifically to the non-host volatile (5S,7S)-*trans*-conophthorin.


Two OSN classes showed strong tuning to microbial volatiles. The A neuron class IAc7 was specifically activated by (+)-isopinocamphone and showed moderate responses to structurally related compounds such as (−)-isopinocamphone, (+)- and (−)-pinocamphone, and racemic camphor. Meanwhile, IAc8, also an A neuron, responded selectively to styrene and exhibited weaker responses to benzaldehyde and racemic camphor.

4.5.3. OSN responses in *Ips cembrae*

Key message: In *I. cembrae*, 19 olfactory sensory neuron (OSN) classes were identified, revealing a highly conserved and partially species-specific peripheral olfactory system.

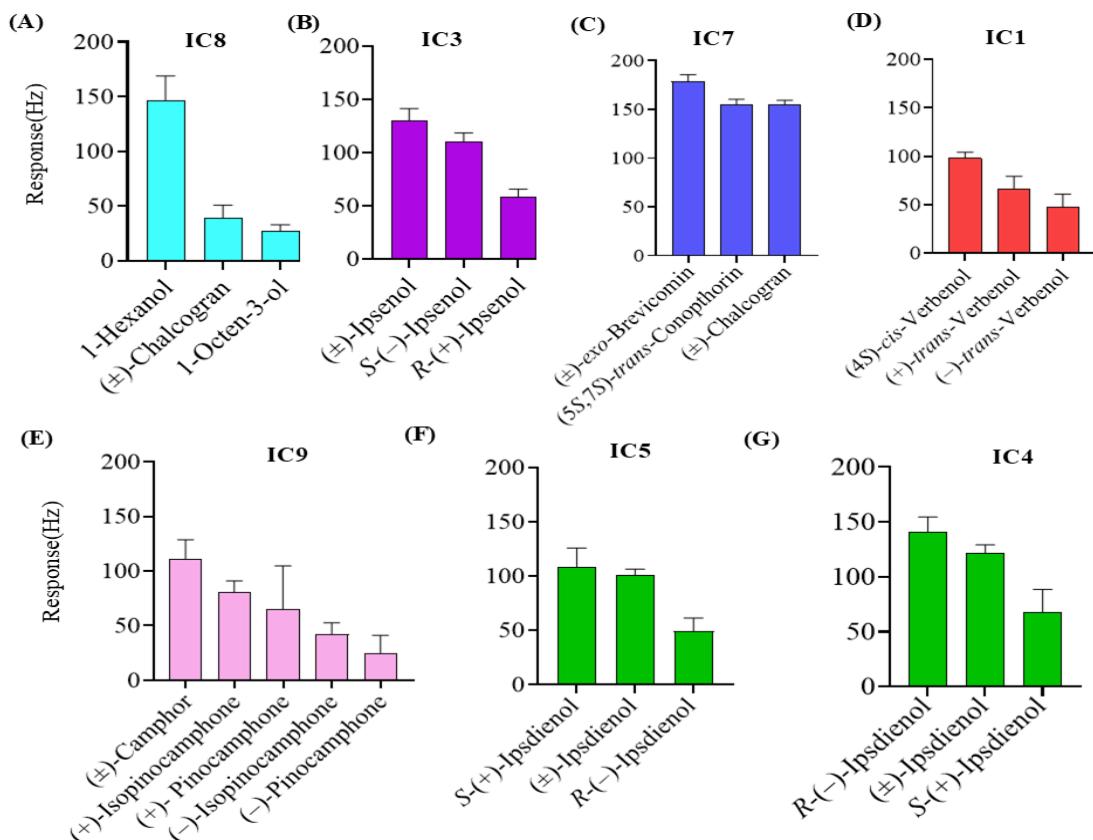

OSNs responding to aggregation pheromone of *I. cembrae*

Two classes of OSNs responded to aggregation pheromone components of this species. OSN class IC1, an A neuron, responded strongly to (4S)-*cis*-verbenol with dose-dependent activity and a sensitivity threshold of 100 pg (Fig. 26C). Secondary responses to (+)- and (−)-*trans*-verbenol were moderate (Fig. 25D). (4S)-*cis*-verbenol OSNs were co-localized with IC2, a B neuron class responsive to 1,8-cineole. These OSNs were predominantly located in sensory band C of the distal antennal club, with a few located in band B (Fig. 24A).

Figure 24. (A) Distribution of olfactory sensory neuron (OSN) classes across sensory bands A, B, and C on the antenna of *Ips cembrae*. (B) Total counts of the 19 OSN classes, grouped by primary responses to compounds from various ecological origins. Shewale et al., 2025.

The most frequently encountered OSN class was IC3, tuned to racemic ipsenol and *S*-(*-*)-ipsenol, the major component of the species' pheromone blend. These neurons showed high specificity, low thresholds (~100 pg), and minimal responses to *R*-(*+*)-ipsenol, aligning with its absence in the natural pheromone mix (Fig. 25A). IC3 neurons were uniformly distributed across sensory bands A and B. Another class, IC4, responded to *R*-(*-*)-ipsdienol, with weaker responses to the corresponding *S*-enantiomer and racemic form of ipsdienol, but was not observed in dose-response studies. In contrast, IC5 neurons were specifically tuned to *S*-(*+*)-ipsdienol, with a response threshold of 1 ng (Fig. 25B). These were consistently co-localized with IC6, a B neuron class responsive to amitinol. Both IC5 and IC4 classes mainly were localized in sensory band C and rarely in band B (Fig. 24A). Interestingly, no OSNs were detected that responded to 3-methyl-3-buten-1-ol, which is a pheromone component of *I. cembrae*.

Figure 25. Dose-response profiles of three pheromone-specific OSN classes in *I. cembrae*: IC3 responding to *S*-(*-*)-ipsenol, IC5 to *S*-(*+*)-ipsdienol, and IC1 to (4*S*)-cis-verbenol. Mean responses are presented with SEM error bars. Shewale *et al.*, 2025.


Other OSNs responding to other beetle-produced pheromones

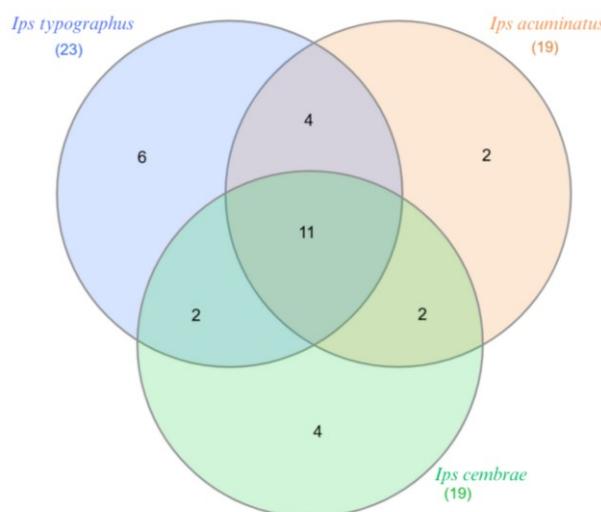
Four additional OSN classes in *I. cembrae* responded strongly to various beetle-produced volatiles. OSN class IC7 was activated by (*±*)-*exo*-brevicomin, with weaker responses to chalcogran and (5*S*,7*S*)-*trans*-conophthorin (Fig. 26C). IC14 was tuned to lanierone and was co-localized with either IC9 or a non-responsive A neuron. IC12 responded specifically and strongly to 2-phenylethanol, while IC15 was primarily activated by chalcogran and secondarily by 1-hexanol, 1-octen-3-ol, and *trans*-conophthorin. OSN class IC16 responded strongly to amitinol with secondary responses to racemic ipsdienol, and IC17 was tuned to α -isophorone, with weaker responses to verbenone and both enantiomers of *trans*-verbenol. These OSNs were primarily located in the distal region

of the antennal club, indicating a localized sensory specialization for these beetle-produced cues.

OSNs responding to host-, non-host, and microbial volatiles

In *I. cembrae*, five OSN classes were specifically tuned to host volatiles. Among them, IC2 class was specific for 1,8-cineole, while IC9 responded strongly to camphor and (+)-isopinocamphone, with additional weaker responses to structurally related oxygenated monoterpenes including isopinocamphone, pinocamphone, and borneol. IC9 was co-localized with a B neuron responsive to lanierone (IC14). The IC10 class was tuned to (−)- α -pinene and showed lower responses to several related terpenoids such as *cis*-verbenol and β -pinene. OSN classes IC18 and IC19 responded strongly to *p*-cymene and estragole, respectively. These host-volatile-responsive neurons were primarily located in sensory bands B and C (Fig. 23A).

Figure 26. Mean response rates (Hz) of selected OSN classes in *I. cembrae*, including secondary responses: IC8 responding to 1-hexanol, IC3 to S-(−)-ipsenol, IC7 to (±)-exo-brevicomin, IC9 to racemic camphor, IC1 to (4S)-cis-verbenol, IC5 to S-(+)-ipsdienol, and IC4 to R-(−)-ipsdienol. Error bars indicate the standard error of the mean (SEM). Shewale *et al.*, 2025.


Two OSN classes strongly responded to non-host volatiles. IC8 responded primarily to 1-hexanol, with secondary responses to chalcogran, 1-octen-3-ol, and 2-phenylethanol (Fig. 26A). IC13 was activated by 1-octen-3-ol, with weaker responses to 3-octanol. Both classes were found in sensory bands B and C.

One additional class, IC11, responded to the microbial volatile styrene, showing weak secondary activity to benzaldehyde. These results indicate a well-distributed and chemically diverse OSN system in *I. cembrae*, capable of detecting key volatiles from host trees, non-hosts, and microbial sources.

4.5.4 Comparative analysis of OSN profiles and distribution among *Ips acuminatus*, *I. cembrae*, and *I. typographus*

Key message: *Ips acuminatus*, *I. cembrae*, and *I. typographus* share a conserved set of OSN classes tuned to ecologically relevant volatiles, yet each species also possesses unique OSN types reflecting distinct host preferences.

Comparison across the three *Ips* species: *I. acuminatus*, *I. cembrae*, and *I. typographus* revealed 11 OSN classes shared by all three, predominantly those tuned to aggregation pheromones and host volatiles (Fig. 27; Table 7). However, unique OSNs were observed in each species: four in *I. cembrae* (e.g., α -pinene, *exo*-brevicomin) and two in *I. acuminatus* (e.g., γ -terpinene, limonene). The comparison indicates both evolutionary conservation and species-specific tuning of peripheral olfactory systems.

Figure 27. Venn diagram illustrating the overlap of identified olfactory sensory neuron (OSN) classes in *Ips acuminatus* and *Ips cembrae* compared to previously reported OSN classes in *Ips typographus*. Shewale et al., 2025.

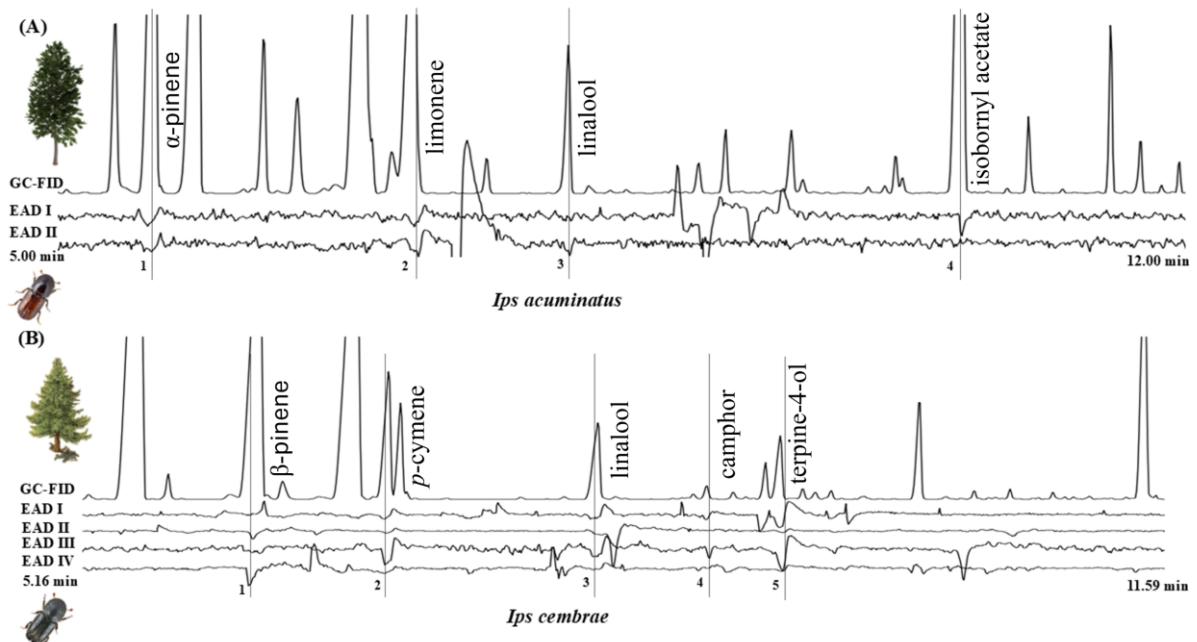
Table 7. Olfactory sensory neurons (OSNs) classified based on their response profiles at a 10 µg screening dose in *I. acuminatus* and *I. cembrae* and their comparison to previously characterized OSN classes in *I. typographus*. Shewale et al., 2025.

Biological origin	OSN class↓/Species→	<i>I.</i>		
		<i>typographus</i> (IT)	<i>acuminatus</i> (IAc)	<i>cembrae</i> (IC)
Beetle	(4S)- <i>cis</i> -Verbenol	✓ ^[1,2]	✓	✓
Beetle	<i>S</i> - (+)-Ipsdienol	✓ ^[1]	✓	✓
Beetle	<i>R</i> - (-)-Ipsdienol	✓ ^[1]	✓	✓
Beetle	<i>S</i> - (-)-Ipsenol	✓ ^[6]	✓	✓
Beetle	<i>R</i> - (+)-Ipsenol	-	-	-
Beetle	Amitinol	✓ ^[1]	✓	✓ (A and B neuron)
Beetle	2-Methyl-3-buten-2-ol	✓ ^[1,3] (B neuron)	✓ (B neuron)	-
Beetle	3-Methyl-3-buten-1-ol	-	-	-
Beetle	Lanierone	✓ ^[5] (B neuron)	✓ (B neuron)	✓ (B neuron)
Beetle	(±)-Chalcogran	-	✓	✓
Beetle	α-isophorone	-	✓	✓
Beetle/fungi	(-)-Verbenone	✓ ^[1,4]	✓	-
Beetle/ fungi	(±)- <i>exo</i> -Brevicomin	-	-	✓
Beetle/fungi	2-Phenylethanol	✓ ^[3]	✓	✓
Host	(+)-3-Carene	✓ ^[1]	-	-
Host	Myrcene	✓ ^[1,2,3]	-	-
Host	(+)- α -Pinene	✓ ^[1]	-	-
Host	(-)- α -Pinene	-	-	✓
Host	<i>p</i> -Cymene	✓ ^[1]	-	✓
Host	(-)-Limonene	-	✓	-
Host	γ -Terpinene	-	✓	-
Host	1,8-Cineole	✓ ^[1] (B neuron)	✓ (B neuron)	✓ (B neuron)
Host/fungi	(±)-Camphor	-	-	✓
Host/fungi	(+)-Isopinocamphone	✓ ^[4]	✓	-
Host/fungi	Estragole	✓ ^[7]	-	✓
Host/fungi	(+)- <i>trans</i> -4-Thujanol	✓ ^[2,4]	-	-
Non-host	1-Hexanol	✓ ^[1]	✓	✓
Non-host/fungi	(±)-3-Octanol	✓ ^[1]	-	-

Non-host/fungi	(±)-1-Octen-3-ol	✓ ^[1]	✓	✓
Non-host/fungi	Geranyl acetone (5S,7S)- <i>trans</i> -	✓ ^[3]	-	-
Non-host/fungi	Conophthorin	✓ ^[1]	✓	-
Fungi	Styrene	✓ ^[2,4]	✓	✓

✓ OSN class identified; OSN class not found yet

^[1] Andersson et al. 2009; ^[2] Schiebe et al. 2019; ^[3] Kandasamy et al. 2019; ^[4] Kandasamy et al. 2023; ^[5] Yuvaraj et al. 2024; ^[6] Tömmérås 1985; ^[7] Raffa et al. 2016


4.5.5 Antennal responses to host essential oils for further validation (GC-EAD)

Key message: GC-EAD confirms that *Ips* species display species-specific antennal sensitivity to conifer volatiles.

To complement the single sensillum recording (SSR) data, gas chromatography coupled with electroantennographic detection (GC-EAD) was employed to assess antennal sensitivity to host-derived essential oil compounds. In *Ips acuminatus*, GC-EAD recordings revealed four electroantennographically active peaks (1-4), corresponding to α -pinene, limonene, linalool, and isobornyl acetate (Fig. 28A). These compounds elicited clear and reproducible antennal responses across multiple replicates.

In *Ips cembrae*, five distinct EAD-active peaks (1-5) were detected, identified as β -pinene, p-cymene, camphor, linalool, and terpinen-4-ol (Fig. 28B). Each of these compounds produced distinct deflections in the EAD signal, indicating activation of olfactory receptor neurons.

Several other host-emitted monoterpenes, despite being abundant in the essential oil blends, produced only weak or inconsistent antennal responses in both species. This pattern of antennal activation was consistent with SSR results and provided additional evidence of differential sensitivity across individual host volatiles.

Figure 28. GC-EAD traces showing antennal responses of *Ips acuminatus* and *Ips cembrae* to pine and larch essential oils at a dose of 10 μ g. Shewale et al., 2025.

Chapter 5: Discussion

5.1 Overview

The central objective of this thesis was to examine how *Ips* bark beetles perceive and respond to chemical cues in their environment, with a particular focus on variations in olfactory detection and sensitivity across species, sexes, and individual traits such as body size. By investigating both morphological and physiological aspects of the peripheral olfactory system, this work aimed to provide a more comprehensive understanding of the sensory mechanisms underlying semiochemical communication in *Ips* species.

A multidisciplinary methodology was employed to address this objective. This included scanning electron microscopy (SEM) for high-resolution morphological characterization of antennal sensilla, single sensillum recordings (SSR) and electroantennography (EAG) for functional analysis of sensory neuron activity, and gas chromatography coupled with electroantennographic detection (GC-EAD) for the identification of behaviorally and physiologically active odorants. Together, these techniques enabled a detailed investigation of antennal sensory systems' structure and function across four ecologically important *Ips* species: *I. typographus*, *I. duplicatus*, *I. cembrae*, and *I. acuminatus*.

The experimental result sub-chapters presented novel findings based on the background outlined in the first review article (**Paper I**). **Papers II and III** addressed the diversity and spatial distribution of antennal sensilla, offering the first comparative morphological descriptions for *I. duplicatus*, *I. cembrae* and *I. acuminatus*, species that have been understudied in the context of olfactory biology and antennal morphology. **Paper IV** examined how body size influences antennal sensitivity to semiochemicals, revealing distinct response patterns that suggest intraspecific variation in olfactory function. **Paper V** focused on electrophysiological recordings from individual olfactory sensory neurons, enabling classification based on response profiles to known pheromone components, host-, non-host and microbial volatiles. Overall, these studies contribute new insights into the chemosensory biology of *Ips* beetles. By integrating structural and functional data across multiple species and individual traits, this thesis establishes a comparative framework for understanding how bark beetles detect and process ecologically relevant chemical signals in their environment.

5.2. Conserved antennal morphology and potential function of sensilla types in *Ips* bark beetles

(*Synthesizing Subchapters 4.2 & 4.3*)

Our direct comparison of *I. duplicatus*, *I. acuminatus*, and *I. cembrae* reveals a highly conserved antennal morphology among *Ips* species, confirming earlier reports for *I. typographus* and *I. sexdentatus* (Payne et al., 1973; Hallberg, 1982a; Faucheux, 1989). Each of the three species possesses a seven-segmented antenna with a club-shaped terminal segment that houses sensilla in three sensory bands (A, B, and C), a characteristic at the genus level for scolytine bark beetles.

Five principal sensilla types, mainly, sensilla chaetica, basiconica, trichodea, coeloconica, and Böhm's sensilla observed across species. While this typology is largely conserved, detailed morphological distinctions were observed, with *I. duplicatus* displaying two different subtypes of coeloconica and a novel subtype of trichodea (STrIV). These distinctions could be a reflection of species-specific adaptations to different ecological niches, or they could reflect the increased imaging resolution afforded by HR-SEM. For example, the lateralized mirror-like pattern of coeloconica sensilla in *I. duplicatus* can suggest fine-scale thermohygrosensory tuning for habitat microclimate detection.

Functionally, sensilla chaetica are likely mechanosensory, supporting antennal positioning and perhaps acoustic communication, particularly in females, in which multibranched SChII subtypes were found to be longer. Such subtle sexual dimorphism correspond with that described in other bark beetles such as *I. sexdentatus* and *T. lineatum* (Moeck, 1968; Faucheux, 1989) and may be linked to oviposition behavior or bark navigation (Moeck, 1968; Rudinsky, 1979; Hofstetter et al., 2019). Similar can be possibly true in *I. acuminatus* and *I. cembrae*, although not yet quantified and confirmed.

Multiporous sensilla basiconica (especially SBI) are the most prevalent and abundant sensilla, occurring in clustered densities in sensory bands A and B, and are considered central to pheromone and host volatile detection (Hallberg, 1982a; Shi et al., 2021), consistent with electrophysiological data reported in *I. typographus* (Andersson et al., 2009; Kandasamy et al., 2019). Sensilla trichodea are structurally diverse based on species, with all multiporous walls indicating their role in olfactory function. One of these trichodea sensilla (STrIV) was observed specifically in *I. duplicatus* and has not

been previously documented in the *Ips* genus, representing a morphological variation from a general form. These sensilla are likely used to detect airborne pheromones and volatiles from hosts (Hallberg, 1982a; Shi et al., 2021).

Sensilla coeloconica reportedly arise from a double-walled or grooved structure, and have been implicated in thermo-, hygro-, and chemoreception (Altner et al., 1977; Hallberg, 1982a). Sensilla coeloconica, typically associated with thermo- and hygrocereception or specific volatiles of hosts (ketones and aldehydes), were comprised of two morphological subtypes in *I. duplicatus*, a distinct novelty from other *Ips* species. Böhm's sensilla on the scape base and pedicel are species-conserved and likely serve as proprioceptors signaling antennal movement (Merivee et al., 1999). Finally, surface pores (SPs) found along the antennal club in *I. duplicatus* may have glandular or mechanosensory in function, but are otherwise speculative in purpose (Hallberg, 1982a; Faucheu, 1989).

In general, while overall antennal organization is evolutionarily conserved in *Ips*, sensilla subunit diversity and subtle dimorphisms suggest a hierarchical olfactory system, insensitive to widespread semiochemicals, but flexible enough for species-specific behavior and ecological specialization.

5.3 Size-dependent olfactory perception and host selection in *I. typographus*

(Synthesizing Subchapter 4.4)

This study provides compelling evidence that female *Ips typographus* exhibit body size-dependent variation in both antennal morphology and olfactory response to specific host-emitted volatiles. The findings highlight distinct patterns in antennal sensitivity and semiochemical-guided behavior related to body size, particularly in response to two oxygenated monoterpenes: (+)-isopinocamphone and 1,8-cineole.

Larger females had proportionally longer and wider antennal clubs, which scaled isometrically with overall body length. These structural morphometrics were functionally associated with significantly stronger antennal responses, as measured by electroantennography (EAG), particularly toward higher doses of (+)-isopinocamphone. This compound, commonly released during host degradation by symbiotic fungi, is associated with advanced stages of tree colonization and fungal metabolism (Kandasamy et al., 2023). The greater antennal surface area in large females likely facilitates enhanced

odorant capture and detection, supporting previous observations that antennal size correlates with increased olfactory detection (Spaethe et al., 2007; Makarova et al., 2022). The behavioral implications of this higher sensitivity were reflected in field trapping results, where large females showed increased attraction to isopinocamphone-baited traps, suggesting a preference for trees exhibiting signs of fungal activity, environments that may offer higher reproductive success (Sallé & Raffa, 2007; Foelker & Hofstetter, 2014).

In contrast, smaller females exhibited a different olfactory profile. Notably, they demonstrated higher antennal sensitivity to 1,8-cineole, an oxygenated monoterpene generally associated with host resistance and considered an anti-attractant for *I. typographus* (Schiebe et al., 2019; Jirošová et al., 2022a). Field trap data supported this physiological sensitivity, showing that smaller females were more frequently captured in traps baited with 1,8-cineole. These findings were unexpected but may suggest altered neural processing or behavioral strategies in smaller individuals (Martin et al., 2011). It is possible that smaller females, with potentially lower competitive abilities, may engage in a risk-tolerant or avoidance-based strategy by selecting suboptimal hosts to reduce intraspecific competition. This idea aligns with prior work suggesting that body size can influence colonization strategy and habitat choice under varying ecological pressures (Anton et al., 2007; Wiesel et al., 2022).

Seasonal field data further support the role of body size in host selection behavior. During epidemic conditions in 2022, a significantly higher number of large females were captured, compared to 2019 when populations were at endemic levels. This seasonal contrast supports density-dependent behavioral plasticity in host selection, where larger females may more successfully exploit resources under high-density conditions (Sallé et al., 2005).

Although this study focused exclusively on females, the olfactory sensory neurons (OSNs) responsive to both 1,8-cineole and (+)-isopinocamphone are known to occur in both sexes (Andersson et al., 2009; Kandasamy et al., 2023). Therefore, similar size-related olfactory patterns may also exist in males, and future studies could usefully explore the extent of sex-specific and size-dependent chemosensory variation in male *I. typographus*.

In summary, the data presented here demonstrate that olfactory perception in *I. typographus* is influenced by body size, which in turn affects antennal sensitivity and semiochemical-guided behavior. These size-dependent differences have potential ecological consequences for host selection, intraspecific competition, and outbreak dynamics. They also emphasize the importance of considering individual morphological traits when interpreting bark beetle behavior in the context of forest pest management and chemical communication.

5.4 Conserved OSN classes and evolutionary constraints across *Ips* species

*(Comparative synthesis with *I. typographus*, Subchapter 4.5)*

This study presents the first electrophysiological profiling of olfactory sensory neurons (OSNs) in *Ips acuminatus* and *Ips cembrae*, revealing 19 OSN classes in both species. Most OSNs were narrowly tuned to single compounds or structurally similar analogues, while few OSNs were broadly responsive. At lower stimulus doses, OSNs exhibited high specificity, which is consistent with similar findings in *I. typographus* (Andersson et al., 2009; Kandasamy et al., 2019, 2023).

Several OSNs showed conserved tuning, particularly to the enantiomers of aggregation pheromones such as ipsenol and ipsdienol (Renwick & Dickens, 1979; Francke & Vité, 1983). For both species, OSNs showed enantiomer-specific responses, often with heightened specificity to the natural form (*S*-(*–*)-ipsenol). This enantiomeric selectivity aligns with previous studies on *Ips* species like *I. typographus*, *I. pini*, and *I. paraconfusus* (Mustaparta et al., 1979, 1980; Tømmerås, 1985).

(4*S*)-*cis*-Verbenol was detected by specific OSNs in both species, but only functions as an aggregation pheromone in *I. acuminatus*. In *I. cembrae*, it appears to act as a disruptive interspecific signal, likely mediated by *I. typographus* (Schlyter et al., 1989). OSNs responsive to amitinol, lanierone, and (*–*)-verbenone were also identified in both species, mirroring patterns seen in *I. typographus* (Andersson et al., 2009, 2012b; Yuvaraj et al., 2024). Co-localization of OSNs within single sensilla, such as ipsdienol with amitinol or lanierone, supports mechanisms for blend discrimination (Baker et al., 1998; Bruce et al., 2005).

Responses to fungal volatiles (e.g., 2-phenylethanol, 1-octen-3-ol, and *trans*-conophthorin) and minor oxygenated host monoterpenes (e.g., camphor and

isopinocamphone) indicate that both species detect chemical cues associated with microbial activity and host stress, as observed in *I. typographus* (Kandasamy et al., 2019, 2023; Moliterno et al., 2023). Responses to non-host volatiles (NHVs) such as 1-hexanol and 1,8-cineole suggest shared avoidance mechanisms in conifer-feeding bark beetles (Schlyter et al., 1999, 2000).

Electrophysiological responses were consistent with a broader pattern across insects, where OSNs are often finely tuned to ecologically relevant odorants (Hallem et al., 2004; de Bruyne & Baker, 2008). Comparative evidence from other beetle genera (e.g., *Protapion* and *Pachnoda*) supports the idea of conserved OSN classes with a subset of species-specific specializations (Bengtsson et al., 2011; Carrasco et al., 2019). While OSN responses observed here parallel known patterns in *I. typographus*, molecular data such as the functionally characterized odorant receptors (ORs) in that species suggest potential conserved OR orthologs also underline responses in *I. acuminatus* and *I. cembrae* (Hou et al., 2021; Yuvaraj et al., 2021, 2024; Biswas et al., 2024). These conserved OSN profiles suggest strong stabilizing selection for detecting key semiochemicals involved in mating, aggregation, and host discrimination.

In sum, this subchapter demonstrates that while core elements of the olfactory system are conserved across *Ips* species, likely due to shared ancestral traits and ecological overlap, species-specific sensilla structures and OSN classes have evolved in response to niche partitioning and chemical specialization. These findings underscore the delicate balance between evolutionary conservation and adaptive divergence in the peripheral olfactory systems of conifer-feeding bark beetles.

5.5 Species-specific OSN tuning in *I. acuminatus* and *I. cembrae*

(Synthesizing Subchapter 4.5)

Despite predominant similarities, notable species-specific OSN features were identified. Only *I. acuminatus* showed strong, female-specific responses to (−)-verbenone, a bark beetle anti-attractant. This sex-specific OSN distribution, including others tuned to lanierone and *R*-(−)-ipsdienol in females and 2-methyl-3-buten-2-ol in males, may reflect its polygynous mating system and sex-specific behavioral roles (Kirkendall, 1989, 1990). In *I. cembrae*, OSNs specific to (−)- α -pinene and styrene were observed exclusively in males, suggesting a role in host tree detection.

OSN responses to heterospecific pheromones, such as chalcogran and *exo*-brevicomin (Francke, 1977; Zhao et al., 2019), were also more prominent in *I. cembrae*, potentially linked to its ability to colonize a broader range of hosts and interact with other bark beetle genera (Pfeffer, 1955; Postner, 1974). These findings imply a capacity for interspecific signal detection, likely facilitating coexistence or competition avoidance in overlapping habitats. Such heterospecific olfactory recognition is also reported in other Coleoptera and suggests a broader ecological role for olfaction beyond conspecific communication (Andersson et al., 2009; Kandasamy et al., 2023).

Finally, differences in monoterpene detection were evident. OSNs for monoterpenes were rare in both species and the compounds and their response strengths differed. *I. acuminatus* OSNs primarily responded to (−)-limonene and γ-terpinene, while *I. cembrae* responded to (−)-α-pinene and p-cymene. GC-EAD results supported these trends and indicated that monoterpenes may play a minor role in host tree location, especially in *I. acuminatus*, which does not show strong host attraction in the field (Brattli et al., 1998).

5.6 Integration of morphological and functional insights into bark beetle olfaction (*Synthesizing Subchapters 4.2 to 4.5*)

This study demonstrates that the peripheral olfactory system in *Ips duplicatus*, *I. acuminatus*, and *I. cembrae* is built upon a structurally conserved antennal basis, with consistent sensilla organization across species. However, subtle morphological differences, such as distinct sensilla subtypes and species-specific olfactory sensory neuron (OSN) classes, reveal adaptations linked to ecological specialization.

Antennal mapping revealed differences in the spatial distribution of OSNs across species. For instance, ipsenol OSNs were restricted to band B in *I. acuminatus* but were present in bands A and B in *I. cembrae*. On the contrary, ipsdienol OSNs occurred mostly in bands A and B in *I. acuminatus*, and in bands B and C in *I. cembrae*. These species-specific differences may reflect unique olfactory adaptations related to their respective host detection and pheromone communication shaped by distinct ecological pressures.

Single sensillum recordings confirmed the presence of both conserved and species-specific OSN classes. Conserved classes were generally tuned to shared pheromone components and host volatiles, while species-specific OSNs—such as those responsive to γ-terpinene in *I. acuminatus* or estragole in *I. cembrae*. These patterns demonstrate functional divergence tailored to particular ecological contexts. Apart from coleopteran

insects (Larsson et al., 2001), this pattern is also observed in other groups such as *Drosophila* and various Lepidoptera, where species exhibit both conserved OSNs and the evolution of narrowly tuned, species-specific neurons (Hallem et al., 2004; de Bruyne & Baker, 2008; Andersson et al., 2015).

At the molecular level, recent studies have linked odorant receptor (OR) repertoires in *I. typographus* to specific OSN classes (Hou et al., 2021; Roberts et al., 2021, 2022; Yuvaraj et al., 2021, 2024; Biswas et al., 2024). The presence of OR orthologs between *I. typographus* and *I. duplicatus* (Johny et al., 2024) suggests that similar conservation patterns likely extend to *I. cembrae* and *I. acuminatus*. This molecular parallel supports the idea that functional similarities in OSN tuning are supported by conserved genetic mechanisms. Taken together, these findings indicate that the olfactory system in *Ips* beetles is shaped by a dynamic interplay between evolutionary conservation and ecological diversification. Conserved OSN classes facilitate the detection of broadly relevant cues, while species-specific neurons provide the flexibility required for ecological specialization and reproductive isolation. Genomic and functional approaches, including receptor-ligand characterization and comparative transcriptomics, will be essential in elucidating the molecular basis of these olfactory adaptations.

Furthermore, results from *I. typographus* highlight the influence of antennal morphology and body size on olfactory performance and behavior. These observations suggest that both interspecific differences and intraspecific variation contribute to shaping olfactory function. Overall, the balance between phylogenetic constraints and adaptive flexibility enables bark beetles to efficiently navigate complex olfactory landscapes and maintain ecological success across diverse environments.

5.7. Methodological considerations and study limitations

While this study provides valuable insights into the sensilla equipment and olfactory adaptations of *Ips* species, particularly *I. typographus*, *I. duplicatus*, *I. acuminatus*, and *I. cembrae*, several challenges were encountered. One of the main difficulties was maintaining live beetles for experiments year-round, as some species are challenging to rear in laboratory conditions. Many bark beetles require specific environmental factors for successful breeding, and attempts to rear them under control conditions were often

unsuccessful. Additionally, since these beetles emerge seasonally, specimen collection was limited to specific periods, reducing the number of individuals available for study. While highly sensitive, the single sensillum recording (SSR) technique has several challenges. Accurate recording from olfactory sensory neurons (OSNs) required precise electrode placement, and accessing certain antennal regions was difficult. Similarly, scanning electron microscopy (SEM) presented technical challenges, including sample preparation, imaging resolution, and classification of sensilla located in challenging areas, potentially affecting the accuracy of morphological analyses.

Furthermore, comparisons with *I. typographus* relied on previously published data, which may have been generated under slightly different experimental conditions. Variations in odor panels, methodologies, and environmental factors influencing beetle populations could introduce biases, making distinguishing species-specific adaptations from shared traits difficult. Despite these limitations, the findings of this study remain significant. However, future research could benefit from expanding sampling efforts, refining rearing techniques, and integrating behavioral and molecular studies.

5.8. Recommendations for future research and applied perspectives in forest pest management

Based on the findings of this study, a number of directions are proposed to advance our understanding of bark beetle olfaction and to improve semiochemical-based control strategies:

- 1. Expand OSN and OR characterization across *Ips* species:** Future work should prioritize the functional mapping of olfactory sensory neurons (OSNs) and their associated odorant receptors (ORs) in underexplored *Ips* species and geographic populations.
- 2. Incorporate sex and size-specific olfactory sensitivity in other species:** Future research should explore whether similar size-dependent olfactory adaptations exist in males and other *Ips* species. Management tools such as pheromone traps could be refined to selectively target individuals based on sex and size, especially those contributing disproportionately to reproduction and outbreak potential.
- 3. Integrate fungal symbionts and host-derived volatiles into lure design:** Combine fungal-symbionts and host-derived oxygenated monoterpenes in lures

to enhance trap performance and species selectivity in mixed-beetle environments.

4. **Validate species-specific OSNs through behavioral assays:** Compounds such as estragole, chalcogran, and camphor, which activate specific OSN classes, represent promising targets for future behavioral validation to assess their ecological roles and potential in pest management. Their role in species recognition, interspecific interactions, or host selection warrants further ecological testing before potential inclusion in monitoring or control strategies.
5. **Develop smart trapping and monitoring systems:** Integrate biosensors mimicking beetle olfaction into traps for real-time semiochemical detection, enhancing early outbreak forecasting and surveillance.

Collectively, these recommendations aim to bridge fundamental olfactory research with applied forest entomology, contributing to the development of more ecologically informed pest management systems.

Chapter 6: Concluding remarks

This thesis provides an in-depth investigation of antennal morphology and olfactory sensory neuron function in three *Ips* species: *I. duplicatus*, *I. acuminatus*, and *I. cembrae*. It also provides a focused analysis of size-dependent olfactory detection in *Ips typographus*. By combining high-resolution morphological techniques with advanced electrophysiological recordings and behavioral assays, this work significantly contributes to our understanding of chemosensory diversity and specialization in *Ips* bark beetles.

The first detailed morphological characterization of antennal sensilla in *I. duplicatus* revealed diverse sensillum types and identified subtle sexual dimorphism in their distribution and structure. It also reported descriptive analysis of antennal sensilla types in *I. cembrae* and *I. acuminatus*. These findings align with patterns observed in other *Ips* species and offer a valuable comparative framework. The sensilla classification proposed here contributes to a more standardized and reproducible nomenclature for future studies on antennal morphology and sensory system organization in bark beetles.

Electrophysiological and behavioral experiments in *I. typographus* females demonstrated clear size-dependent differences in antennal sensitivity and attraction to host-emitted oxygenated monoterpenes. Larger females showed increased antennal responses to (+)-isopinocamphone, a fungal-associated compound, while smaller females were more responsive to the anti-attractant 1,8-cineole. These results indicate that body size influences olfactory perception and semiochemical-guided behavior, potentially affecting host selection, dispersal capacity, and reproductive success. Such findings add an important individual-level perspective to population-level bark beetle dynamics.

This thesis presents the first functional classification of OSNs in *I. acuminatus* and *I. cembrae* through single sensillum recordings, identifying 19 distinct OSN classes in each species. Most OSNs were selectively tuned to key semiochemicals, including aggregation pheromones, host volatiles, non-host cues, and microbial metabolites, reflecting specialized olfactory roles. Comparative analysis with *I. typographus* revealed a shared set of OSNs, suggesting evolutionary conservation of key chemosensory functions across *Ips* species. At the same time, several OSNs were species-specific, likely representing adaptations to different ecological conditions or chemical landscapes. A

subset of OSNs remained unresponsive to the test panel, highlighting the need to expand odorant libraries and include a broader range of semiochemicals for future screening.

Taken together, the findings of this thesis offer important insights into the structure and function of the peripheral olfactory system in *Ips* bark beetles. These results not only advance fundamental knowledge in insect sensory biology but also provide practical implications for improving pest detection and control strategies. The demonstrated importance of oxygenated host volatiles and non-host cues suggests that integrating these compounds into pheromone-based traps may enhance their effectiveness and selectivity in field monitoring programs.

Lastly, this work establishes a foundation for future interdisciplinary research. Promising avenues include linking OSN functionality with olfactory receptor gene expression, exploring sex-specific differences in olfactory coding and behavior, and investigating how changing environmental conditions, including host stress and microbial interactions under climate change may influence bark beetle chemosensory ecology. Addressing these questions will further clarify the role of chemical communication in bark beetle population dynamics and inform more adaptive and sustainable forest pest management strategies.

7. References

- 1) Allen, C.D., Breshears, D.D. and McDowell, N.G. (2015). On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. *Ecosphere*, 6, 1–55. <https://doi.org/10.1890/ES15-00203.1>.
- 2) Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. *Forest Ecology and Management*, 259, 660–684. <https://doi.org/10.1016/j.foreco.2009.09.001>.
- 3) Altner, H., Sass, H. and Altner, I. (1977). Relationship between structure and function of antennal chemo-, hygro-, and thermoreceptive sensilla in *Periplaneta americana*. *Cell and Tissue Research*, 176(3), 389–405. <https://doi.org/10.1007/BF00221796>.
- 4) Anderbrant, O., Schlyter, F. and Birgersson, G. (1985). Intraspecific competition affecting parents and offspring in the bark beetle *Ips typographus*. *Oikos*, 45, 89–98. <https://doi.org/10.2307/3565226>.
- 5) Andersson, M.N., Larsson, M.C. and Schlyter, F. (2009). Specificity and redundancy in the olfactory system of the bark beetle *Ips typographus*: Single-cell responses to ecologically relevant odors. *Journal of Insect Physiology*, 55, 556–567.
- 6) <https://doi.org/10.1016/j.jinsphys.2009.01.015>.
- 7) Andersson, M.N., Larsson, M.C., Blaženec, M., Jakuš, R., Zhang, Q.H. and Schlyter, F. (2010). Peripheral modulation of pheromone response by inhibitory host compound in a beetle. *Journal of Experimental Biology*, 213, 3332–3339.
- 8) <https://doi.org/10.1242/jeb.044396>.
- 9) Andersson, M.N., Larsson, M.C., Svensson, G.P., Birgersson, G., Rundlöf, M., Lundin, O., Lankinen, Å. and Anderbrant, O. (2012a). Characterization of olfactory sensory neurons in the white clover seed weevil, *Apion fulvipes* (Coleoptera: Apionidae). *Journal of Insect Physiology*, 58, 1325–1333.
- 10) <https://doi.org/10.1016/j.jinsphys.2012.07.006>.
- 11) Andersson, M.N., Löfstedt, C. and Newcomb, R.D. (2015). Insect olfaction and the evolution of receptor tuning. *Frontiers in Ecology and Evolution*, 3, 53.
- 12) <https://doi.org/10.3389/fevo.2015.00053>.
- 13) Andersson, M.N., Schlyter, F., Hill, S.R. and Dekker, T. (2012b). What reaches the antenna? How to calibrate odor flux and ligand-receptor affinities. *Chemical Senses*, 37, 403–420. <https://doi.org/10.1093/chemse/bjs009>.
- 14) Anton, S., Dufour, M.C. and Gadenne, C. (2007). Plasticity of olfactory-guided behaviour and its neurobiological basis: lessons from moths and locusts. *Entomologia*

Experimentalis et Applicata, 123(1), 1–11. <https://doi.org/10.1111/j.1570-7458.2007.00516.x>.

- 15) Baker, T.C., Fadamiro, H.Y. and Cosse, A.A. (1998). Moth uses fine tuning for odour resolution. *Nature*, 393, 530. <https://doi.org/10.1038/31131>.
- 16) Bakke, A. (1978). Aggregation pheromone components of the bark beetle *Ips acuminatus*. *Oikos*, 31, 184–188. <https://doi.org/10.2307/3543236>.
- 17) Bengtsson, J.M., Khbaish, H., Reinecke, A., Wolde-Hawariat, Y., Negash, M., Seyoum, E., Hansson, B.S., Hillbur, Y. and Larsson, M.C. (2011). Conserved, highly specialized olfactory receptor neurons for food compounds in two congeneric scarab beetles, *Pachnoda interrupta* and *Pachnoda marginata*. *Chemical Senses*, 36, 499–513. <https://doi.org/10.1093/chemse/bjr002>.
- 18) Benton, R., Vannice, K.S., Gomez-Diaz, C. and Vosshall, L.B. (2009). Variant ionotropic glutamate receptors as chemosensory receptors in *Drosophila*. *Cell*, 136, 149–162. <https://doi.org/10.1016/j.cell.2008.12.001>.
- 19) Biedermann, P.H., Müller, J., Grégoire, J.C., Gruppe, A., Hagge, J., Hammerbacher, A., et al. (2019). Bark beetle population dynamics in the Anthropocene: challenges and solutions. *Trends in Ecology & Evolution*, 34, 914–924. <https://doi.org/10.1016/j.tree.2019.06.002>.
- 20) Binyameen, M., Blaženec, M., Jakuš, R., Song, L., Jankuvová, J., Andersson, M.N. and Schlyter, F. (2014). Co-localization of insect olfactory sensory cells improves the discrimination of closely separated odor sources. *Functional Ecology*, 28, 1216–1223. <https://doi.org/10.1111/1365-2435.12252>.
- 21) Birgersson, G. and Bergström, G. (1989). Volatiles released from individual spruce bark beetle entrance holes: quantitative variations during the first week of attack. *Journal of Chemical Ecology*, 15, 2465–2483. <https://doi.org/10.1007/BF01020377>.
- 22) Birgersson, G., Schlyter, F., Löfqvist, J. and Bergström, G. (1984). Quantitative variation of pheromone components in the spruce bark beetle *Ips typographus* from different attack phases. *Journal of Chemical Ecology*, 10, 1029–1055. <https://doi.org/10.1007/BF00987511>
- 23) Biswas, T., Sims, C., Yuvaraj, J.K., Roberts, R.E., Löfstedt, C. and Andersson, M.N. (2024). Functional characterization supports multiple evolutionary origins of pheromone receptors in bark beetles. *Molecular Biology and Evolution*, 41, 1–15. <https://doi.org/10.1093/molbev/msad232>.

24) Brattli, J.G., Andersen, J. and Nilssen, A.C. (1998). Primary attraction and host tree selection in deciduous and conifer-living Coleoptera: Scolytidae, Curculionidae, Cerambycidae and Lymexylidae. *Journal of Applied Entomology*, 122, 345–352. <https://doi.org/10.1111/j.1439-0418.1998.tb01511.x>.

25) Brockerhoff, E.G., Corley, J.C. and Jactel, H. (2023). Monitoring and surveillance of forest insects. In: *Forest Entomology and Pathology*. Dordrecht: Springer, pp. 669–687. https://doi.org/10.1007/978-3-031-11553-0_19.

26) Bruce, T.J.A. and Pickett, J.A. (2011). Perception of plant volatile blends by herbivorous insects – Finding the right mix. *Phytochemistry*, 72(13), 1605–1611. <https://doi.org/10.1016/j.phytochem.2011.04.011>.

27) Bruce, T.J.A., Wadhams, L.J. and Woodcock, C.M. (2005). Insect host location: A volatile situation. *Trends Plant Sci.*, 10, 269–274. <https://doi.org/10.1016/j.tplants.2005.04.003>.

28) Byers, J.A. (2007). Chemical ecology of bark beetles in a complex olfactory landscape. In: Lieutier, F., Day, K.R., Battisti, A., Grégoire, J.C. and Evans, H.F. (eds.) *Bark and Wood Boring Insects in Living Trees in Europe: A Synthesis*. Dordrecht: Springer, pp. 89–134. https://doi.org/10.1007/978-1-4020-2241-8_8.

29) Byers, J.A. and Levi-Zada, A. (2022). Modelling push–pull management of pest insects using repellents and attractive traps in fruit tree orchards. *Pest Management Science*, 78, 3630–3637. <https://doi.org/10.1002/ps.7040>.

30) Carey, A., Wang, G., Su, C.Y., et al. (2010). Odorant reception in the malaria mosquito *Anopheles gambiae*. *Nature*, 464, 66–71. <https://doi.org/10.1038/nature08834>.

31) Carraher, C., Dalziel, J., Jordan, M.D., Christie, D.L., Newcomb, R.D. and Kralicek, A.V. (2015). Towards an understanding of the structural basis for insect olfaction by odorant receptors. *Insect Biochemistry and Molecular Biology*, 66, 31–41. <https://doi.org/10.1016/j.ibmb.2015.09.010>.

32) Carrasco, D., Nyabuga, F.N., Anderbrant, O., Svensson, G.P., Birgersson, G., Lankinen, Å., Larsson, M.C. and Andersson, M.N. (2019). Characterization of olfactory sensory neurons in the red clover seed weevil, *Protaetia trifolii* (Coleoptera: Brentidae), and comparison to the closely related species *P. fulvipes*. *Journal of Insect Physiology*, 119, 103948. <https://doi.org/10.1016/j.jinsphys.2019.103948>.

33) Celedon, J.M. and Bohlmann, J. (2019). Oleoresin defenses in conifers: chemical diversity, terpene synthases, and limitations of oleoresin defense under climate change. *New Phytologist*, 224, 1444–1463. <https://doi.org/10.1111/nph.15984>.

34) Chen, H.B., Zhang, Z., Wang, H.B. and Kong, X.B. (2010). Antennal morphology and sensilla ultrastructure of *Dendroctonus valens* LeConte (Coleoptera: Curculionidae, Seolytinae), an invasive forest pest in China. *Micron*, 41(7), 735–741. <https://doi.org/10.1016/j.micron.2010.06.007>.

35) Christiansen, E. and Bakke, A. (1988). The Spruce Bark Beetle of Eurasia. In: Berryman, A.A. (ed.) *Dynamics of Forest Insect Populations*. Boston, MA: Springer, pp. 479–503. https://doi.org/10.1007/978-1-4899-0789-9_23.

36) Clark, J.T. and Ray, A. (2016). Olfactory mechanisms for discovery of odorants to reduce insect-host contact. *Journal of Chemical Ecology*, 42, 919–930. <https://doi.org/10.1007/s10886-016-0770-3>.

37) Clyne, P.J., Warr, C.G. and Carlson, J.R. (2000). Candidate taste receptors in *Drosophila*. *Science*, 287(5459), 1830–1834. <https://doi.org/10.1126/science.287.5459.1830>.

38) Clyne, P.J., Warr, C.G., Freeman, M.R., Lessing, D., Kim, J. and Carlson, J.R. (1999). A novel family of divergent seven-transmembrane proteins: Candidate odorant receptors in *Drosophila*. *Neuron*, 22, 327–338. [https://doi.org/10.1016/S0896-6273\(00\)81093-4](https://doi.org/10.1016/S0896-6273(00)81093-4).

39) Cognato, A.I. (2015). Biology, systematics, and evolution of *Ips*. In: Vega, F.E. and Hofstetter, R.W. (eds.) *Bark Beetles: Biology and Ecology of Native and Invasive Species*. Elsevier Inc., pp. 351–370. <https://doi.org/10.1016/B978-0-12-417156-5.00009-5>.

40) Dacquin, P., Caiti, E., Grégoire, J.-C. and Aron, S. (2024). Preemergence mating, inbreeding, and their consequences in the bark beetle *Ips typographus*. *Journal of Pest Science*, 97, 1005–1016. <https://doi.org/10.1007/s10340-023-01650-4>.

41) Davídková, M., Kleinová, L. and Doležal, P. (2023). Overwintering migration of the double-spined spruce bark beetle *Ips duplicatus* (Sahlberg, 1836) (Coleoptera; Curculionidae). *Forests*, 14, 131. <https://doi.org/10.3390/f14010131>.

42) De Bruyne, M. and Baker, T.C. (2008). Odor detection in insects: volatile codes. *Journal of Chemical Ecology*, 34, 882–897. <https://doi.org/10.1007/s10886-008-9485-4>.

43) Deganutti, L., Biscontin, F., Bernardinelli, I., et al. (2024). The semiochemical push-and-pull technique can reduce bark beetle damage in disturbed Norway spruce forests affected by the Vaia storm. *Agricultural and Forest Entomology*. <https://doi.org/10.1111/afe.12526>.

44) Dobor, L., Hlásny, T. and Zimová, S. (2020). Contrasting vulnerability of monospecific and species-diverse forests to wind and bark beetle disturbance: The role of management. *Ecology and Evolution*, 10, 12233–12245.
<https://doi.org/10.1002/ece3.6901>.

45) El-Sayed, A.M. (2025). *The pherobase: Database of Pheromones and Semiochemicals*. Available at: <https://www.pherobase.com>.

46) Faucheux, M.J. (1989). Morphology of the antennal club in the male and female bark beetles *Ips sexdentatus* Boern. and *I. typographus* (L.) (Coleoptera: Scolytidae). *Annales Des Sciences Naturelles. Zoologie et Biologie Animale*, 10(4), 231–243.

47) Faucheux, M.J. (1994). Distribution and abundance of antennal sensilla from two populations of the pine engraver beetle, *Ips pini* (Say) (Coleoptera, Scolytidae). *Annales Des Sciences Naturelles. Zoologie et Biologie Animale*, 15(1), 15–31.

48) Gillette, N.E. and Fettig, C.J. (2021). Semiochemicals for bark beetle (Coleoptera: Curculionidae) management in western North America: where do we go from here? *The Canadian Entomologist*, 153(1), 121–135. <https://doi.org/10.4039/tce.2020.61>

49) Foelker, C.J. and Hofstetter, R.W. (2014). Heritability, fecundity, and sexual size dimorphism in four species of bark beetles (Coleoptera: Curculionidae: Scolytinae). *Annals of the Entomological Society of America*, 107, 143–151.
<https://doi.org/10.1603/AN12153>

50) Franceschi, V.R., Krokene, P., Christiansen, E. and Krekling, T. (2005). Anatomical and chemical defenses of conifer bark against bark beetles and other pests. *New Phytologist*, 167, 353–376. <https://doi.org/10.1111/j.1469-8137.2005.01436.x>

51) Francke, W. (1977). 2-Ethyl-1,6-dioxaspiro[4.4] nonane, principal aggregation pheromone of *Pityogenes chalcographus* (L.). *Entomol. (A)*, 15, 232–240.
<https://doi.org/10.1007/BF0045065>.

52) Francke, W. and Vit  , J.P. (1983). Oxygenated terpenes in pheromone systems of bark beetles. *Z. Angew. Entomol.*, 96, 146–156. <https://doi.org/10.1111/j.1439-0418.1983.tb03655.x>.

53) Francke, W., Pan, M., Bartels, J., K  nig, W.A., Vit  , J.P., Krawielitzki, S., et al. (1986). The odour bouquet of three pine engraver beetles (*Ips* spp.). *Journal of Applied Entomology*, 101, 453–461. <https://doi.org/10.1111/j.1439-0418.1986.tb00819.x>.

54) Francke-Grosmann, H. (1965). Ein Symbioseorgan bei dem Borkenk  fer *Dendroctonus frontalis* Zimm. (Coleoptera, Scolytidae). *Naturwissenschaften*, 52, 143.

55) Frühbrodt, T., Schebeck, M., Andersson, M.N., Holighaus, G., Kreuzwieser, J., Burzlaff, T., Delb, H. and Biedermann, P.H. (2024). Verbenone—the universal bark beetle repellent? Its origin, effects, and ecological roles. *Journal of Pest Science*, 97(1), 35–71. <https://doi.org/10.1007/s10340-023-01690-8>.

56) Galizia, C.G. (2014). Olfactory coding in the insect brain: data and conjectures. *European Journal of Neuroscience*, 39, 1784–1795. <https://doi.org/10.1111/ejn.12558>.

57) Gallo, J., Bílek, L., Šimůnek, V., Roig, S. and Fernández, J.A.B. (2020). Uneven-aged silviculture of Scots pine in Bohemia and Central Spain: Comparison study of stand reaction to transition and long-term selection management. *Journal of Forest Science*, 66, 22–35. <https://doi.org/10.17221/124/2019-JFS>.

58) Gao, Q., Yuan, B. and Chess, A. (2000). Convergent projections of *Drosophila* olfactory neurons to specific glomeruli in the antennal lobe. *Nature Neuroscience*, 3(8), 780–785. <https://doi.org/10.1038/77680>.

59) Grodzki, W. (2008). *Ips cembrae* Heer. (Col.: Curculionidae, Scolytinae) in young larch stands – A new problem in Poland. *Forstschutz Aktuell*, 44, 1–42.

60) Grodzki, W. (2012). Two types of Norway spruce *Picea abies* (L.) H. Karst. infestation by the double spined bark beetle *Ips duplicatus* C.R. Sahlb. (Coleoptera: Scolytinae) in southern and north-eastern Poland. *Folia Forestalia Polonica, Series A*, 54, 169–174. <https://doi.org/10.2478/v10250-012-0014-1>.

61) Hajek, A.E. and Delalibera, I. (2010). Fungal pathogens as classical biological control agents against insect pests. *BioControl*, 55(1), 147–158. <https://doi.org/10.1007/s10526-009-9253-6>.

62) Hallberg, E. (1982a). Sensory organs in *Ips typographus* (Insecta: Coleoptera) - Fine structure of antennal sensilla. *Protoplasma*, 111, 206–214. <https://doi.org/10.1007/BF01281968>.

63) Hallberg, E. (1982b). Sensory organs in *Ips typographus* (Insecta: Coleoptera) fine structure of the sensilla of the maxillary and labial palps. *Acta Zoologica*, 63(4), 191–198. <https://doi.org/10.1111/j.1463-6395.1982.tb00778.x>.

64) Hallberg, E., Hansson, B.S. and Löfstedt, C. (2003). Sensilla and proprioceptors. In: Kristensen, N.P. (ed.) *Handbuch der Zoologie. Arthropoda: Insecta, Lepidoptera: Moths and Butterflies*, Part 36, 267–288. <https://doi.org/10.1515/9783110893724.267>.

65) Hallem, E.A. and Carlson, J.R. (2006). Coding of odors by a receptor repertoire. *Cell*, 125, 143–160. <https://doi.org/10.1016/j.cell.2006.01.050>.

66) Hallem, E.A., Ho, M.G. and Carlson, J.R. (2004). The molecular basis of odor coding in the *Drosophila* antenna. *Cell*, 117(7), 965–979.
<https://doi.org/10.1016/j.cell.2004.05.012>.

67) Hansson, B.S. and Stensmyr, M.C. (2011). Evolution of insect olfaction. *Neuron*, 72, 698–711. <https://doi.org/10.1016/j.neuron.2011.11.003>.

68) Heberle, H., Meirelles, G.V., da Silva, F.R., Telles, G.P. and Minghim, R. (2015). InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. *BMC Bioinformatics*, 16, 169. <https://doi.org/10.1186/s12859-015-0611-3>.

69) Hlásny, T., Zimová, S., Merganičová, K., Štěpánek, P., Modlinger, R. and Turčáni, M. (2021). Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications. *Forest Ecology and Management*, 490, 119075.
<https://doi.org/10.1016/j.foreco.2021.119075>.

70) Hofstetter, R.W., Aflitto, N., Bedoya, C.L., Yturralde, K. and Dunn, D.D. (2019). Vibrational behavior in bark beetles: Applied aspects. In: Hill, P., Lakes-Harlan, R., Mazzoni, V., Narins, P., Virant-Doberlet, M. and Wessel, A. (eds.) *Biotremology: Studying Vibrational Behavior. Animal Signals and Communication*, Vol. 6, Springer, Cham, pp. 415–435. https://doi.org/10.1007/978-3-030-22293-2_21.

71) Holuša, J. and Fiala, T. (2025). *Pityogenes chalcographus* (Coleoptera: Curculionidae): biology, pest status, and current management options. *Journal of Integrated Pest Management*. 16 (1), 11.<https://doi.org/10.1093/jipm/pmaf007>

72) Holuša, J., Lubojacký, J. and Knížek, M. (2010). Distribution of the doublespined spruce bark beetle *Ips duplicatus* in The Czech Republic: Spreading in 1997–2009. *Phytoparasitica*, 38(5), 435–443. <https://doi.org/10.1007/s12600-010-0121-9>.

73) Hou, X.-Q., Yuvaraj, J.K., Roberts, R.E., Zhang, D.-D., Unelius, C.R., Löfstedt, C. and Andersson, M.N. (2021). Functional evolution of a bark beetle odorant receptor clade detecting monoterpenoids of different ecological origins. *Molecular Biology and Evolution*, 38, 4934–4947. <https://doi.org/10.1093/molbev/msab218>.

74) Hughes, P.R. (1973). Effect of alpha-pinene on trans-verbenol synthesis in *Dendroctonus ponderosae*. *Experientia*. <https://doi.org/10.1007/BF00625726>.

75) Hughes, P.R. (1974). Myrcene: a precursor of pheromones in *Ips* beetles. *Journal of Insect Physiology*, 20(7), 1271–1275. [https://doi.org/10.1016/0022-1910\(74\)90232-7](https://doi.org/10.1016/0022-1910(74)90232-7).

76) Hulcr, J., Atkinson, T.H., Cognato, A.I., Jordal, B.H. and McKenna, D.D. (2015). Morphology, taxonomy, and phylogenetics of bark beetles. In: Vega, F.E. and

Hofstetter, R.W. (eds.) *Bark Beetles: Biology and Ecology of Native and Invasive Species*. Elsevier, pp. 41–84. <https://doi.org/10.1016/B978-0-12-417156-5.00002-2>.

77) Hulcr, J., Ubik, K. and Vrkoc, J. (2006). The role of semiochemicals in tritrophic interactions between the spruce bark beetle *Ips typographus*, its predators, and infested spruce. *Journal of Applied Entomology*, 130, 275–283. <https://doi.org/10.1111/j.1439-0418.2006.01069.x>.

78) Jaime, L., Batllori, E. and Lloret, F. (2024). Bark beetle outbreaks in coniferous forests: A review of climate change effects. *European Journal of Forest Research*, 143, 1–17. <https://doi.org/10.1007/s10342-023-01623-3>.

79) Jakoby, O., Lischke, H. and Wermelinger, B. (2019). Climate change alters elevational phenology patterns of the European spruce bark beetle (*Ips typographus*). *Global Change Biology*, 25, 4048–4063. <https://doi.org/10.1111/gcb.14766>.

80) Jakuš, R. and Zhang, Q.H. (2003). Overview of development of an anti-attractant based technology for spruce protection against *Ips typographus*: From past failures to future success. *Journal of Pest Science*, 76, 97–103. <https://doi.org/10.1046/j.1439-0280.2003.03020.x>.

81) Jankowiak, R., Rossa, R. and Mista, K. (2007). Survey of fungal species vectored by *Ips cembrae* to European larch trees in Raciborskie forests (Poland). *Czech Mycology*, 59(2), 227–239. <https://doi.org/10.33585/cmy.59209>.

82) Jirošová, A., Kalinová, B., Modlinger, R., Jakuš, R., Unelius, C.R., Blaženec, M. and Schlyter, F. (2022a). Anti-attractant activity of (+)-trans-4-thujanol for Eurasian spruce bark beetle *Ips typographus*: Novel potency for females. *Pest Management Science*, 78, 4681–4691. <https://doi.org/10.1002/ps.6819>.

83) Jirošová, A., Modlinger, R., Hradecký, J., Ramakrishnan, R., Beránková, K. and Kandasamy, D. (2022b). Ophiostomatoid fungi synergize attraction of the Eurasian spruce bark beetle *Ips typographus* to its aggregation pheromone in field traps. *Frontiers in Microbiology*, 13, 980251. <https://doi.org/10.3389/fmicb.2022.980251>.

84) Johny, J., Große-Wilde, E., Kalinová, B. and Roy, A. (2024). Antennal transcriptome screening and identification of chemosensory proteins in the double-spine European spruce bark beetle, *Ips duplicatus* (Coleoptera: Scolytinae). *International Journal of Molecular Sciences*, 25, 9513. <https://doi.org/10.3390/ijms25179513>.

85) Jolicoeur, P. (1990). Bivariate allometry: interval estimation of the slopes of the ordinary and standardized normal major axes and structural relationship. *Journal of Theoretical Biology*, 144, 275–285. [https://doi.org/10.1016/s0022-5193\(05\)80326-1](https://doi.org/10.1016/s0022-5193(05)80326-1).

86) Kalinová, B., Břízová, R., Knížek, M., Turčáni, M. and Hoskovec, M. (2014). Volatiles from spruce trap-trees detected by *Ips typographus* bark beetles: chemical and electrophysiological analyses. *Arthropod-Plant Interactions*, 8, 305–316.
<https://doi.org/10.1007/s11829-014-9310-7>.

87) Kandasamy, D., Gershenzon, J., Andersson, M.N. and Hammerbacher, A. (2019). Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle (*Ips typographus*) with its fungal symbionts. *ISME Journal*, 13, 1788–1800.
<https://doi.org/10.1038/s41396-019-0390-3>.

88) Kandasamy, D., Zaman, R., Nakamura, Y., Zhao, T., Hartmann, H., Andersson, M.N., et al. (2023). Conifer-killing bark beetles locate fungal symbionts by detecting volatile fungal metabolites of host tree resin monoterpenes. *PLoS Biology*, 21, e3001887.
<https://doi.org/10.1371/journal.pbio.3001887>.

89) Kašák, J. and Foit, J. (2015). Double-spined bark beetle (*Ips duplicatus*) (Coleoptera: Curculionidae): A new host–Douglas fir (*Pseudotsuga menziesii*). *Journal of Forest Science*, 61(6), 274–276. <https://doi.org/10.17221/28/2015-JFS>.

90) Keeling, C.I., Tittiger, C., MacLean, M. and Blomquist, G.J. (2021). Pheromone production in bark beetles. In: Blomquist, G.J. and Vogt, R.G. (eds.) *Insect Pheromone Biochemistry and Molecular Biology*. Academic Press, pp. 123–162.

91) Kirisits, T. (2004). Fungal associates of European bark beetles with special emphasis on the ophiostomatoid fungi. In: Lieutier, F., Day, K.R., Battisti, A., Grégoire, J.C. and Evans, H.F. (eds.) *Bark and Wood Boring Insects in Living Trees in Europe: A Synthesis*. Springer, pp. 181–236.

92) Kirkendall, L.R. (1989). Within-harem competition among *Ips* females, an overlooked component of density-dependent larval mortality. Ph.D. dissertation. University of Bergen.

93) Kirkendall, L.R. (1990). Sperm is a limiting resource in the pseudogamous bark beetle *Ips acuminatus* (Scolytidae). Master's thesis. University of Bergen.

94) Knížek, M. and Beaver, R. (2007). Taxonomy and systematics of bark and ambrosia beetles. In: Lieutier, F., Day, K.R., Battisti, A., Grégoire, J.C. and Evans, H.F. (eds.) *Bark and Wood Boring Insects in Living Trees in Europe: A Synthesis*. Springer, pp. 41–54.

95) Knížek, M., Liška, J. and Lubojacký, J. (2019). Výskyt lýkožroutů na neobvyklých živných rostlinách v roce 2018. *Lesnická Práce*, 98(3), 38–39.

96) Kohnle, U., Vité, J.P., Erbacher, C., Bartels, J. and Francke, W. (1988). Aggregation response of European engraver beetles of the genus *Ips* mediated by terpenoid pheromones. *Entomologia Experimentalis et Applicata*, 49, 43–53.
<https://doi.org/10.1111/j.1570-7458.1988.tb02400.x>.

97) Krokene, P. (2015). Conifer defense and resistance to bark beetles. In: Vega, F.E. and Hofstetter, R.W. (eds.) *Bark Beetles*. Academic Press, pp. 177–207.
<https://doi.org/10.1016/B978-0-12-417156-5.00005-8>.

98) Larsson, M.C., Leal, W.S. and Hansson, B.S. (2001). Olfactory receptor neurons detecting plant odours and male volatiles in *Anomala cuprea* beetles (Coleoptera: Scarabaeidae). *Journal of Insect Physiology*, 47(9), 1065–1076.
[https://doi.org/10.1016/S0022-1910\(01\)00087-7](https://doi.org/10.1016/S0022-1910(01)00087-7).

99) Lehmannski, L.M.A., Kandasamy, D., Andersson, M.N., Netherer, S., Alves, E.G., Huang, J. and Hartmann, H. (2023). Addressing a century old hypothesis – Do pioneer beetles of *Ips typographus* use volatile cues to find suitable host trees? *New Phytologist*. <https://doi.org/10.1111/nph.18865>.

100) Liška, J., Knížek, M. and Véle, A. (2021). Evaluation of insect pest occurrence in areas of calamitous mortality of Scots pine. *Central European Forestry Journal*, 67(2), 85–90. <https://doi.org/10.2478/forj-2021-0006>.

101) Lubojacky, J. and Holuša, J. (2014). Attraction of *Ips typographus* (Coleoptera: Curculionidae) beetles by lure-baited insecticide-treated tripod trap logs and trap trees. *International Journal of Pest Management*, 60, 153–159.
<https://doi.org/10.1080/09670874.2014.951055>.

102) Makarova, A.A., Diakova, A.A., Chaika, S.Y. and Polilov, A.A. (2022). Scaling of the sense organs of insects. 2. Sensilla. Discussion. Conclusion. *Entomological Review*, 102, 323–346. <https://doi.org/10.1134/S0013873822030058>.

103) Mann, A.J. and Davis, T.S. (2021). Entomopathogenic fungi to control bark beetles: a review of ecological recommendations. *Pest Management Science*, 77(6), 2741–2753.

104) Martin, J.P., Beyerlein, A., Dacks, A.M., Reisenman, C.E., Riffell, J.A., Lei, H. and Hildebrand, J.G. (2011). The neurobiology of insect olfaction: sensory processing in a comparative context. *Progress in Neurobiology*, 95, 427–447.
<https://doi.org/10.1016/j.pneurobio.2011.09.007>.

105) McNichol, B.H., Clarke, S.R., Faccoli, M., Montes, C.R., Nowak, J.T., Reeve, J.D., et al. (2021). Relationships between drought, coniferous tree physiology, and *Ips*

bark beetles under climatic changes. In: Gandhi, K.J.K. and Hofstetter, R.W. (eds.) *Bark Beetle Management, Ecology, and Climate Change*. Elsevier, pp. 153–194. <https://doi.org/10.1016/B978-0-12-822008-5.00007-3>.

106) Merivee, E., Rahi, M. and Luik, A. (1999). Antennal sensilla of the click beetle, *Melanotus villosus* (Geoffroy) (Coleoptera: Elateridae). *International Journal of Insect Morphology and Embryology*, 28(1–2), 41–51. [https://doi.org/10.1016/S0020-7322\(98\)00032-4](https://doi.org/10.1016/S0020-7322(98)00032-4).

107) Moeck, H.A. (1968). Electron microscopic studies of antennal sensilla in the ambrosia beetle *Trypodendron lineatum* (Olivier) (Scolytidae). *Canadian Journal of Zoology*, 46(3), 521–556. <https://doi.org/10.1139/z68-072>.

108) Moliterno, A., Shewale, M.K., Basile, S., Synek, J. and Jirošová, A. (2025). Dataset for: Size-dependent behavioral and antennal responses to doses of (+)-isopinocamphone and 1,8-cineole mixed with pheromone: a potential host selection strategy in female *Ips typographus* L. *Dryad Digital Repository*. <https://doi.org/10.5061/dryad.q573n5tst>.

109) Moliterno, A.A.C., Jakuš, R., Modlinger, R., Unelius, C.R., Schlyter, F. and Jirošová, A. (2023). Field effects of oxygenated monoterpenes and estragole combined with pheromone on attraction of *Ips typographus* and its natural enemies. *Frontiers in Forests and Global Change*, 6. <https://doi.org/10.3389/ffgc.2023.1292581>.

110) Mustaparta, H., Angst, M.E. and Lanier, G.N. (1980). Receptor discrimination of enantiomers of the aggregation pheromone ipsdienol, in two species of *Ips*. *Journal of Chemical Ecology*, 6, 689–701. <https://doi.org/10.1007/BF00988020>.

111) Mustaparta, H., Angst, M.E. and Lanier, G.N. (1979). Specialization of olfactory cells to insect- and host-produced volatiles in the bark beetle *Ips pini* (Say). *Journal of Chemical Ecology*, 5, 109–123. <https://doi.org/10.1007/BF00987695>.

112) Müller, C., Caspers, B.A., Gadau, J. and Kaiser, S. (2020). The power of infochemicals in mediating individualized niches. *Trends in Ecology and Evolution*, 35, 981–989. <https://doi.org/10.1016/j.tree.2020.07.001>.

113) Netherer, S., Kandasamy, D., Jirošová, A., Kalinová, B., Schebeck, M. and Schlyter, F. (2021). Interactions among Norway spruce, the bark beetle *Ips typographus*, and its fungal symbionts in times of drought. *Journal of Pest Science*, 94, 591–614. <https://doi.org/10.1007/s10340-021-01341-y>.

114) Netherer, S., Lehmanski, L., Bachlehner, A., Rosner, S., Schmidt, A., Huang, J., Paiva, M.R., Mateus, E., Hartmann, H. and Gershenzon, J. (2024). Drought increases

Norway spruce susceptibility to the Eurasian spruce bark beetle and its associated fungi. *New Phytologist*, 242, 1000–1017. <https://doi.org/10.1111/nph.19635>.

115) Nowinska, A. and Brožek, J. (2017). Morphological study of the antennal sensilla in Gerromorpha (Insecta: Hemiptera: Heteroptera). *Zoomorphology*, 136(3), 327–347. <https://doi.org/10.1007/s00435-017-0354-y>.

116) Papek, E., Ritzer, E., Biedermann, P.H., Cognato, A.I., Baier, P., Hoch, G., Kirisits, T. and Schebeck, M. (2024). The pine bark beetle *Ips acuminatus*: An ecological perspective on life-history traits promoting outbreaks. *Journal of Pest Science*, 97(3), 1093–1122. <https://doi.org/10.1007/s10340-024-01765-2>.

117) Pask, G.M. and Ray, A. (2016). Insect olfactory receptors: an interface between chemistry and biology. In: *Chemosensory Transduction*. Academic Press, pp. 101–122. <https://doi.org/10.1016/B978-0-12-801694-7.00006-8>.

118) Payne, T.L., Moeck, H.A., Willson, C.D., Coulson, R.N. and Humphreys, W.J. (1973). Bark beetle olfaction—II. Antennal morphology of sixteen species of Scolytidae (Coleoptera). *International Journal of Insect Morphology and Embryology*, 2, 177–192. [https://doi.org/10.1016/0020-7322\(73\)90015-4](https://doi.org/10.1016/0020-7322(73)90015-4).

119) Paynter, Q.E., Anderbrant, O. and Schlyter, F. (1990). Behavior of male and female spruce bark beetles, *Ips typographus*, on the bark of host trees during mass attack. *Journal of Insect Behavior*, 3, 529–543. <https://doi.org/10.1007/BF01052016>.

120) Pelosi, P., Iovinella, I., Zhu, J., Wang, G. and Dani, F.R. (2018). Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects. *Biological Reviews*, 93(1), 184–200. <https://doi.org/10.1111/brv.12339>.

121) Pettersson, E. and Boland, W. (2003). Potential parasitoid attractants, volatile composition throughout a bark beetle attack. *Chemoecology*, 13, 27–37. <https://doi.org/10.1007/s000490300003>.

122) Pettersson, E.M. (2000). *Vital volatiles: Host location in parasitic wasps attacking bark beetles*. [Ph.D. dissertation]. Göteborg: Chemical Ecology, Botanical Institute, University of Gothenburg. Available at: <http://hdl.handle.net/2077/13633>.

123) Pfeffer, A. (1955). *Fauna ČSR. Svazek 6: Kůrovci-Scolytoidea*. Praha: Brouci-Coleoptera. Nakladatelství Československé Akademie Věd.

124) Postner, M. (1974). *Ips cembrae*. In: *Die Forstsäädlinge Europas. II. Band. Käfer*. Hamburg: Paul Parey, pp. 458–459.

125) Prieto-Godino, L.L., Rytz, R., Cruchet, S., Bargeton, B., Abuin, L., Silbering, A.F., Ruta, V., Dal Peraro, M. and Benton, R. (2017). Evolution of acid-sensing olfactory

circuits in Drosophilids. *Neuron*, 93(3), 661–676.e6.
<https://doi.org/10.1016/j.neuron.2016.12.024>.

126) Pureswaran, D.S. and Borden, J.H. (2003). Is bigger better? Size and pheromone production in the mountain pine beetle, *Dendroctonus ponderosae* Hopkins (Coleoptera: Scolytidae). *Journal of Insect Behavior*, 16, 765- 782.
<https://doi.org/10.1023/B:JOIR.0000018319.37649.c4>.

127) Raffa, K.F., Andersson, M.N. and Schlyter, F. (2016). Host selection by bark beetles: playing the odds in a high-stakes game. *Advances in Insect Physiology*, 50, 1–74. <https://doi.org/10.1016/bs.aiip.2016.02.001>.

128) Redfern, D.B., Stoakley, J.T., Steele, H. and Minter, D.W. (1987). Dieback and death of larch caused by *Ceratocystis laricicola* sp. nov. following attack by *Ips cembrae*. *Plant Pathology*, 36, 467–480. <https://doi.org/10.1111/j.1365-3059.1987.tb02264.x>.

129) Renwick, J.A.A. and Dickens, J.C. (1979). Control of pheromone production in the bark beetle, *Ips cembrae*. *Physiological Entomology*, 4, 377–381.
<https://doi.org/10.1111/j.1365-3032.1979.tb00630.x>.

130) Roberts, R.E., Biswas, T., Yuvaraj, J.K., Grosse-Wilde, E., Powell, D., Hansson, B.S., Löfstedt, C. and Andersson, M.N. (2022). Odorant receptor orthologues in conifer-feeding beetles display conserved responses to ecologically relevant odors. *Molecular Ecology*, 31, 3693–3707. <https://doi.org/10.1111/mec.16494>.

131) Roberts, R.E., Yuvaraj, J.K. and Andersson, M.N. (2021). Codon optimization of insect odorant receptor genes may increase their stable expression for functional characterization in HEK293 cells. *Frontiers in Cellular Neuroscience*, 15, 1–10.
<https://doi.org/10.3389/fncel.2021.744401>.

132) Ruchty, M., Roces, F. and Kleineidam, C.J. (2010). Detection of minute temperature transients by thermosensitive neurons in ants. *Journal of Neurophysiology*, 104(3), 1249–1256. <https://doi.org/10.1152/jn.00390.2010>.

133) Rudinsky, J. (1979). Chemoacoustically induced behavior of *Ips typographus* (Col.: Scolytidae). *Journal of Applied Entomology*, 88, 537–541.
<https://doi.org/10.1111/j.1439-0418.1979.tb02533.x>.

134) Sallé, A., Baylac, M. and Lieutier, F. (2005). Size and shape changes of *Ips typographus* L. (Coleoptera: Scolytinae) in relation to population level. *Agricultural and Forest Entomology*, 7, 297–306. <https://doi.org/10.1111/j.1461-9555.2005.00274.x>.

135) Sallé, A. and Raffa, K.F. (2007). Interactions among intraspecific competition, emergence patterns, and host selection behavior in *Ips pini* (Coleoptera: Scolytinae). *Ecological Entomology*, 32, 162–171. <https://doi.org/10.1111/j.1365-2311.2006.00833.x>.

136) Schebeck, M., Frühbrodt, T., Andersson, M.N., et al. (2024). Verbenone—the universal bark beetle repellent? Its origin, effects, and ecological roles. *Journal of Pest Science*.

137) Schebeck, M., Schopf, A., Ragland, G.J., Stauffer, C. and Biedermann, P.H.W. (2023). Evolutionary ecology of the bark beetles *Ips typographus* and *Pityogenes chalcographus*. *Bulletin of Entomological Research*, 113, 1–10. <https://doi.org/10.1017/S0007485321000353>.

138) Schiebe, C., Hammerbacher, A., Birgersson, G., Witzell, J., Brodelius, P.E., Gershenzon, J., Hansson, B.S., Krokene, P. and Schlyter, F. (2012). Inducibility of chemical defenses in Norway spruce bark is correlated with unsuccessful mass attacks by the spruce bark beetle. *Oecologia*, 170, 183–198. <https://doi.org/10.1007/s00442-012-2298-8>.

139) Schiebe, C., Unelius, C.R., Ganji, S., Binyameen, M., Birgersson, G. and Schlyter, F. (2019). Styrene, (+)-trans-(1R,4S,5S)-4-thujanol and oxygenated monoterpenes related to host stress elicit strong electrophysiological responses in the bark beetle *Ips typographus*. *Journal of Chemical Ecology*, 45, 474–489. <https://doi.org/10.1007/s10886-019-01068-0>.

140) Schlyter, F. and Anderbrant, O. (1993). Competition and niche separation between two bark beetles: existence and mechanisms. *Oikos*, 68, 437. <https://doi.org/10.2307/3544851>.

141) Schlyter, F. and Zhang, Q.H. (1996). Testing avian polygyny hypotheses in insects: harem size distribution and female egg gallery spacing in three *Ips* bark beetles. *Oikos*, 76, 57–69. <https://doi.org/10.2307/3545748>.

142) Schlyter, F., Birgersson, G. and Byers, J.A. (1992). The aggregation pheromone of *Ips duplicatus* and its role in competitive interactions with *I. typographus* (Coleoptera: Scolytidae). *Chemoecology*, 3, 103–112. <https://doi.org/10.1007/BF01240672>.

143) Schlyter, F., Birgersson, G., Byers, J.A. and Bakke, A. (1992). The aggregation pheromone of *Ips duplicatus* and its role in competitive interactions with *I. typographus* (Coleoptera: Scolytidae). *Chemoecology*, 3, 103–112. <https://doi.org/10.1007/BF01370137>.

144) Schlyter, F., Birgersson, G., and Leufvén, A. (1989). Inhibition of attraction to aggregation pheromone by verbenone and ipsenol. *Journal of Chemical Ecology*, 15, 2263–2277. <https://doi.org/10.1007/BF01014114>.

145) Schlyter, F., Zhang, Q.-H., Anderson, P., Byers, J.A., Wadhams, L.J., Löfqvist, J., and Birgersson, G. (2000). Electrophysiological and behavioural responses of *Tomicus piniperda* and *Tomicus minor* (Coleoptera: Scolytidae) to non-host leaf and bark volatiles. *Canadian Entomologist*, 132, 965–981. <https://doi.org/10.4039/Ent132965-6>.

146) Schneider, C.A., Rasband, W.S. and Eliceiri, K.W. (2012). NIH image to ImageJ: 25 years of image analysis. *Nature Methods*, 9(7), 671–675. <https://doi.org/10.1038/nmeth.2089>.

147) Schneider, D. (1964). Insect Antennae. *Annual Review of Entomology*, 9(1), 103–122.

148) Schneider, E.S., Kleineidam, C.J., Leitinger, G. and Römer, H. (2018). Ultrastructure and electrophysiology of thermosensitive sensilla coeloconica in a tropical katydid of the genus *Mecopoda* (Orthoptera, Tettigoniidae). *Arthropod Structure and Development*, 47(5), 482–497. <https://doi.org/10.1016/j.asd.2018.08.002>.

149) Senf, C., Dirk, P., Zhiqiang, Y., Sebald, J., Knorn, J., Neumann, M. and Seidl, R. (2018). Temperate forests over the last three decades. *Nature Communications*, 9, 4978. <https://doi.org/10.1038/s41467-018-07539-6>.

150) Shewale, M.K., Nebesářová, J., Grosse-Wilde, E. and Kalinová, B. (2023). Microscopic morphology and distribution of the antennal sensilla in the double-spined bark beetle, *Ips duplicatus* (Coleoptera: Curculionidae). *Microscopy Research and Technique*, 86, 1610–1625. <https://doi.org/10.1002/jemt.24397>.

151) Shi, X., Zhang, S.F., Liu, F., Zhang, Z., Xu, F.Y., Yin, S.Y. and Kong, X.B. (2021). Sensilla on antennae and mouthparts of adult spruce bark beetle *Ips typographus* (Coleoptera: Curculionidae). *Microscopy Research and Technique*, 84(7), 1484–1497. <https://doi.org/10.1002/jemt.23704>.

152) Silverstein, R.M., Rodin, J.O. and Wood, D.L. (1966). Sex attractants in frass produced by male *Ips confusus* in ponderosa pine. *Science*, 154(3748), 509–510. <https://doi.org/10.1126/science.154.3748.509>.

153) Sommerfeld, A., Rammer, W., Heurich, M., Hilmers, T., Müller, J. and Seidl, R. (2021). Do bark beetle outbreaks amplify or dampen future bark beetle disturbances in Central Europe? *Journal of Ecology*, 109, 737–749. <https://doi.org/10.1111/1365-2745.13502>.

154) Spaethe, J., Brockmann, A., Halbig, C. and Tautz, J. (2007). Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers. *Naturwissenschaften*, 94, 733–739. <https://doi.org/10.1007/s00114-007-0251-1>.

155) Stoakley, J.T., Bakke, A., Renwick, J.A.A. and Vité, J.P. (1978). The aggregation pheromone system of the larch bark beetle, *Ips cembrae* Heer. *Zeitschrift für Angewandte Entomologie*, 86, 174–177. <https://doi.org/10.1111/j.1439-0418.1978.tb01925.x>.

156) Suh, E., Bohbot, J.D. and Zwiebel, L.J. (2014). Peripheral olfactory signaling in insects. *Current Opinion in Insect Science*, 6, 86–92. <https://doi.org/10.1016/j.cois.2014.10.006>.

157) Thabeet, A., Vennetier, M., Gadbin-Henry, C., Denelle, N., Roux, M., Caraglio, Y. and Vila, B. (2009). Response of *Pinus sylvestris* L. to recent climatic events in the French Mediterranean region. *Trees*, 23, 843–853. <https://doi.org/10.1007/s00468-009-0326-z>.

158) Tømmerås, B.Å. (1985). Specialization of the olfactory receptor cells in the bark beetle *Ips typographus* and its predator *Thanasimus formicarius* to bark beetle pheromones and host tree volatiles. *Journal of Comparative Physiology A*, 157, 335–341. <https://doi.org/10.1007/BF00618123>.

159) Unelius, C.R., Schiebe, C., Bohman, B., Andersson, M.N. and Schlyter, F. (2014). Non-host volatile blend optimization for forest protection against the European spruce bark beetle, *Ips typographus*. *PLoS ONE*, 9, e85381. <https://doi.org/10.1371/journal.pone.0085381>.

160) Vacek, Z., Vacek, S. and Cukor, J. (2023). European forests under global climate change: Review of tree growth processes, crises and management strategies. *Journal of Environmental Management*, 332, 117353. <https://doi.org/10.1016/j.jenvman.2023.117353>.

161) Villari, C., Battisti, A., Chakraborty, S., Michelozzi, M., Bonello, P. and Faccoli, M. (2012). Nutritional and pathogenic fungi associated with the pine engraver beetle trigger comparable defenses in Scots pine. *Tree Physiology*, 32, 867–879. <https://doi.org/10.1093/treephys/tps056>.

162) Visser, J.H. (1986). Host odor perception in phytophagous insects. *Annual Review of Entomology*, 31, 121–144. <https://doi.org/10.1146/annurev.en.31.010186.001005>.

163) Vité, J.P., Bakke, A. and Renwick, J.A.A. (1972). Pheromones in *Ips* (Coleoptera: Scolytidae): occurrence and production. *Canadian Entomologist*, 104, 1967–1975. <https://doi.org/10.4039/Ent1041967-12>.

164) Vosshall, L.B., Wong, A.M. and Axel, R. (2000). An olfactory sensory map in the fly brain. *Cell*, 102, 147–159. [https://doi.org/10.1016/S0092-8674\(00\)00021-0](https://doi.org/10.1016/S0092-8674(00)00021-0).

165) Wermelinger, B. (2004). Ecology and management of the spruce bark beetle *Ips typographus* – A review of recent research. *Forest Ecology and Management*, 202, 67–82. <https://doi.org/10.1016/j.foreco.2004.07.018>.

166) Wermelinger, B., Mathis, D.S., Knížek, M. and Forster, B. (2020). Tracking the spread of the northern bark beetle (*Ips duplicatus* [Sahlb.]) in Europe and first records from Switzerland and Liechtenstein. *Alpine Entomology*, 4, 179–184. <https://doi.org/10.3897/alpento.4.53808>.

167) Wermelinger, B., Rigling, A., Schneider Mathis, D. and Dobbertin, M. (2008). Assessing the role of bark- and wood-boring insects in the decline of Scots pine (*Pinus sylvestris*) in the Swiss Rhone valley. *Ecological Entomology*, 33, 239–249. <https://doi.org/10.1111/j.1365-2311.2007.00960.x>.

168) Wicher, D. (2018). Tuning insect odorant receptors. *Frontiers in Cellular Neuroscience*, 12, 94. <https://doi.org/10.3389/fncel.2018.00094>.

169) Wiesel, E., Kaltufen, S., Hansson, B.S. and Wicher, D. (2022). Homeostasis of mitochondrial Ca²⁺ stores is critical for signal amplification in *Drosophila melanogaster* olfactory sensory neurons. *Insects*, 13, 270. <https://doi.org/10.3390/insects13030270>.

170) Wojtasek, H., Hansson, B.S. and Leal, W.S. (1998). Attracted or repelled?—A matter of two neurons, one pheromone binding protein, and a chiral center. *Biochemical and Biophysical Research Communications*, 250, 217–222. <https://doi.org/10.1006/bbrc.1998.9278>.

171) Wood, D.L. (1982). The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles. *Annual Review of Entomology*, 27, 411–446. <https://doi.org/10.1146/annurev.en.27.010182.002211>.

172) Yao, C.A., Ignell, R. and Carlson, J.R. (2005). Chemosensory coding by neurons in the coeloconic sensilla of the *Drosophila* antenna. *Journal of Neuroscience*, 25(37), 8359–8367. <https://doi.org/10.1523/JNEUROSCI.2432-05.2005>.

173) Yuvaraj, J.K., Roberts, R.E., Sonntag, Y., Hou, X.Q., Grosse-Wilde, E., Machara, A., et al. (2021). Putative ligand binding sites of two functionally characterized bark

beetle odorant receptors. *BMC Biology*, 19, 1–21. <https://doi.org/10.1186/s12915-021-01060-0>.

174) Yuvaraj, J.K., Kandasamy, D., Roberts, R.E., Hansson, B.S., Gershenzon, J. and Andersson, M.N. (2024). Eurasian spruce bark beetle detects lanierone using a highly expressed specialist odorant receptor, present in several functional sensillum types. *BMC Biology*, 22, 266. <https://doi.org/10.1186/s12915-024-02066-x>.

175) Zhang, Q.H. and Niemeyer, H. (1992). Morphological characteristics for sexing living adults of *Ips cembrae* (Heer) (Coleoptera: Scolytidae). *Journal of Applied Entomology*, 114, 403–409. <https://doi.org/10.1111/j.1439-0418.1992.tb01144.x>.

176) Zhang, Q.H. and Schlyter, F. (2004). Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles. *Agricultural and Forest Entomology*, 6, 1–20. <https://doi.org/10.1111/j.1461-9555.2004.00202.x>.

177) Zhang, Q.H., Schlyter, F. and Birgersson, G. (2000). Bark volatiles from nonhost angiosperm trees of spruce bark beetle, *Ips typographus* (L.) (Coleoptera: Scolytidae): Chemical and electrophysiological analysis. *Chemoecology*, 10, 69–80. <https://doi.org/10.1007/PL00001826>.

178) Zhang, Q.H., Schlyter, F., Chen, G. and Wang, Y. (2007). Electrophysiological and behavioral responses of *Ips subelongatus* to semiochemicals from its hosts, non-hosts, and conspecifics in China. *Journal of Chemical Ecology*, 33, 391–404. <https://doi.org/10.1007/s10886-006-9231-8>.

APPENDIX

Paper I

Ramakrishnan, R.†, **Shewale, M. K.**†, Strádal, J.†, Hani, U., Gershenzon, J., Andersson, M. N., Frühbrodt, T., Doležal, P., Jirošová, A. (2025). Aggregation Pheromones in the Bark Beetle Genus *Ips*: Advances in Biosynthesis, Sensory Perception, and Forest Management Applications. Manuscript submitted to *Current Forestry Reports*, under revision.

†Equal contribution as first author

1 **Aggregation Pheromones in the Bark Beetle genus *Ips*: Advances in**
2 **Biosynthesis, Sensory Perception, and Forest Management Applications**

3 **Rajarajan Ramakrishnan^{1†}, Mayuri Shewale K.^{1†}, Jaroslav Strádal^{1†}, Um-e-Hani¹, Jonathan**
4 **Gershenzon², Martin N. Andersson³, Tobias Frühbrodt⁴, Petr Doležal^{5,6}, Anna Jirošová^{1*}.**

5 ¹Faculty of Forestry and Wood Sciences, University of Life Sciences Prague, Czech Republic, ²Max Planck
6 Institute for Chemical Ecology, Jena, Germany, ³Department of Biology, Lund University, Lund, Sweden, ⁴LWF,
7 Bayern, Germany; ⁵Biology Centre CAS, Česke Budějovice, Czech Republic, ⁶Forestry and Game Management
8 Research Institute, Prague, Czech Republic

9
10 [†] Equal contribution of first authors

11 *** Correspondence**

12 Anna Jirošová, PhD.

13 Faculty of Forestry and Wood Sciences
14 Czech University of Life Sciences Prague
15 Kamýcká 129, 165 21 Praha 6 – Suchdol
16 jirosova@fld.czu.cz

17
18 **Email addresses for all authors.**

20 Rajarajan Ramakrishnan: ramakrishnan@fld.czu.cz

21 Mayuri K Shewale: shewale@fld.czu.cz

22 Jaroslav Strádal: stradalj@fld.czu.cz

23 Um-e-Hani: hani@fld.czu.cz

24 Jonathan Gershenzon: gershenzon@ice.mpg.de

25 Martin N Andersson: martin_n.andersson@biol.lu.se

26 Tobias Frühbrodt: Tobias.Fruehbrodt@lwf.bayern.de

27 Petr Doležal: dolezal@entu.cas.cz

28
29 **Conflict of Interest**

30 Rajarajan Ramakrishnan, Mayuri Shewale K., Jaroslav Strádal, Um-e-Hani, Jonathan
31 Gershenzon, Martin N. Andersson, Tobias Frühbrodt, Petr Doležal and Anna Jirošová declare that
32 they have no conflict of interest.

33 **Author Contributions**

34 Conceptualization: RR and AJ; Literature search and data collection: PD, TF, MNA JS, RR,
35 and MKS; Writing original draft: RR, MKS, JS, AJ, MNA, PD, TF, ; Data visualization: MKS,
36 JS, and RR, AJ; Funding acquisition: MKS, JS, UH and AJ; Supervision and final editing: JG and
37 AJ.

38
39

40

41

42 **Funding**

43 Rajarajan Ramakrishnan, Mayuri Shewale K., Jaroslav Strádal, Um-e-Hani and Anna
44 Jirošová were funded by the funding agency Czech Science Foundation GACR 23-07916S, Czech
45 Republic. Um-e-Hani, Mayuri Shewale K. and Jaroslav Strádal were funded by the student
46 Internal Grant Commission [IGA_A_42_22, UM-E-HANI]; IGA_A_08_24, MAYURI
47 SHEWALE; IGA_A_32_24, JAROSLAV STRADAL] at the Faculty of Forestry and Wood
48 Sciences, Czech University of Life Sciences, Prague, Czech Republic. Martin N. Andersson was
49 funded by the Swedish Research Council VR (grant 2022-03597), Formas (grant 2022-00902),
50 and The Foundation in Memory of Oscar and Lili Lamm. Petr Doležal was funded by the Ministry
51 of Agriculture of the Czech Republic, institutional support MZE-RO0123.

52

53 **Abstract:**

54 **Purpose of Review**

55 This review synthesizes current knowledge on the aggregation pheromones of *Ips* bark beetles,
56 major conifer forest pests worldwide whose outbreaks have intensified due to climate change. Their
57 high pest potential arises from coordinated mass attacks on trees facilitated by male-released
58 pheromones.

59

60 Bringing together expertise from various fields, this review integrates pheromone-based *Ips*
61 management strategies with laboratory research on pheromone biosynthesis and detection at the
62 neuronal and genetic levels, framed within the ecological context of selected species. By linking
63 traditional forestry perspectives with new molecular insights, we aim to foster productive
64 discussions and inspire innovative control approaches that can be integrated into existing
65 management methods.

66

67 **Recent Findings**

- 68 • With global warming, the plasticity in voltinism allows *Ips* pest species to produce more
69 generations per year, even at higher altitudes. Combined with weakened tree defenses, this
70 increases their pest potential.
- 71 • Several key genes involved in the final steps of pheromone biosynthesis have been identified
72 and characterized, enabling potential suppression of aggregation pheromone production. A new
73 pheromone storage conjugate within the beetle body has also been proposed.
- 74 • Genes encoding olfactory pheromone receptors have been functionally characterized in *Ips*
75 *typographus* as potential targets for interference, aiming to disrupt the aggregation pheromone
76 perception of bark beetles.
- 77 • Manipulation of pheromone production and detection on the genetic level is supported by the
78 published *I. typographus* and *I. nitidus* genomes.
- 79 • Pheromone-based population monitoring remains a key strategy in the *Ips* beetle management,
80 while trap-and-kill methods are being underscored. Efforts are underway to develop new lure
81 formulations and optimize the push-and-pull strategies involving anti-aggregation signals, with
82 varying degrees of success.

83

84 **Summary**

85 Seventeen *Ips* species from diverse geographical regions, colonizing one of three conifer hosts,
86 were selected for this review based on economic impact and biological significance. Their global
87 distribution, preferred hosts, ecology, and biology provide a foundation for discussing pheromone
88 composition, including advanced insights into its chemical basis.

89 The review details pheromone production mechanisms, biosynthetic pathways, and genetic
90 regulation. It also explores the olfactory mechanisms on the antennae of *Ips* species, focusing on
91 the selectivity of pheromone detection, which has been unraveled through the functional
92 characterization of pheromone receptors and sensory neurons.

93 Pheromone-based management methods, including monitoring, attract-and-kill, and push-and-pull
94 strategies, are reviewed.

95 Knowledge gaps in each area are highlighted, and the final section addresses these gaps while
96 proposing future directions for innovative bark beetle management strategies.

97
98 **Keywords:**

99 Bark beetle; *Ips* genus; pheromone biosynthesis; pheromone receptor; pheromone derived
100 application; pest management.

1. Introduction

104 Bark beetle (*Coleoptera: Curculionidae, Scolytinae*) outbreaks have intensified worldwide,
 105 primarily due to climate change. Rising temperatures and prolonged droughts weaken tree
 106 defenses [1], while warmer conditions accelerate beetle development and expand their ranges [2],
 107 fueling larger infestations [3]. With projected global warming of 2–4°C this century, these trends
 108 are expected to worsen, with climate-driven beetle surges potentially causing increasingly severe
 109 ecological and economic losses [4,5].

110 Trees in the pine family (Pinaceae), particularly *Pinus* (pine), *Picea* (spruce), and *Larix*
 111 (larch), are highly susceptible to drought and rising temperatures worldwide [6]. A major threat
 112 to their health is the bark beetle genus *Ips*, which comprises 37 known species—23 in North
 113 America, 13 in Eurasia and one in Australia [7]. Several *Ips* species can infest and kill living trees
 114 during mass outbreaks triggered by favorable abiotic conditions, with the most economically
 115 significant species in Europe, Asia, and North America causing severe forest damage. Their
 116 management primarily relies on silvicultural practices [8], with insecticides used as a last resort
 117 [9].

118 Pheromone-based methods offer significant advantages over conventional insecticide
 119 approaches. Pheromones have been identified in at least 20 *Ips* species, including several
 120 economically significant tree-killing species targeted for control. However, their application
 121 remains largely restricted to trap-based monitoring of beetle activity.

122 This review promotes a deeper and more comprehensive understanding of *Ips* pheromones.
 123 By examining their role within the ecology, physiology, and management of *Ips* beetles, we
 124 provide new insights while also exploring the biochemical and genetic mechanisms that regulate
 125 pheromone production and detection. A more integrated understanding of these aspects could
 126 pave the way for innovative, more effective, and sustainable pest management strategies.

127 2. Distribution, economic importance, and preferred host trees for selected *Ips* species

128
 129 All *Ips* bark beetles reproduce in conifer trees, with the most aggressive species in Europe,
 130 America, and Asia capable of killing trees, particularly when forests are weakened by climatic
 131 stressors such as drought or windstorms (Figure1) [9].

132 Among them, *Ips grandicollis* stands out as the only invasive species. Originally native to
 133 North America, it was introduced to Australia in the 1940s, causing significant damage to *Pinus*
 134 *radiata* plantations. Today, *I. grandicollis* is considered a major exotic forest pest in Australia
 135 [10].

136 Most *Ips* species exhibit considerable plasticity in their voltinism, except for North and
 137 Central American *Ips* species that infest pine trees. These species are strictly polyvoltine,
 138 producing two to five generations yearly [11,12]. Populations of other *Ips* species can be
 139 univoltine, bivoltine, or produce up to three generations per year, depending on temperature
 140 variations along altitudinal, latitudinal, or both gradients.[13–17]. This plasticity in responding
 141 positively to warmer temperatures is likely a key factor contributing to the pest potential of *Ips*
 142 bark beetles.

143 For example, *I. cembrae*, primarily inhabiting low-altitude regions, has recently benefited
 144 from rising temperatures and climate change, accelerating its development and completing up to
 145 two generations in Central Europe [18]. Similarly, *I. typographus*, already responsible for
 146 significant damage at lower altitudes, exhibits an increased outbreak potential at higher elevations
 147 due to a larger number of generations per year [19].

148

149

***Ips* bark beetles on *Picea* sp.**

150 Regarded as one of the main dangers to conifer stands in Eurasia, *I. typographus* is a
 151 prominent pest of Norway spruce (*Picea abies* (L.) H. Karst). Recent heat waves, droughts, and
 152 overall climate shifts, together with the widespread planting of Norway spruce, driven by its
 153 economic importance, have intensified the severity of its outbreaks [20,21]. In the last ten years,
 154 *I. typographus* has affected approximately 70.1 million cubic meters of spruce wood across
 155 Europe [22]. During recent outbreaks, *I. typographus* often infested the same trees as *I. duplicatus*.
 156 This species originating from Eurasian north boreal forests, has quickly spread across Europe [23]
 157 and become a significant local pest [24]. It prefers the upper stem below the canopy of shaded
 158 trees inside the stand, which complicates their timely detection and removal. Although *I.*
 159 *duplicatus* competes with *I. typographus* for space and resources on the same tree [25,26], both
 160 species differ in several aspects, e.g. overwintering biology, rate of development, and flight
 161 activity [27,28]. *Ips amitinus* is economically less important but often colonizes thicker branches
 162 and the upper parts of the trees infested by *Ips typographus*. Its range and bionomy are also very
 163 similar, with the number of generations per year depending on altitude and the occurrence of sister
 164 broods. In the last ten years, it has spread rapidly in the Nordic countries and in Siberia, where it
 165 causes significant damage [29]

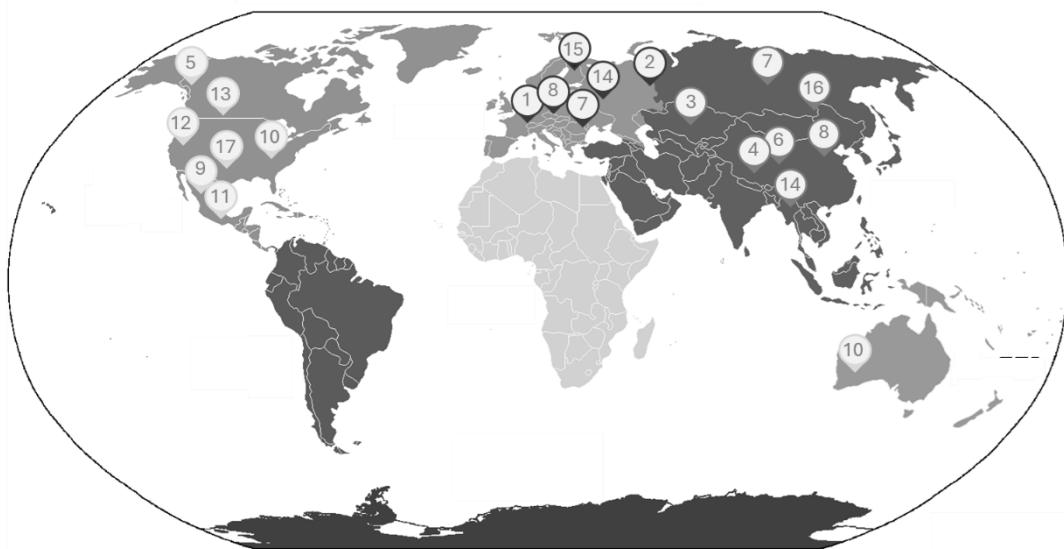
166 Two species that mirror the ecological and economic impacts of *I. typographus* and *I.*
 167 *duplicatus* on other spruce species in Central Asia are *I. hauseri* and *I. nitidus*. *Ips hauseri*
 168 primarily attacks Schrenk spruce (*Picea schrenkiana* Fisch. & C.A. Mey.) and Siberian spruce
 169 (*Picea obovata* Ledeb.), weakened by abiotic factors in mountainous regions [14] whereas large
 170 outbreaks of *I. nitidus* together with *I. shangrila* occurred on *Picea crassifolia* [30].

171 The only member of the genus *Ips* involved in spruce mortality on the North American
 172 continent is *I. perturbatus*. The hosts of this bark beetle are mainly *Picea glauca*, but also *P.*
 173 *engelmannii* and *P. lutzii*.

174

175

***Ips* bark beetles on *Pinus* sp.**


176 Several *Ips* bark beetles also colonize pines (*Pinus* spp.) as their primary hosts. The climatic
 177 extremes of recent decades have also weakened pine stands in many areas (*Pinus* sp.), making
 178 them more susceptible to bark beetle attacks. Many bark beetle species have spread beyond their
 179 original range, which has led to an increase in economic losses [31]. The effects of rising
 180 temperatures can be well illustrated by the example of *I. sexdentatus*, a species with a Eurasian
 181 distribution range that causes great damage not only to *Pinus* sp. but also to spruce (*Picea*) trees,
 182 especially in the Mediterranean region. It tends to colonize the lower and middle parts of the trunk
 183 with thick bark. In Central Europe, an intensive spread of this species has been observed in recent
 184 decades. In Scandinavia, the abundance of the species varies from decade to decade, depending
 185 on the minimum temperatures in winter, which determine the success of overwintering. In the
 186 warmest areas, the gradation process is very intense, and up to five generations per year complete
 187 their development. At the northern limit of its range, however, it is univoltine [32]. *Ips acuminatus*,
 188 on the other hand, is an example of a species with the same distribution range that can cope rather
 189 well even with the lowest temperatures. It tends to colonize the treetops and branches, where it
 190 also partially hibernates and where it can survive temperatures below -35 °C [33].

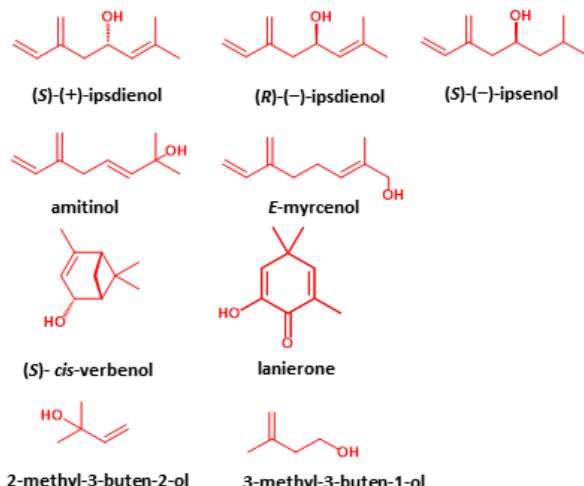
191 In North and Central America, several *Ips* species, which differ in their biology and host
 192 preferences, can lead to the death of pine trees on a large scale. *Ips avulsus* is a smaller species
 193 which, like *I. acuminatus* mentioned above, prefers the thin bark of branches in the crowns of

194 large trees, most frequently *Pinus palustris*, *P. taeda* and *P. serotina*. Unlike *I. acuminatus*,
195 however, it occurs exclusively in the warm southern part of the United States, where high
196 temperatures accelerate development, resulting in up to 10 generations per year [34,35]. A species
197 that feeds on a variety of pines, including red pine (*Pinus resinosa* Aiton), jack pine (*Pinus*
198 *banksiana* Lamb.) and white pine (*Pinus strobus* L.) [36] and occasionally larch (*Larix laricina*),
199 is *I. pini*. It infests weakened or recently dead trees but can also infest healthy trees [11,37]. Other
200 species that play an important role in pine mortality in North American forests include *I. confusus*
201 and its sibling species *I. lecontei*, *I. paraconfusus* and *I. grandicollis* [38–40]. These species differ
202 in their host plant spectrum. *Ips confusus* prefers the pinyon pines *P. edulis* and *P. monophylla* [38],
203 but other pines are only rarely infested. *Ips lecontei*, *I. grandicollis* and *I. paraconfusus* are
204 important pests of *P. ponderosa*, *P. radiata*, *P. concorta*, and several other pine species [40].
205

206 *Ips* bark beetles on *Larix* sp.

207 Larches (*Larix* sp.) are also hosts for *Ips* bark beetles. The most important pest in larch
208 stands is *I. cembrae*, which was only recently derived from a closely related species, *Ips*
209 *subelongatus*. These two species are geographically separated, with *I. cembrae* occurring in
210 Europe and *I. subelongatus* in Asia [41]. The host trees include not only various larch species, e.g.
211 the European larch (*Larix decidua* Mill.) and the Japanese larch (*L. kaempferi* (Lamb.)), but also
212 the common spruce *Picea abies* (Karst.) [42]. The ability of *I. cembrae* to attack healthy trees
213 following abiotic disturbance has led to severe outbreaks, particularly in reforested areas and
214 outside the natural geographic range of *L. decidua*, highlighting the need for robust management
215 measures [25,43]. *I. subelongatus* is reported to be even more damaging to healthy larch stands
216 in Asia than *I. cembrae* in Europe [44].

225


226 **Figure 1.** Global distribution of selected *Ips* species [host trees]: ***Ips* bark beetles on *Picea* sp.:** 1-
227 *Ips amitinus* [*Picea* spp. (*Picea abies*, *Picea pungens*)]; 2- *Ips duplicatus* [*Picea abies*]; 3- *Ips*
228 *hauseri* [*Picea schrenkiana*, *Picea obovata*]; 4- *Ips nitidus* [*Picea crassifolia*]; 5- *Ips perturbatus* [*Picea*
229 *glauca*, *P. engelmannii*, *P. lutzii*]; 6- *Ips shangrila* [*Picea crassifolia*]; 7- *Ips typographus* [*Picea abies*];
230 ***Ips* bark beetles on *Pinus* sp.:** 8- *Ips acuminatus* [*Pinus* spp. (*Pinus nigra*, *Pinus sylvestris*)]; 9- *Ips*

231 *confusus* [*Pinus edulis*, *P. monophylla*]; 10- *Ips grandicollis* [*Pinus* spp. (*P. ponderosa*, *P. radiata*, *P.*
232 *contorta*)]; 11- *Ips lecontei* [*Pinus* spp. (*P. ponderosa*, *P. radiata*, *P. contorta*)]; 12- *Ips paraconfusus* [*Pinus*
233 spp. (*P. ponderosa*, *P. radiata*, *P. contorta*)]; 13- *Ips pini* [*Pinus resinosa*, *Pinus banksiana*, *Pinus strobus*,
234 *Larix laricina*]; 14- *Ips sexdentatus* [*Pinus* spp. (*Pinus sylvestris*, *Pinus pinaster*), *Spruce* spp.]; ***Ips* bark
235 beetles on *Larix* sp.: 15- *Ips cembrae* [*Larix* spp. (*L. decidua*, *L. kaempferi*), *Picea abies*]; 16- *Ips*
236 *subelongatus* [*Larix* spp. (*L. decidua*, *L. kaempferi*), *Picea abies*]; 17- *Ips avulsus* [*Pinus* spp. (*P.*
237 *sylvestris*)].**

238

239 3. Chemical structures and compositions of aggregation pheromones in *Ips* 240 species

241 The aggregation pheromones of *Ips* species are produced exclusively by males to gather
242 conspecifics and overcome tree defense, as well as to attract females for mating. The structural
243 repertoire of biologically active pheromonal compounds in this genus is relatively limited,
244 primarily consisting of oxygenated hemi- or monoterpenes [45]. These compounds are volatile
245 and structurally resemble the defense compounds (resin) found in their conifer host trees (Figure
246 2, Table 1.).

249 **Figure 2:** Structures of pheromone compounds from *Ips* species with the known biological activity

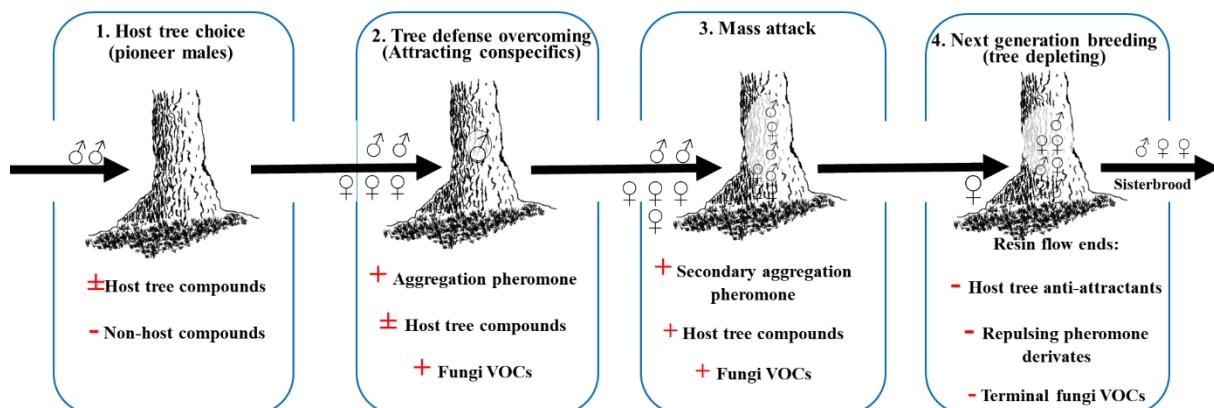
250 In most *Ips* species, the primary pheromone components consist of ipsdienol and ipsenol,
251 compounds exclusively synthesized by this beetle genus [46,47]. Some species also produce
252 additional linear hydroxylated monoterpenes, such as amitinol and *E*-myrcenol, along with the
253 quinone derivative lanierone [48–50]. Other identified active pheromone compounds include the
254 hemiterpenes 2-methyl-3-buten-2-ol and 3-methyl-3-buten-1-ol, as well as the monoterpene *cis*-
255 verbenol, which originates from the host-derived compound α -pinene (Figure 2). Despite the
256 relatively limited number of structural components, the resulting pheromone blends are species-
257 specific, driven by variations in the relative proportions of each compound and differences in
258 enantiomeric composition (Table 1).

Table 1: *Ips* species aggregation pheromone blends compositions including enantiomeric ratio of components.

Species	Composition of pheromone	Enantiomeric ratio of pheromone components	Literature
<i>Ips</i> bark beetles on <i>Picea</i> sp.			
<i>Ips amitinus</i> (Eickhoff, 1872)	ipsdienol:ipsenol:amitinol 4:2:4	ipsdienol (<i>S</i>)-(+)-:(<i>R</i>)-(−)- 5:95	[51]
<i>Ips duplicatus</i> (C.R. Sahlberg, 1836)	ipsdienol: <i>E</i> -myrcenol 5:1:0,01 [52]	ipsdienol (<i>S</i>)-(+)-:(<i>R</i>)-(−)- 50:50	[53,54]
<i>Ips hauseri</i> Reitter, 1895	ipsenol <i>cis</i> -verbenol 95:5	(<i>S</i>)-(−)-ipsenol 100 (<i>S</i>)-(−)- <i>cis</i> -verbenol 100	[55]
<i>Ips nitidus</i> Eggers, 1933	2- methyl-3-buten-2-ol: ipsdienol: (<i>S</i>)-(−)- <i>cis</i> -verbenol 7:2:1	ipsdienol (<i>S</i>)-(+)-:(<i>R</i>)-(−)- 74:26	[30,56]
<i>Ips perturbatus</i> (Eickhoff, 1869)	ipsdienol: <i>cis</i> -verbenol: ipsenol 1:0,8:1 [57]	ipsenol (<i>S</i>)-(−)-:(<i>R</i>)-(+) 99:1 ipsdienol (<i>S</i>)-(+)-:(<i>R</i>)-(−)- 90:10	[58–60]
<i>Ips shangrila</i> Cognato & Sun, 2007	ipsenol:ipsdienol: <i>cis</i> -verbenol 1:5:4 [61]	ipsdienol (<i>S</i>)-(+)-:(<i>R</i>)-(−)- 99:1 (<i>S</i>)-(−)- <i>cis</i> -verbenol 100	[30,62]
<i>Ips typographus</i> (Linnaeus, 1758)	2-methyl-3-buten-2-ol <i>cis</i> -verbenol ipsdienol 9:1:0,1 [63]	ipsdienol (<i>S</i>)-(+)-:(<i>R</i>)-(−)- 5:95 (<i>S</i>)-(−)- <i>cis</i> -verbenol 100	[64,65]
<i>Ips</i> bark beetles on <i>Pinus</i> sp.			
<i>Ips acuminatus</i> (Gyllenhal, 1827)	<i>cis</i> -verbenol:ipsdienol:ipsenol 2:5:3 [66]	ipsdienol (<i>S</i>)-(+)-:(<i>R</i>)-(−)- 95:5 [67]	[68]
<i>Ips confusus</i> (LeConte, 1876)	ipsenol:ipsdienol 9:1 [69]	ipsenol (<i>S</i>)-(−)-:(<i>R</i>)-(+) 99:1 [70] ipsdienol (<i>S</i>)-(+)-:(<i>R</i>)-(−)- 95:5 [71]	[50,69,70,72]
<i>Ips grandicollis</i> (Eickhoff, 1868)	ipsenol [73]	ipsenol (<i>S</i>)-(−)-:(<i>R</i>)-(+) 99:1 [74]	[75]
<i>Ips lecontei</i> Swaine, 1924	ipsdienol:ipsenol 2:1 [76]	ipsdienol (<i>S</i>)-(+)-:(<i>R</i>)-(−)- 95:5 ipsenol (<i>S</i>)-(−)-:(<i>R</i>)-(+) 99:1	[67]
<i>Ips paraconfusus</i> Lanier, 1970	ipsenol:ipsdienol: <i>cis</i> -verbenol 1:1:0,1 [77]	(<i>S</i>)-(−)- <i>cis</i> -verbenol 100 [78] ipsenol (<i>S</i>)-(−)-:(<i>R</i>)-(+) 99:1 [45] ipsdienol (<i>S</i>)-(+)-:(<i>R</i>)-(−)- 90:10	[79–83]
<i>Ips pini</i> (Say, 1826)	ipsdienol: lanierone 99:1 [75]	ipsdienol (<i>S</i>)-(+)-:(<i>R</i>)-(−)- 35:65 [46] ipsdienol† (<i>S</i>)-(+)-:(<i>R</i>)-(−)- 95:5 [46]	[46,48,72,75,83,84]

<i>Ips sexdentatus</i> (Börner, 1776)	ipsdienol:ipsenol 1:0,5	ipsdienol (S)-(+)-:(R)-(-) 50:50 [85]	[67,68]
<i>Ips</i> bark beetles on <i>Larix</i> sp.			
<i>Ips cembrae</i> (Heer, 1836)	ipsenol:ipsdienol: 3-methyl-3-buten-1-ol ~ 68:28:4	ipsenol (S)-(-)-:(R)-(+)- 99:1 ipsdienol (S)-(+)-:(R)-(-) 96:4 [86]	[87-89]
<i>Ips subelongatus</i> (Motschulsky, 1860)	ipsenol:ipsdienol:3-methyl-3-buten-1-ol 3:1	ipsenol (S)-(-) 100 ipsdienol (S)-(+)-:(R)-(-) 96:4	[90]
<i>Ips avulsus</i> (Eichhoff, 1868)	ipsdienol:lanierone 10:1 [91]	ipsdienol (S)-(+)-:(R)-(-) 96:4 (Texas) [92] ipsdienol (S)-(+)-:(R)-(-) 75:25 (Alabama) [93]	[68,75,91]

† The ratio varies for eastern and western populations of *I. pini* in the USA.


265
266

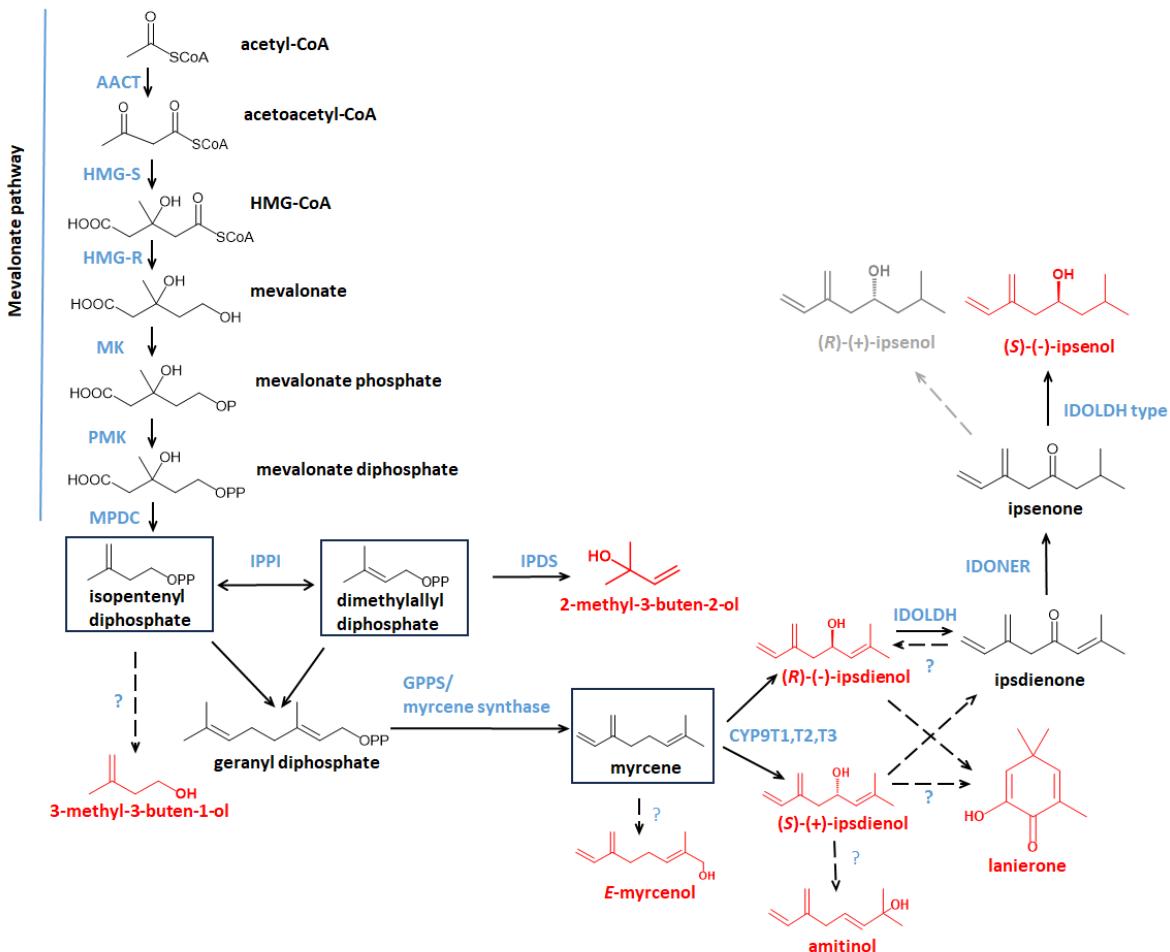
267 Among *Ips* aggregation pheromones are three chiral compounds: (S)-(+)- and (R)-(-)-
268 ipsdienol; (S)-(-)- and (R)-(+)-ipsenol, and (S)-(-)- and (R)-(+)-*cis*-verbenol (each structure possesses
269 at least two asymmetrical mirror-image forms called enantiomers). However, *Ips* males
270 predominantly utilize only the enantiomeric forms (S)-(-)-*cis*-verbenol and (S)-(-)-ipsenol as
271 their pheromonal signals [94]. In contrast, ipsdienol is the only chiral compound whose
272 enantiomeric ratio varies, not only between *Ips* species (Table 1) but also among spatially distinct
273 populations within the same species [71]. This enantiomeric specificity, along with the unique
274 composition and ratio of pheromonal molecules (Table 1), helps minimize cross-attraction
275 between related species and likely reflects an important mechanism of prezygotic reproductive
276 isolation within the genus *Ips* [95].

277 4. Production of the aggregation pheromones by *Ips* bark beetles

278 4.1. Sequence of host tree attack by *Ips* bark beetles

279 As mentioned earlier, *Ips* pioneer males first select a host tree and use chemical signals to
280 coordinate attacks on trees. In the terminal phase of the attack, as tree resources deplete and wood
281 decomposition begins due to fungal growth and other factors, the profile of volatile changes and
282 compounds with anti-attractive functions are released [96–100]. Conifer bark beetles often release
283 a universal anti-attractant known as verbenone, acting as a switch signal that guides beetles to
284 other nutrient resources [101] (Figure 3).

285
286 **Figure 3: The attack dynamics of *Ips* bark beetles on host trees. Description:** **Step 1:** Pioneer males
287 locate the host tree hypothetically using host and non-host compounds. **Step 2:** Attraction to a male-
288 released aggregation pheromone blend along with host compounds. **Step 3:** The chemical blend attracts
289 more conspecific beetles to the host tree. After mating, males can release additional compounds with
290 attractive activity, resulting in a secondary aggregation blend. **Step 4:** The tree defence is depleted with
291 low resin flow, and other compounds, such as anti-attractants are released to direct further conspecific
292 beetles towards new hosts.
293


294 **4.2. Biosynthesis of main aggregation pheromone components**

295 The pheromone production of bark beetles has been studied for decades [47,70,102–104].
296 Pheromone-resulting biosynthetic pathways have likely co-evolved with tree defense
297 detoxification mechanisms possessed by beetles to enable successful host tree attacks [105].
298 Aggregation pheromones are formed in the beetle's body either via *de novo* synthesis from basic
299 metabolic units or by modifying host-derived precursors. With aggregation pheromones released
300 in feces [106], the gut tissue is the primary site of biosynthesis for most pheromonal compounds
301 in *Ips* species.

302 Pheromone biosynthesis in bark beetles is naturally induced during feeding on a suitable
303 host tree, which triggers a hormonal cascade involving juvenile hormone III (JH III), an insect
304 hormone regulating different metabolic pathways, from metamorphosis to pheromone production.
305 [47,107–109].

306 **4.2.1. Role of the mevalonate pathway in *de novo* biosynthesis**

307 The major *Ips* aggregation pheromones are all isoprenoids (Figure 2), with some
308 synthesized *de novo* in beetles via the mevalonate pathway (Figure 4), a process shared by most
309 eukaryotes.

310

311

Figure 4: Overview of the mevalonate pathway and subsequent steps in the biosynthesis of aggregation pheromones in *Ips* bark beetles. The diagram illustrates the reaction sequences (precursors - black, pheromone compounds - red), and the enzymes or proposed enzymes that catalyze each step (blue).

312

313

314

The mevalonate pathway starts with acetyl-CoA condensation, subsequently forming hydroxymethylglutaryl-CoA (HMG-CoA) and mevalonic acid. These steps are catalyzed by the enzymes HMG-CoA synthase (HMGS) and HMG-CoA reductase (HMGR), found as key regulators of *Ips* pheromone biosynthesis in *I. pini* males [47,72,110]. Mevalonic acid is then converted by isopentenyl diphosphate isomerase (IPPI) to isopentenyl diphosphate (IPP), which isomerizes to dimethylallyl diphosphate (DMADP), the universal C5 building blocks of all isoprenoids (Figure 4).

322

323

324

325

326

327

In *Ips* males, when ipsdienol is produced, IPP and DMADP condense into geranyl diphosphate (GPP), which is then converted to myrcene by an insect-unique enzyme first identified in *I. pini* [111] and later characterized as GPPS/myrcene synthase[112] ; Figure 4).

Recent studies also identified genes coding these mevalonate pathway enzymes in the guts of male *I. typographus* and *I. hauseri*. HMGS, HMGR, and IPPI transcripts were upregulated after pheromone induction via feeding or JH III treatment, aligning with HMGS's and HMGR's

328 regulatory roles. Additionally, these species also possess GPPS, which is involved in myrcene-
329 ipsdienol synthesis [55,65,109]. Exclusively in *I. typographus*, a newly identified isoprenyl
330 diphosphate synthase gene (IPDS) has been reported, suggesting its role in synthesizing the
331 hemiterpene 2-methyl-3-buten-2-ol [65,109]. On the other hand, in females, transcripts of
332 mevalonate genes did not respond to any of the pheromone induction methods [55,109].

333 4.2.2. Specific steps in the formation of *de novo*-produced *Ips* pheromones

334 In *Ips* species, myrcene produced by males is hydroxylated to ipsdienol by cytochrome P
335 450 (CYP9T) enzymes, identified previously in *I. paraconfusus* [113], and in *I. pini* and *I.*
336 *confusus* [114–116]. Recently, CYP9Ts were reported in *I. hauseri* [55] and *I. typographus*
337 [65,109]. The mechanism underlying inter- and intraspecific variation in the enantiomeric
338 composition of ipsdienol, defined by the ratio of (4R)-(-)-ipsdienol to (4S)-(+)-ipsdienol (Table
339 1), remains a key focus of research. However, this variation is not driven by CYP9T-mediated
340 hydroxylation, but is more likely influenced by subsequent steps in the ipsdienol-to-ipsenol
341 conversion, a process occurring across all *Ips* species [117,118]; (Figure 4) Responsible are two
342 enzymes: ipsdienol dehydrogenase (*IDOLDH*), which selectively oxidizes only (4R)-(-)-
343 ipsdienol to ipsdienone[65,71,119] and ipsdienone reductase (*IDONER*) converting ipsdienone to
344 ipsenone [120]. Further characterization of these enzymes will give us new insights into what
345 creates pheromone differences among *Ips* species and populations, knowledge that could improve
346 trapping success.

347 Amitinol (Figure 2), a second linear monoterpene alcohol, is typically a minor component
348 alongside ipsdienol, except in *I. amitinus*, where it acts as the primary pheromone. Trace amounts
349 also appear in the aggregation pheromones of *I. paraconfusus* [45,89] and *I. duplicatus* [90].
350 Amitinol is hypothesized to form either through ipsdienol allylic rearrangement [45] or
351 cytochrome P450-mediated site-specific oxidation of myrcene (Figure 4).

352 *E*-myrcenol, structurally related to ipsdienol and amitinol (Figure 2), is a pheromone
353 component in *I. duplicatus* [121]. It likely forms *de novo* via myrcene hydroxylation, similar to
354 ipsdienol [122] (Figure 4), as its production was suppressed by the HMGR inhibitor compactin
355 [52,123].

356 Lanierone, a cyclic keto-enol compound (Figure 2), is found in the hindgut extracts of male
357 *I. pini* [84] and functions as a pheromone in eastern U.S. populations [50]. It was found also in *I.*
358 *avulsus* [75]. It is thought to originate from ipsdienol or ipsenol through cyclization,
359 decarboxylation, and oxidation reactions (Figure 4). However, its biosynthetic pathway remains
360 uncharacterized [103].

361 The hemiterpene 2-methyl-3-buten-2-ol is a pheromone component of *I. typographus*.
362 Though hemiterpenoid biosynthesis was previously unknown in insects, it was hypothesized to
363 form *de novo* via the mevalonate pathway, where DMADP is converted through a carbocation
364 intermediate by the novel IPDS enzyme [65,109].

365 Another hemiterpene, 3-methyl-3-buten-1-ol, functions as an aggregation pheromone in
366 male *I. cembrae* and *I. subelongatus* [88,89]. It is proposed to form *de novo* from IPP via
367 dephosphorylation and double-bond rearrangement [87] (Figure 4), differing from 2-methyl-3-
368 buten-2-ol biosynthesis by not involving IPDS.

369
 370 **Figure 5:** A. Pathways of pheromone biosynthesis in *Ips* using precursors sequestered from host conifers: (-
 371)- α -pinene or myrcene. B. Storage of *cis*-verbenol as fatty acid esters in the fat bodies of beetles for later pheromone
 372 supply.
 373

374 **4.2.3 Pheromones made from host tree precursors**

375 Many *Ips* species use the cyclic hydroxylated monoterpene (S)-*cis*-verbenol (Figure 5) as
 376 an aggregation pheromone. However, neither *cis*-verbenol nor its pheromonally inactive
 377 stereoisomer, *trans*-verbenol, is produced *de novo*. Instead, beetles hydroxylate α -pinene,
 378 sequestered from spruce trees, via CYP450 enzymes [82]; Figure 5. Since insects frequently
 379 hydroxylate host terpenes for detoxification, *Ips* bark beetles may have evolved to utilize *cis*-
 380 verbenol, originally the detoxification product of α -pinene, as a pheromone [104].

381 The distinction between pheromone biosynthesis and detoxification CYP450 genes remains
 382 unclear, as both likely function in gut-adjacent cells. Recently, CYPP450 genes responsible for
 383 α -pinene hydroxylation were identified in the guts of *I. hauseri* and *I. typographus* [55,65]. As
 384 expected, the transcripts of these genes are induced by feeding on host trees [65,124] and,
 385 interestingly, also by topical treatment with JH III [55,109].

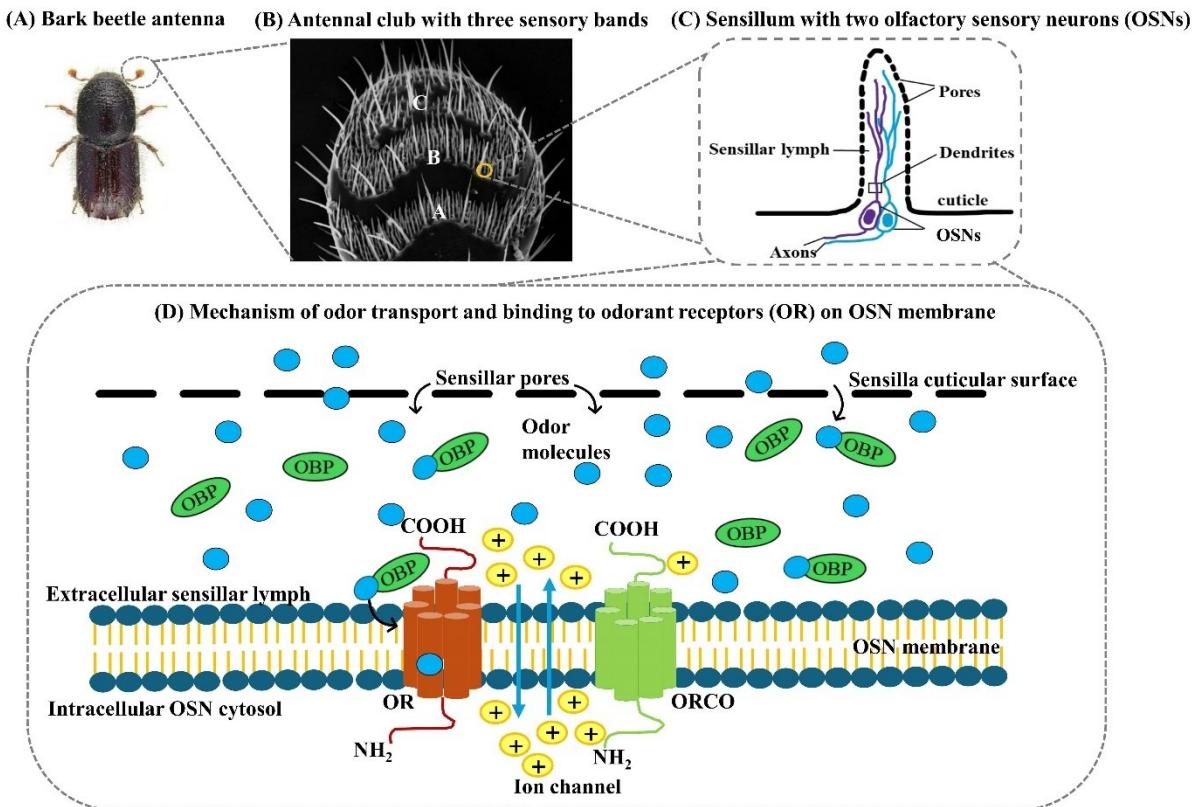
386 The ketone verbenone (Figure 2, 5A) co-occurs with *cis*-verbenol but increases in
 387 concentration late in the attack phase, acting as an anti-attractant for many bark beetles [101]. Its
 388 production is attributed to gut microbiota (fungi, yeast, bacteria), external symbionts [63,125–
 389 127], or autooxidation, with no beetle enzyme identified for this conversion. Therefore, verbenone
 390 should not be classified as a pheromone.

391 The monoterpenyl lipid conjugates (Figure 5B), namely *cis*-verbenol fatty acid esters, were
 392 detected in the fat body of *I. typographus* across various life stages, peaking in young, pre-
 393 sclerotized adults before emergence [65]. In young beetles, ester formation likely serves as

394 monoterpene detoxification, catalyzed by multipurpose lipase/esterase enzymes. However, in
395 mature beetles, these esters persist only in males and decrease during aggregation pheromone
396 production. In calling males, they are proposed to function as pheromone precursors hydrolyzed
397 into pheromonal *cis*-verbenol by a male-specific lipase/esterase enzyme when the α -pinene source
398 is insufficient. This mechanism ensures a continuous pheromone supply during mass attacks
399 [65,104]. The cleaving of esters, likely regulated by JH III, may explain how beetles release *cis*-
400 verbenol even before feeding, facilitating rapid attack buildup [109] (Figure 5B).

401 Identified candidate genes for these enzymes in *I. typographus* could serve as other potential
402 targets for controlling beetle infestations.

403 **4.2.4. Microbial involvement in *Ips* aggregation pheromone production**


404 Bark beetle microbial symbionts may contribute to pheromone production in various ways
405 [128]. Labeling experiments indicated that gut microbiomes produce pheromones when exposed
406 to precursors but not when inhibited by antibiotics [129,130]. More recently, exosymbiotic
407 ophiostomatoid fungi, *Grosmannia penicillata* and *Endoconidiophora polonica* were found to
408 synthesize pheromones like 2-methyl-3-buten-2-ol [131] and brevicomin [132] when growing on
409 wood. These compounds, along with fungi metabolites of host tree terpenes [133–135], may
410 influence beetle attraction [100]. Further research is needed to clarify microbes' role in *Ips*
411 aggregation pheromone production, which could offer alternative targets for beetle management.
412

413 **5. Detection of aggregation pheromones by the bark beetle olfactory system**

414 **5.1. Insect olfaction**

415 Like other insects, *Ips* bark beetles rely on highly specialized olfactory systems for precise
416 odor detection, a critical function for locating food, mates, and suitable reproduction sites [136].
417 Bark beetles can detect and assess the concentrations of not only pheromones but also volatiles
418 from host and non-host trees, as well as other components of their environmental niche, such as
419 microbiota [133,134,137–139].

420 The main olfactory organ is the antennae (Figure 6A), which harbour sensilla in which
421 olfactory sensory neurons (OSNs) reside (Figure 6B) [137,140]. The OSN dendrites house
422 odorant receptors (ORs) [141], which transduce olfactory information in the environment into
423 electrical signals that can be interpreted by the brain [142] (Figure 6D). The odor specificity of an
424 OSN depends on which OR gene(s) it expresses [143]. Pheromone responsive ORs and OSNs are
425 typically highly specific in their response, ensuring high-fidelity detection of mating signals
426 [142,144,145]. Traditionally, it has been believed that each OSN expresses a single OR gene
427 together with the conserved co-receptor ORCO [146] (Figure 6D); however, recent studies have
428 found some exceptions to this rule [147–149]. The ORCO is necessary for signal transduction by
429 forming a cation ion channel when the OR binds odour molecules [150–154] (Figure 6).

431 **Figure 6.** The peripheral olfactory system in bark beetles and its anatomical and molecular features. (A)
432 Typical bark beetle with its antenna (here *I. typographus*), (B). Scanning electron micrograph of the antennal club
433 of *I. typographus* antenna showing three sensory bands, A, B, and C with olfactory sensilla (C). Illustration of an
434 olfactory sensillum with pores on its cuticular wall and the internal cellular arrangement with two OSNs and their
435 cell bodies at the base (D) Schematic representation of olfactory detection including the entry of odor molecules
436 through wall-pores, transport of odor molecules through the sensillar lymph facilitated by odorant binding proteins
437 (OBPs), which release the odor molecules near the odorant receptor (OR) complexes. The cell membrane is
438 depolarized through the opening of the non-selective cation channel of the OR-ORCO receptor complex upon ligand
439 binding. The ORs and ORCOs are seven transmembrane domain proteins.
440

441 5.2. Specific pheromone detection by OSNs in *Ips*

442 The antennal club of *Ips* beetles is flattened, and the olfactory sensilla are located on its
443 anterior surface, arranged as three undulating bands, labelled A, B, and C [137,140,155–159].
444 (Figure 6B). Olfactory sensilla of *Ips* beetles include the single-walled hair-like sensilla trichodea
445 and basiconica, which are the most abundant, and the peg-like double-walled sensillum
446 coeloconicum [140,157]. Each single-walled sensillum generally contains two OSNs with
447 different odor specificities [137,140,160,161].

448 Pioneering studies revealed OSNs with primary responses to (S)-(+)-ipsdienol, (R)-(-)-
449 ipsdienol, and (S)-(-)-ipsenol, respectively, in *I. paraconfusus*, *I. pini*, and *I. typographus* [162–
450 166]. Furthermore, OSNs responding to (racemic) ipsdienol and ipsenol were found in *I.*
451 *grandicollis* [160]. The (S)-(+)- and (R)-(-)-ipsdienol-responsive OSNs are highly specific for
452 their key enantiomer [167]. Additionally, OSNs responding to *cis*-verbenol, *trans*-verbenol, and

453 verbenone, respectively, have been identified [160,163]. In *I. typographus*, these OSNs respond
454 to the enantiomers (*S*)-*cis*-verbenol, (+)-*trans*-verbenol, and (−)-verbenone [165]. Whereas the
455 OSN class tuned to (*S*)-*cis*-verbenol is narrowly tuned [137], the OSN class responding to (−)-
456 verbenone responds strongly also to α - and β -isophorone [134]. β -isophorone was identified in
457 mated female *I. typographus*, but its behavioral effects have not been elucidated [63]. The neurons
458 that in early studies were reported to respond primarily to (+)-*trans*-verbenol in *I. typographus*
459 [165] were, however, not recovered in a recent study that screened >200 sensilla with a large test
460 odor panel [134]. *Ips typographus* also has OSNs that primarily respond to amitinol, lanierone,
461 and 2-methyl-3-buten-2-ol, respectively [137,161,165]. The lanierone-responsive OSNs respond
462 exclusively to lanierone, rendering this OSN class the most specific one in *I. typographus* [161].
463

464 **5.3. Abundance and distribution of pheromone-specific OSNs in *Ips***

465 Pheromone-responsive OSNs occupy a large proportion of the antennal sensilla of *Ips*
466 beetles [137]. The abundance and spatial distribution of such OSNs have been mapped in *I.*
467 *typographus* [133,137]. Neurons tuned to (*S*)-*cis*-verbenol are almost exclusively found in the
468 distal sensory area C [137] (Figure 6B), whereas OSNs tuned to (−)-verbenone, ipsdienol, ipsenol,
469 and amitinol are all found in both areas A and B, but not in C. Neurons for 2-methyl-3-buten-2-ol
470 are found at the border between areas B and C [137]. In contrast, sensilla housing the lanierone
471 OSN class are present in all three areas, which is unique among the described OSN classes in *I.*
472 *typographus* [137,161].

473 In the study by Andersson et al. (2009) in which 150 *I. typographus* sensilla were randomly
474 screened, the neurons tuned to the aggregation pheromone component (*S*)-*cis*-verbenol were
475 reported as the most abundant, occupying 22 (15%) of the contacted sensilla. Similar patterns
476 were found in *I. pini* and *I. paraconfusus* for OSNs tuned to components or their respective
477 aggregation pheromones, that is, different enantiomers of ipsdienol [164,168]. However, a recent
478 SSR study on *I. typographus*, which for the first time included lanierone, showed that the OSNs
479 tuned to this compound are even more abundant than the OSNs for (*S*)-*cis*-verbenol; these neurons
480 were present inside 42% of the contacted sensilla [161]. Lanierone elicits sex- and context-
481 dependent behavioral effects in *I. typographus* but it has never been shown to be produced by this
482 species [63,161]. However, the beetles analyzed by Yuvaraj and colleagues also did not produce
483 ipsdienol [161]. If ipsdienol indeed is the precursor for lanierone [103] (Figure 4), the lack of
484 ipsdienol would explain the lack of lanierone in the investigated specimens. In contrast to the high
485 abundance of OSNs tuned to lanierone and (*S*)-*cis*-verbenol, neurons for the more abundant
486 aggregation pheromone component in *I. typographus*, 2-methyl-3-buten-2-ol, were only
487 encountered in 2% of the sensilla [137].
488

489 **5.4. Function and evolution of pheromone receptors in *Ips***

490 Genes encoding the OR proteins that underlie the responses of the OSNs have been
491 identified in several scolytines [169–178], but only from two species in the *Ips* genus. Seventy-
492 three ORs were identified from antennal transcriptomes of *I. typographus* and 69 ORs in *I.*
493 *duplicatus* [169,173,178]. A large proportion of these ORs show conserved orthology between the
494 two species, potentially suggesting conserved olfactory functions [179].

495 Pheromone receptors (PRs) are ORs with specificity for pheromone compounds.
496 Functionally characterizing PRs is crucial for understanding the specificity and evolution of
497 pheromone communication. Additionally, PRs may also be candidates for chemoreceptor-targeted
498 insect control, thus forest management [180]; see also Chapters 7.2 and 7.3). To identify the PRs,
499 the receptor genes need to be functionally tested in heterologous expression systems. To date,
500 approximately 30 coleopteran ORs have determined functions [181]. Of these, 14 ORs belong to
501 the bark beetles *D. ponderosae* (2 ORs) and *I. typographus* (12 ORs) [161,178,179,181–183]. In
502 fact, *I. typographus* ('Ityp') has the highest number of functionally characterized ORs of all
503 coleopterans investigated to date, including PRs.

504 Functional showed that ItypOR46 responds to (*S*)-(–)-ipsenol, and ItypOR49 to (*R*)-(–)-
505 ipsdienol [178,183], with impressive discrimination between structurally related compounds and
506 enantiomers, similar to the corresponding OSNs [165]. The ItypOR46 gene has the third highest
507 antennal expression of all ItypOR, which is consistent with the abundance of OSNs that respond
508 to (*S*)-(–)-ipsenol [137,178]. A third pheromone receptor (ItypOR28) was subsequently
509 characterized, with primary responses to *E*-myrcenol [182] – an aggregation pheromone
510 component in *I. duplicatus* [184]. Interestingly, OSNs responding to *E*-myrcenol have so far not
511 been identified in *I. typographus* [137]. ItypOR28 belongs to the same *Ips*-specific OR clade as
512 ItypOR46 and ItypOR49 [178,182], demonstrating a shared evolutionary origin of these PRs.
513 However, this OR clade contains four additional ORs that respond to monoterpenoids produced
514 by spruce trees and/or the symbiotic fungi of *I. typographus*. Hence, PRs in *Ips* bark beetles also
515 share close relatedness with ORs detecting compounds with different ecological origins [182].

516 Two recent studies focused on the ItypORs with the highest and second-highest antennal
517 expression [178], namely ItypOR36 and ItypOR41, respectively. The ItypOR36 responds
518 exclusively to lanierone [161]. ItypOR41 responds primarily to the aggregation pheromone
519 component (*S*)-*cis*-verbenol, with minor responses elicited by (–)-verbenone and *trans*-verbenol
520 enantiomers [181]. Both the high expression of these PR genes and their responses match with
521 the antennal abundances and responses of the corresponding OSNs, suggesting that these ORs
522 underlie the neuronal responses. ItypOR36 and ItypOR41 are phylogenetically well separated
523 from each other and also from the clade that houses ItypOR28, ItypOR46, and ItypOR49,
524 suggesting that bark beetle PRs have evolved on several independent occasions [181]. It is likely
525 that the recently identified conserved receptor orthologues in *I. duplicatus* detect the same
526 pheromones in this species [173,179].

527 To understand the molecular interactions between PRs and their ligands, 3D models have
528 been generated for ItypOR41 and ItypOR46, and ligand docking simulations with the active
529 pheromones have been performed [178,181]. Two amino acid residues (Tyr84 and Thr205) were
530 shown to be important for the interaction between (*S*)-(–)-ipsenol and ItypOR46 [178]. In
531 ItypOR41, two other residues (Gln179 and Trp310) were predicted to be key for the binding of
532 (*S*)-*cis*-verbenol in this receptor [181]. In both studies, the predicted binding residues were
533 confirmed experimentally.

534 In summary, our understanding of pheromone detection mechanisms in *Ips* bark beetles has
535 progressed extensively in recent years, especially in *I. typographus*. The identification of
536 pheromone binding sites in the PRs that are tightly linked to the reproductive success and mass
537 attacks of bark beetles is essential for identifying receptor antagonists or agonists that could
538 possibly be designed to interfere with bark beetle pheromone communication and hence
539 contribute to the toolkit of bark beetle management strategies (see also sections 7.3 and 7.4).
540

541 **6. Pheromone-Based Strategies for Managing *Ips* Bark Beetle Outbreaks: Current**
542 **Approaches and Future Prospects**

543 **6.1. Mass trapping**

544 The primary use of aggregation pheromones is to attract and eliminate target populations
545 [185,241]. Attract-and-kill strategies, such as mass trapping, employ pheromone traps or
546 natural/poisoned, baited/non-baited trap trees [8,126,186–189]. However, these methods remain
547 controversial for several reasons. Treatment success varies widely from no effect [190] to
548 significant infestation reduction [191]. Even without insecticides, non-target species, including
549 predators and parasitoids of bark beetles, are frequently caught, potentially disrupting natural
550 biological control [192,193]. Poor trap placement can also inadvertently trigger infestations in
551 nearby trees, causing so-called spillover effect [194,195]. Additionally, mass trapping can be labor-
552 intensive. Non-insecticide-treated trees must be removed before brood development, and traps
553 require frequent emptying, as bark beetles are deterred by the scent of dead conspecifics [196].

554 A major limitation of mass trapping is the lack of standardized protocols [194]. Research
555 should establish guidelines for trap density based on infestation levels [197] and optimal inter-trap
556 distances. Many studies focus on beetle capture rates without assessing impacts on surrounding
557 stands [198,199]. Additionally, the conditions under which mass trapping is effective remain
558 poorly understood, with population size likely playing a key role [200]. Further research is needed
559 to determine environmental and population-related factors affecting trapping efficiency.

560 **6.2. Anti-aggregation signal**

561 Several formulations of anti-aggregation blends for tree protection are commercially
562 available in North America, but their use is largely restricted to *Dendroctonus* bark beetles [187].
563 Although multiple attraction inhibitors exist for *Ips* species—such as the anti-aggregation signal
564 verbenone [101] or plant-derived compounds like *trans*-4-thujanol, 1,8-cineole, C₆ green leaf
565 volatiles, C₈-alcohols, and *trans*-conophthorin [100,201–204] no commercial formulation is
566 currently available for *Ips* bark beetle management. A major limitation of push-only approaches is
567 the uncertain fate of repelled beetles. Whereas reduced aggregation on suitable hosts may increase
568 mortality due to exhaustion [205], it could also lead to spillover infestations in untreated areas
569 ([206]. Additionally, the high cost of anti-attractants, including verbenone, poses a challenge [207],
570 especially since inhibition is strongest in the first weeks, requiring frequent dispenser replacements
571 in multivoltine populations [205].

572 To improve anti-aggregation strategies, more effective and cost-efficient bait formulations
573 are needed to ensure widespread application and reduce spillover risk. Additionally, like mass
574 trapping, further research is required to understand the environmental factors influencing treatment
575 success and to define optimal management scenarios where anti-aggregation pheromones can
576 complement existing control methods [101].

577

578 **6.3. Push-and-pull**

579 A proposed solution to the limitations of the push-only approach with anti-aggregation signal
580 is the push-pull strategy, which combines aggregation and anti-attractant cues [208]. Here, anti-
581 attractants "push" bark beetles away from healthy stands, while traps baited with aggregation
582 pheromones "pull" them in [209]. In North America, this method locally reduced *I. paraconfusus*

583 populations [208] and showed promise for protecting pine trees from *I. pini* [210,211]. In Europe,
584 push-pull has been tested to protect forest edges from *I. typographus*. In Swedish boreal spruce
585 forests, baited trap trees served as the pull component [199], while in Czech spruce forests,
586 pheromone dispensers were used [206]. However, this method proved ineffective under severe
587 drought and extreme beetle population densities [212].

588 Interestingly, many studies reporting successful push-and-pull strategies only find a
589 significant effect from either the push or pull component when tested individually [207,213–215].
590 It remains unclear whether anti-aggregation signal actively repel beetles or merely mask attractant
591 cues (Byers and Levi-Zada, 2022), although a recent study showed clear avoidance of verbenone
592 or *trans*-4-thujanol by *I. typographus* in short-range laboratory walking bioassays [161,217]. If they
593 only obscure attraction signals, their contribution to push-and-pull success may be limited. A
594 deeper understanding of these mechanisms is essential to enhance future push-and-pull strategies.
595 Despite its promise, evidence for successful tree protection remains limited for *Ips* species
596 compared to *Dendroctonus* bark beetles [209].
597

598 7. Future Perspectives on *Ips* Bark Beetle Aggregation Pheromones: Advances in 599 Research and Pest Management

600 Based on the above-reviewed informations, we have identified key knowledge gaps in
601 pheromone research that future studies should address. These gaps span from laboratory research
602 utilizing advanced post-genomic tools to field studies directly applicable to practical forest pest
603 management.

604 7.1. Knowledge Gaps

605 Intervention in Pheromone Production and Detection on Genetic Level

- 606 • Identifying and characterizing additional genes involved in pheromone
607 biosynthesis, including their regulatory mechanisms and genetic underpinnings.
- 608 • Investigating additional genes encoding pheromone receptors (PRs) to understand
609 their role in pheromone detection, especially in species other than *I. typographus* where
610 information is entirely lacking.
- 611 • Applying genetic manipulation techniques (e.g., RNAi-mediated silencing or
612 CRISPR-Cas knockdown) to disrupt male pheromone production or alter pheromone
613 detection in conspecifics.

614 Development of Novel Techniques for Early Attack Detection

- 615 • Utilizing OR-based or whole-antenna biosensors to detect pheromone release and
616 identify early bark beetle infestations.

617 Optimization of Pheromonal Lures and Push-pull strategy in Forest Management

- 618 • Improving lure effectiveness by enhancing attraction efficiency, increasing
619 selectivity for bark beetles while minimizing non-target captures, and adjusting the sex ratio
620 of trapped individuals toward males.
- 621 • Developing more effective and optimized push-pull strategies for bark beetle
622 management.
- 623 • Identifying additional olfactory receptors on bark beetle antennae that detect
624 specific ecological compounds and integrating these compounds into synthetic lures to
625 enhance attraction and control efficiency.

627 **7.2. Intervention in Pheromone Production and Perception on Genetic Level**

628 Manipulating pheromone production in *Ips* bark beetles offers a promising strategy for
629 disrupting their communication without removing them from ecosystems. This approach helps
630 preserve their ecological roles in forest renewal and nutrient cycling while mitigating large-scale
631 tree infestations [95,218]. Additionally, targeting their PRs using antagonists or highly potent
632 agonists can prevent the beetles from detecting aggregation pheromones, thereby reducing their
633 ability to locate and attack specific trees[180].

634 The key advantage of these approaches—though still largely speculative—lies in their
635 species specificity and non-lethal nature. However, manipulating beetle behavior at the genetic
636 level requires functional characterization of selected genes, which has only been completed for a
637 few. Access to a complete genome of a target beetle significantly facilitates gene selection. Yet, to
638 date, only the genomes of *I. typographus* and *I. nitidus* have been published [15,219].

639 Species-specific targeting of pheromone biosynthetic pathways depends on the careful
640 selection of genes, particularly those involved in the terminal steps of biosynthesis. Several
641 candidate genes for ipsdienol and ipsenol biosynthesis have already been characterized and could
642 be studied for genetic manipulation in species where these compounds play a crucial role in
643 attraction (Table 1). These genes include GPP/myrcene synthase [112], IDOLDH [220], IDONER
644 [120]; Chapter 4.2.1), and CYP450 myrcene hydroxylase [71]; Chapter 4.2.3.

645 In *I. typographus*, additional key genes require further characterization, including isoprenyl
646 diphosphate synthase (IPDS) (Chapter 4.2.1), which is involved in 2-methyl-3-buten-2-ol
647 biosynthesis, and lipases/carboxylesterases (Chapter 4.2.2), which are involved in verbetyl fatty
648 acid ester metabolism. Characterizing these genes involves expressing them in bacterial,
649 eukaryotic, or coleopteran cell lines to produce the relevant enzymes, followed by functional assays
650 to validate their roles.

651 Another knowledge gap lies in understanding the regulatory cascades that control pheromone
652 production in bark beetles, offering a potential alternative for intervention. The roles of hormones
653 like ecdysteroids and the specific receptors for JH III, which are known to induce de novo
654 pheromone biosynthesis (Chapter 4.2), remain unclear.

655 Regarding pheromone receptors of *Ips* species, five receptors have been functionally
656 characterized from *I. typographus*, with specific responses to (*S*)-(−)-ipsenol, (*R*)-(−)-ipsdienol, *E*-
657 myrcenol, lanierone, and (*S*)-*cis*-verbenol, respectively (Chapter 5.4) [171,178,181,182] .
658 However, receptors for other pheromone compounds, including hemiterpenes and (*S*)-(+)-
659 ipsdienol, as well as those in other *Ips* species, remain unidentified.

660 When a gene's full sequence and function are known, its expression can be regulated through
661 genetic manipulation. This can be achieved temporarily via RNA interference (RNAi), which
662 degrades target mRNA using double-stranded RNA (dsRNA), or permanently through CRISPR-
663 Cas genome editing [221]. RNAi, offering greater specificity and environmental safety than
664 traditional insecticides, has gained traction in agricultural pest control [222,223]. However, bark
665 beetle outbreaks in forestry pose unique challenges, including vast forested areas, wide beetle
666 dispersal, multiple generations per year, and delivery method limitations [224,225]. Despite these
667 obstacles, progress has been made in RNAi-based bark beetle control [218,226]. Research into
668 dsRNA delivery for coleopteran wood-feeding beetles includes methods such as spraying tree
669 trunks, injecting dsRNA into the sap stream [227] or using polymer carriers [228]. These
670 approaches could effectively silence pheromone biosynthetic genes during bark beetle feeding
671 [229].

672 Additionally, the genetic approach to preventing bark beetle attacks may target their olfactory
673 system to impair pheromone detection, conspecific recognition, and mass attack coordination
674 [230]. RNAi silencing and CRISPR-Cas may also target OR and ORCO genes in *Ips* species, even
675 though both have mainly been used to study receptor roles in pheromone-driven behaviour so far
676 [231,232].

677 **7.3. Development of Novel Techniques for Early Attack Detection employing biosensors
678 based on bark beetle olfactory system**

679 Early detection of bark beetle-infested trees is crucial for timely salvage logging before
680 beetles spread. The most effective method remains visual inspection for boring dust [233], but the
681 vastness of forests limits it, and new approaches are being sought. To improve efficiency, UAVs
682 equipped with various sensors are being tested for faster, large-scale detection.

683 Properly characterized insect olfactory receptors (ORs) or entire antennae can be used to
684 develop species-specific biosensors that convert pheromone-receptor interactions into readable
685 signals [234–236]. While this has been applied to lepidopteran antennae, it remains unexplored for
686 bark beetles. Potential instrumentation includes portable electroantennography (EAG) devices with
687 insect antennae on plastic chips [237] or lighter BioFETs combining antennae with field-effect
688 transistors [238].

689 **7.4. Optimization of Pheromonal Lures and Push-pull strategy in Forest Management**

690 To optimize pheromone lures, electrophysiological studies should identify new pheromonally
691 active compounds [200,239], while improved dispenser designs and optimized blend compositions
692 should be tested in pheromone traps to reduce non-target captures and adjust the trapped sex ratio
693 toward males. Also, beetle-derived synergistic compounds can be added to lures to enhance
694 dispenser effectiveness and maximize beetle capture [189,240]. Additionally, incorporating
695 ecosystem-based attractants, such as high monoterpene concentrations from host trees [97,189] or
696 symbiotic fungal compounds (e.g., fusel alcohols, fusel acetates, or oxygenated terpenes with
697 synergistic properties) may further increase bait specificity [100,134,135]. More precise
698 enantiomeric composition and purity of chiral compounds can also improve species specificity and
699 overall efficacy (Table 1). Enhanced lures could unlock the hidden potential of trap-and-kill
700 strategies or serve as more selective monitoring tools.

701 Push-and-pull strategies can be improved by optimizing both push (anti-attractants) and pull
702 (aggregation pheromone) components. More than for mass trapping, practical spatial arrangements
703 for these components need to be developed.

704 **8. Concluding remark.**

705 Recent research on *Ips* bark beetle aggregation pheromones has been driven by the increasing
706 frequency and severity of outbreaks, as well as their expansion into new habitats. This review
707 synthesizes insights from multiple disciplines, linking pheromone-based *Ips* management
708 strategies with laboratory research on pheromone biosynthesis and detection at neuronal and
709 genetic levels. Framed within the ecological and behavioral context of selected *Ips* species, it
710 provides a comprehensive perspective on aggregation pheromones and their applications.

711 While the initial promise of using aggregation pheromones for mass trapping in *Ips* pest
712 management has diminished due to limited effectiveness and unintended consequences, these

713 pheromones remain valuable for monitoring bark beetle populations. Moreover, emerging research
714 continues to explore novel applications, making it worthwhile to investigate their potential further.
715

716 On the other hand, advancements in molecular and genomic techniques in the post-genomic
717 era have significantly enhanced our understanding of pheromone biosynthesis, its regulation, and
718 the olfactory mechanisms underlying pheromone detection. In the future, gene manipulation
719 techniques—already applied in agricultural pest management—may offer innovative approaches
720 to influence pheromone production and perception in *Ips* bark beetles.

721 By bridging traditional forestry perspectives with cutting-edge molecular insights, this
722 review aims to stimulate productive discussions and inspire novel control strategies—not to replace
723 traditional, effective bark beetle management practices but to integrate new approaches that
724 enhance their effectiveness in an eco-friendly manner.

725 Key Recent References:

726 The key references published after 2020 that support this review are listed here.
727

- 728 1. Hlásny T, König L, Krokene P, Lindner M, Montagné-Huck C, Müller J, et al. Bark
729 beetle outbreaks in Europe: State of knowledge and ways forward for management.
730 In: Seidl R, Thom D, editors. *Forest Entomology and Pathology in a Changing
731 Climate*. Elsevier; 2021. p. 138–65. doi: 10.1016/B978-0-12-417156-5.00007-1.

732 Hlásny et al. (2021) provide a comprehensive overview of bark beetle outbreaks in European
733 conifer forests, highlighting the increasing impact of climate change on these calamities and
734 outlining management strategies.

- 735 2. Powell D, Große-Wilde E, Krokene P, Roy A, Chakraborty A, Löfstedt C, et al. A
736 highly contiguous genome assembly of the Eurasian spruce bark beetle, *Ips
737 typographus*, provides insight into a major forest pest. *Commun Biol.* 2021;4:1–9.
738 doi.org/10.1038/s42003-021-01968-3.

739 Powell et al. (2021) provide essential genomic data for *I. typographus*, emphasizing the
740 importance of gene- and molecular-based research for future studies on *Ips* bark beetle biology
741 and control strategies.

- 742 3. Blomquist GJ, Tittiger C, MacLean M, Keeling CI. Cytochromes P450: terpene
743 detoxification and pheromone production in bark beetles. *Curr Opin Insect Sci.*
744 2021 Feb;43:97–102. doi: 10.1016/j.cois.2020.11.010. Epub 2020 Dec 21. PMID:
745 33359166

746 Blomquist et al. (2021) provide a comprehensive overview of the biosynthesis of pheromonal
747 compounds in bark beetles, highlighting the essential role of terminal hydroxylation catalyzed by
748 Cyp450 enzymes. Their study details the genetic basis of this process and discusses the overlap
749 between pheromone production and the beetles' detoxification of plant-derived compounds.
750

753 4. Ramakrishnan R, Hradecký J, Roy A, Kalinová B, Mendez RC, Synek J, Jirošová
754 A. Metabolomics and transcriptomics of pheromone biosynthesis in an aggressive
755 forest pest *Ips typographus*. *Insect Biochem Mol Biol*. 2022;140:1–8. doi:
756 10.1016/j.ibmb.2021.103680 + 5.

757 5. Ramakrishnan R, Roy A, Hradecký J, Kai M, Harant K, Svatoš A, Jirošová A.
758 Juvenile hormone III induction reveals key genes in general metabolism,
759 pheromone biosynthesis, and detoxification in Eurasian spruce bark beetle. *Front
760 For Glob Change*. 2024;1–16. doi: 10.3389/ffgc.2023.1215813

761

762 Ramakrishnan et al. (2022, 2024) unraveled the biosynthetic pathways of pheromonal compounds
763 in *Ips typographus*, including the identification of transcripts of key terminal genes suitable for
764 manipulation. Their research covered ipsdienol, *cis*-verbenol, and the newly studied 2-methyl-3-
765 buten-2-ol. They also investigated the production dynamics of pheromone storage conjugates and
766 identified genes involved in their synthesis and cleavage. In Ramakrishnan et al. (2024), these
767 findings were further detailed by studying the regulation of these processes by juvenile hormone
768 III.

769 6. Yuvaraj JK, Roberts RE, Sonntag Y, Hou XQ, Grosse-Wilde E, Machara A, et al.
770 Putative ligand binding sites of two functionally characterized bark beetle odorant
771 receptors. *BMC Biol*. 2021;19:1–21. doi.org/10.1186/s12915-021-01060-0

772

773 Yuvaraj et al. (2021) offers significant insights into the molecular mechanisms of odorant detection
774 in bark beetles by identifying and characterizing the two first pheromone receptors in bark beetles
775 (*I. typographus*). Their work also highlights the ligand-binding sites important for pheromone
776 recognition and bark beetle communication.

777 7. Biswas T, Sims C, Yuvaraj JK, Roberts RE, Löfstedt C, Andersson MN. Functional
778 characterization supports multiple evolutionary origins of pheromone receptors in
779 bark beetles. *Mol Biol Evol*. 2024;41:msae196. doi.org/10.1093/molbev/msae196.

780

781 Biswas et al. (2024) identified the first aggregation pheromone receptor in *I. typographus* and its
782 molecular interactions with the ligand (*S*)-*cis*-verbenol. This PR could be a prime target for
783 pheromone receptor-targeted bark beetle control.

784 8. Sweeney J, Dodds KJ, Fettig CJ, Carnegie AJ. IPM - The forest context. In:
785 Allison JD, Paine TD, Slippers B, Wingfield MJ, editors. *Forest entomology and
786 pathology: Volume 1: entomology*. Springer Nature; 2023. p. 581–646.
787 doi.org/10.1007/978-3-031-11553-0_17.

788 Sweeney et al. (2023) provide a more general summary on the management of forest pests (also
789 including, but not specifically referring to bark beetles) covering also the application of
790 pheromones for monitoring purposes and in “semiochemical tactics”.

795 9. Fettig CJ, Egan JM, Delb H, Hilszczański J, Kautz M, Munson AS, Nowak JT,
796 Negrón JF. Management tactics to reduce bark beetle impacts in North America
797 and Europe under altered forest and climatic conditions. In: Gandhi KJ, Hofstetter
798 RW, editors. *Bark beetle management, ecology, and climate change*. Academic
799 Press; 2022. p. 345–394. doi.org/10.1016/B978-0-12-822145-7.00006-4

800 Fettig et al. (2022) provide a comprehensive overview on the integrated management of bark
801 beetles in North America and Europe

802 10. Singewar K, Fladung M. Double-stranded RNA (dsRNA) technology to control
803 forest insect pests and fungal pathogens: Challenges and opportunities. *Funct*
804 *Integr Genomics*. 2023;23:185. doi.org/10.1007/s10142-023-00960-1

806 Singewar and Fladung (2023) placed an overview of studies on dsRNA applications for forest
807 insect pests and pathogens, addressing current challenges and opportunities in their use for forest
808 protection. Key aspects discussed include target selection, delivery methods, potential impacts on
809 non-target species, and the need for collaboration among multidisciplinary experts to advance
810 research in this field.

811 **References:**

- 812 1. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, et al. A global
813 overview of drought and heat-induced tree mortality reveals emerging climate change risks for
814 forests. *For Ecol Manage*. 2010;259:660–84. doi: 10.1016/j.foreco.2009.09.001.
- 815 2. Nardi D, Finozzi V, Battisti A. Massive windfalls boost an ongoing spruce bark beetle outbreak
816 in the Southern Alps. *L’Italia Forestale e Montana*. 2022;77:23–34. doi: 10.4129/ifm.2022.1.03.
- 817 3. Gandhi KJK, Hofstetter RW. *Bark beetle management, ecology, and climate change*. Academic
818 Press; 2021. doi: 10.1016/C2019-0-01704-5.
- 819 4. Dobor L, Hlásny T, Zimová S. Contrasting vulnerability of monospecific and species-diverse
820 forests to wind and bark beetle disturbance: The role of management. *Ecol Evol*. 2020;10:12233–
821 45. doi: 10.1002/ece3.6822.
- 822 5. Sommerfeld A, Rammer W, Heurich M, Hilmers T, Müller J, Seidl R. Do bark beetle outbreaks
823 amplify or dampen future bark beetle disturbances in Central Europe? *J Ecol*. 2021;109:737–49.
824 doi: 10.1111/1365-2745.13502.
- 825 6. McNichol BH, Clarke SR, Faccoli M, Montes CR, Nowak JT, Reeve JD, et al. Relationships
826 between drought, coniferous tree physiology, and *Ips* bark beetles under climatic changes. In:
827 Gandhi KJK, Hofstetter RW, editors. *Bark beetle management, ecology, and climate change*.
828 Elsevier; 2021. p. 153–94. doi: 10.1016/B978-0-12-822008-5.00007-3.
- 829 7. Cognato AI. Biology, systematics, and evolution of *Ips*. In: Vega FE, Hofstetter RW, editors.
830 *Bark beetles: Biology and ecology of native and invasive species*. Elsevier Inc.; 2015. p. 351–70.
831 dx.doi.org/10.1016/B978-0-12-417156-5.00009-5.

832 8. Gallo J, Bílek L, Šimůnek V, Roig S, Fernández JAB. Uneven-aged silviculture of Scots pine in
833 Bohemia and Central Spain: Comparison study of stand reaction to transition and long-term
834 selection management. *J For Sci.* 2020;66:22–35. doi: 10.17221/124/2019-JFS.

835 9. Lubojacký J, Holuša J. Attraction of *Ips typographus* (Coleoptera: Curculionidae) beetles by
836 lure-baited insecticide-treated tripod trap logs and trap trees. *Int J Pest Manag.* 2014;60:153–9.
837 doi: 10.1080/09670874.2014.951055.

838 10. Yousuf F, Gurr GM, Carnegie AJ, Bedding RA, Bashford R, Gitau CW. Biology of the bark
839 beetle *Ips grandicollis* Eichhoff (Coleoptera: Scolytinae) and its arthropod, nematode, and
840 microbial associates: A review of management opportunities for Australia. *Aust Entomol.*
841 2014;53:298–316. doi: 10.1111/aen.12090.

842 11. Wood SL. The bark and ambrosia beetles of North and Central America (Coleoptera:
843 Scolytidae), a taxonomic monograph. *Great Basin Naturalist Memoirs.* 1982;6:1123.
844 <https://www.biodiversitylibrary.org/part/248626>.

845 12. Raffa KF. Temporal and spatial disparities among bark beetles, predators, and associates
846 responding to synthetic bark beetle pheromones: *Ips pini* (Coleoptera: Scolytidae) in Wisconsin.
847 *Environ Entomol.* 1991;20:1665–79. doi: 10.1093/ee/20.6.1665.

848 13. Schebeck M, Dobart N, Ragland GJ, Schopf A, Stauffer C. Facultative and obligate diapause
849 phenotypes in populations of the European spruce bark beetle *Ips typographus*. *J Pest Sci* (2004).
850 2022;95:889–99. doi: 10.1007/s10340-022-01495-0.

851 14. Vanhanen H, Veteli T, Niemelä P. Potential distribution ranges in Europe for *Ips hauseri*, *Ips*
852 *subelongatus*, and *Scolytus morawitzi*: a CLIMEX analysis. *EPPO Bull.* 2008;38:249–58. doi:
853 10.1111/j.1365-2338.2008.01210.x.

854 15. Wang Z, Liu Y, Wang H, Roy A, Liu H, Han F, et al. Genome and transcriptome of *Ips nitidus*
855 provide insights into high-altitude hypoxia adaptation and symbiosis. *iScience.* 2023;26:106123.
856 doi: 10.1016/j.isci.2023.106123.

857 16. Werner RA, Raffa KF, Illman BL. Insect and pathogen dynamics. In: Chapin FS, Oswood MW,
858 Van Cleve K, Viereck LA, Verbyla DL, editors. *Alaska's Changing Boreal Forest.* Oxford (United
859 Kingdom): Oxford University Press; 2006. p. 179–95. doi:10.1093/oso/9780195154313.003.0010.

860 17. Colombari F, Battisti A, Schroeder LM, Faccoli M. Life-history traits promoting outbreaks of
861 the pine bark beetle *Ips acuminatus* (Coleoptera: Curculionidae, Scolytinae) in the south-eastern
862 Alps. *Eur J For Res.* 2012;131:553–61. doi: 10.1007/s10342-011-0531-9.

863 18. Schebeck M, Schopf A. Temperature-dependent development of the European larch bark beetle,
864 *Ips cembrae*. *J Appl Entomol.* 2017;141:322–8. doi: 10.1111/jen.12345.

865 19. Hallas T, Steyrer G, Laaha G, Hoch G. Two unprecedented outbreaks of the European spruce
866 bark beetle, *Ips typographus* L. (Col., Scolytinae) in Austria since 2015: Different causes and
867 different impacts on forests. *Cent Eur For J.* 2024;70:45–58. doi: 10.2478/forj-2024-0001.

868 20. Hlásny T, Zimová S, Merganičová K, Štěpánek P, Modlinger R, Turčáni M. Devastating
869 outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications.
870 *For Ecol Manage.* 2021;490:119234. doi: 10.1016/j.foreco.2021.119234.

871 21. Hlásny T, König L, Krokene P, Lindner M, Montagné-Huck C, Müller J, et al. Bark beetle
872 outbreaks in Europe: State of knowledge and ways forward for management. In: Seidl R, Thom D,
873 editors. *Forest Entomology and Pathology in a Changing Climate*. Elsevier; 2021. p. 138–65. doi:
874 10.1016/B978-0-12-417156-5.00007-1.

875 22. Patacca M, Lindner M, Lucas-Borja ME, Cordonnier T, Fidej G, Gardiner B, et al. Significant
876 increase in natural disturbance impacts on European forests since 1950. *Glob Chang Biol.*
877 2023;29:1359–76. doi: 10.1111/gcb.16543.

878 23. Wegensteiner R, Wermelinger B, Herrmann M. Natural enemies of bark beetles: predators,
879 parasitoids, pathogens, and nematodes. In: Vega FE, Hofstetter RW, editors. *Bark Beetles: Biology
880 and Ecology of Native and Invasive Species*. Elsevier Inc.; 2015. p. 247–304. Available from:
881 <http://dx.doi.org/10.1016/B978-0-12-417156-5.00007-1>.

882 24. Duduman ML. Field response of the northern spruce bark beetle *Ips duplicatus* (Sahlberg)
883 (Coleoptera: Curculionidae, Scolytinae) to different combinations of synthetic pheromone with (-
884)- α -pinene and (+)-limonene. *Agric For Entomol.* 2014;16:102–9. doi.org/10.1111/afe.12039.

885 25. Grodzki W. Two types of Norway spruce *Picea abies* (L.) H. Karst. infestation by the double
886 spined bark beetle *Ips duplicatus* C.R. Sahlb. (Coleoptera: Scolytinae) in southern and north-
887 eastern Poland. *Folia Forestalia Polonica, Series A.* 2012;54:169–74. doi: 10.2478/v10250-012-
888 0014-1.

889 26. Schlyter F, Anderbrant O. Competition and niche separation between two bark beetles:
890 existence and mechanisms. *Oikos.* 1993;68:437. doi: 10.2307/3544851.

891 27. Davídková M, Doležal P. Temperature-dependent development of the double-spined spruce
892 bark beetle *Ips duplicatus* (Sahlberg, 1836) (Coleoptera; Curculionidae). *Agric For Entomol.*
893 2019;21:388–95. doi: 10.1111/afe.12341.

894 28. Davídková M, Kleinová L, Doležal P. Overwintering migration of the double-spined spruce
895 bark beetle *Ips duplicatus* (Sahlberg, 1836) (Coleoptera; Curculionidae). *Forests.* 2023;14:131.
896 doi: 10.3390/f14010131.

897 29. Økland B, Flø D, Schroeder M, Zach P, Cocos D, Martikainen P, et al. Range expansion of the
898 small spruce bark beetle *Ips amitinus*: a newcomer in northern Europe. *Agric For Entomol.*
899 2019;21:286–98. doi: 10.1111/afe.12328.

900 30. Schlyter F, Jakuš R, Han F-Z, Ma J-H, Kalinová B, Mezei P, et al. Reproductive isolation of
901 *Ips nitidus* and *I. shangrila* in mountain forests of Western China: responses to chiral and achiral
902 candidate pheromone components. *J Chem Ecol.* 2015;41:678–88. doi: 10.1007/s10886-015-0600-
903 4.

904 31. Hlávková D, Doležal P. Cambioxylophagous pests of Scots pine: ecological physiology of
905 European populations—a review. *Frontiers in Forests and Global Change*. 2022;5:864651. doi:
906 10.3389/ffgc.2022.864651.

907 32. Hlávková D, Davídková M, Koudelková J, Doležal P. Population dynamics of *Ips sexdentatus*
908 (Börner) in the Czech Republic. *Forests*. 2024;15:961. doi: 10.3390/f15070961.

909 33. Gehrken U. Winter survival of an adult bark beetle *Ips acuminatus* Gyll. *J Insect Physiol.*
910 1984;30:421–9. doi: 10.1016/0022-1910(84)90035-1.

911 34. Connor MD, Wilkinson RC. *Ips* bark beetles in the South. US Department of Agriculture, Forest
912 Service; 1983. doi: 10.2737/sa-gtr-8.

913 35. McNichol BH, Montes CR, Barnes BF, Nowak JT, Villari C, Gandhi KJK. Interactions between
914 southern *Ips* bark beetle outbreaks, prescribed fire, and loblolly pine (*Pinus taeda* L.) mortality.
915 *For Ecol Manage*. 2019;446:164–74. doi: 10.1016/j.foreco.2019.05.055.

916 36. Aukema BH, Richards GR, Krauth SJ, Raffa KF. Species assemblage arriving at and emerging
917 from trees colonized by *Ips pini* in the Great Lakes region: partitioning by time since colonization,
918 season, and host species. *Ann Entomol Soc Am*. 2004;97:117–29. [https://doi.org/10.1603/0013-8746\(2004\)097\[0117:SAAAE\]2.0.CO;2](https://doi.org/10.1603/0013-8746(2004)097[0117:SAAAE]2.0.CO;2).

920 37. Miller DR, Borden JH. The use of monoterpenes as kairomones by *Ips latidens* (LeConte)
921 (Coleoptera: Scolytidae). *Can Entomol*. 1990;122:301–7. doi: 10.4039/Ent122301-3.

922 38. Kleinman SJ, DeGomez TE, Snider GB, Williams KE. Large-scale pinyon *Ips* (*Ips confusus*)
923 outbreak in Southwestern United States tied with elevation and land cover. *J For*. 2012;110:194–
924 200. doi: 10.5849/jof.11-084.

925 39. Williams JW, Shuman BN, Webb T, Bartlein PJ, Leduc PL. Late-Quaternary vegetation
926 dynamics in North America: Scaling from taxa to biomes. *Ecol Monogr*. 2004;74:309–34. doi:
927 10.1890/02-4048.

928 40. Williams AP, Allen CD, Millar CI, Swetnam TW, Michaelsen J, Still CJ, et al. Forest responses
929 to increasing aridity and warmth in the southwestern United States. *Proc Natl Acad Sci U S A*.
930 2010;107:21289–94. doi: 10.1073/pnas.0914211107.

931 41. Douglas HB, Cognato AI, Grebennikov V, Savard K. Dichotomous and matrix-based keys to
932 the *Ips* bark beetles of the world (Coleoptera: Curculionidae: Scolytinae). *Can J Arthropod Identif*.
933 2019. doi: 10.3752/cjai.2019.38.

934 42. Jeger M, Bragard C, Caffier D, Candresse T, Chatzivassiliou E, Dehnen-Schmutz K, et al. Pest
935 categorisation of *Ips cembrae*. *EFSA Journal*. 2017;15. doi: 10.2903/j.efsa.2017.4881.

936 43. Schimitschek E. Forstentomologische Untersuchungen aus dem Gebiete von Lunz. I:
937 Standortsklima und Kleinklima in ihren Beziehungen zum Entwicklungsablauf und zur Mortalität
938 von Insekten. *Zeitschrift für Angewandte Entomologie*. 1931;18:460–91. doi: 10.1111/j.1439-
939 0418.1931.tb00511.x.

940 44. Stauffer C, Kirisits T, Nussbaumer C, Pavlin R, Wingfield MJ. Phylogenetic relationships
941 between the European and Asian eight-spined larch bark beetle populations (Coleoptera,
942 Scolytidae) inferred from DNA sequences and fungal associates. *Eur J Entomol.* 2001;98:99–105.
943 doi: 10.14411/eje.2001.017.

944 45. Kohnle U, Vité JP, Erbacher C, Bartels J, Francke W. Aggregation response of European
945 engraver beetles of the genus *Ips* mediated by terpenoid pheromones. *Entomol Exp Appl.*
946 1988;49:43–53. doi: 10.1111/j.1570-7458.1988.tb02400.x.

947 46. Seybold SJ, Quilici DR, Tillman JA, Vanderwel D, Wood DL, Blomquist GJ. De novo
948 biosynthesis of the aggregation pheromone components ipsenol and ipsdienol by the pine bark
949 beetles *Ips paraconfusus* Lanier and *Ips pini* (Say) (Coleoptera: Scolytidae). *Proc Natl Acad Sci U*
950 *SA.* 1995;92:8393–7. doi: 10.1073/pnas.92.18.8393.

951 47. Tillman JA, Holbrook GL, Dallara PL, Schal C, Wood DL, Blomquist GJ, et al. Endocrine
952 regulation of de novo aggregation pheromone biosynthesis in the pine engraver, *Ips pini* (Say)
953 (Coleoptera: Scolytidae). *Insect Biochem Mol Biol.* 1998;28:705–15. doi: 10.1016/S0965-
954 1748(98)00055-0.

955 48. Keeling CI, Blomquist GJ, Tittiger C. Coordinated gene expression for pheromone biosynthesis
956 in the pine engraver beetle, *Ips pini* (Coleoptera: Scolytidae). *Naturwissenschaften.* 2004;91:324–
957 8. doi: 10.1007/s00114-004-0531-0.

958 49. Miller DR, Gries G, Borden JH. E-myrcenol: A new pheromone for the pine engraver, *Ips pini*
959 (Say) (Coleoptera: Scolytidae). *Can Entomol.* 1990;122:401–6. doi: 10.4039/Ent122401-5.

960 50. Miller DR. Geographic variation in response of pine engraver, *Ips pini*, and associated species
961 to pheromone, lanierone. *J Chem Ecol.* 1997;23:2013–31.
962 doi: 10.1023/B:JOEC.0000006481.20213.4e.

963 51. Francke W, Sauerwein P, Vité JP, Klimetzek D. The pheromone bouquet of *Ips amitinus*.
964 *Naturwissenschaften.* 1980;67:147–8. doi: 10.1007/BF01106585.

965 52. Ivarsson P, Schlyter F, Birgersson G. Demonstration of de novo pheromone biosynthesis in *Ips*
966 *duplicatus* (Coleoptera: Scolytidae): inhibition of ipsdienol and E-myrcenol production by
967 compactin. *Insect Biochem Mol Biol.* 1993;23:655–62. doi: 10.1016/0020-1790(93)90064-5.

968 53. Ivarsson P, Birgersson G. Regulation and biosynthesis of pheromone components in the double
969 spined bark beetle *Ips duplicatus* (Coleoptera: Scolytidae). *J Insect Physiol.* 1995;41:843–9. doi:
970 10.1016/0022-1910(95)00030-1.

971 54. Schlyter F, Birgersson G, Byers JA. The aggregation pheromone of *Ips duplicatus* and its role
972 in competitive interactions with *I. typographus* (Coleoptera: Scolytidae). *Chemoecology.*
973 1992;3:103–12. doi: 10.1007/BF01240672.

974 55. Fang JX, Du HC, Shi X, Zhang SF, Liu F, Zhang Z, et al. Monoterpenoid signals and their
975 transcriptional responses to feeding and juvenile hormone regulation in bark beetle *Ips hauseri*. *J*
976 *Exp Biol.* 2021;224. doi: 10.1242/jeb.242305.

977 56. Zhang QH, Ma JH, Zhao FY, Song LW, Sun JH. Aggregation pheromone of the Qinghai spruce
978 bark beetle, *Ips nitidus* Eggers. *J Chem Ecol.* 2009;35:610–7. doi: 10.1007/s10886-009-9639-0.

979 57. Holsten EH, Burnside RE, Seybold SJ. Attractant semiochemicals of the engraver beetle, *Ips*
980 *perturbatus*, in south-central and interior Alaska. *Res Pap PNW-RP-529*. Portland, OR: US
981 Department of Agriculture, Forest Service, Pacific Northwest Research Station; 2000. doi:
982 10.2737/PNW-RP-529.

983 58. Robertson IC. Reproduction and developmental phenology of *Ips perturbatus* (Coleoptera:
984 Scolytidae) inhabiting white spruce (Pinaceae). *Can Entomol.* 2000;132:529–37. doi:
985 10.4039/Ent132529-4.

986 59. Coleman TW, Graves AD, Oblinger BW, Flowers RW, Jacobs JJ, Moltzan BD, et al. Evaluating
987 a decade (2011–2020) of integrated forest pest management in the United States. *J Integr Pest*
988 *Manag.* 2023;14:23. doi: 10.1093/jipm/pmad020.

989 60. Graves AD, Holsten EH, Ascerno ME, Zogas KP, Hard JS, Huber DPW, et al. Protection of
990 spruce from colonization by the bark beetle, *Ips perturbatus*, in Alaska. *For Ecol Manage.*
991 2008;256:1825–39. doi: 10.1016/j.foreco.2008.07.011.

992 61. Hoskovec M, Kalinová B, Knížek M. Chiral and nonchiral GC×GC/TOFMS analysis of natural
993 compounds: The case of possible aggregation pheromones of Chinese bark beetles *Ips shangrila*
994 and *Ips nitidus*. *InTech.* 2012. P325-342.

995 62. Zhang Q-H, Song L-W, Ma J-H, Han F-Z, Sun J-H. Aggregation pheromone of a newly
996 described spruce bark beetle, *Ips shangrila* Cognato and Sun, from China. *Chemoecology.*
997 2009;19:203–10. doi: 10.1007/s00049-009-0022-3.

998 63. Birgersson G, Schlyter F, Löfqvist J, Bergström G. Quantitative variation of pheromone
999 components in the spruce bark beetle *Ips typographus* from different attack phases. *J Chem Ecol.*
1000 1984;10:1029–55. doi: 10.1007/BF00988069.

1001 64. Lanne BS, Ivarsson P, Johnsson P, Bergström G, Wassgren AB. Biosynthesis of 2-methyl-3-
1002 buten-2-ol, a pheromone component of *Ips typographus* (Coleoptera: Scolytidae). *Insect Biochem.*
1003 1989;19:163–7. doi: 10.1016/0020-1790(89)90011-2.

1004 65. Ramakrishnan R, Hradecký J, Roy A, Kalinová B, Mendezes RC, Synek J, et al. Metabolomics
1005 and transcriptomics of pheromone biosynthesis in an aggressive forest pest *Ips typographus*. *Insect*
1006 *Biochem Mol Biol.* 2022;140:1–8. doi: 10.1016/j.ibmb.2022.103716.

1007 66. Bakke A. Aggregation pheromone components of the bark beetle *Ips acuminatus*. *Oikos.*
1008 1978;31:184–8. doi: 10.2307/3543236.

1009 67. Francke W, Pan M, Bartels J, König WA, Vité JP, Krawielitzki S, et al. The odour bouquet of
1010 three pine engraver beetles (*Ips* spp.). *J Appl Entomol.* 1986;101:453–61. doi: 10.1111/j.1439-
1011 0418.1986.tb00819.x.

1012 68. Vité JP, Bakke A, Renwick JAA. Pheromones in *Ips* (Coleoptera: Scolytidae): occurrence and
1013 production. *Can Entomol.* 1972;104:1967–75. doi: 10.4039/Ent1041967-12.

1014 69. Young JC, Silverstein RM, Birch MC. Aggregation pheromone of the beetle *Ips confusus*:
1015 Isolation and identification. *J Insect Physiol.* 1973;19:2273–7. doi: 10.1016/0022-1910(73)90168-
1016 2.

1017 70. Seybold SJ, Tittiger C. Biochemistry and molecular biology of *de novo* isoprenoid pheromone
1018 production in the Scolytidae. *Annu Rev Entomol.* 2003;48:425–53. doi:
1019 10.1146/annurev.ento.48.091801.112645.

1020 71. Sandstrom P, Ginzel MD, Bearfield JC, Welch WH, Blomquist GJ, Tittiger C. Myrcene
1021 hydroxylases do not determine enantiomeric composition of pheromonal ipsdienol in *Ips* spp. *J
1022 Chem Ecol.* 2008;34:1584–92. doi: 10.1007/s10886-008-9550-0.

1023 72. Bearfield JC, Henry AG, Tittiger C, Blomquist GJ, Ginzel MD. Two regulatory mechanisms of
1024 monoterpenoid pheromone production in *Ips* spp. of bark beetles. *J Chem Ecol.* 2009;35:689–97.
1025 doi: 10.1007/s10886-009-9650-0.

1026 73. Vité JP, Hedden R, Mori K. *Ips grandicollis*: Field response to the optically pure pheromone.
1027 *Naturwissenschaften.* 1976;63:43–4. doi: 10.1007/BF00625307.

1028 74. Kohnle U, Vité JP, Meyer H, Francke W. Response of four American engraver bark beetles, *Ips*
1029 spp. (Col., Scolytidae), to synthetic racemates of chiral pheromones. *J Appl Entomol.*
1030 1994;117:451–6. doi: 10.1111/j.1439-0418.1994.tb00774.x.

1031 75. Miller DR, Asaro C, Berisford CW. Attraction of southern pine engravers and associated bark
1032 beetles (Coleoptera: Scolytidae) to ipsenol, ipsdienol, and lanierone in Southeastern United States.
1033 *J Econ Entomol.* 2005;98:2058–66. doi: 10.1093/jee/98.6.2058.

1034 76. Francke W, Pan M-L, Bartels J, König WA, Vité JP, Krawielitzki S, et al. The odour bouquet of
1035 three pine engraver beetles (*Ips* spp.). *J Appl Entomol.* 1986;101:453–61. doi: 10.1111/j.1439-
1036 0418.1986.tb00819.x.

1037 77. Silverstein RM, Rodin JO, Wood DL. Sex attractants in frass produced by male *Ips confusus* in
1038 ponderosa pine. *Science.* 1966;154:509–10. doi: 10.1126/science.154.3748.509.

1039 78. Fish RH, Browne LE, Wood DL, Hendry LB. Pheromone biosynthetic pathways: conversions
1040 of deuterium labelled ipsdienol with sexual and enantioselectivity in *Ips paraconfusus* Lanier.
1041 *Tetrahedron Lett.* 1979;20:1465–8. doi: 10.1016/S0040-4039(01)86560-0.

1042 79. Byers JA, Birgersson G. Pheromone production in a bark beetle independent of myrcene
1043 precursor in host pine species. *Naturwissenschaften.* 1990;77:385–7. doi: 10.1007/BF01134099.

1044 80. Hendry LB, Piatek B, Browne LE, Wood DL, Byers JA, Fish RH, et al. In vivo conversion of
1045 a labelled host plant chemical to pheromones of the bark beetle *Ips paraconfusus*. *Nature.*
1046 1980;284:485. doi: 10.1038/284485a0.

1047 81. Hughes PR, Renwick JAA. Neural and hormonal control of pheromone biosynthesis in the bark
1048 beetle, *Ips paraconfusus*. *Physiol Entomol.* 1977;2:117–23. doi: 10.1111/j.1365-
1049 3032.1977.tb00163.x.

1050 82. Renwick JAA, Hughes PR, Krull IS. Selective production of *cis*- and *trans*-verbenol from (−)-
1051 and (+)- α -pinene by a bark beetle. *Science*. 1976;191:199–201. doi: 10.1126/science.191.4224.199.

1052 83. Seybold SJ, Ohtsuka T, Wood DL, Kubo I. Enantiomeric composition of ipsdienol: A
1053 chemotaxonomic character for North American populations of *Ips* spp. in the *pini* subgeneric group
1054 (Coleoptera: Scolytidae). *J Chem Ecol*. 1995;21:995–1016. doi: 10.1007/BF02033460.

1055 84. Teale SA, Webster FX, Zhang A, Lanier GN. Lanierone: A new pheromone component from
1056 *Ips pini* (Coleoptera: Scolytidae) in New York. *J Chem Ecol*. 1991;17:1159–76. doi:
1057 10.1007/BF01402911.

1058 85. Francke W, Vité JP. Oxygenated terpenes in pheromone systems of bark beetles. *Z Angew
1059 Entomol*. 1983;96:146–56. doi: 10.1111/j.1439-0418.1983.tb03700.x.

1060 86. Zhang QH, Schlyter F, Birgersson G. Bark volatiles from nonhost angiosperm trees of spruce
1061 bark beetle, *Ips typographus* (L.) (Coleoptera: Scolytidae): Chemical and electrophysiological
1062 analysis. *Chemoecology*. 2000;10:69–80. doi: 10.1007/PL00001826.

1063 87. Renwick JAA, Dickens JC. Control of pheromone production in the bark beetle, *Ips cembrae*.
1064 *Physiol Entomol*. 1979;4:377–81. doi: 10.1111/j.1365-3032.1979.tb00200.x.

1065 88. Stoakley JT, Bakke A, Renwick JAA, Vité JP. The aggregation pheromone system of the larch
1066 bark beetle, *Ips cembrae* Heer. *Z Angew Entomol*. 1978;86:174–7. doi: 10.1111/j.1439-
1067 0418.1978.tb01920.x.

1068 89. Zhang Q, Oran G. Pheromone components in the larch bark beetle, *Ips cembrae*.
1069 *Chemoecology*. 2000;26:841–58. doi.org/10.1023/A:1005447922939.

1070 90. Zhang QH, Schlyter F, Chen G, Wang Y. Electrophysiological and behavioral responses of *Ips
1071 subelongatus* to semiochemicals from its hosts, non-hosts, and conspecifics in China. *J Chem Ecol*.
1072 2007;33:391–404. doi: 10.1007/s10886-006-9231-8.

1073 91. Birgersson G, Dalusky MJ, Espelie KE, Berisford CW. Pheromone production, attraction, and
1074 interspecific inhibition among four species of *Ips* bark beetles in the Southeastern USA. *Psyche*.
1075 2012;2012:532652. doi: 10.1155/2012/532652.

1076 92. Kohnle U, Vité JP, Meyer H, Francke W. Response of four American engraver bark beetles, *Ips*
1077 spp. (Col., Scolytidae), to synthetic racemates of chiral pheromones. *J Appl Entomol*.
1078 1994;117:451–6. doi: 10.1111/j.1439-0418.1994.tb00763.x.

1079 93. Seybold SJ, Quilici DR, Tillman JA, Vanderwel D, Wood DL, Blomquist GJ. De novo
1080 biosynthesis of the aggregation pheromone components ipsenol and ipsdienol by the pine bark
1081 beetles *Ips paraconfusus* Lanier and *Ips pini* (Say) (Coleoptera: Scolytidae). *Proc Natl Acad Sci U
1082 S A*. 1995;92:8393–7. doi: 10.1073/pnas.92.18.8393.

1083 94. Light DM. Sensitivity of antennae of male and female *Ips paraconfusus* (Coleoptera:
1084 Scolytidae) to their natural aggregation pheromone and its enantiomeric components. *J Chem Ecol*.
1085 1983;9:561–84. doi: 10.1007/BF01020168.

1086 95. Shumate AM, Teale SA, Ayres BD, Ayres MP. Disruptive selection maintains variable
1087 pheromone blends in the bark beetle *Ips pini*. *Environ Entomol*. 2011;40:1530–40. doi:
1088 10.1603/EN11088.

1089 96. Schlyter F, Birgersson G, Byers JA, Löfqvist J, Bergström G. Field response of spruce bark
1090 beetle, *Ips typographus*, to aggregation pheromone candidates. *J Chem Ecol*. 1987;13:701–16. doi:
1091 10.1007/BF01020168.

1092 97. Erbilgin N, Krokene P, Kvamme T, Christiansen E. A host monoterpane influences *Ips*
1093 *typographus* (Coleoptera: Curculionidae, Scolytinae) responses to its aggregation pheromone.
1094 *Agric For Entomol*. 2007;9:135–40. doi: 10.1111/j.1461-9563.2007.00329.x.

1095 98. Byers JA. Chemical ecology of bark beetles. *Experientia*. 1989;45:271–83.
1096 doi.org/10.1007/BF01951813.

1097 99. Schlyter F, Anderbrant O. Mass attack of trees by *Ips typographus* induced by sex-specific
1098 pheromone: a model of attack dynamics. *Ecography*. 1989;12:415–26. doi: 10.1111/j.1600-
1099 0587.1989.tb00857.x.

1100 100. Jirošová A, Modlinger R, Hradecký J, Ramakrishnan R, Beránková K, Kandasamy D.
1101 Ophiostomatoid fungi synergize attraction of the Eurasian spruce bark beetle, *Ips typographus* to
1102 its aggregation pheromone in field traps. *Front Microbiol*. 2022;13:1–11. doi:
1103 10.3389/fmicb.2022.872650.

1104 101. Frühbrodt T, Schebeck M, Andersson MN, Holighaus G, Kreuzwieser J, Burzlaff T, et al.
1105 Verbenone—the universal bark beetle repellent? Its origin, effects, and ecological roles. *J Pest Sci*.
1106 2024. doi.org/10.1007/s10340-023-01635-3.

1107 102. Gray DW. Field response of *Ips paraconfusus*, *Dendroctonus brevicomis*, and their predators
1108 to 2-methyl-3-buten-2-ol, a novel alcohol emitted by ponderosa pine. *J Chem Ecol*. 2002;28:1583–
1109 97. doi: 10.1023/A:1016234820741.

1110 103. Blomquist GJ, Figueroa-Teran R, Aw M, Song M, Gorzalski A, Abbott NL, et al. Pheromone
1111 production in bark beetles. *Insect Biochem Mol Biol*. 2010;40:699–712. Available from:
1112 dx.doi.org/10.1016/j.ibmb.2010.07.013.

1113 104. Blomquist GJ, Tittiger C, MacLean M, Keeling CI. Cytochromes P450: terpene detoxification
1114 and pheromone production in bark beetles. *Curr Opin Insect Sci*. 2021;43:97–102. Available from:
1115 doi.org/10.1016/j.cois.2020.11.010.

1116 105. Chiu CC, Keeling CI, Bohlmann J. Monoterpenyl esters in juvenile mountain pine beetle and
1117 sex-specific release of the aggregation pheromone trans-verbenol. *Proc Natl Acad Sci U S A*.
1118 2018;115:3652–7. doi: 10.1073/pnas.1716074115.

1119 106. Hall GM, Tittiger C, Andrews GL, Mastick GS, Kuenzli M, Luo X, et al. Midgut tissue of
1120 male pine engraver, *Ips pini*, synthesizes monoterpenoid pheromone component ipsdienol *de novo*.
1121 *Naturwissenschaften*. 2002;89:79–83. doi: 10.1007/s00114-002-0285-5.

1122 107. Jindra M, Bittova L. The juvenile hormone receptor as a target of juvenoid “insect growth
1123 regulators.” *Arch Insect Biochem Physiol.* 2020;103. doi: 10.1002/arch.21618.

1124 108. Goodman CL, Stanley D, Ringbauer JA, Beeman RW, Silver K, Park Y. A cell line derived
1125 from the red flour beetle *Tribolium castaneum* (Coleoptera: Tenebrionidae). *In Vitro Cell Dev Biol
1126 Anim.* 2012;48:426–33. doi: 10.1007/s11626-012-9531-3.

1127 109. Ramakrishnan R, Roy A, Hradecky J, Kai M, Harant K, Svatos A, et al. Juvenile hormone III
1128 induction reveals key genes in general metabolism, pheromone biosynthesis, and detoxification in
1129 Eurasian spruce bark beetle. *Front For Glob Change.* 2024;6. doi.org/10.3389/ffgc.2023.1215813.

1130 110. Tillman JA, Lu F, Goddard LM, Donaldson ZR, Dwinell SC, Tittiger C, et al. Juvenile
1131 hormone regulates de novo isoprenoid aggregation pheromone biosynthesis in pine bark beetles,
1132 *Ips* spp., through transcriptional control of HMG-CoA reductase. *J Chem Ecol.* 2004;30:2459–94.
1133 doi: 10.1007/s10886-004-7945-z.

1134 111. Gilg AB, Bearfield JC, Tittiger C, Welch WH, Blomquist GJ. Isolation and functional
1135 expression of an animal geranyl diphosphate synthase and its role in bark beetle pheromone
1136 biosynthesis. *Proc Natl Acad Sci U S A.* 2005;102:9760–5. doi: 10.1073/pnas.0503277102.

1137 112. Gilg AB, Tittiger C, Blomquist GJ. Unique animal prenyltransferase with monoterpenes
1138 synthase activity. *Naturwissenschaften.* 2009;96:731–5. doi: 10.1007/s00114-009-0529-0.

1139 113. Huber DPW, Erickson ML, Leutenegger CM, Bohlmann J, Seybold SJ. Isolation and extreme
1140 sex-specific expression of cytochrome P450 genes in the bark beetle, *Ips paraconfusus*, following
1141 feeding on the phloem of host ponderosa pine, *Pinus ponderosa*. *Insect Mol Biol.* 2007;16:335–49.
1142 doi: 10.1111/j.1365-2583.2007.00732.x.

1143 114. Sandstrom P, Welch WH, Blomquist GJ, Tittiger C. Functional expression of a bark beetle
1144 cytochrome P450 that hydroxylates myrcene to ipsdienol. *Insect Biochem Mol Biol.* 2006;36:835–
1145 45. doi: 10.1016/j.ibmb.2006.08.001.

1146 115. Keeling CI, Bohlmann J. Genes, enzymes and chemicals of terpenoid diversity in the
1147 constitutive and induced defence of conifers against insects and pathogens. *New Phytol.*
1148 2006;170:657–75. doi: 10.1111/j.1469-8137.2006.01716.x.

1149 116. Song M, Kim AC, Gorzalski AJ, MacLean M, Young S, Ginzel MD, et al. Functional
1150 characterization of myrcene hydroxylases from two geographically distinct *Ips pini* populations.
1151 *Insect Biochem Mol Biol.* 2013;43:336–43. doi: 10.1016/j.ibmb.2013.01.003.

1152 117. Fish RH, Browne LE, Bergot BJ. Pheromone biosynthetic pathways: Conversion of
1153 ipsdienone to (–)-ipsdienol, a mechanism for enantioselective reduction in the male bark beetle,
1154 *Ips paraconfusus*. *J Chem Ecol.* 1984;10:1057–64. doi: 10.1007/BF00988097.

1155 118. Byers JA, Birgersson G. Host-tree monoterpenes and biosynthesis of aggregation pheromones
1156 in the bark beetle *Ips paraconfusus*. *Psyche (Lond).* 2012;2012:1–13. doi: 10.1155/2012/532652.

1157 119. Figueroa-Teran R, Pak H, Blomquist GJ, Tittiger C. High substrate specificity of ipsdienol
1158 dehydrogenase (IDOLDH), a short-chain dehydrogenase from *Ips pini* bark beetles. *J Biochem.*
1159 2016;160:141–51. doi: 10.1093/jb/mvw031.

1160 120. Fisher KE, Tillett RL, Fotoohi M, Caldwell C, Petereit J, Schlauch K, et al. RNA-Seq used to
1161 identify ipsdienone reductase (IDONER): A novel monoterpane carbon-carbon double bond
1162 reductase central to *Ips confusus* pheromone production. *Insect Biochem Mol Biol.*
1163 2021;129:103513. doi: 10.1016/j.ibmb.2020.103513.

1164 121. Bakke A. Spruce bark beetle, *Ips typographus*: Pheromone production and field response to
1165 synthetic pheromones. *Naturwissenschaften*. 1976;63:92. doi.org/10.1007/BF00622413

1166 122. Byers JA, Wood DL, Browne LE, Fish RH, Piatek B, Hendry LB. Relationship between a host
1167 plant compound, myrcene, and pheromone production in the bark beetle, *Ips paraconfusus*. *J Insect*
1168 *Physiol.* 1979;25:477–82. doi: 10.1016/S0022-1910(79)80005-0.

1169 123. Nakamura CE, Abeles RH. Mode of interaction of β -Hydroxy- β -methylglutaryl coenzyme A
1170 reductase with strong binding inhibitors: compactin and related compounds. *Biochemistry*.
1171 1985;24:1364–76. doi: 10.1021/bi00327a013.

1172 124. Lindström M, Norin T, Birgersson G, Schlyter F. Variation of enantiomeric composition of α -
1173 pinene in Norway spruce, *Picea abies*, and its influence on production of verbenol isomers by *Ips*
1174 *typographus* in the field. *J Chem Ecol.* 1989;15:541–8. doi: 10.1007/BF01011999.

1175 125. Hunt DWA, Borden JH. Conversion of verbenols to verbenone by yeasts isolated from
1176 *Dendroctonus ponderosae* (Coleoptera: Scolytidae). *J Chem Ecol.* 1990;16:1385–97. doi:
1177 10.1007/BF01013913.

1178 126. Schlyter F, Lofqvist JAN, Byers JA. Behavioural sequence in the attraction of the bark beetle
1179 *Ips typographus* to pheromone sources. *Physiol Entomol.* 1987;12:185–96. doi: 10.1111/j.1365-
1180 3032.1987.tb00742.x.

1181 127. Leufvén A, Bergström G, Falsen E. Interconversion of verbenols and verbenone by identified
1182 yeasts isolated from the spruce bark beetle *Ips typographus*. *J Chem Ecol.* 1984;10:1349–61. doi:
1183 10.1007/BF00990338.

1184 128. Brand J, et al. Production of verbenol pheromone by a bacterium isolated from bark beetles.
1185 *Nature*. 1975;254:136–7. doi: 10.1038/254136a0.

1186 129. Byers JA, Wood DL. Antibiotic-induced inhibition of pheromone synthesis in a bark beetle.
1187 *Science*. 1981;213:763–4. doi: 10.1126/science.213.4511.763.

1188 130. Brand JM, Bracke JW, Britton LN, Markovetz AJ, Barras SJ. Bark beetle pheromones:
1189 Production of verbenone by a mycangial fungus of *Dendroctonus frontalis*. *J Chem Ecol.*
1190 1976;2:195–9. doi.org/10.1007/BF00987742.

1191 131. Zhao L, Qi Y, Chen G. Isolation and characterization of microalgae for biodiesel production
1192 from seawater. *Bioresour Technol.* 2015;184:42–6. doi: 10.1016/j.biortech.2014.10.118.

1193 132. Zhao T, Ganji S, Schiebe C, Bohman B, Weinstein P, Krokene P, et al. Convergent evolution
1194 of semiochemicals across Kingdoms: bark beetles and their fungal symbionts. *ISME J.*
1195 2019;13:1535–45. dx.doi.org/10.1038/s41396-019-0370-7.

1196 133. Kandasamy D, Gershenson J, Andersson MN, Hammerbacher A. Volatile organic compounds
1197 influence the interaction of the Eurasian spruce bark beetle (*Ips typographus*) with its fungal
1198 symbionts. *ISME J.* 2019;13:1788–800. dx.doi.org/10.1038/s41396-019-0390-3.

1199 134. Kandasamy D, Zaman R, Nakamura Y, Zhao T, Hartmann H, Andersson MN, et al. Conifer-
1200 killing bark beetles locate fungal symbionts by detecting volatile fungal metabolites of host tree
1201 resin monoterpenes. *PLoS Biol.* 2023;21:e3001887. dx.doi.org/10.1371/journal.pbio.3001887.

1202 135. Moliterno AAC, Jakuš R, Modlinger R, Unelius CR, Schlyter F, Jirošová A. Field effects of
1203 oxygenated monoterpenes and estragole combined with pheromone on attraction of *Ips*
1204 *typographus* and its natural enemies. *Front For Glob Change.* 2023;6:1292581. doi:
1205 10.3389/ffgc.2023.1292581.

1206 136. Hansson BS, Stensmyr MC. Evolution of insect olfaction. *Neuron.* 2011;72:698–711. doi:
1207 10.1016/j.neuron.2011.11.003.

1208 137. Andersson MN, Larsson MC, Schlyter F. Specificity and redundancy in the olfactory system
1209 of the bark beetle *Ips typographus*: Single-cell responses to ecologically relevant odors. *J Insect*
1210 *Physiol.* 2009;55:556–67. doi: 10.1016/j.jinsphys.2009.01.015.

1211 138. Schiebe C, Unelius CR, Ganji S, Binyameen M, Birgersson G, Schlyter F. Styrene, (+)-trans-
1212 (1R,4S,5S)-4-thujanol and oxygenated monoterpenes related to host stress elicit strong
1213 electrophysiological responses in the bark beetle *Ips typographus*. *J Chem Ecol.* 2019;45:474–89.
1214 doi: 10.1007/s10886-019-01068-0.

1215 139. Unelius CR, Schiebe C, Bohman B, Andersson MN, Schlyter F. Non-host volatile blend
1216 optimization for forest protection against the European spruce bark beetle, *Ips typographus*. *PLoS*
1217 *One.* 2014;9:e85381. doi: 10.1371/journal.pone.0085381.

1218 140. Hallberg E. Sensory organs in *Ips typographus* (Insecta: Coleoptera) - Fine structure of
1219 antennal sensilla. *Protoplasma.* 1982;111:206–14. doi: 10.1007/BF01281968

1220 141. Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR. A novel family of divergent
1221 seven-transmembrane proteins: Candidate odorant receptors in *Drosophila*. *Neuron.* 1999;22:327–
1222 38. doi: 10.1016/S0896-6273(00)81093-4.

1223 142. Andersson MN, Löfstedt C, Newcomb RD. Insect olfaction and the evolution of receptor
1224 tuning. *Front Ecol Evol.* 2015;3:53. doi: 10.3389/fevo.2015.00053.

1225 143. Hallem EA, Carlson JR. Coding of odors by a receptor repertoire. *Cell.* 2006;125:143–60.
1226 doi: 10.1016/j.cell.2006.01.050.

1227 144. Wojtasek H, Hansson BS, Leal WS. Attracted or repelled? - A matter of two neurons, one
1228 pheromone binding protein, and a chiral center. *Biochem Biophys Res Commun.* 1998;250:217–22.
1229 doi: 10.1006/bbrc.1998.9321.

1230 145. Zhang DD, Löfstedt C. Moth pheromone receptors: Gene sequences, function, and evolution.
1231 *Front Ecol Evol.* 2015;3:105. doi: 10.3389/fevo.2015.00105.

1232 146. Couto A, Alenius M, Dickson BJ. Molecular, anatomical, and functional organization of the
1233 *Drosophila* olfactory system. *Curr Biol.* 2005;15:1535–47. doi: 10.1016/j.cub.2005.07.034.

1234 147. Herre M, Goldman OV, Lu T-C, Caballero-Vidal G, Qi Y, Gilbert ZN, et al. Non-canonical
1235 odor coding in the mosquito. *Cell.* 2022;185:3104–23. doi: 10.1016/j.cell.2022.07.002.

1236 148. Koutroumpa FA, Kárpáti Z, Monsempes C, Hill SR, Hansson BS, Jacquin-Joly E, et al. Shifts
1237 in sensory neuron identity parallel differences in pheromone preference in the European corn borer.
1238 *Front Ecol Evol.* 2014;2:65. doi: 10.3389/fevo.2014.00065.

1239 149. Task D, Lin C-C, Vulpe A, Afify A, Ballou S, Brbić M, et al. Chemoreceptor co-expression in
1240 *Drosophila melanogaster* olfactory neurons. *eLife.* 2022;11:e72599. doi: 10.7554/eLife.72599.

1241 150. Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB. *Or83b* encodes
1242 a broadly expressed odorant receptor essential for *Drosophila* olfaction. *Neuron.* 2004;43:703–14.
1243 doi: 10.1016/j.neuron.2004.08.019.

1244 151. Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K. Insect olfactory
1245 receptors are heteromeric ligand-gated ion channels. *Nature.* 2008;452:1002–6. doi:
1246 10.1038/nature06850.

1247 152. Wang Y, Qiu L, Wang B, Guan Z, Dong Z, Zhang J, et al. Structural basis for odorant
1248 recognition of the insect odorant receptor OR-Orco heterocomplex. *Science.* 2024;384:1453–9.
1249 doi: 10.1126/science.adn6881.

1250 153. Wicher D, Schäfer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, et al.
1251 *Drosophila* odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation
1252 channels. *Nature.* 2008;452:1007–11. doi: 10.1038/nature06861.

1253 154. Zhao J, Chen AQ, Ryu J, Del Mármol J. Structural basis of odor sensing by insect heteromeric
1254 odorant receptors. *Science.* 2024;384:1460–7. doi: 10.1126/science.adn6384.

1255 155. Borden JH. Antennal morphology of *Ips confusus* (Coleoptera: Scolytidae). *Ann Entomol Soc
1256 Am.* 1968;61:10–3. doi: 10.1093/aesa/61.1.10.

1257 156. Borden JH, Wood DL. The antennal receptors and olfactory response of *Ips confusus*
1258 (Coleoptera: Scolytidae) to male sex attractant in the laboratory. *Ann Entomol Soc Am.*
1259 1966;59:253–61. doi: 10.1093/aesa/59.2.253.

1260 157. Payne TL, Moeck HA, Willson CD, Coulson RN, Humphreys WJ. Bark beetle olfaction—II.
1261 Antennal morphology of sixteen species of Scolytidae (Coleoptera). *Int J Insect Morphol Embryol.*
1262 1973;2:177–92. doi: 10.1016/0020-7322(73)90015-4.

1263 158. Shewale MK, Nebesářová J, Grosse-Wilde E, Kalinová B. Microscopic morphology and
1264 distribution of the antennal sensilla in the double-spined bark beetle, *Ips duplicatus* (Coleoptera:
1265 Curculionidae). *Microsc Res Tech.* 2023;86:1610–25. doi: 10.1002/jemt.24397.

1266 159. Shi X, Zhang SF, Liu F, Zhang Z, Xu FY, Yin SY, et al. Sensilla on antennae and mouthparts
1267 of adult spruce bark beetle *Ips typographus* (Coleoptera: Curculionidae). *Microsc Res Tech*.
1268 2021;84:1484–97. doi: 10.1002/jemt.23802.

1269 160. Ascoli-Christensen A, Salom SM, Payne TL. Olfactory receptor cell responses of *Ips*
1270 *grandicollis* (Eichhoff) (Coleoptera: Scolytidae) to intra- and interspecific behavioral chemicals. *J*
1271 *Chem Ecol*. 1993;19:699–712. doi: 10.1007/BF00985002.

1272 161. Yuvaraj JK, Kandasamy D, Roberts RE, Hansson BS, Gershenzon J, Andersson MN. Eurasian
1273 spruce bark beetle detects lanierone using a highly expressed specialist odorant receptor, present
1274 in several functional sensillum types. *BMC Biol*. 2024;22:266. doi.org/10.1186/s12915-024-
1275 02066-x.

1276 162. Mustaparta H, Angst ME, Lanier GN. Responses of single receptor cells in the pine engraver
1277 beetle, *Ips pini* (SAY) (Coleoptera: Scolytidae) to its aggregation pheromone, ipsdienol, and the
1278 aggregation inhibitor, ipsenol. *J Comp Physiol A*. 1977;121:343–7. doi.org/10.1007/BF00613013

1279 163. Mustaparta H, Angst ME, Lanier GN. Specialization of olfactory cells to insect- and host-
1280 produced volatiles in the bark beetle *Ips pini* (Say). *J Chem Ecol*. 1979;5:109–23.
1281 doi.org/10.1007/BF00987695.

1282 164. Mustaparta H, Angst ME, Lanier GN. Receptor discrimination of enantiomers of the
1283 aggregation pheromone ipsdienol, in two species of *Ips*. *J Chem Ecol*. 1980;6:689–701.
1284 doi.org/10.1007/BF00988020.

1285 165. Tømmerås BÅ. Specialization of the olfactory receptor cells in the bark beetle *Ips typographus*
1286 and its predator *Thanasimus formicarius* to bark beetle pheromones and host tree volatiles. *J Comp*
1287 *Physiol A*. 1985;157:335–41. doi.org/10.1007/BF00618123.

1288 166. Tømmerås BÅ, Mustaparta H, Gregoire JC. Receptor cells in *Ips typographus* and
1289 *Dendroctonus micans* specific to pheromones of the reciprocal genus. *J Chem Ecol*. 1984;10:759–
1290 69. doi.org/10.1007/BF0098854.

1291 167. Mustaparta H, Tømmerås BÅ, Baeckström P, Bakke JM, Ohloff G. Ipsi-dienol-specific receptor
1292 cells in bark beetles: structure-activity relationships of various analogues and of deuterium-labelled
1293 ipsdienol. *J Comp Physiol A*. 1984;154:591–5. doi.org/10.1007/BF00610170.

1294 168. Birch MC, Light DM, Wood DL, Browne LE, Silverstein RM, Bergot B, et al. Pheromonal
1295 attraction and allomonal interruption of *Ips pini* in California by the two enantiomers of ipsdienol.
1296 *J Chem Ecol*. 1980;6:703–17. doi.org/10.1007/BF00988021.

1297 169. Andersson MN, Grosse-Wilde E, Keeling CI, Bengtsson JM, Yuen MMS, Li M, et al. Antennal
1298 transcriptome analysis of the chemosensory gene families in the tree-killing bark beetles, *Ips*
1299 *typographus* and *Dendroctonus ponderosae* (Coleoptera: Curculionidae: Scolytinae). *BMC*
1300 *Genomics*. 2013;14:198. doi.org/10.1186/1471-2164-14-198.

1301 170. Andersson MN, Keeling CI, Mitchell RF. Genomic content of chemosensory genes correlates
1302 with host range in wood-boring beetles (*Dendroctonus ponderosae*, *Agrilus planipennis*, and
1303 *Anoplophora glabripennis*). *BMC Genomics*. 2019;20:690. doi.org/10.1186/s12864-019-6026-7.

1304 171. Biswas T, Vogel H, Biedermann PHW, Lehenberger M, Yuvaraj JK, Andersson MN. Few
1305 chemoreceptor genes in the ambrosia beetle *Trypodendron lineatum* may reflect its specialized
1306 ecology. *BMC Genomics*. 2024;25:764. doi.org/10.1186/s12864-024-08000-5.

1307 172. Gu X-C, Zhang Y-N, Kang K, Dong S-L, Zhang L-W. Antennal transcriptome analysis of
1308 odorant reception genes in the red turpentine beetle (*Dendroctonus valens*). *PLoS One*.
1309 2015;10:e0125159. doi.org/10.1371/journal.pone.0125159.

1310 173. Johny J, Große-Wilde E, Kalinová B, Roy A. Antennal transcriptome screening and
1311 identification of chemosensory proteins in the double-spine European spruce bark beetle, *Ips*
1312 *duplicatus* (Coleoptera: Scolytinae). *Int J Mol Sci*. 2024;25:9513. doi.org/10.3390/ijms25179513.

1313 174. Li Z, Dai L, Chu H, Fu D, Sun Y, Chen H. Identification, expression patterns, and functional
1314 characterization of chemosensory proteins in *Dendroctonus armandi* (Coleoptera: Curculionidae:
1315 Scolytinae). *Front Physiol*. 2018;9:291. doi.org/10.3389/fphys.2018.00291.

1316 175. Liu N-Y, Li Z-B, Zhao N, Song Q-S, Zhu J-Y, Yang B. Identification and characterization of
1317 chemosensory gene families in the bark beetle, *Tomicus yunnanensis*. *Comp Biochem Physiol Part*
1318 *D Genomics Proteomics*. 2018;25:73–85. doi.org/10.1016/j.cbd.2017.12.002.

1319 176. Mitchell RF, Schneider TM, Schwartz AM, Andersson MN, McKenna DD. The diversity and
1320 evolution of odorant receptors in beetles (Coleoptera). *Insect Mol Biol*. 2020;29:77–91.
1321 doi.org/10.1111/imb.12611

1322 177. Navarro-Escalante L, Hernandez-Hernandez EM, Nuñez J, Acevedo FE, Berrio A,
1323 Constantino LM, et al. A coffee berry borer (*Hypothenemus hampei*) genome assembly reveals a
1324 reduced chemosensory receptor gene repertoire and male-specific genome sequences. *Sci Rep*.
1325 2021;11:4900. doi.org/10.1038/s41598-021-84387-0.

1326 178. Yuvaraj JK, Roberts RE, Sonntag Y, Hou XQ, Grosse-Wilde E, Machara A, et al. Putative
1327 ligand binding sites of two functionally characterized bark beetle odorant receptors. *BMC Biol*.
1328 2021;19:1–21. doi.org/10.1186/s12915-021-01060-0.

1329 179. Roberts RE, Biswas T, Yuvaraj JK, Grosse-Wilde E, Powell D, Hansson BS, et al. Odorant
1330 receptor orthologues in conifer-feeding beetles display conserved responses to ecologically
1331 relevant odors. *bioRxiv*. 2022;2022.02.22.481428. doi.org/10.1101/2022.02.22.481428

1332 180. Andersson MN, Newcomb RD. Pest control compounds targeting insect chemoreceptors:
1333 another silent spring? *Front Ecol Evol*. 2017;5:5. doi.org/10.3389/fevo.2017.00005.

1334 181. Biswas T, Sims C, Yuvaraj JK, Roberts RE, Löfstedt C, Andersson MN. Functional
1335 characterization supports multiple evolutionary origins of pheromone receptors in bark beetles.
1336 *Mol Biol Evol*. 2024;41:msae196. doi.org/10.1093/molbev/msae196.

1337 182. Hou X, Yuvaraj JK, Roberts RE, Zhang D, Unelius CR, Andersson MN. Functional evolution
1338 of a bark beetle odorant receptor clade detecting monoterpenoids of different ecological origins.
1339 *Mol Biol Evol.* 2021;38:4934–47. doi.org/10.1093/molbev/msab264.

1340 183. Roberts RE, Yuvaraj JK, Andersson MN. Codon optimization of insect odorant receptor genes
1341 may increase their stable expression for functional characterization in HEK293 cells. *Front Cell*
1342 *Neurosci.* 2021;15:1–10. doi.org/10.3389/fncel.2021.748506.

1343 184. Schlyter F, Birgersson G, Byers JA, Bakke A. The aggregation pheromone of *Ips duplicatus*
1344 and its role in competitive interactions with *I. typographus* (Coleoptera: Scolytidae).
1345 *Chemoecology.* 1992;3:103–12. doi.org/10.1007/BF01370137.

1346 185. Silverstein RM. Pheromones: Background and potential for use in insect pest control. *Science.*
1347 1981;213:1326–32. doi.org/10.1126/science.213.4514.1326.

1348 186. Lubojacký J, Holuša J. Comparison of lure-baited insecticide-treated tripod trap logs and lure-
1349 baited traps for control of *Ips duplicatus* (Coleoptera: Curculionidae). *J Pest Sci.* 2013;86:483–9.
1350 doi.org/10.1007/s10340-013-0492-z.

1351 187. Seybold SJ, Bentz BJ, Fettig CJ, Lundquist JE, Progar RA, Gillette NE. Management of
1352 western North American bark beetles with semiochemicals. *Annu Rev Entomol.* 2018;63:407–32.
1353 doi.org/10.1146/annurev-ento-020117-043339.

1354 188. Fettig CJ, Egan JM, Delb H, Hilszczański J, Kautz M, Munson AS, Nowak JT, Negrón JF.
1355 Management tactics to reduce bark beetle impacts in North America and Europe under altered
1356 forest and climatic conditions. In: Gandhi KJ, Hofstetter RW, editors. *Bark beetle management,*
1357 *ecology, and climate change.* Academic Press; 2022. p. 345–394. doi.org/10.1016/B978-0-12-
1358 822145-7.00006-4.

1359 189. Duduman ML, Beránková K, Jakuš R, Hradecký J, Jirošová A. Efficiency and sustainability
1360 of *Ips duplicatus* (Coleoptera: Curculionidae) pheromone dispensers with different designs.
1361 *Forests.* 2022;13:4–8. doi.org/10.3390/f13010004.

1362 190. Lobinger G. Einsatzmöglichkeiten von Borkenkäferfallen. *AFZ Allg Forst Z Für*
1363 *Waldwirtschaft Umweltvorsorge.* 1995;50:1234–7. doi.org/10.1007/BF02738330.

1364 191. Dimitri L, Gebauer U, Lösekrug R, Vaupel O. Influence of mass trapping on the population
1365 dynamic and damage effect of bark beetles. *J Appl Entomol.* 1992;114:103–9.
1366 doi.org/10.1111/j.1439-0418.1992.tb01102.x.

1367 192. Schmidt GH, Schmidt L, Mucha H. Fähigkeit von differenziert bestückten
1368 Borkenkäferpheromonfallen in einem niedersächsischen Forstgebiet bei Hannover während der
1369 Jahre 1992 und 1993. *J Pest Sci.* 1999;72:137–52. doi.org/10.1007/BF02956442.

1370 193. Sousa M, Birgersson G, Green KK, Pollet M, Becher PG. Odors attracting the long-legged
1371 predator *Medetera signaticornis* Loew to *Ips typographus* L. infested Norway spruce trees. *J Chem*
1372 *Ecol.* 2023;49:451–64. doi.org/10.1007/s10886-023-01405-6.

1373 194. Lie R, Bakke A. Practical results from the mass trapping of *Ips typographus* in Scandinavia.
1374 *Management of Insect Pests with Semiochemicals: Concepts and Practice*. 1981;175–81.
1375 doi.org/10.1007/978-1-4612-5859-3_20.

1376 195. Kuhn A, Hautier L, Martin GS. Do pheromone traps help to reduce new attacks of *Ips*
1377 *typographus* at the local scale after a sanitary cut? *PeerJ*. 2022;10:e12788.
1378 doi.org/10.7717/peerj.12788.

1379 196. Zhang Q, Jakuš R, Schlyter F, Birgersson G. Can *Ips typographus* (L.) (Col., Scolytidae) smell
1380 the carrion odours of the dead beetles in pheromone traps? Electrophysiological analysis. *J Appl*
1381 *Entomol*. 2003;127:185–8. doi.org/10.1046/j.1439-0418.2003.00729.x.

1382 197. Faccoli M, Stergulc F. Damage reduction and performance of mass trapping devices for forest
1383 protection against the spruce bark beetle, *Ips typographus* (Coleoptera: Curculionidae: Scolytinae).
1384 *Ann For Sci*. 2008;65:309. doi.org/10.1051/forest:2008010.

1385 198. Heber T, Helbig CE, Osmers S, Müller MG. Evaluation of attractant composition, application
1386 rate, and trap type for potential mass trapping of *Ips typographus* (L.). *Forests*. 2021;12:1727.
1387 doi.org/10.3390/f12121727.

1388 199. Lindmark M, Wallin EA, Jonsson BG. Protecting forest edges using trap logs—Limited effects
1389 of associated push–pull strategies targeting *Ips typographus*. *For Ecol Manage*. 2022;505:119886.
1390 doi.org/10.1016/j.foreco.2021.119886

1391 200. El-Sayed AM, Suckling DM, Wearing CH, Byers JA. Potential of mass trapping for long-term
1392 pest management and eradication of invasive species. *J Econ Entomol*. 2006;99:1550–64.
1393 doi.org/10.1093/jee/99.5.1550

1394 201. Schiebe C, Blaženec M, Jakuš R, Unelius CR, Schlyter F. Semiochemical diversity diverts
1395 bark beetle attacks from Norway spruce edges. *J Appl Entomol*. 2011;135:726–37.
1396 doi.org/10.1111/j.1439-0418.2011.01624.x.

1397 202. Andersson MN, Larsson MC, Blaženec M, Jakuš R, Zhang QH, Schlyter F. Peripheral
1398 modulation of pheromone response by inhibitory host compound in a beetle. *J Exp Biol*.
1399 2010;213:3332–9. doi.org/10.1242/jeb.044396.

1400 203. Binyameen M, Jankuvová J, Blaženec M, Jakuš R, Song L, Schlyter F, et al. Co-localization
1401 of insect olfactory sensory cells improves the discrimination of closely separated odour sources.
1402 *Funct Ecol*. 2014;28:1216–23. doi.org/10.1111/1365-2435.12252.

1403 204. Zhang Q, Schlyter F. Redundancy, synergism, and active inhibitory range of non-host volatiles
1404 in reducing pheromone attraction in European spruce bark beetle *Ips typographus*. *Oikos*.
1405 2003;101:299–310. doi.org/10.1034/j.1600-0706.2003.12163.x.

1406 205. Löcken H, Frühbrodt T, Du B, Fettig CJ, Biedermann PHW, Kreuzwieser J, et al. Potential
1407 applicability of SPLAT® Verb for management of European spruce bark beetle, *Ips typographus*
1408 (L.). *J Appl Entomol*. 2024;148:1157–71. doi.org/10.1111/jen.13336.

1409 206. Jakuš R, Modlinger R, Kašpar J, Majdák A, Blaženec M, Korolyová N, et al. Testing the
1410 efficiency of the push-and-pull strategy during severe *Ips typographus* outbreak and extreme
1411 drought in Norway spruce stands. *Forests*. 2022;13:2175. doi.org/10.3390/f13122175.

1412 207. Deganutti L, Biscontin F, Bernardinelli I, Faccoli M. The semiochemical push-and-pull
1413 technique can reduce bark beetle damage in disturbed Norway spruce forests affected by the Vaia
1414 storm. *Agric For Entomol*. 2024;26:115–25. doi.org/10.1111/afe.12600.

1415 208. Cook SM, Khan ZR, Pickett JA. The use of push–pull strategies in integrated pest
1416 management. *Annu Rev Entomol*. 2007;52:375–400.
1417 doi.org/10.1146/annurev.ento.52.110405.091407.

1418 209. Afzal S, Nahrung HF, Lawson SA, Hayes RA. How effective are push–pull semiochemicals
1419 as deterrents for bark beetles? A global meta-analysis of thirty years of research. *Insects*.
1420 2023;14:812. doi.org/10.3390/insects14100812.

1421 210. Gaylord ML, McKelvey SR, Fettig CJ, McMillin JD. Verbenone inhibits attraction of *Ips pini*
1422 (Coleoptera: Curculionidae) to pheromone-baited traps in northern Arizona. *J Econ Entomol*.
1423 2020;113:3017–20. doi.org/10.1093/jee/toaa234.

1424 211. Gaylord ML, Audley JP, McMillin JD, Fettig CJ. Acetophenone and green leaf volatiles do
1425 not enhance the efficacy of verbenone for inhibiting attraction of *Ips pini* (Coleoptera:
1426 Curculionidae) to pheromone-baited traps in northern Arizona. *J Econ Entomol*. 2023;116:632–6.
1427 doi.org/10.1093/jee/toad016.

1428 212. Jakuš R, Modlinger R, Kašpar J, Majdák A, Blaženec M, Korolyova N, et al. Testing the
1429 efficiency of the push-and-pull strategy during severe *Ips typographus* outbreak and extreme
1430 drought in Norway spruce stands. *Forests*. 2022;13:1. doi.org/10.3390/f13010001.

1431 213. Lindgren BS, Borden JH. Displacement and aggregation of mountain pine beetles,
1432 *Dendroctonus ponderosae* (Coleoptera: Scolytidae), in response to their antiaggregation and
1433 aggregation pheromones. *Can J For Res*. 1993;23:286–90. doi.org/10.1139/x93-041.

1434 214. Gillette NE, Mehmel CJ, Mori SR, Webster JN, Wood DL, Erbilgin N, et al. The push-pull
1435 tactic for mitigation of mountain pine beetle (Coleoptera: Curculionidae) damage in lodgepole and
1436 whitebark pines. *Environ Entomol*. 2012;41:1575–86. doi.org/10.1603/EN12090.

1437 215. Werle CT, Ranger CM, Schultz PB, Reding ME, Addesso KM, Oliver JB, et al. Integrating
1438 repellent and attractant semiochemicals into a push–pull strategy for ambrosia beetles (Coleoptera:
1439 Curculionidae). *J Appl Entomol*. 2019;143:333–43. doi.org/10.1111/jen.12600.

1440 216. Byers JA, Levi-Zada A. Modelling push–pull management of pest insects using repellents and
1441 attractive traps in fruit tree orchards. *Pest Manag Sci*. 2022;78:3630–7. doi.org/10.1002/ps.7040.

1442 217. Blažytė-Čereškienė L, Apšegaitė V, Radžiutė S, Mozūraitis R, Būda V, Pečiulytė D.
1443 Electrophysiological and behavioural responses of *Ips typographus* (L.) to trans-4-thujanol—a host
1444 tree volatile compound. *Ann For Sci*. 2016;73:247–56. doi.org/10.1007/s13595-015-0511-0.

1445 218. Kyre BR, Rieske LK. Using RNAi to silence heat shock protein has congeneric effects in
1446 North America's *Dendroctonus* bark beetles. *For Ecol Manage.* 2022;520:120367.
1447 doi.org/10.1016/j.foreco.2022.120367

1448 219. Powell D, Große-Wilde E, Krokene P, Roy A, Chakraborty A, Löfstedt C, et al. A highly
1449 contiguous genome assembly of the Eurasian spruce bark beetle, *Ips typographus*, provides insight
1450 into a major forest pest. *Commun Biol.* 2021;4:1–9. doi.org/10.1038/s42003-021-01968-3.

1451 220. Figueroa-Teran R, Welch WH, Blomquist GJ, Tittiger C. Ipsdienol dehydrogenase
1452 (IDOLDH): A novel oxidoreductase important for *Ips pini* pheromone production. *Insect Biochem
1453 Mol Biol.* 2012;42:81–90. doi.org/10.1016/j.ibmb.2011.10.009

1454 221. Baum CM, Kamrath C, Bröring S, De Steur H. Show me the benefits! Determinants of
1455 behavioral intentions towards CRISPR in the United States. *Food Qual Prefer.* 2023;107:104842.
1456 doi.org/10.1016/j.foodqual.2023.104842 .

1457 222. Chen Y, De Schutter K. Biosafety aspects of RNAi-based pests control. *Pest Manag Sci.*
1458 2024;80(8):3697–706. doi.org/10.1002/ps.8098 .

1459 223. Hanamasagar Y, Ramesha NM, Mahapatra S, Panigrahi CK, Vidhya CS, Agnihotri N, et al.
1460 Advancing RNAi for sustainable insect management: Targeted solutions for eco-friendly pest
1461 control. *J Exp Agric Int.* 2024;46:740–75. doi.org/10.9734/jeai/2024/v46i62531.

1462 224. Joga MR, Mogilicherla K, Smagghe G, Roy A. RNA interference-based forest protection
1463 products (FPPs) against wood-boring coleopterans: Hope or hype? *Front Plant Sci.*
1464 2021;12:667433. doi.org/10.3389/fpls.2021.667433.

1465 225. Singewar K, Fladung M. Double-stranded RNA (dsRNA) technology to control forest insect
1466 pests and fungal pathogens: Challenges and opportunities. *Funct Integr Genomics.* 2023;23:185.
1467 doi.org/10.1007/s10142-023-00960-1.

1468 226. Hollowell H, Wallace M, Rieske LK. The trigger for RNA interference to silence essential
1469 genes in southern pine beetle, *Dendroctonus frontalis*, demonstrates no lethal effects on pine-
1470 associated nontarget insects. *Agric For Entomol.* 2022;25:272–84. doi.org/10.1111/afe.12523.

1471 227. Hunter WB, Glick E, Paldi N, Bextine BR. Advances in RNA interference: dsRNA treatment
1472 in trees and grapevines for insect pest suppression. *Southwest Entomol.* 2012;37:85–7.
1473 doi.org/10.3958/059.037.0110.

1474 228. Quilez-Molina AI, Niño Sanchez J, Merino D. The role of polymers in enabling RNAi-based
1475 technology for sustainable pest management. *Nat Commun.* 2024;15:9158.
1476 doi.org/10.1038/s41467-024-29158-7.

1477 229. Vatanparast M, Merkel L, Amari K. Exogenous application of dsRNA in plant protection:
1478 Efficiency, safety concerns and risk assessment. *Int J Mol Sci.* 2024;25:6530.
1479 doi.org/10.3390/ijms25106530.

1480 230. Raffa KF, Andersson MN, Schlyter F. Host selection by bark beetles: Playing the odds in a
1481 high-stakes game. *Adv In Insect Phys.* 2016;50:1–74. doi.org/10.1016/bs.aiip.2016.02.001.

1482 231. Zhang X, Liu P, Qin Q, Li M, Meng R, Zhang T. Characterizing the role of orco gene in
1483 detecting aggregation pheromone and food resources in *Protaetia brevitarsis* Leius (Coleoptera:
1484 Scarabaeidae). *Front Physiol.* 2021;12:649590. doi.org/10.3389/fphys.2021.649590.

1485 232. Chen X, Yao S, Xie L, Li J, Xiong L, Yang X, et al. Disruption of the odorant receptor co-
1486 receptor (Orco) reveals its critical role in multiple olfactory behaviors of a cosmopolitan pest.
1487 *Insect Biochem Mol Biol.* 2025;177:104248. doi.org/10.1016/j.ibmb.2023.104248.

1488 233. Kautz M, Schopf R, Ohser J. The “sun-effect”: Microclimatic alterations predispose forest
1489 edges to bark beetle infestations. *Eur J For Res.* 2013;132:453–65. doi.org/10.1007/s10342-013-
1490 0685-3.

1491 234. Du H, Fang J, Shi X, Yu C, Deng M, Zhang S, et al. Insights into the divergence of Chinese
1492 *Ips* bark beetles during evolutionary adaptation. *Biology (Basel).* 2022;11:1234.
1493 doi.org/10.3390/biology11081234.

1494 235. Schott M, Wehrenfennig C, Gasch T, Vilcinskas A. Insect antenna-based biosensors for in situ
1495 detection of volatiles. In: Vilcinskas A, editor. *Adv Biochem Eng Biotechnol.* Berlin, Heidelberg:
1496 Springer Berlin Heidelberg; 2013. p. 101–22. doi.org/10.1007/10_2013_210.

1497 236. Glatz R, Bailey-Hill K. Mimicking nature's noses: From receptor deorphaning to olfactory
1498 biosensing. *Prog Neurobiol.* 2011;93:270–96. doi.org/10.1016/j.pneurobio.2010.11.004.

1499 237. Pawson SM, Kerr JL, O'Connor BC, Lucas P, Martinez D, Allison JD, et al. Light-weight
1500 portable electroantennography device as a future field-based tool for applied chemical ecology. *J
1501 Chem Ecol.* 2020;46:557–66. doi.org/10.1007/s10886-020-01190-6.

1502 238. Schroth P, Schöning MJ, Lüth H, Weißbecker B, Hummel HE, Schütz S. Extending the
1503 capabilities of an antenna/chip biosensor by employing various insect species. *Sens Actuators B
1504 Chem.* 2001;78:1–5. doi.org/10.1016/S0925-4005(01)00808-0.

1505 239. Shani A. Chemical communication agents (pheromones) in integrated pest management. *Drug
1506 Dev Res.* 2000;50:400–5. doi.org/10.1002/1098-2299(200007/08)50:3<400::AID-
1507 DDR24>3.0.CO;2-0.

1508 240. Blaženec M, Majdák A, Jakuš R. Improvement of *Ips typographus* catches in pheromone trap
1509 barriers by altering of sex assigned pheromone blends. *Folia Oecologica.* 2021;48:25–34.
1510 doi.org/10.2478/foecol-2021-0004.

1511 241. Sweeney J, Dodds KJ, Fettig CJ, Carnegie AJ. IPM - The forest context. In: Allison JD, Paine
1512 TD, Slippers B, Wingfield MJ, editors. *Forest entomology and pathology: Volume 1: entomology.*
1513 Springer Nature; 2023. p. 581–646. doi.org/10.1007/978-3-031-11553-0_17.

1514

1515

Paper II

Shewale, M. K., Nebesářová, J., Grosse-Wilde, E., & Kalinová, B. (2023). Microscopic morphology and distribution of the antennal sensilla in the double-spined bark beetle, *Ips duplicatus* (Coleoptera: Curculionidae). *Microscopy Research and Technique*, 86(12), 1610-1625. <https://doi.org/10.1002/jemt.24397>

Microscopic morphology and distribution of the antennal sensilla in the double-spined bark beetle, *Ips duplicatus* (Coleoptera: Curculionidae)

Mayuri Kashinath Shewale¹ | Jana Nebesářová² | Ewald Grosse-Wilde¹ |
 Blanka Kalinová¹

¹Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic

²Faculty of Science, Charles University, Prague, Czech Republic

Correspondence

Mayuri Kashinath Shewale, Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic.
 Email: shewale@fld.czu.cz

Funding information

Internal Grant Agency: MAYURI SHEWALE at Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic, Grant/Award Number: (IGA: A_21_29); EXEMIT-K Project, Ministry of Education, Youth and Sport, Operation Programme Research, Development and Education, Grant/Award Number: CZ.02.1.01/0.0/0.0/15_003/0000433; MEYS CR (Czech Bioimaging) at Viničná Microscopy Core Facility (VMCF) at the Faculty of Science, Charles University, Prague, Czech Republic, Grant/Award Number: LM2023050

Review Editor: Alberto Diaspro

Abstract

The double-spined spruce bark beetle, *Ips duplicatus*, has become an infamous secondary pest of Norway spruce, causing extensive ecological and economic destruction in many Central European countries. Antennae are the primary olfactory organs that play a fundamental role in insect-host chemical communication; therefore, understanding morphology is crucial before conducting electrophysiological investigations. Here, we present our analysis of sensilla types on the antennal surface of *I. duplicatus* for the first time, using high-resolution-scanning electron microscopy. We studied the external morphological characteristics of antennae and the types, numbers, and distribution of the antennal sensilla in males and females. Our results revealed the presence of five different types of morphologically distinct sensilla: sensilla chaetica, sensilla basiconica, sensilla trichodea, sensilla coeloconica, and Böhm's sensilla. We observed two subtypes of sensilla chaetica (SChI and SChII), four subtypes of sensilla basiconica (SBI, SBII, SBIII, and SBIV), three subtypes of sensilla trichodea (STrII, STrIII, and STrIV) and two subtypes of sensilla coeloconica (SCoI and SCoII), respectively in *I. duplicatus* males and females. Minor differences in length and numbers between the sexes for some sensilla types were found. Distribution maps for different sensillar types were constructed, and specific areas for the respective sensilla were found. Possible functions of observed sensilla types are discussed. The present study provides a basis for future electrophysiological studies to understand how *I. duplicatus* detects ecologically important olfactory cues.

Research Highlights

- The first report of morphology and distribution pattern of the antennal sensilla in *Ips duplicatus* is discussed.

- A total of 6 main types and 11 antennal sensilla subtypes were observed in male and female *Ips duplicatus*.
- Minor sex-specific differences were seen in the length and numbers in several sensilla types.

KEY WORDSantenna, *Ips duplicatus*, morphology, scanning electron microscopy, sensilla

1 | INTRODUCTION

Most bark beetles (Coleoptera: Curculionidae, Scolytinae) are natural decomposers of dead and dying trees in forests, and several species are considered economically significant conifer pests that also attack living trees. The double-spined bark beetle, *Ips duplicatus* (Sahlberg, 1836), originally native to Fennoscandia, Siberia, and East Asia, has spread recently to Central Europe and is expanding southward (Wermelinger et al., 2020). The primary host tree of *I. duplicatus* is Norway spruce (*Picea abies* (L.) Karst.), the most cultivated conifer in Europe (Grodzki, 2012; Holuša et al., 2010). In endemic phases, *I. duplicatus* colonizes the uppermost stem and the crown of the weakened or dying spruce or spruce trees, often attacked by European spruce bark beetle (*Ips typographus* [Linnaeus, 1758; Schlyter & Olle, 1993]). However, in outbreaks, *I. duplicatus* can also infest living trees (Kašák & Foit, 2015; Knížek et al., 2019). The current *I. duplicatus* population increases in Central Europe, and its southwest expansion has worsened the already problematic situation in spruce forests (Wermelinger et al., 2020). *I. duplicatus* shares similar biology as *I. typographus*; however, due to its specific host preferences and different bionomy, its management is different and less effective than that for *I. typographus* (Holuša et al., 2010).

In bark beetles, antennae are the primary sensory organ (Faucheu, 1989, 1994; Hallberg, 1982; Shi, Zhang, Liu, Xu, et al., 2021). The antennal surface is covered with many hair-like structures called sensilla, which are small sensory organs protruding from the cuticle of the exoskeleton. The sensillum is the antenna's basic functional unit and each one houses sensory receptor neurons. Thus, sensilla are distinct sensory units defined by their shape, size, wall ultrastructure, internal arrangements, and the number and modality of sensory neurons present. Usually, the olfactory sensilla are the most numerous on insect antennae (Schneider, 1964). The morphology of the antennal sensilla is very diverse. It often includes the hair- or peg-shaped types (sensilla trichodea and basiconica, respectively), types with pegs recessed in pits or surrounded by various cuticular protrusions (sensilla coeloconica), pegs set at the bottom of a long tube that appear as small round openings on the cuticular surface (sensilla ampullacea), round-shaped porous setae (sensilla placodea) and many others (Borden & Wood, 1966; Dickens et al., 1978; Galizia & Rössler, 2010; Payne et al., 1973; Steinbrecht, 1997; Whitehead, 1981). Usually, morphologically different sensillar types accommodate physiologically different sensory neurons. For instance,

sensilla trichodea in many insects, such as flies and moths, mainly house olfactory sensory neurons (OSNs) tuned to detect pheromone components (Khalla et al., 2021; Ljungberg et al., 1993; Pophof et al., 2005; Steinbrecht, 1997). However, in some species, sensilla trichodea detect other chemicals. For instance, in the tsetse fly *Glossina morsitans* (Diptera: Glossinidae), OSNs housed in the trichodea sensilla respond to a range of diverse chemicals, like 1-octen-3-ol, 2-heptanone, isoamyl acetate, and methyl laurate (Soni et al., 2019). In ambrosia beetles, Biswas et al. (2023) showed that OSNs housed in sensilla trichodea respond to a wide range of volatiles, including host, non-host, and fungal-derived odors. Sensilla basiconica OSNs generally respond to plant volatiles, including various alcohols, aldehydes, esters and, ketones (Cui et al., 2018; De Bruyne et al., 2001). OSNs in coeloconic sensilla are known to be tuned to specific chemosensory stimuli, including acids, aldehydes, ammonia, putrescine, and water vapor (Prieto-Godino et al., 2017; Yao et al., 2005). There are reports of sensilla coeloconica responding to the extent of temperatures and humidity (Ruchty et al., 2010; Schneider et al., 2018).

Antennal morphology and the distribution of different sensillar types have been published for several bark beetle species of the genus *Ips*, including *I. typographus*, *I. sexdentatus*, *I. pini*, *I. subelongatus*, *I. confusus*, and other *Ips* species (Faucheu, 1989, 1994; Hallberg, 1982; Payne et al., 1973; Shi, Zhang, Liu, Xu, et al., 2021; Shi, Zhang, Liu, Zhang, et al., 2021). However, we do not have any literature reporting morphological data about the sensilla types and distribution of *I. duplicatus*. Information about antennal morphology and distribution of the sensillar types is essential for further physiological studies related to the olfaction of *I. duplicatus* that govern the specific behavior and host preferences. We provide external morphology of different sensillar types on *I. duplicatus* antennae and maps of different sensilla on the antennal surface. We compare and discuss our morphological findings with the available literature for other *Ips* species.

2 | MATERIALS AND METHODS

2.1 | Insects

Logs of Norway spruce (*Picea abies*) infested by *I. duplicatus* were collected in the Kostelec nad Černými lesy (49°59'39", 14°51'33", Czech Republic) and maintained in insect rearing chambers at the

Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague until beetles developed. Then the logs were debarked, and adult beetles were collected and stored in plastic boxes with small breathing holes in a refrigerator at 4°C until used for experiments. Five individuals of each sex were selected for observations using scanning electron microscopy (SEM).

2.2 | SEM analyses

Beetles were cleaned using an air blower to remove dirt from their surfaces. The antennae of each individual beetle were dissected under a stereomicroscope (Nikon, Japan). At first, antennae were primarily fixed for 24 h in 2.5% glutaraldehyde in 0.5 M cacodylate buffer (pH 7.2), followed by post-fixation in 2% OsO₄ in the same buffer for 4 h. Then, the antennae were washed twice with distilled water for 10 min. Fixed antennae were dehydrated by passing through a series of ethanol with increasing ethanol concentrations in water (35%, 50%, 70%, 96%, and 100%, with 10 min of incubation at each step). Antennae were further dried using a critical point dryer (Bal-Tec CPD 030). Preparations were then sputter-coated with a gold layer (20 nm thickness) in an ion sputter coater (Bal-Tec SCD 050) and observed under a JEOL JSM-IT200 scanning electron microscope and JEOL IT800 high-resolution scanning electron microscope (high-resolution SEM) at 3, 5, 10, and 15 kV with a working distance of 3–5 mm. The antennal morphology and sensilla types, numbers, and distribution were studied on five antennae from adults of both sexes.

2.3 | Sensilla categorization

The general morphology of *Ips duplicatus* is described using terminology as per Hulcr et al. (2015). When classifying the sensilla, we combined data from different papers that studied antennal sensillar equipment of different bark beetles of the genus *Ips* (Faucheu, 1989, 1994; Hallberg, 1982; Shi, Zhang, Liu, Xu, et al., 2021; Shi, Zhang, Liu, Zhang, et al., 2021) and other insect species (Chen et al., 2010; López et al., 2018; Payne et al., 1982; Schneider, 1964; Whitehead, 1981). Sensilla categorization was based on external morphological criteria

like size, shape, presence or absence of pores, and other features such as the attachment of the sensilla with the cuticle (flexible or inflexible socket) (Nowińska & Brożek, 2017).

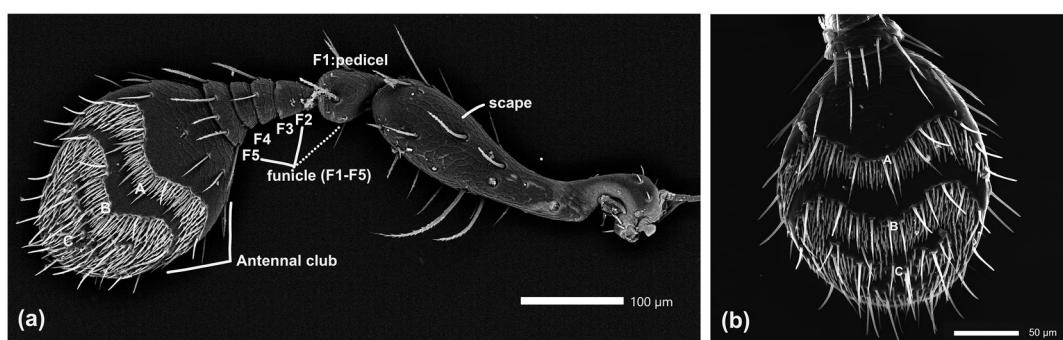

2.4 | Statistical analyses

Image J v.1.53q (Schneider et al., 2012) was used to measure and quantify each sensilla type. The software allows you to set a defined scale and measure different parameters of selected region such as length, width, diameter, and area, using the specific tools. The length of the sensilla was measured from the sensilla tip to the base of the sensilla, and basal width was determined at the bottom of the sensilla ($n = 10$ per sensilla type per specimen in each sex). The length, basal width, and total numbers of sensilla of each respective category were compared between the sexes by Bonferroni multi-comparison test using GraphPad Prism v.9.0 trial version for Windows, GraphPad Software (www.graphpad.com).

3 | RESULTS

3.1 | General antennal morphology

The antennae of *Ips duplicatus* are elbowed with seven flexibly connected segments: the scape (on the proximal side), five funicular segments (from proximal to distal: pedicel (F1), F2, F3, F4, F5), and the antennal club (the most distal side) (Figure 1a). The segments between the scape and the antennal club are smaller, flexible, and collectively considered as funicle. The funicle has five bowl-shaped linked segments, with their depth increasing and diameter decreasing distally from F5 to F (Figure 1a and Supplementary Table 1). The segment F1 connected to the scape is also known as the pedicel and is the largest of all funicular segments. The pedicel of the left antenna is slightly bent towards the left side, while the pedicel of the right antenna is curved to the right side. The mean length of the whole antenna is approximately $755.99 \pm 1.69 \mu\text{m}$. The scape is the longest part of the antenna and is, on average, $354.23 \pm 2.05 \mu\text{m}$ long, followed by the antennal club ($220.66 \pm 2.43 \mu\text{m}$) and the funicular segments. The antennal club is

FIGURE 1 The general morphology of *Ips duplicatus* antenna (female). (a) Ventral side of the antennal club showing funicular segments (F1–F5), pedicel (F1) and scape; (b) Three sensory bands on the antennal club (A, B, and C).

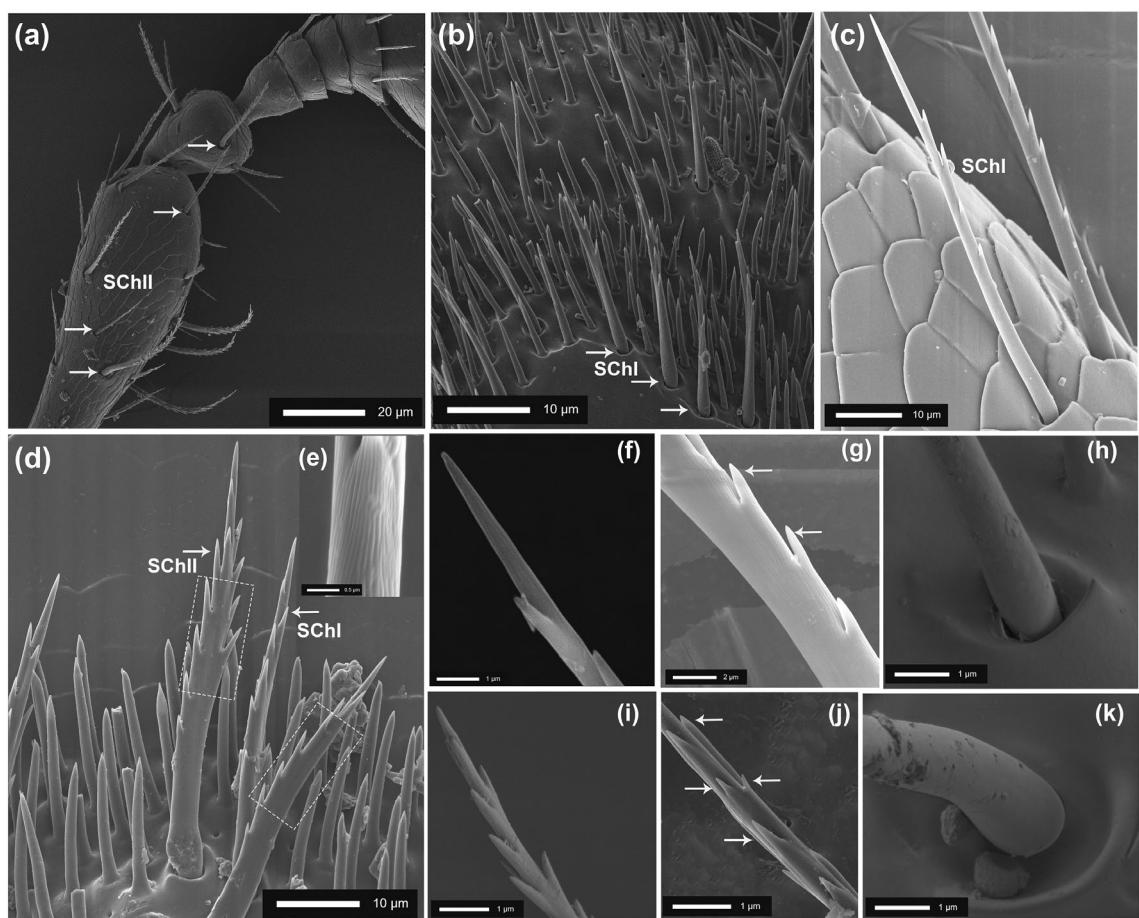
TABLE 1 General morphological characteristics based on external appearance and distribution of different sensilla types in *Ips duplicatus*.

Sensilla type	Distribution	Pores	Wall structure	Tip	Shape	Socket
SChI	Antennal club (A, B and C), funicular segments (F1–F5) and scape	Aporous	Longitudinal grooved wall, bilateral branching	Sharp	Straight	Flexible
SChII	Antennal club (C), funicular segments (F1–F5) and scape	Aporous	Longitudinal grooved wall, multi-branching	Sharp	Curved	Flexible
SBI	Antennal club (A, B, C)	Multiporous	Pitted	Blunt	Straight	Inflexible
SBII	Antennal club (A, B and C)	Multiporous	Grooved	Blunt	Straight	Inflexible
SBIII	Antennal club (B and C)	Uniporous	Smooth	Blunt and round	Peg shaped	Inflexible
SBIV	Antennal club (C)	Uniporous	Smooth	Round	Straight	Inflexible
STrII	Antennal club (B and C)	Multiporous	Smooth	Pointed	Slightly curved	Inflexible
STrIII	Antennal club (A, B, and C)	Terminal pore	Smooth	Blunt	Long and curved	Flexible
STrIV	Antennal club (A, B, and C)	Multiporous	Pitted	Pointed	Straight	Inflexible
SCo I	Antennal club (A, B, and C)	Aporous	Grooved	Round	Cone-shaped	Inflexible
SCo II	Antennal club (A, B, and C)	Aporous	Grooved	Sharp	Cone-shaped	Inflexible
BS	Scape	Aporous	Smooth	Blunt and round	Short and straight	Flexible
SP	Club (A, B, and C), funicle segments (F1–F5) and scape	?	Pit on the club surface	—	Oval	—

Abbreviations: SChI, sensilla chaetica type I; SChII, sensilla chaetica type II; SBI, sensilla basiconica type I; SBII, sensilla basiconica type I; SBIII, sensilla basiconica type III; SBIV, sensilla basiconica type IV; STrII, sensilla trichodea type II; STrIII, sensilla trichodea type III; STrIV, sensilla trichodea type IV; SCoI, sensilla coeloconica type I; SCoII, sensilla coeloconica type II; BS, Böhm's sensilla; SP, surface pores.

wide and oval shaped with an average length of $220.66 \pm 2.43 \mu\text{m}$ in the direction of the antennal axis with an average width of $180.70 \pm 0.53 \mu\text{m}$. The club is slightly bulging (convex) on both sides. The surface of the scape, funicle, and dorsal surface of the club have a scale-like layer on the outer surface. These scales are also visible on the proximal area of the ventral side of the club. The sensilla on the surface of the scape, funicular segments, and dorsal side of the antennal club are sparse, and only a few types are present (Supplementary Figure 1). The majority of sensilla are located on the ventral side antennal club, specifically in its most distal three-fourth area (Figure 1b). The sensilla are systematically organized into three sensory areas, referred to here as A, B, and C bands here (distal sensory band C, middle sensory band B, and proximal sensory band A) (Figure 1b). The sensory bands A and B form two parallel wave-like stripes across antennal club separated by a strip of the plain cuticle. The sensory band B has a deeper curve in the middle compared to sensory bands A and C. A hint of the third distal sensillar band C almost merges with the middle sensory band B area on the antennal club. Oval-shaped pit-like structures scattered randomly among the sensilla, termed here as surface pores (SPs), were observed on both the ventral side and the dorsal part of the club and other antennal segments.

3.2 | Sensilla types and distribution


Two types of sensilla chaetica (SChI and SChII), four types of sensilla basiconica (SBI, SBII, SBIII, and SBIV), three subtypes of

sensilla trichodea (STrII, STrIII, and STrIV), two types of fluted cone-shaped sensilla coeloconica (SCoI and SCoII), and Böhm's sensilla (BS) were identified on *I. duplicatus* antennae in both sexes (Table 1). Table 1 summarizes the respective features (length, basal width, socket characterization, presence of pores in the sensillar cuticular wall or at the tip, tip shape, etc.) and numbers of each sensilla type present on the ventral area of the antennal club. On the dorsal surface of the club, only sensilla chaetica type II, sensilla trichodea type III, and Böhm's sensilla were seen (Supplementary Figure 1).

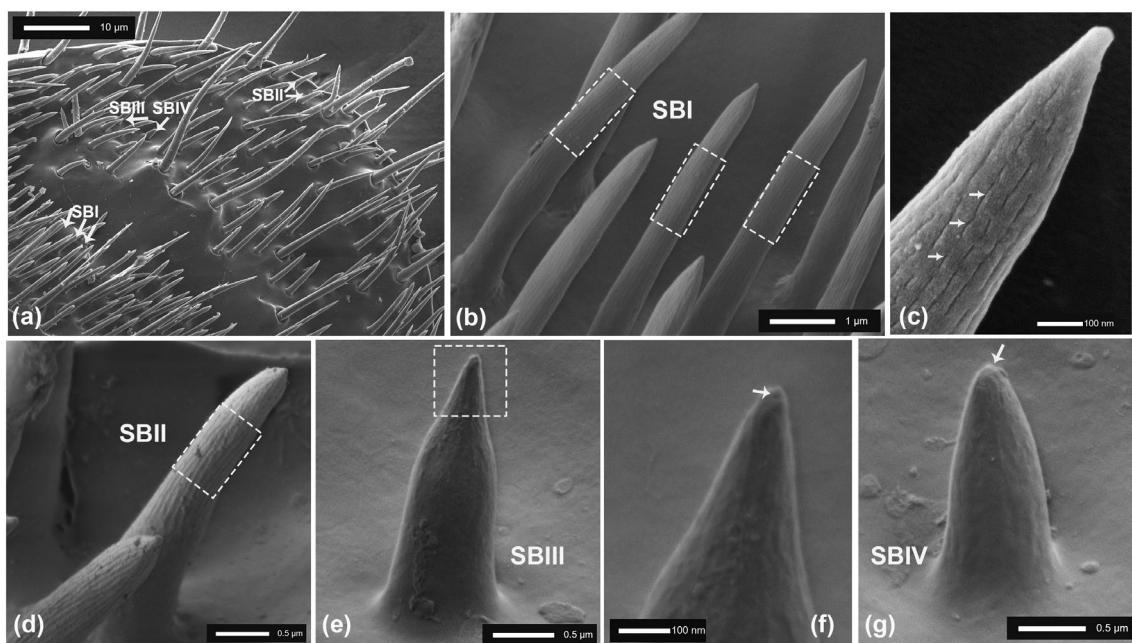
3.3 | Sensillar types and distribution on the antennal surface

3.3.1 | Sensilla chaetica

Sensilla chaetica (SCh) are long aporous sensilla with toothed projections and flexible (deep and wide) sockets (Figure 2). In *I. duplicatus*, sensilla chaetica were generally projected at an angle greater than 45° from the antennal club surface. They comprise 12% of the total observed sensilla. Based on their length and branching pattern, sensilla chaetica were categorized into two subtypes (Figure 2a, b). Shorter and slender sensilla chaetica type I (SChI) with a length of $21.2\text{--}46.5 \mu\text{m}$ in males and $21.9\text{--}38.9 \mu\text{m}$ in females, respectively, had toothed projection oriented in only one plane (saw-toothed with bilateral branching) and visible longitudinal grooves on the wall surface (Figure 2c, f–h).

FIGURE 2 *Ips duplicatus* antenna highlighting sensilla chaetica and its subtypes, (a) Sensilla chaetica type II (SChII) (b) Sensilla chaetica type I (SChI), (c) Magnified view of SChI, (d) magnified view of SChII, inset (e) longitudinal grooved wall surface, (f–h) tip shape, branching pattern and, basal socket of SChI, (i–k) tip shape, branching pattern and basal socket of SChII.

SChI are present on all antennal sections, including the dorsal and ventral side of the club. Sensilla chaetica type II (SChII) were longer and thicker, with a length range of 23.9–79.2 μm in males and 29.2–221.3 μm in females, respectively, with multilateral branching (Figure 2d, i–k). The socket shape was different in both types of sensilla chaetica, with SChI having a deeper socket than SChII (Figure 2h, k). SChII on the scape and funicular segments were remarkably longer than those observed on the antennal club surface. SPs were often observed close to both types of sensilla chaetica (Figure 2d).


3.3.2 | Sensilla basiconica

Sensilla basiconica (SB) were the most frequent sensilla type (66% of the total sensilla) observed within the sensory epithelium of the club (Figure 3). All SB have inflexible (fused) sockets. Sensilla basiconica were categorized into four subtypes based on their length, basal width, porosity, tip shape, and wall structure (Figure 3a). The most abundant sensilla basiconica type were sensilla basiconica type I (SBI) (Figure 3b). These sensilla types were straight, multiporous with a pointed tip. The pores of SBI formed longitudinal slit-like depressions on the wall surface

(Figure 3c). The pore density was 40 pores/ μm^2 . The SBI length was around 9.3–11.7 μm long in males and 8.6–13.2 μm long in females. Sensilla basiconica type II (SBII) were also multiporous with pointed tips but comparatively shorter and thicker than SBI (Figure 3d and Table 2). SBII were around 5.8–10.2 μm long in males and 6.3–10.9 μm in females. SBII have a lower pore density of 20 pores/ μm^2 compared to SBI. The pores collectively resembled pit-like depressions on the sensillar wall surface (Figure 3d). Sensilla basiconica type III (SBIII) were uniporous with peg-like appearance (length and basal width range: 5.8–10.9 μm and 1.1–2 μm , respectively), a slightly tapered tip, and a smooth wall with slight depressions (Figure 3e, f). The range of length of SBIII was around 3.6–6.8 μm in males and 3.3–7.1 μm in females, respectively. Sensilla basiconica type IV (SBIV) were the shortest basiconica type with an inflexible (fused) socket, smooth wall, and an uniporous round tip (Figure 3g) with the length ranging from 3 to 5 μm in males and 3.4–6 μm in females.

3.3.3 | Sensilla trichodea

This category (STr) is rather non-homogeneous in its parameters and covers around 19% of the total sensilla. Considering their length as a

FIGURE 3 *Ips duplicatus* antenna highlighting sensilla basiconica and its subtypes, (a) Antennal sensory band C showing clusters of sensilla showing different types of sensilla basiconica (b) sensilla basiconica type I (SBI) with slit-like depressions on the wall surface and fused socket, (c) magnified SBI tip showing pores (indicated by arrows), (d) sensilla basiconica type II (SBII) with the porous wall surface, (e) peg-shaped sensilla basiconica type III (SBIII) with fused socket and a pointed tip, (f) closer look of SBIII tip with the pore-like structure on the tip and, (g) sensilla basiconica type IV (SBIV) with the pore-like structure on the blunt tip.

classification parameter, ranging from 12.24 to 30.62 μm , they fit between the sensilla basiconica and sensilla chaetica (Table 2). We classified these sensilla types into three categories (Figure 4a). The longest sensilla trichodea type III (STrIII) (length range: 21.5–44.8 μm in males and 18.9–47.6 μm in females) were distinctly curved sensilla with a flexible socket, smooth wall, and a single terminal pore (Figure 4b, g, h). Sensilla trichodea type II (STrII) were shorter and slender than STrIII (length range: 15.7–34.5 μm in males and 13.7–36.4 μm in females, respectively), elongated and tapering towards the tip (Figure 4e), with an inflexible (fused) socket, and a multiporous wall (Figure 4f). The pore density calculated was 30 pores/ μm^2 for STrII. The shortest sensilla trichodea type IV (STrIV) with length range of 11.1–15.8 μm in males and 9.5–16.2 μm in females, respectively, had a sharp pointed tip, porous wall surface, and fused sockets (Figure 4c, d). STrIV were easily distinguishable from STrII since they bulged in the middle and tapered towards the tip. The pore density was 15 pores/ μm^2 . We did not observe sensilla trichodea type I, which was reported in previous studies in *Ips* species (Supplementary Table 2).

3.3.4 | Sensilla coeloconica

Sensilla coeloconica (SCo) were fluted cone-shaped structures with deep longitudinal grooves on their wall and inflexible (fused) sockets (Figure 5) covering about 2% of the total number of sensilla. Two types of SCo were classified based on the differences in their tip

shape. SCo type I had a pointed tip with a length range from 5.9–8.1 μm in males and 5.5–8.3 μm in females (Figure 5a, b), whereas SCo type II had a round and bulgy tip with a length range of 5.8–7.4 μm in males and 5–7.9 μm in females, respectively (Figure 5c, d).

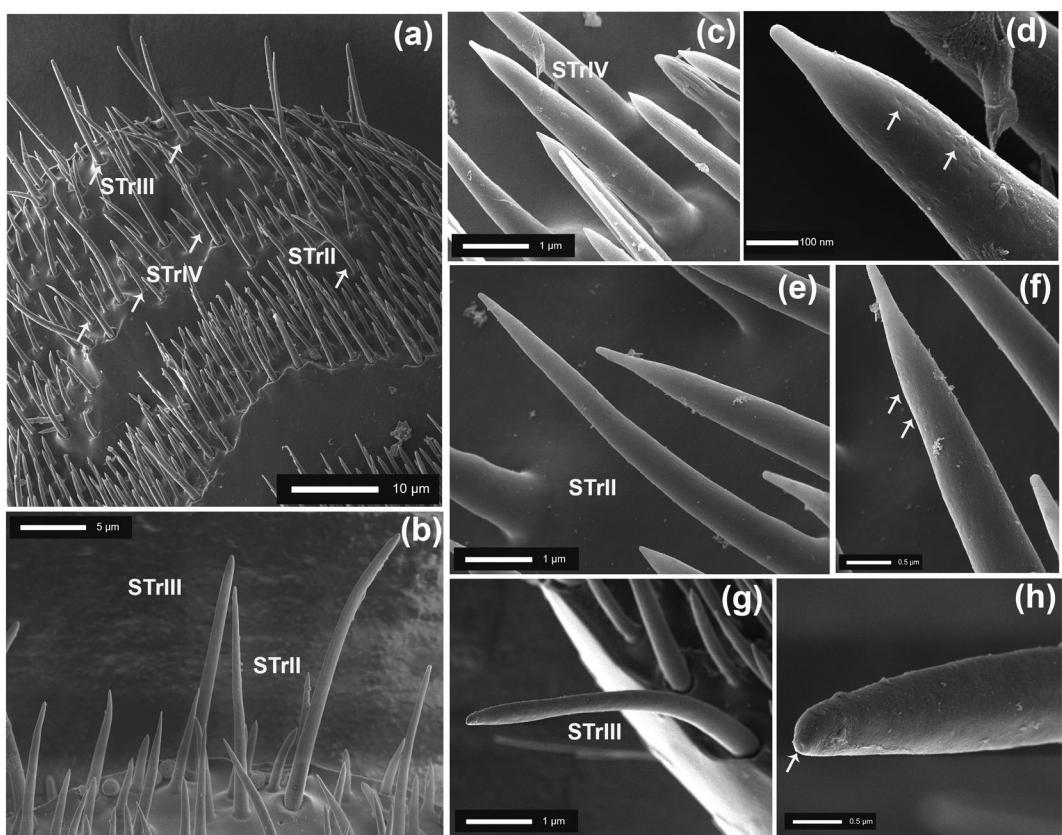
3.3.5 | Böhm's sensilla

The sensilla type, called Böhm's sensilla (BS), were present on the base of the scape and pedicel (Figure 6a). They were short (length range: 3.9–6.9 μm in males and 8.4–15.5 μm in females, respectively), straight or slightly curved hairs with their base in a flexible (deep and wide) socket and a smooth wall surface, typically angled $\sim 45^\circ$ to the cuticle of the antennal surface (Figure 6b).

3.3.6 | Surface pores

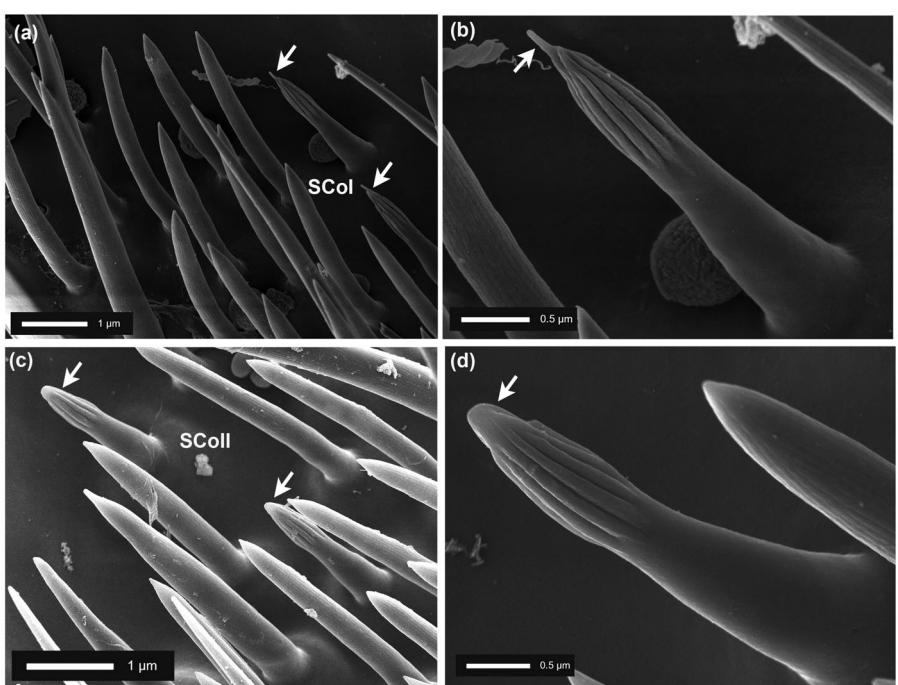
The SPs were present homogeneously on the ventral side of the antennal surface, the funicular segments, and the scape (Figure 6a, d). Some were also observed on the dorsal surface (Supplementary Figure 1). The pore diameter was 0.5 μm . We observed around 28 of these pores in males whereas approximately 18 in females (Supplementary Table 1). The exact number could not be estimated since the pores were difficult to observe since they were often hidden between different sensilla on the antennal surface. The pores were sometimes associated with sensilla with flexible sockets but otherwise

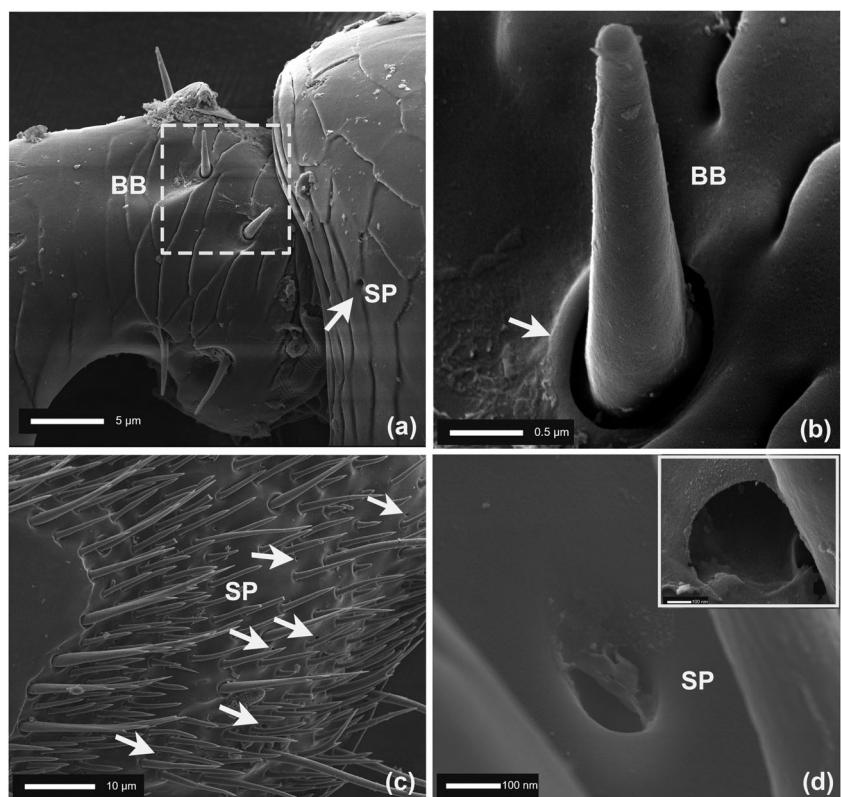
TABLE 2 The length range, mean length, basal width, numbers, and respective *p*-values (mean \pm SE) of the different sensilla type in male and female *Ips duplicatus* along with their percent total distribution.


Sensilla type	Sex	n	Length range (in μm)	Mean length (in μm) \pm SE	P-value	Mean basal width (in μm) \pm SE	p-value	n	Number of sensilla (mean \pm SE)	p-value	% Total distribution
SChI	Males	5	21.2–46.5	35.19 \pm 2.02	>.9999	2.15 \pm 0.13	>.9999	5	30.4 \pm 1.43	.6864	6.50
	Females	5	21.9–38.9	32.49 \pm 1.65	2.09 \pm 0.11	2.73 \pm 0.27	.0058**	5	26.2 \pm 0.86	5.56	
SChII	Males	5	23.9–79.2	44.23 \pm 4.78	<.0001***	3.34 \pm 0.32		5	32.6 \pm 1.29	>.9999	6.97
	Females	5	29.2–221.3	66.32 \pm 12.84				5	29.0 \pm 1.00		6.25
SBI	Males	5	9.3–11.7	10.59 \pm 0.21	>.9999	1.37 \pm 0.04	>.9999	5	265.4 \pm 5.45	.0163*	56.80
	Females	5	8.6–13.2	10.64 \pm 0.45		1.45 \pm 0.07		5	258.2 \pm 2.20		55.69
SBII	Males	5	5.8–10.2	8.27 \pm 0.23	>.9999	1.49 \pm 0.05	>.9999	5	43.2 \pm 1.56	>.9999	9.25
	Females	5	6.3–10.9	8.11 \pm 0.55		1.56 \pm 0.05		5	39.4 \pm 1.81		8.49
SBIII	Males	5	3.6–6.8	4.93 \pm 0.26	>.9999	1.83 \pm 0.06	>.9999	5	4.2 \pm 0.49	>.9999	0.89
	Females	5	3.3–7.1	5.68 \pm 0.28		1.66 \pm 0.08		5	3.8 \pm 0.37		0.82
SBIV	Males	5	3.0–5.0	3.86 \pm 0.23	>.9999	1.77 \pm 0.09	>.9999	5	2.8 \pm 0.37	>.9999	0.59
	Females	3	3.4–6	4.47 \pm 0.44		1.86 \pm 0.24		5	2.6 \pm 0.40		0.56
SThI	Males	5	15.7–34.5	26.31 \pm 2.36	>.9999	1.89 \pm 0.03	>.9999	5	16.6 \pm 1.21	>.9999	6.59
	Females	5	13.7–36.4	23.75 \pm 2.16		1.99 \pm 0.06		5	19.0 \pm 1.30		8.45
SThII	Males	5	21.5–44.8	29.19 \pm 0.76	>.9999	2.26 \pm 0.09	>.9999	5	28.6 \pm 1.36	>.9999	3.55
	Females	5	18.9–47.6	30.62 \pm 3.32		2.35 \pm 0.13		5	33.0 \pm 0.95		4.09
STRIV	Males	5	11.1–15.8	13.68 \pm 0.27	>.9999	1.82 \pm 0.03	>.9999	5	30.8 \pm 1.36	.0026*	6.12
	Females	5	9.5–16.2	12.24 \pm 0.30		1.81 \pm 0.09		5	39.2 \pm 0.86		7.11
SCol	Males	5	5.9–8.1	7.09 \pm 0.22	>.9999	1.70 \pm 0.11	.5770	5	5.2 \pm 0.58	.5584	1.11
	Females	5	5.5–8.3	7.24 \pm 0.27		2.04 \pm 0.04		5	5.0 \pm 0.32		1.07
SColl	Males	5	5.8–7.4	6.11 \pm 0.18	>.9999	1.69 \pm 0.09	>.9999	5	3.6 \pm 0.25	>.9999	0.77
	Females	4	5–7.9	6.47 \pm 0.32		1.84 \pm 0.02		5	4.2 \pm 0.37		0.90
BS	Males	2	3.9–6.9	5.21 \pm 0.64	>.9999	1.14 \pm 0.04	.0058*	5	3.8 \pm 0.73	>.9999	0.81
	Females	5	8.4–15.5	10.63 \pm 0.14		1.79 \pm 0.07		4	5.0 \pm 0.91		1.08
SP	Males	5	—	—	Not compared ^a	0.47 \pm 0.05	Not compared ^a	5	28.4 \pm 3.42	—	—
	Females	5	—	—		0.52 \pm 0.05		5	18.2 \pm 1.93		

Note: n = 5 specimens per sex and 5–20 sensilla of each respective type were measured.

Abbreviations: SChI and SChII, sensilla chaetica types; SBII–SBIV, sensilla basiconica types; SThI–SThIV, sensilla trichodea types; SCol–Scoll, sensilla coeloconica; BS, Böhm's sensilla; SP, surface pores.


^aNot compared since in females, the pores were not so easily visible in the dense sensory regions.


*Values are statistically significant values showing significant differences where p-value was less than 0.05.

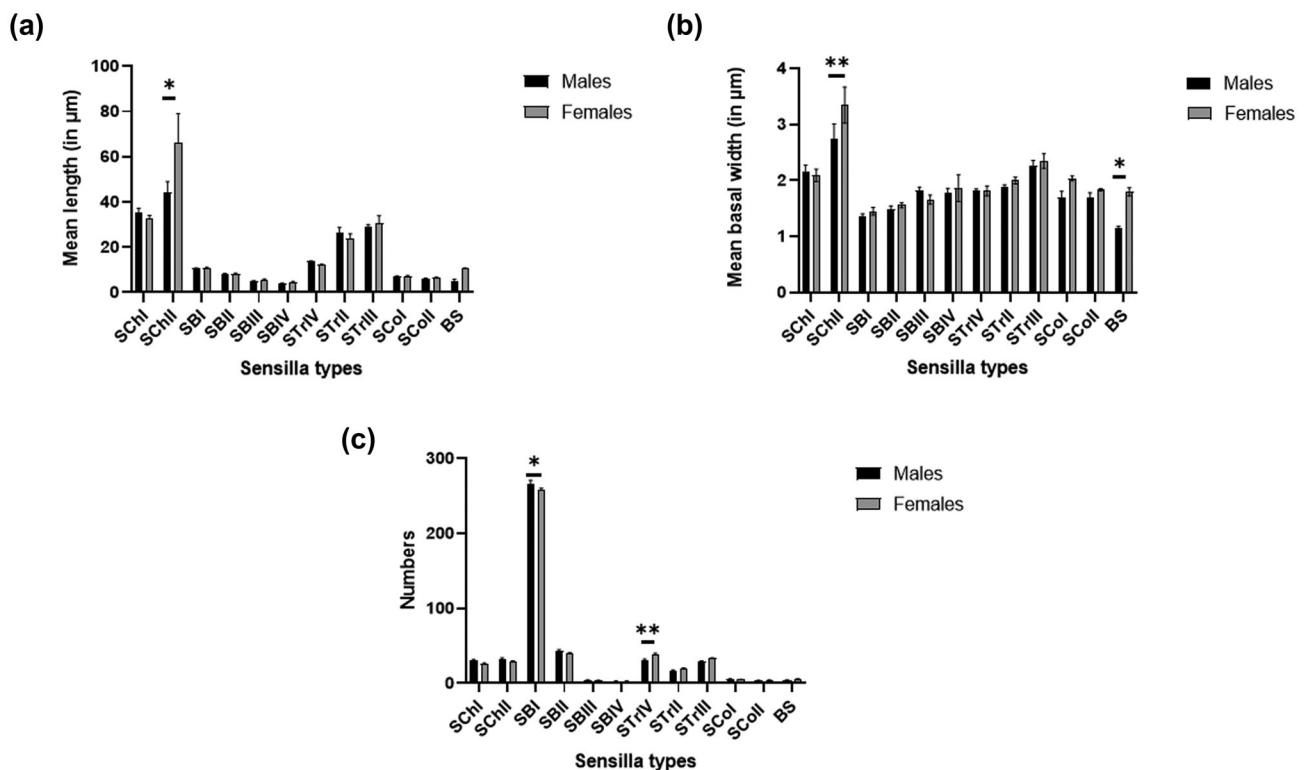

FIGURE 4 *Ips duplicatus* antenna highlighting sensilla trichodea and its subtypes, (a) Group of sensilla trichodea types on the antennal club(indicated by arrows) including (b) sensilla trichodea type II (STrII) and sensilla trichodea type III (STrIII), (c and d) sensilla trichodea type IV (STrIV) with fused socket, bulged middle, porous wall surface and pointed tip, (e) sensilla trichodea type II (STrII) with fused socket, pointed tips and (f) multiporous wall surface, (g) sensilla trichodea type III (STrIII) with deep flexible socket, blunt tip and (h) terminal pore.

FIGURE 5 *Ips duplicatus* antenna highlighting sensilla coeloconica and its subtypes (a) sensilla coeloconica type I (SCol) with longitudinal grooved wall surface and (b) sharp tip, (c) sensilla coeloconica type II (SColl) with (d) round tip.

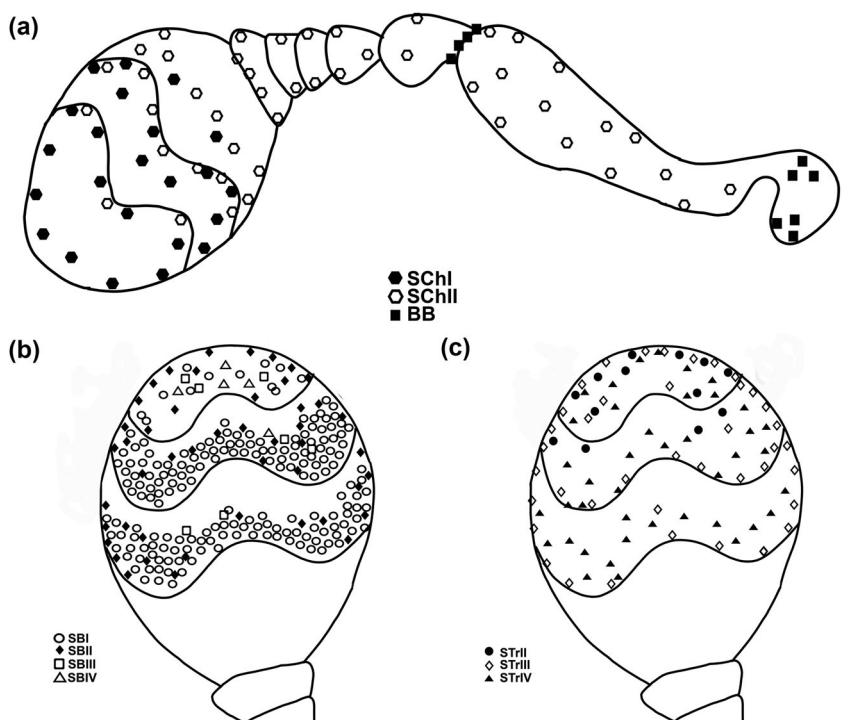


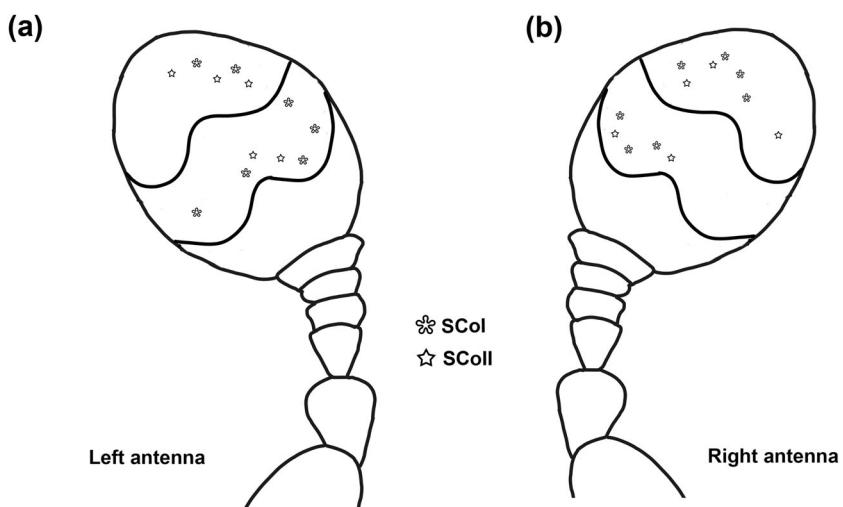
FIGURE 6 *Ips duplicatus* antenna highlighting (a) Böhm's sensilla (BS) on the scape (highlighted square) and surface pore (SP) indicated by an arrow, (b) detailed view of BS with a deep socket and round tip, (c) SPs on the antennal club surface (indicated by arrows) and, (d) magnified view of SPs.

FIGURE 7 Graph showing the comparison of length (a), width (b), and numbers (c) of different sensilla types in *Ips duplicatus* antenna in females and males. Bars represent means and SE. (Bonferroni's multiple comparisons tests; $n = 5$ per sex).

FIGURE 8 Maps of sensillar distribution on ventral side of *Ips duplicatus* antenna. (a) Sensilla chaetica type I (SChI), sensilla chaetica type II (SChII), and Böhm's sensilla (BS); (b) sensilla basiconica type I (SBI), sensilla basiconica type II (SBII) sensilla basiconica type III (SBIII) sensilla basiconica type IV (SBIV); (c) sensilla trichodea type II (STrII), sensilla trichodea type III (STrIII) and sensilla trichodea type IV (STrIV).

diffusely scattered among sensilla on the antennal club surface (Figure 6c).

3.4 | Distribution, dimensions, and numbers among sexes


The structural features and distribution pattern of sensilla on the antennal surface was approximately same in males and females. After performing statistical analyses using Bonferroni's multicomparison test, we noted minor variations concerning the length of a few sensilla types and numbers among the sexes (Table 2). The total length of the antenna and other antennal segments showed no significant differences between the sexes. The mean length of SChII was significantly different when comparing females and males (p -value of $<.0001$); however, the average length differences in other sensilla types were non-significant (Figure 7a and Table 2). The mean basal width of SChII was significantly higher in females than in males (p -value $<.0058$). Similarly, the mean basal width of BS was considerably higher in females than in males, with a p -value of $.0058$ (Figure 7b and Table 2). The average number of SBI was significantly different in males than in females ($p < .0163$), whereas the mean number of STrIV was significantly higher in females than in males ($p < .0026$) (Figure 7c and Table 2).

We mapped the distribution pattern of different sensilla types present on the antennal surface in *I. duplicatus* (Figure 8). The two types of sensilla chaetica, SChI and SChII, often can be seen as forming the boundary within the sensory bands around the sensilla basiconica and sensilla trichodea, whereas SChII is primarily seen on the funicular segments and scape and sometimes on Band A (Figure 8a).

BS was exclusively present at the base of the scape and pedicel with only 1% of the total sensilla (Figure 8a). The sensilla basiconica types SBI and SBII, were uniformly distributed on the sensory band A and B. SBI were denser in the middle of the sensory bands A and B. Very few were observed on the distal band C. Shorter types of sensilla basiconica (SBIII and SBIV) were primarily observed in most distal club area C (Figure 8b). Among all the sensilla trichodea types, STrIII is typically present within the proximal boundaries of sensillar bands and at the periphery of the club, and the distribution is quite distinct and uniform. STrII was more abundant in the antennal club's C and B sensory areas, whereas STrIV was spotted more within A and B sensory bands. STrIV were often seen around SBI and SBII forming a peripheral borderline on the sensory band A and B (Figure 8c). Both types of sensilla coeloconica (SCol and SColl) were more abundant on the sensory bands B and C and sometimes observed on the sensory band A. These sensilla often occurred in pairs close to each other, and the distribution pattern was quite interesting. Both sensilla coeloconica I and II were more frequently distributed on the middle and to the right side of the left antenna and vice versa; rarely, 1 or 2 sensilla coeloconica were observed on the same side of the antenna (Figure 9a, b).

4 | DISCUSSION

We report the first study focused on the morphological characteristics of the sensory equipment of *I. duplicatus* antenna. Our study shows that the general morphology of *I. duplicatus* antenna is quite similar to other *Ips* species (Faucheux, 1989, 1994; Hallberg, 1982; Payne et al., 1973; Shi, Zhang, Liu, Xu, et al., 2021; Shi, Zhang, Liu, Zhang, et al., 2021). We observed five morphologically distinct sensilla types

FIGURE 9 Map of sensilla coeloconica distribution on ventral side of *Ips duplicatus*. (a) Sensilla coeloconica type I (SCol) and sensilla coeloconica type II (SColl) on the left antenna; (b) sensilla coeloconica type I (SCol) and sensilla coeloconica type II (SColl) on the right antenna.

in *I. duplicatus*: sensilla chaetica with two subtypes, sensilla basiconica with four subtypes, sensilla trichodea with two subtypes, sensilla coeloconica with two subtypes, and Böhm's sensilla. SPs were observed occasionally. As it is typical for other species of the genus *Ips*, *I. duplicatus* antenna is also seven-segmented, and the sensilla on the club are arranged in three snake-shaped sensory bands (Payne et al., 1973). Many, but not all sensillar types observed on the antennal surface of *I. duplicatus* were like those described in other *Ips* species (Faucheux, 1989, 1994; Hallberg, 1982; Payne et al., 1973; Shi, Zhang, Liu, Xu, et al., 2021; Shi, Zhang, Liu, Zhang, et al., 2021). However, the sensillar nomenclature in the published studies is inconsistent in all studied species (Supplementary Table 2). We found more sensillar subtypes in the respective categories than previously published studies. Specifically, we observed more subtypes of sensilla basiconica, sensilla coeloconica, and sensilla trichodea in *I. duplicatus*. Based on our study, it is not clear whether these differences reflect specificities related to the technique used in previous studies or whether they indicate a specific adaptation for *I. duplicatus*.

There have been several studies of *Ips* spp. sensilla so far, with different classification and nomenclature (Faucheux, 1989, 1994; Hallberg, 1982; Payne et al., 1973; Shi, Zhang, Liu, Zhang, et al., 2021). Supplementary Table 2 summarizes the classification and nomenclature of sensilla in the present study and previously studied *Ips* species facilitating a clear understanding and avoiding any future confusion. We kept our classification consistent with previous reports and followed a new nomenclature only for those sensilla types which were not reported previously and do not fit within the existing classification.

As also observed for other *Ips* species (Faucheux, 1989, 1994; Shi, Zhang, Liu, Xu, et al., 2021; Shi, Zhang, Liu, Zhang, et al., 2021) and bark beetles in general, sexual dimorphism in *I. duplicatus* was not too prominent, and if present, it generally refers to only minor differences in abundance and length of some sensillar types. This finding indicates that in *I. duplicatus* the sensilla probably have similar functions in both sexes. Interestingly, we observed significantly longer sensilla chaetica with multilateral branching (SChII) in females, the

wider multiporous sensilla basiconica (SBI), and their higher number in males. In addition, small sex-specific differences were determined for multiporous sensilla trichodea STriV, which were present in slightly higher numbers in females. Further experiments are needed to determine whether these differences reflect sex-specific differences related to mating or host selection. Morphologically different sensillar categories are supposed to have specific physiological functions (Hallberg, 1982; Hansson & Stensmyr, 2011; Keil, 1999; Schneider, 1964). Below, we discuss the possible physiological roles of the different morphological types observed in *I. duplicatus*.

4.1 | Sensilla chaetica

This sensillar type have a flexible socket and long, either bilaterally or multilaterally branched hair that project outwards from the antennal surface well above other sensillar types. Two types of sensilla chaetica with the same morphology were also observed in other *Ips* species (Faucheux, 1994; Shi, Zhang, Liu, Xu, et al., 2021; Shi, Zhang, Liu, Zhang, et al., 2021), though there are differences when it comes to nomenclature (Supplementary Table 2). The morphological description and location of this sensilla type in *I. duplicatus* match with the previous studies in *I. typographus* and *I. confusus* (Borden & Wood, 1966; Faucheux, 1989; Hallberg, 1982; Shi, Zhang, Liu, Zhang, et al., 2021).

The cross-sections of sensilla chaetica in *I. typographus* (Hallberg, 1982) shows a basal cuticular ring of articulating membrane, circular solid hair shafts filled with an electron dense material, and a sensory process that terminates as a tubular body in the basal part of the hair. These parameters suggest that sensilla chaetica serves the mechanoreception function (Borg & Norris, 1971; Hallberg, 1982; Moeck, 1968). Though we have not performed the cross-section of sensilla chaetica in *I. duplicatus*, the external morphological similarity between sensilla chaetica in *I. typographus* and *I. duplicatus* allows us to conclude that sensilla chaetica in *I. duplicatus* also have a mechanoreceptive role. Their locations on the scape may enable *I. duplicatus* to determine the positions of the antennae with

respect to its surroundings and detect wind movement (Payne et al., 1973). It may also serve as “displacement detectors” as reported in some beetle species (Borg & Norris, 1971; Henderson & Wadhams, 1981; Moeck, 1968; Wadhams et al., 1982). Alternatively, sensilla chaetica might be involved in fly speed detection during flying as suggested by the electrophysiological recordings from bilaterally branched sensilla chaetica in *Scolytus scolytus* showing that these types of sensilla respond to airflow (Wadhams and Angst unpublished data mentioned in Sivalingham, 2012). Alternatively, sensilla chaetica might possibly serve as auditory organs (Borden & Wood, 1966) and can be involved in bark beetle acoustic communication that mediates beetle interaction during mating, various social or defensive interactions, and dispersion under the bark (Barr, 1969; Borden & Wood, 1966; Dobai et al., 2018; Hofstetter et al., 2019; Rudinsky, 1979; Rudinsky et al., 1976; Wilkinson et al., 1967). Until now, no tympanal organs in bark beetles have been found (Borden & Wood, 1966). As long sensilla on the antenna can easily vibrate (Yack & Hoy, 2003), sensilla chaetica might be involved in the perception of sound and/or substrate vibrations (Rudinsky et al., 1976; Schmitz, 1972; Sivalingham, 2012; Swaby & Rudinsky, 1976). Unilateral and bilateral branching may represent specific adaptations with respect to the perception of specific sound/vibration parameters. We noted that in *I. duplicatus*, multilaterally branched sensilla chaetica (SChII) are significantly longer and thicker in females than in males. This may reflect the greater need by ovipositing females to orient under the bark to ensure uniform dispersion. Similar sex-specific differences were reported in *I. typographus*, *I. sexdentatus* (Faucheux, 1989), and *Tryptodendron lineatum* (Moeck, 1968). These differences may reflect the sex-specific differences in premating behavior and/or during oviposition (Hofstetter et al., 2019; Rudinsky, 1979). As compared to other bark beetle species (Bedoya, Brockerhoff, et al., 2019; Bedoya, Nelson, et al., 2019), the genus *Ips* is characterized by a relatively smaller number of sensilla chaetica (Faucheux, 1989; Shi, Zhang, Liu, Xu, et al., 2021; Shi, Zhang, Liu, Zhang, et al., 2021), which can reflect the relative importance in sound communication in different taxonomic categories (Bedoya et al., 2020; Hofstetter et al., 2019).

4.2 | Sensilla trichodea

This morphological category is inconsistent among all sensillar types found in *I. duplicatus*. The only common characteristic of *I. duplicatus* is that they are longer than the sensilla basiconica type and shorter than the sensilla chaetica type. Sensilla trichodea in *I. duplicatus* form two distinct categories. The first category includes two subtypes of multiporous sensilla with inflexible sockets that differ by wall structure (STrII are smooth-walled while STrIV are pitted). The second category represents the long terminal pore sensillum with a flexible socket (STrIII). STrII corresponds to trichodea type II in some *Ips* species (Borden & Wood, 1966; Faucheux, 1989, 1994; Payne et al., 1973) (Supplementary Table 2).

The cross-sections of the multiporous sensilla performed in *I. typographus* (Hallberg, 1982) show single-walled sensilla with numerous pores. The multiporous trichoid sensilla were described in

majority of investigated *Ips* species so far (Borden & Wood, 1966; Faucheux, 1989, 1994; Payne et al., 1973). The multiporous sensilla are expected to have an olfactory function (Andersson et al., 2009; Borden & Wood, 1966; Hallberg, 1982; Payne et al., 1973). The wall pores allow volatile molecules to penetrate the sensillar lumen to activate the olfactory receptor neurons. The olfactory function of multiporous sensilla has been confirmed by many electrophysiological investigations performed in *I. typographus* (Andersson et al., 2009; Kandasamy et al., 2019; Schieber et al., 2019). Sensilla trichodea type IV (STrIV) observed in *I. duplicatus* does not match with any trichodea sensilla types reported previously. Because of its distinct structure and characteristic pore features on the wall surface, the probability of misclassification can be excluded. Further studies are needed to determine the physiology of these two olfactory trichoid sensilla.

The terminal pore trichoid sensilla (STrIII) in *I. duplicatus* corresponds with those described as terminal-pore sensillum by Hallberg (1982) in *I. typographus*. The presence of structural characteristics such as terminal pore and flexible socket suggests bimodal function in chemoreception and mechanoreception (Hallberg, 1982). STrIII observed in *I. duplicatus* corresponds with “TR3” in Shi, Zhang, Liu, Zhang, et al. (2021) in *I. typographus*, “Trichodea III” in *I. sexdentatus*, *I. typographus*, and *I. pini* (Faucheux, 1989, 1994) and in other *Ips* species (Payne et al., 1973) (Supplementary Table 2), and with the “sensilla chaetica” classified in *Ips paraconfusus* (Borden & Wood, 1966).

In our study on *I. duplicatus*, we did not see sensilla trichodea type I, which was observed previously at the base of the scape and pedicel of many *Ips* species (Payne et al., 1973; Shi, Zhang, Liu, Zhang, et al., 2021) and in *T. lineatum* (Moeck, 1968). Sensilla trichodea type I are Böhm's sensilla with proprioceptive function, though no histological information nor the characteristics of the socket are available.

4.3 | Sensilla basiconica

Our study provided evidence for four categories of sensilla basiconica in *I. duplicatus*. This category is also not morphologically homogenous. They are shorter and wider in comparison with sensilla chaetica and trichodea and form two distinct groups. Sensilla basiconica type I (SBI) are the most numerous type occupying about three-fourths of the total area of the antennal club surface. They are highly dense in the sensory bands A and B and represent multiporous sensilla with slit-like depressions suggesting their possible role in olfactory detection. SBI in *I. duplicatus* has features similar to single-walled sensillum type I reported by Hallberg, 1982 in *I. typographus*. The sensilla basiconica type II (SBII) is not described in Hallberg, 1982 in *I. typographus* but is mentioned by Faucheux (1989) in *I. sexdentatus* and *I. typographus*. SBII has lower pore density when compared to SBI. These two types of SB are known to be sensitive to general odors like plant compounds and pheromones validated by electrophysiological studies (Andersson et al., 2009; Biswas et al., 2023; Borden & Wood, 1966; Dickens et al., 1978). Sensilla basiconica type III and IV (SBIII and SBIV) are uniporous peg-shaped hairs with slight depressions on the wall surface present predominantly in the distal club region. Only SBIII was reported

previously in *I. typographus* (Shi, Zhang, Liu, Zhang, et al., 2021). The exact function of these pegs is not known; however, their uniporous nature indicates the contact chemoreception.

4.4 | Sensilla coeloconica

The sensilla coeloconica (SCo) has a distinct shape with longitudinal grooves on the wall surface and have previously been reported in many *Ips* species (Chen et al., 2010; Dickens et al., 1978; López et al., 2018; Whitehead, 1981). In most of the studied species so far, only one type of sensilla coeloconica has been described. Our study is the first to report two different types of sensilla coeloconica.

The cross-section performed on SCo in *I. typographus* (Hallberg, 1982) shows a “double-walled sensilla” with finger-like radial channels connecting the sensillar surface with neuronal sensory processes within the hair lumen. The “double-walled sensilla” are innervated by 2–6 sensory cells with unbranched sensory processes terminating in the apical part of the hair. Below the hair, one of the sensory processes exhibits a lamellar pattern like that of pore less sensilla in which thermoreception has been demonstrated (Altner, 1977). On the other hand, the “double-walled sensilla” of *I. typographus* have a similar structure as certain chemoreceptive sensilla (Altner, 1977; Altner et al., 1977). Thus, in different insect species, SCo may have various functions, such as hygroreception, thermo-hygroreception and olfactory reception. SCo in moths and flies are known to have an olfactory role and olfactory receptor neurons are tuned to compounds like acids, aliphatic aldehydes, amines, and ketones (De Bruyne & Baker, 2008; Pophof et al., 2005; Yao et al., 2005).

We observed the mirror arrangement of SCo on both antennal clubs, with SCo more frequently distributed on the lateral regions of the antennal clubs, indicating a potentially highly specific function. We found no previous literature reporting this kind of arrangement. Further investigation can explain this specific arrangement and modalities of SCo.

4.5 | Böhm's sensilla

BS are usually seen exclusively on the base of the scape and pedicel of the antenna in *I. duplicatus*, also reported as “böhm's bristles” in *I. subelongatus* (Shi, Zhang, Liu, Xu, et al., 2021) and as “böhm sensilla” in *I. typographus* (Shi, Zhang, Liu, Zhang, et al., 2021). In *Curculio nucum*, BS are present on the base of the scape and pedicel (Faucheux et al., 2019). Their location and distribution suggest a proprioceptive role (Merivee et al., 1999). They possess a flexible deep socket and smooth wall surface. These are known to monitor the antennal positioning and movements during the flight (Dong et al., 2020).

4.6 | Surface pores

The SPs were about 0.5 um wide and were present on both sides of the club without any association with sensilla. These structures might

be similar to the previously reported “glandular pores” in *I. sexdentatus* and *I. typographus* (Faucheux, 1989). However, the glandular pore diameters were not provided, and were associated with sensilla chaetica. Alternatively SP can represent “mechanosensory cuticle sensillum” reported on the antennal club of *I. typographus* (Hallberg, 1982). “Mechanosensory cuticle sensillum” terminates within a cavity of the cuticle with an approximate diameter of 2–2.5 um (Hallberg, 1982). Since *I. typographus* is significantly bigger in overall size than *I. duplicatus*, we can say that the dimensions of SP and “mechanosensory cuticle sensillum” are relatively similar. Alternatively, SP might be glands meant for secretion of the antennal epicuticular layer of the antennae and their sensilla (Bin et al., 1989; Dahms, 1984; Faucheux, 1994; Faucheux & Kundrata, 2015; Romani et al., 2019; Skilbeck & Anderson, 1994; Weiss et al., 2011).

5 | CONCLUSION

Ips duplicatus is a serious conifer pest that shares the same host and has similar biology as compared with *I. typographus*, which is a model bark beetle for studying olfaction. Numerous morphological and electrophysiological investigations have been conducted for *I. typographus*, but we have no information about the sensillar equipment including the typology and functions of different sensilla in *I. duplicatus*. The study addressed the research gap concerning the types of sensilla and their distribution and possible role in *I. duplicatus*. Our microscopic results revealed important information about the general morphology and the distribution of various functionally important sensilla in *I. duplicatus*. We found the sexual dimorphism in *I. duplicatus* is unrelated to the general antennal morphology and concerns only minor variations with the number and length of different sensilla types. This discrepancy in morphological properties can be associated with variation in the biophysical characteristics of different hair types, allowing them to be sensitive to different mechanical stimuli. We also provided comparative information on sensilla typology and its external characteristics in *Ips* species as an attempt to establish the general sensilla nomenclature for future studies in this genus. Overall, the present study provides a map of *I. duplicatus* olfactory equipment and establishes a basis for future olfaction-based and electrophysiological investigations of this destructive forest pest.

AUTHOR CONTRIBUTIONS

Mayuri Kashinath Shewale: Conceptualization; software; data curation; investigation; funding acquisition; writing – original draft; visualization; formal analysis; methodology; writing – review and editing. **Jana Nebesářová:** Formal analysis; validation; methodology; software. **Ewald Grosse-Wilde:** Supervision; writing – review and editing; validation. **Blanka Kalinová:** Funding acquisition; writing – review and editing; supervision; validation; conceptualization.

ACKNOWLEDGMENTS

The authors acknowledge the support from EXTEMIT-K Project (CZ.02.1.01/0.0/0.0/15_003/0000433), Ministry of Education, Youth

and Sport, Operation Programme Research, Development and Education and Internal Grant Agency: MAYURI SHEWALE (IGA: A_21_29) at the Faculty for Forestry and Wood Sciences (FLD), CZU. The authors acknowledge the Viničná Microscopy Core Facility (VMCF of the Faculty of Science, Charles University), a facility supported by MEYS CR (LM2023050 Czech-BioImaging), for their support and assistance with the microscopic work. We also acknowledge Jaromír Bláha for assistance in beetle collection and sex differentiation. We appreciate the help and assistance from Dr. Miroslav Hyliš with the specimen preparations and providing access to the microscopic facilities.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

The data of this study and the microscopic images are available from the corresponding author upon reasonable request.

ORCID

Mayuri Kashinath Shewale <https://orcid.org/0000-0001-8021-695X>

REFERENCES

Altner, H. (1977). Insect sensillum specificity and structure: An approach to a new typology. *Olfaction and Taste*, 6, 295–303.

Altner, H., Sass, H., & Altner, I. (1977). Relationship between structure and function of antennal chemo-, hygro-, and thermoreceptive sensilla in *Periplaneta americana*. *Cell and Tissue Research*, 176(3), 389–405. <https://doi.org/10.1007/BF00221796>

Andersson, M. N., Larsson, M. C., & Schlyter, F. (2009). Specificity and redundancy in the olfactory system of the bark beetle *Ips typographus*: Single-cell responses to ecologically relevant odors. *Journal of Insect Physiology*, 55(6), 556–567. <https://doi.org/10.1016/j.jinsphys.2009.01.018>

Barr, B. A. (1969). Sound production in Scolytidae (Coleoptera) with emphasis on the genus *Ips*. *Canadian Entomologist*, 101, 636–672.

Bedoya, C. L., Brockerhoff, E. G., Hayes, M., Leskey, T. C., Morrison, W. R., Rice, K. B., & Nelson, X. J. (2020). Brown marmorated stink bug overwintering aggregations are not regulated through vibrational signals during autumn dispersal: Stink bug aggregation signals. *Royal Society Open Science*, 7(11), 201371. <https://doi.org/10.1098/rsos.201371>

Bedoya, C. L., Brockerhoff, E. G., Hayes, M., Pawson, S. M., Najjar-Rodriguez, A., & Nelson, X. J. (2019). Acoustic communication of the red-haired bark beetle *Hylurgus ligniperda*. *Physiological Entomology*, 44(3–4), 252–265. <https://doi.org/10.1111/phen.12301>

Bedoya, C. L., Nelson, X. J., Hayes, M., Hofstetter, R. W., Atkinson, T. H., & Brockerhoff, E. G. (2019). First report of luminous stimuli eliciting sound production in weevils. *Science of Nature*, 106(5–6), 19–22. <https://doi.org/10.1007/s00114-019-1619-8>

Bin, F., Colazza, S., Isidoro, N., Solinas, M., & Vinson, S. B. (1989). Antennal chemosensilla and glands, and their possible meaning in the reproductive behaviour of *Trissolcus basalis* (Woll.) (Hym.: Scelionidae). *Entomologica*, 24, 33–97.

Biswas, T., Yuvaraj, J. K., Hansson, B. S., Löfstedt, C., Anderbrant, O., & Andersson, M. N. (2023). Characterization of olfactory sensory neurons in the striped ambrosia beetle *Trypodendron lineatum*. *Frontiers in Physiology*, 14(3), 1–14. <https://doi.org/10.3389/fphys.2023.1155129>

Borden, J. H., & Wood, D. L. (1966). The antennal receptors and olfactory response of *Ips confusus* (Coleoptera: Scolytidae) to male sex attractant in the Laboratory1. *Annals of the Entomological Society of America*, 59(2), 253–261. <https://doi.org/10.1093/ae/59.2.253>

Borg, T. K., & Norris, D. M. (1971). Ultrastructure of sensory receptors on the antennae of *Scolytus multistriatus* (marsh.). *Zeitschrift für Zellforschung Und Mikroskopische Anatomie*, 113(1), 13–28. <https://doi.org/10.1007/BF00331198>

Chen, H. B., Zhang, Z., Wang, H. B., & Kong, X. B. (2010). Antennal morphology and sensilla ultrastructure of *Dendroctonus valens* LeConte (Coleoptera: Curculionidae, Seolytinae), an invasive forest pest in China. *Micron*, 41(7), 735–741. <https://doi.org/10.1016/j.micron.2010.06.007>

Cui, W. C., Wang, B., Guo, M. B., Liu, Y., Jacquin-Joly, E., Yan, S. C., & Wang, G. R. (2018). A receptor-neuron correlate for the detection of attractive plant volatiles in *Helicoverpa assulta* (Lepidoptera: Noctuidae). *Insect Biochemistry and Molecular Biology*, 97(1), 31–39. <https://doi.org/10.1016/j.ibmb.2018.04.006>

Dahms, E. C. (1984). A review of the biology of species in the genus *Melittobia* (hymenoptera: Eulophidae) with interpretations and additions using observations on *Melittobia australica*. *Memoirs of the Queensland Museum*, 21(2), 337–360.

De Bruyne, M., & Baker, T. C. (2008). Odor detection in insects: Volatile codes. *Journal of Chemical Ecology*, 34(7), 882–897. <https://doi.org/10.1007/s10886-008-9485-4>

De Bruyne, M., Foster, K., & Carlson, J. R. (2001). Odor coding in the *drosophila* antenna. *Neuron*, 30(2), 537–552. [https://doi.org/10.1016/S0896-6273\(01\)00289-6](https://doi.org/10.1016/S0896-6273(01)00289-6)

Dickens, J. C., Payne, T., Dickens, J. C., & Payne, T. L. (1978). Structure and function of the sensilla on the antennal club of the southern pine beetle, *Dendroctonus frontalis* (Zimmerman) (Coleoptera: Scolytidae). *International Journal of Insect Morphology and Embryology*, 7(3), 251–265.

Dobai, A., Sivalinghem, S., Guedes, R. N. C., & Yack, J. E. (2018). Acoustic communication in the pine engraver bark beetle: Do signals vary between behavioural contexts? *Physiological Entomology*, 43(1), 30–41. <https://doi.org/10.1111/phen.12222>

Dong, Z., Dou, F., Yang, Y., Wickham, J. D., Tang, R., Zhang, Y., Huang, Z., Zheng, X., Wang, X., & Lu, W. (2020). First description and comparison of the morphological and ultramicro characteristics of the antennal sensilla of two fir longhorn beetles. *PLoS One*, 15(10), 1–19. <https://doi.org/10.1371/journal.pone.0241115>

Faucheu, M. J. (1989). Morphology of the antennal club in the male and female bark beetles *Ips sexdentatus* Boern. and *I. typographus* (L.) (Coleoptera: Scolytidae). *Annales Des Sciences Naturelles. Zoologie et Biologie Animale*, 10(4), 231–243.

Faucheu, M. J. (1994). Distribution and abundance of antennal sensilla from two populations of the pine engraver beetle, *Ips pini* (Say) (Coleoptera, Scolytidae). *Annales Des Sciences Naturelles. Zoologie et Biologie Animale*, 15(1), 15–31.

Faucheu, M. J., Hamidi, R., Mercadal, M., Thomas, M., & Frérot, B. (2019). Antennal sensilla of male and female of the nut weevil, *Curculio nucum* Linnaeus, 1758 (Coleoptera: Curculionidae). *Annales de la Société Entomologique de France*, 55(5), 395–409. <https://doi.org/10.1080/00379271.2019.1649093>

Faucheu, M. J., & Kundrata, R. (2015). Perforated plates corresponding to integumental glands on the antennae of adult male *Drilus mauritanicus* Lucas 1849 (Coleoptera: Elateridae: Agrypninae: Drilini). *Annales de la Société Entomologique de France*, 51(1), 1–3. <https://doi.org/10.1080/00379271.2015.1054705>

Galizia, C. G., & Rössler, W. (2010). Parallel olfactory systems in insects: Anatomy and function. *Annual Review of Entomology*, 55, 399–420. <https://doi.org/10.1146/annurev-ento-112408-085442>

Grodzki, W. (2012). Two types of Norway spruce *Picea abies* (L.) Karst. infestation by the double spined bark beetle *Ips duplicatus* C. R. Sahlb. (Coleoptera: Scolytinae) in southern and north-eastern Poland. *Folia*

Forestalia Polonica, 54(3), 169–174. <https://doi.org/10.5281/zenodo.30734>

Hallberg, E. (1982). Sensory organs in *Ips typographus* (Insecta: Coleoptera) fine structure of the sensilla of the maxillary and labial palps. *Acta Zoologica*, 63(4), 191–198. <https://doi.org/10.1111/j.1463-6395.1982.tb00778.x>

Hansson, B. S., & Stensmyr, M. C. (2011). Evolution of insect olfaction. *Neuron*, 72(5), 698–711. <https://doi.org/10.1016/j.neuron.2011.11.003>

Henderson, N., & Wadhams, L. J. (1981). Morphology of the antennal club of *Scolytus scolytus* (F.) and *S. multistriatus* (Marsham) (Coleoptera, Scolytidae). *Zeitschrift für Angewandte Entomologie*, 92(1–5), 477–487. <https://doi.org/10.1111/j.1439-0418.1981.tb01699.x>

Hofstetter, R. W., Aflitto, N., Bedoya, C. L., Yturralde, K., & Dunn, D. D. (2019). Vibrational behavior in bark beetles: Applied aspects. In P. Hill, R. Lakes-Harlan, V. Mazzoni, P. Narins, M. Virant-Doberlet, & A. Wessel (Eds.), *Biotremology: Studying vibrational behavior*. Animal signals and communication (Vol. 6, pp. 415–435). Springer, Cham. https://doi.org/10.1007/978-3-030-22293-2_21

Holuša, J., Lubojacký, J., & Knízek, M. (2010). Distribution of the double-spined spruce bark beetle *Ips duplicatus* in The Czech Republic: Spreading in 1997–2009. *Phytoparasitica*, 38(5), 435–443. <https://doi.org/10.1007/s12600-010-0121-9>

Hulcr, J., Atkinson, T. H., Cognato, A. I., Jordal, B. H., & McKenna, D. D. (2015). Morphology, taxonomy, and phylogenetics of bark beetles. In *Bark beetles: Biology and ecology of native and invasive species* (pp. 41–84). Academic Press. <https://doi.org/10.1016/B978-0-12-417156-5.00002-2>

Kandasamy, D., Gershenzon, J., Andersson, M. N., & Hammerbacher, A. (2019). Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle (*Ips typographus*) with its fungal symbionts. *ISME Journal*, 13(7), 1788–1800. <https://doi.org/10.1038/s41396-019-0390-3>

Kašák, J., & Foit, J. (2015). Double-spined bark beetle (*Ips duplicatus*) (Coleoptera: Curculionidae): A new host–Douglas fir (*Pseudotsuga menziesii*). *Journal of Forest Science*, 61(6), 274–276. doi:10.17221/28-2015-JFS

Keil, T. A. (1999). Morphology and development of the peripheral olfactory organs B. In S. Hansson (Ed.), *Insect olfaction* (pp. 5–47). Springer.

Khalla, M. A., Cui, R., Weißflog, J., Erdogmus, M., Svatoš, A., Dweck, H. K. M., Valenzano, D. R., Hansson, B. S., & Knaden, M. (2021). Large-scale characterization of sex pheromone communication systems in drosophila. *Nature Communications*, 12(1), 1–14. <https://doi.org/10.1038/s41467-021-24395-z>

Knízek, M., Liška, J., & Lubojacký, J. (2019). Výskyt lýkožroutů na neobvyklých živných rostlinách v roce. 2018. *Lesnická Práce*, 98(3), 38–39.

Ljungberg, H., Anderson, P., & Hansson, B. S. (1993). Physiology and morphology of pheromone-specific sensilla on the antennae of male and female *Spodoptera littoralis* (Lepidoptera: Noctuidae). *Journal of Insect Physiology*, 39(3), 253–260. [https://doi.org/10.1016/0022-1910\(93\)90096-A](https://doi.org/10.1016/0022-1910(93)90096-A)

López, M. F., Armendáriz-Toledano, F., Albores-Medina, A., & Zúñiga, G. (2018). Morphology of antennae of *Dendroctonus vitei* (Coleoptera: Curculionidae: Scolytinae), with special reference to sensilla clustered into pit craters. *Canadian Entomologist*, 150(4), 471–480. <https://doi.org/10.4039/tce.2018.25>

Merivee, E., Rahi, M., & Luik, A. (1999). Antennal sensilla of the click beetle, *Melanotus villosus* (Geoffroy) (Coleoptera: Elateridae). *International Journal of Insect Morphology and Embryology*, 28(1–2), 41–51. [https://doi.org/10.1016/S0020-7322\(98\)00032-4](https://doi.org/10.1016/S0020-7322(98)00032-4)

Moeck, H. A. (1968). Electron microscopic studies of antennal sensilla in the ambrosia beetle *Trypodendron lineatum* (Olivier) (Scolytidae). *Canadian Journal of Zoology*, 46(3), 521–556. <https://doi.org/10.1139/z68-072>

Nowińska, A., & Brożek, J. (2017). Morphological study of the antennal sensilla in *Gerromorpha* (Insecta: Hemiptera: Heteroptera). *Zoomorphology*, 136(3), 327–347. <https://doi.org/10.1007/s00435-017-0354-y>

Payne, T. L., Richerson, J. V., Dickens, J. C., West, J. R., Mori, K., Berisford, C. W., Hedden, R. L., Vité, J. P., & Blum, M. S. (1982). Southern pine beetle: Olfactory receptor and behavior discrimination of enantiomers of the attractant pheromone frontalin. *Journal of Chemical Ecology*, 8(5), 873–881. <https://doi.org/10.1007/BF0094788>

Payne, T. L., Moeck, H. A., Willson, C. D., Coulson, R. N., & Humphreys, W. J. (1973). Bark beetle olfaction-II. Antennal morphology of sixteen species of Scolytidae (Coleoptera). *International Journal of Insect Morphology and Embryology*, 2(3), 177–192. [https://doi.org/10.1016/0020-7322\(73\)90027-5](https://doi.org/10.1016/0020-7322(73)90027-5)

Pophof, B., Stange, G., & Abrell, L. (2005). Volatile organic compounds as signals in a plant–herbivore system: Electrophysiological responses in olfactory sensilla of the moth *Cactoblastis cactorum*. *Chemical Senses*, 30(1), 51–68. <https://doi.org/10.1093/chemse/bji001>

Prieto-Godino, L. L., Rytz, R., Cruchet, S., Bargeton, B., Abuin, L., Silbering, A. F., Ruta, V., Dal Peraro, M., & Benton, R. (2017). Evolution of acid-sensing olfactory circuits in Drosophilids. *Neuron*, 93(3), 661–676.e6. <https://doi.org/10.1016/j.neuron.2016.12.024>

Romani, R., Bedini, S., Salerno, G., Ascrizzi, R., Flamini, G., Echeverria, M. C., Farina, P., & Conti, B. (2019). Andean Flora as a source of new repellents against insect pests: Behavioral, morphological and electrophysiological studies on *Sitophilus zeamais* (Coleoptera: Curculionidae). *Insects*, 10(6), 171. <https://doi.org/10.3390/insects10060171>

Ruchty, M., Roces, F., & Kleineidam, C. J. (2010). Detection of minute temperature transients by thermosensitive neurons in ants. *Journal of Neurophysiology*, 104(3), 1249–1256. <https://doi.org/10.1152/jn.00390.2010>

Rudinsky, J. (1979). Chemoacoustically induced behavior of *Ips typographus* (Col.: Scolytidae). *Journal of Applied Entomology*, 88, 537–541. <https://doi.org/10.1111/j.1439-0418.1979.tb02533.x>

Rudinsky, J. A., Ryker, L. C., Michael, R. R., Libbey, L. M., & Morgan, M. E. (1976). Sound production in Scolytidae: Female sonic stimulus of male pheromone release in two *Dendroctonus* beetles. *Journal of Insect Physiology*, 22(12), 1675–1681. [https://doi.org/10.1016/0022-1910\(76\)90061-5](https://doi.org/10.1016/0022-1910(76)90061-5)

Schiebe, C., Unelius, C. R., Ganji, S., Binyameen, M., Birgersson, G., & Schlyter, F. (2019). Styrene, (+)-trans-(1R,4S,5S)-4-Thuhanol and oxygenated monoterpenes related to host stress elicit strong electrophysiological responses in the bark beetle *Ips typographus*. *Journal of Chemical Ecology*, 45(5–6), 474–489. <https://doi.org/10.1007/s10886-019-01070-8>

Schlyter, F., & Olle, A. (1993). Competition and niche separation between two bark beetles: Existence and mechanisms. *Oikos*, 68(3), 437–447.

Schmitz, R. F. (1972). Behavior of *Ips pini* during mating, oviposition, and larval development (Coleoptera: Scolytidae). *The Canadian Entomologist*, 104(11), 1723–1728. <https://doi.org/10.4039/Ent1041723-11>

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH image to ImageJ: 25 years of image analysis. *Nature Methods*, 9(7), 671–675. <https://doi.org/10.1038/nmeth.2089>

Schneider, D. (1964). Insect Antennae. *Annual Review of Entomology*, 9(1), 103–122.

Schneider, E. S., Kleineidam, C. J., Leitinger, G., & Römer, H. (2018). Ultrastructure and electrophysiology of thermosensitive sensilla coelocnica in a tropical katydid of the genus *Mecopoda* (Orthoptera, Tettigoniidae). *Arthropod Structure and Development*, 47(5), 482–497. <https://doi.org/10.1016/j.asd.2018.08.002>

Shi, X., Zhang, S. F., Liu, F., Xu, F. Y., Zhang, F. B., Guo, X. B., Zhang, Z., & Kong, X. B. (2021). SEM analysis of sensilla on the mouthparts and antennae of Asian larch bark beetle *Ips subelongatus*. *Micron*, 140(4), 102976. <https://doi.org/10.1016/j.micron.2020.102976>

Shi, X., Zhang, S. F., Liu, F., Zhang, Z., Xu, F. Y., Yin, S. Y., & Kong, X. B. (2021). Sensilla on antennae and mouthparts of adult spruce bark beetle *Ips typographus* (Coleoptera: Curculionidae). *Microscopy Research and Technique*, 84(7), 1484–1497. <https://doi.org/10.1002/jemt.23704>

Sivalinghem, S. (2012). Acoustic communication in the pine engraver bark beetle, *Ips pini* (Coleoptera: Scolytinae). ProQuest Dissertations and Theses, pp. 145.

Skilbeck, C. A., & Anderson, M. (1994). The fine structure of glandular units on the antennae of two species of the parasitoid, *Aleochara* (Coleoptera: Staphylinidae). *International Journal of Insect Morphology and Embryology*, 23(4), 319–328. [https://doi.org/10.1016/0020-7322\(94\)90028-0](https://doi.org/10.1016/0020-7322(94)90028-0)

Soni, N., Sebastian Chahda, J., & Carlson, J. R. (2019). Odor coding in the antenna of the tsetse fly *Glossina morsitans*. *Proceedings of the National Academy of Sciences of the United States of America*, 116(28), 14300–14308. <https://doi.org/10.1073/pnas.1907075116>

Steinbrecht, R. A. (1997). Pores structures in insect olfactory sensilla: A review of data and concepts. *International Journal of Insect Morphology and Embryology*, 26(3–4), 229–245. [https://doi.org/10.1016/S0020-7322\(97\)00024-X](https://doi.org/10.1016/S0020-7322(97)00024-X)

Swaby, J. A., & Rudinsky, J. A. (1976). Acoustic and olfactory behavior of *Ips pini* (say) during host invasion and colonization. *Zeitschrift für Angewandte Entomologie*, 81, 421–432.

Wadhams, L. J., Angst, M. E., & Blight, M. M. (1982). Responses of the olfactory receptors of *Scolytus scolytus* (F.) (Coleoptera: Scolytidae) to the stereoisomers of 4-methyl-3-heptanol. *Journal of Chemical Ecology*, 8(2), 477–492. <https://doi.org/10.1007/BF00987796>

Weiss, L. A., Dahanukar, A., Kwon, J. Y., Banerjee, D., & Carlson, J. R. (2011). The molecular and cellular basis of bitter taste in drosophila. *Neuron*, 69(2), 258–272. <https://doi.org/10.1016/j.neuron.2011.01.001>

Wermelinger, B., Mathis, D. S., Knížek, M., & Forster, B. (2020). Tracking the spread of the northern bark beetle (*Ips duplicatus* [Sahlb.]) in Europe and first records from Switzerland and Liechtenstein. *Alpine Entomology*, 4, 179–184. <https://doi.org/10.3897/alpento.4.53808>

Whitehead, A. T. (1981). Ultrastructure of sensilla of the female mountain pine beetle, *Dendroctonus ponderosae* Hopkins (Coleoptera: Scolytidae). *International Journal of Insect Morphology and Embryology*, 10(1), 19–28. [https://doi.org/10.1016/0020-7322\(81\)90010-6](https://doi.org/10.1016/0020-7322(81)90010-6)

Wilkinson, R. C., McClelland, W. T., Murillo, R. M., & Ostmark, E. O. (1967). Stridulation and behavior in two southeastern *Ips* bark beetles (Coleoptera: Scolytidae). *The Florida Entomologist*, 50(3), 185. <https://doi.org/10.2307/3493300>

Yao, C. A., Ignell, R., & Carlson, J. R. (2005). Chemosensory coding by neurons in the coeloconic sensilla of the drosophila antenna. *Journal of Neuroscience*, 25(37), 8359–8367. <https://doi.org/10.1523/JNEUROSCI.2432-05.2005>

Yack, J. E., & Hoy, R. R. (2003). Insect Ears. In V. H. Resh & R. Cardé (Eds.), *The Encyclopedia of Insects* (pp. 498–505). Academic Press, San Diego, CA.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Shewale, M. K., Nebesářová, J., Grosse-Wilde, E., & Kalinová, B. (2023). Microscopic morphology and distribution of the antennal sensilla in the double-spined bark beetle, *Ips duplicatus* (Coleoptera: Curculionidae). *Microscopy Research and Technique*, 86(12), 1610–1625. <https://doi.org/10.1002/jemt.24397>

Paper III

Shewale, M.K., Dusek, J., Synek, J., Nebaresova, J., Hylis, M., Jirošová, A. (2025) Comparative descriptive analysis of microscopic morphology and distribution of antennal sensilla in the pine bark beetle, *Ips acuminatus* and the larch bark beetle, *Ips cembrae* (Coleoptera: Curculionidae). Manuscript under preparation.

<i>Manuscript</i>	1
Comparative descriptive analysis of microscopic morphology and distribution of antennal sensilla in the pine bark beetle, <i>Ips acuminatus</i> and the larch bark beetle, <i>Ips cembrae</i> (Coleoptera: Curculionidae)	2
	3
	4
	5

Mayuri Kashinath Shewale ^{1*}, Jakub Dusek ¹, Jiri Synek¹, Jana Nebaresova², Miroslav Hylis ² and Anna Jirosova¹

1. Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Czech Republic
2. Laboratory of, Univesity of Karlova, Vinicna , Prague
*Correspondence: shewale@fld.czu.cz

Simple Summary: Bark beetles are small insects that depend on their antennae to detect odors from host trees, potential mates, and their environment. Two species of concern in European forests, the pine bark beetle (*Ips acuminatus*) and the larch bark beetle (*Ips cembrae*), have been linked to increasing forest damage. Despite their ecological and economic importance, little is known about how these species use their antennal structures to detect sensory cues. In this study, we used scanning electron microscopy to examine the antennae of both species, focusing on the structure and distribution of tiny, hair-like sensory organs known as sensilla. We identified five distinct sensillum types and described their location across the antennal surface. Subtle differences in the distribution and morphology of these structures were observed between the two species, and in some instances, between males and females. By better understanding these beetles' sensory systems, we lay the groundwork for future studies exploring olfactory function and provide morphological insights that could inform the development of environmentally sustainable pest control strategies.

Abstract: Bark beetles of the genus *Ips* rely heavily on olfactory cues for host selection, mate recognition, and orientation in complex environmental landscapes. Among them, *Ips acuminatus* and *Ips cembrae* are significant conifer pests in Europe; however, their antennal morphology and sensory architecture remain poorly documented. This study presents a comparative, descriptive analysis of the microscopic structure and spatial distribution of antennal sensilla in *I. acuminatus* and *I. cembrae* using scanning electron microscopy (SEM). Adult beetles were collected from naturally infested Scots pine (*Pinus sylvestris*) and European larch (*Larix decidua*), then sexed and examined using SEM. Five morphologically distinct sensillum types were identified in both species: sensilla chaetica, basiconica, trichodea, coeloconica, and Böhm's sensilla. These were distributed primarily across the antennal club, organized into three distinct sensory bands (A, B, and C). Although the overall sensilla diversity was conserved, minor interspecific and intersexual variations in sensillar morphology and spatial arrangement were noted. The findings provide a structural basis for studying olfactory-driven behaviors in *I. acuminatus* and *I. cembrae* and lay the groundwork for future electrophysiological studies. A

deeper knowledge of bark beetle antennal sensilla will contribute to more targeted pest management strategies by improving semiochemical-based monitoring and control methods. 39
40

Keywords: bark beetles; antennal sensilla; antennal club; sensory structures; insect olfaction; 41
morphology; scanning electron microscopy; *Ips acuminatus*; *Ips cembrae*; conifer pests 42
43

1. Introduction 44

Bark beetles of the genus *Ips* (Coleoptera: Curculionidae) are ecologically and economically 45
important forest pests, responsible for widespread damage to coniferous trees 46
across Europe (Hulcr et al. 2015). Among these, the pine bark beetle (*Ips acuminatus*) and 47
the larch bark beetle (*Ips cembrae*) are emerging concerns due to their expanding geographic 48
distribution and increasing outbreak frequency. *I. acuminatus* is primarily associated with 49
Scots pine (*Pinus sylvestris*), while *I. cembrae* typically infests European and 50
Japanese larch (*Larix decidua* and *L. kaempferi*), but may also colonize Norway spruce 51
(*Picea abies*) under favorable conditions (Pfleifer, 1955; Postner, 1974). Although historically 52
classified as secondary pests, both species have shown increasing potential to attack 53
healthy hosts, particularly under climate-induced stress conditions such as heat and 54
drought (Wermelinger, 2004; Netherer et al. 2021). 55

The success of bark beetles in locating suitable hosts and coordinating mass attacks is 56
largely mediated through olfactory communication (Byers, 2007). Aggregation behavior 57
is driven by pheromones released by pioneer males, which include components such as 58
S-(*-*)-ipsenol, *S*-(*+*)-ipsdienol, and host-derived volatiles (Bakke, 1978; Francke et al. 59
1986). These chemical cues enable beetles to overcome host defenses collectively and 60
facilitate successful colonization (Byers, 2007). In addition, both species are associated with 61
blue-stain fungi that may support beetle development and influence host tree mortality 62
(Jankowiak et al. 2007, Kirisits, 2004). 63

The antennae of *Ips* species serve as their primary olfactory organs and are critical for 64
detecting a wide range of chemical signals, including host volatiles, pheromones, and 65
environmental cues. Most olfactory sensilla are localized on the antennal club, arranged 66
in three distinct sensory bands (A, B, and C) along the anterior surface (Payne et al. 1973). 67
These sensilla house olfactory sensory neurons (OSNs) that vary in morphology and 68
function. Structurally, sensilla are categorized into types such as chaetica, trichodea, 69
basiconica, coeloconica, and Böhm's sensilla, based on features like wall thickness, 70
surface pores, and cuticular architecture (Schneider, 1964; Hallberg et al. 1982). Single-walled 71
sensilla (e.g., trichodea, basiconica) are often associated with pheromone detection, while 72
double-walled sensilla (e.g., coeloconica) are implicated in sensing humidity, acids, and 73
other environmental cues (Altner et al. 1977; Hallberg et al. 1982). 74

Previous ultrastructural studies have described antennal sensilla in a number of *Ips* species, including *I. typographus*, *I. sexdentatus*, *I. duplicatus* and *I. pini* (Hallberg et al. 1982; Shi et al. 2021; Shewale et al. 2023; Faucheuix et al. 1989, 1994). However, detailed comparative data on *I. acuminatus* and *I. cembrae* remain limited. Understanding the diversity, distribution, and structural features of their antennal sensilla is essential for interpreting species-specific olfactory capabilities and may inform the design of more effective semi-chemical-based monitoring tools. 75
76
77
78
79
80
81

This study presents a qualitative, comparative analysis of antennal sensilla morphology and distribution in *I. acuminatus* and *I. cembrae*, using scanning electron microscopy (SEM). 82
83
84

1. Describe the external morphology of the antennae in both species. 85
2. Identify and classify the types of sensilla present, based on their surface architecture and wall structure. 86
87
3. Map the distribution patterns of sensilla across the antennal club, particularly within the sensory bands A, B, and C. 88
89
4. Document any observed sex-specific or interspecific differences in sensilla type, number, or location. 90
91

By characterizing the antennal sensilla of these two bark beetle species, this study provides essential morphological data to support future electrophysiological investigations and advances our understanding of olfactory specialization in conifer-infesting bark beetles. 92
93
94

2. Materials and Methods 95

2.1. Study Organisms and Sample Collection: 96

Logs of European larch (*Larix decidua*) infested with *Ips cembrae* and Scots pine (*Pinus sylvestris*) infested with *Ips acuminatus* were collected in late spring 2024 from the Rouchovany region, Czech Republic. The logs were transported to the Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, where they were placed in controlled rearing chambers. Following adult emergence, the logs were debarked, and adult beetles of both species were collected. 97
98
99
100
101
102

Sex identification was conducted using morphological characteristics of the second and third elytral spines, following criteria established by Pfeffer (1955) and Zhang and Niemeyer (1992). The beetles were stored at 4°C in sterile plastic containers until examination. For scanning electron microscopy (SEM), five males and five females were randomly selected from each species. 103
104
105
106
107

108

109

2.2. Sample Preparation and Scanning Electron Microscopy:

Prior to dissection, adult beetles were cleaned using a gentle air blower to remove external contaminants. Antennae were carefully dissected under a NIKON optical microscope (Japan) and processed using the protocol outlined by Shewale et al. (2023). The samples were fixed in 2.5% glutaraldehyde in 0.5 M cacodylate buffer (pH 7.2) for 24 hours, followed by post-fixation in 2% osmium tetroxide in the same buffer. Specimens were then dehydrated through a graded ethanol series, with each step lasting 30 seconds, and dried using a Bal-Tec CPD 030 critical point dryer.

Dried antennae were sputter-coated with a 2 nm layer of gold using a Bal-Tec SCD 050 ion sputter coater. Imaging was carried out using a JEOL JSM-IT200 scanning electron microscope and a JEOL IT800 high-resolution SEM. Micrographs were taken at accelerating voltages of 3, 5, 10, and 15 kV with a working distance of 5 mm. Antennal structures, including overall morphology and sensillar types, were examined from five antennae per sex per species.

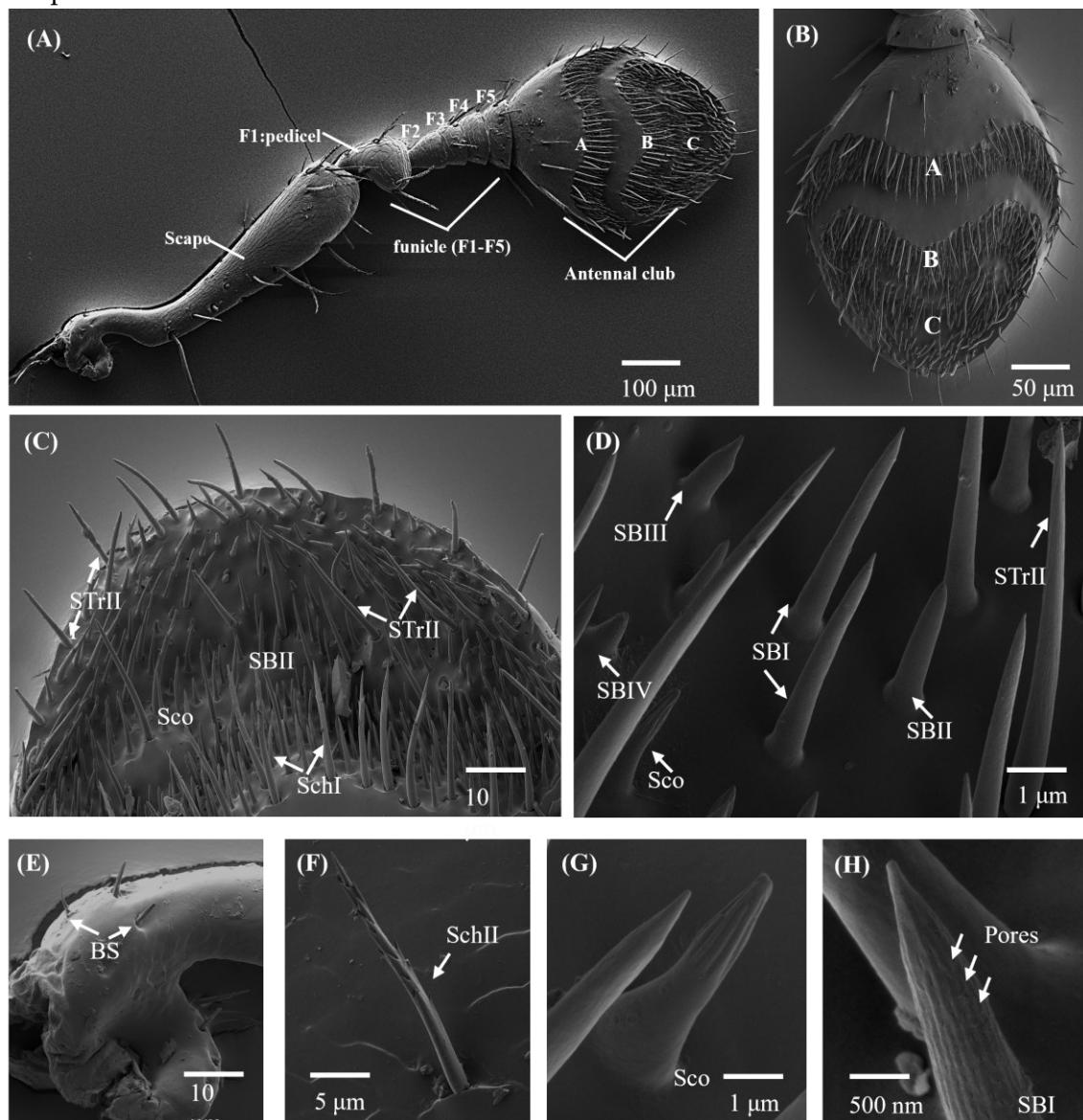
2.3. Sensilla Identification and Categorization

Sensilla were identified and categorized according to the criteria established by Schneider (1964), Nowińska and Brożek (2017), and Shewale et al. (2023). Classification was based on external morphology, including overall shape, length, base width, wall structure (single- or double-walled), surface porosity, and socket flexibility (flexible or inflexible attachment to the cuticle). General antennal terminology followed Hulcr et al. (2015).

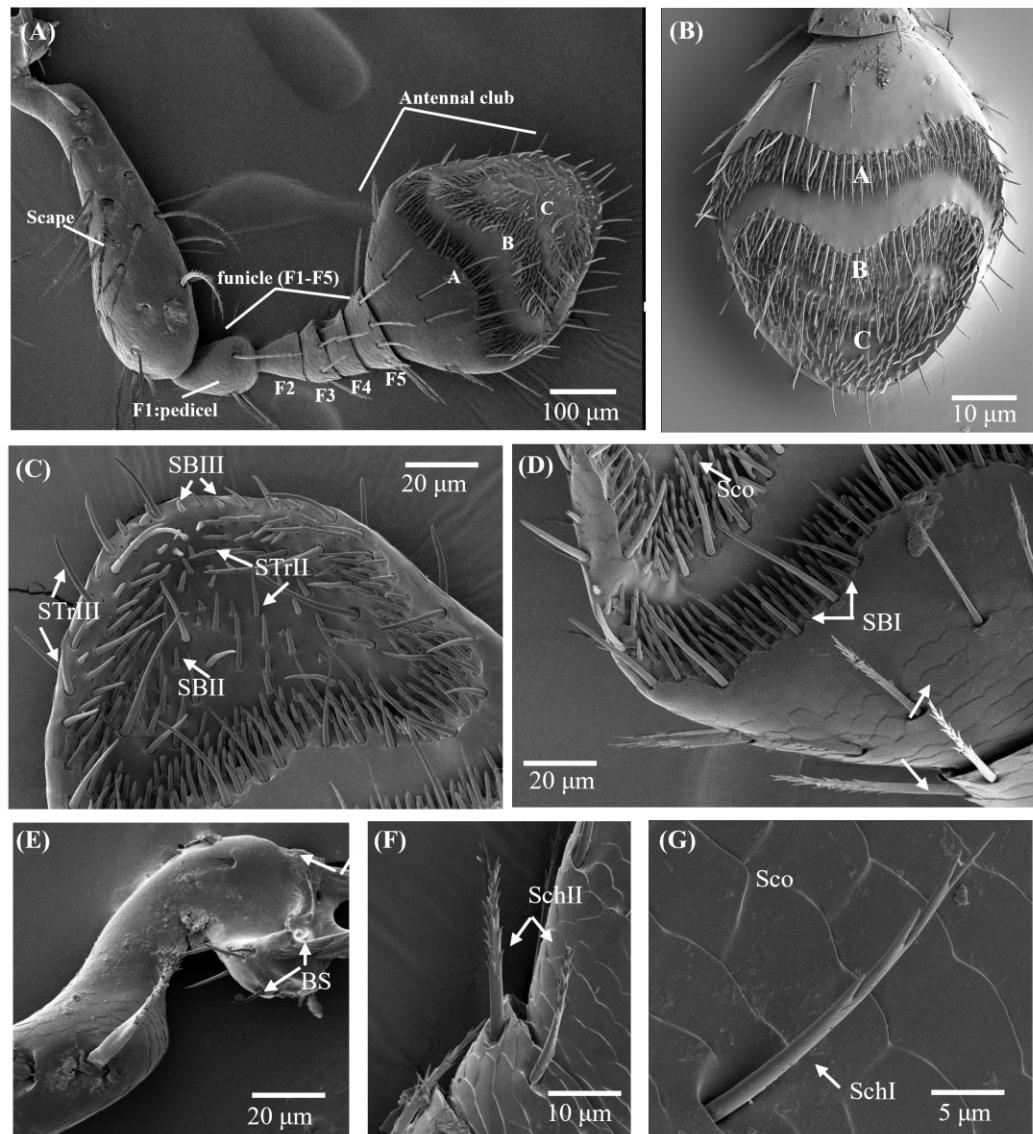
2.4. Image Analysis

All figures and image-based measurements were generated using ImageJ software (version 1.53q; Schneider et al., 2012). No statistical analysis was conducted, as the study was purely qualitative in nature and aimed at structural characterization rather than hypothesis testing.

3. Results


This study presents the first comparative morphological account of antennal sensilla in *Ips cembrae* and *Ips acuminatus*, two conifer-associated bark beetles of increasing ecological importance in European forests. Using scanning electron microscopy (SEM), we examined the antennal club of both species, focusing on the types and spatial distribution of sensilla. The findings indicate that the general antennal architecture is conserved across the genus *Ips*, aligning with earlier studies in species such as *I. typographus* and *I. duplicatus*.

3.1. General Antennal Morphology


147

Both *I. cembrae* and *I. acuminatus* possess the typical scolytine antennal structure, composed of four major segments: the scape, pedicel, funiculus, and the terminal club. The antennal club, serving as the principal olfactory organ, is structurally organized into three ventral sensory bands designated A, B, and C. This pattern is consistent with previously documented arrangements in related *Ips* species (Hallberg, 1982a; Shewale et al., 2023). 148
149
150
151
152
153

The majority of sensilla were localized on the anterior (ventral) surface of the antennal club and followed a distribution pattern conforming to the boundaries of the three sensory bands. SEM micrographs (Figs. 1 and 2) provided high-resolution views of the sensillar arrangement and surface morphology, revealing structured groupings across the club. These initial visualizations serve as a morphological reference point for future functional studies. Due to the current qualitative scope of the study, evaluation of sexual dimorphism in sensilla traits was not conducted. 154
155
156
157
158
159
160

Figure 1. Scanning electron micrographs of the *Ips cembrae* antennal club. **(A)** General view of the antennal club showing its overall morphology. **(B)** Ventral surface of the club indicating the three distinct sensory bands (A–C), with representative sensilla types labeled. **(C)** Higher magnification of sensilla trichodea subtypes STrIII and STrIV. **(D)** Sensilla basiconica, including subtypes SBI, SBII, SBIII, and SBIV. **(E)** Böhm's sensilla (BS) located at the articulation between scape and pedicel. **(F)** Sensilla chaetica, showing both SchI and SchII subtypes. **(G)** Sensilla coeloconica (SCo) with characteristic peg-in-pit morphology. **(H)** Detail of wall pores observed on sensilla basiconica subtype I (SBI).

Figure 2. Scanning electron micrographs of the *Ips acuminatus* antennal club. **(A)** Overview of the antennal club showing general structure and segmentation. **(B)** Ventral surface of the club illustrating sensory bands A–C with representative sensilla types labeled. **(C–D)** Surface topography and distribution of key olfactory sensilla, including sensilla trichodea and sensilla basiconica. **(E)** Böhm's sensilla (BS) located near the base of the antenna at the scape–pedicel junction. **(F)** Sensilla chaetica (SchI and SchII) along the club margins. **(G)** Sensilla coeloconica (SCo) with distinct peg-in-pit morphology.

3.2. Classification of Sensilla Types

Five major types of antennal sensilla were identified in both species: sensilla chaetica (SCh), sensilla basiconica (SB), sensilla trichodea (STr), sensilla coeloconica (SCo), and Böhm's sensilla (BS). These were categorized based on external morphology, wall structure, and apparent function, in accordance with established taxonomic criteria (Schneider, 1964; Hulcr et al., 2015; Shewale et al., 2023). 177
178
179
180
181

- **Sensilla chaetica (SCh):**

These long, uniporous, hair-like structures were predominantly located along the periphery and lateral margins of the antennal club. Two subtypes were distinguished based on the presence or absence of lateral branching. Their morphology is consistent with a mechanosensory role. 182
183
184
185
186

- **Sensilla basiconica (SB):**

Identified as short, thick, multiporous sensilla, sensilla basiconica exhibited four distinct morphological subtypes. These were concentrated primarily within sensory bands A and B, although the most abundant subtype (SBI) was distributed across all three bands (A, B, and C). Their porous surface and central positioning suggest an important role in olfactory detection. 187
188
189
190
191
192

- **Sensilla trichodea (STr):**

Slender, hair-like, and porous, sensilla trichodea were observed mainly in sensory band C. Three subtypes were recognized based on variations in length and curvature. Their structure supports a role in pheromone detection. 193
194
195
196

- **Sensilla coeloconica (SCo):**

Characterized by a peg-in-pit morphology, these sensilla were sparsely distributed and present in low numbers across the antennal surface. Their typical morphology suggests specialization in detecting environmental cues such as humidity or acidic volatiles. 197
198
199
200

- **Böhm's sensilla (BS):**

These short, spine-like structures were located at the articulation between the scape and pedicel. Their rigid morphology and position are consistent with a mechanosensory function related to antennal movement and positioning. 201
202
203
204

A summary of sensilla types and key morphological characteristics is provided in Table 1. 205
Representative SEM images further illustrate these sensilla across the antennal surface. 206

207

208

209

210

Table 1: Morphological characteristics and distribution of sensilla types on the antennae of *Ips acuminatus* and *I. cembrae*.

Sensilla type	Distribution	Pores	Wall structure	Tip	Shape	Socket
SchI	Antennal club (A, B and C), funicular segments (F1-F5) and scape	Aporous	Longitudinal grooved wall, bilateral branching	Sharp	Straight	Flexible
SChII	Antennal club (A), funicular segments (F1-F5) and scape	Aporous	Longitudinal grooved wall, multi-branching	Sharp	Curved	Flexible
SBI	Antennal club (A, B, C)	Multiporous	Pitted	Blunt	Straight	Inflexible
SBII	Antennal club (A, B and C)	Multiporous	Grooved	Blunt	Straight	Inflexible
SBIII	Antennal club (B and C)	Uniporous	Smooth	Blunt and round	Peg shaped	Inflexible
SBIV	Antennal club I	Uniporous	Smooth	Round	Straight	Inflexible
STrIII	Antennal club (A, B and C)	Terminal pore	Smooth	Blunt	Long and curved	Flexible
Sco	Antennal club (A, B and C)	Aporous	Grooved	Round	Cone-shaped	Inflexible
BB	Scape	Aporous	Smooth	Blunt and round	Short and straight	Flexible
SP?	Club (A, B and C), funicle segments (F1-F5) and scape	?	Pit on the club surface	-	Oval	-

3.3. Observational summary and future directions

This qualitative investigation establishes a foundational antennal sensilla map for *I. cembrae* and *I. acuminatus*, contributing essential baseline data for upcoming single sensillum recording (SSR) studies. The conserved sensilla types and consistent sensory band arrangements observed in both species support the hypothesis that antennal morphology is a shared and evolutionarily stable trait within the genus *Ips*.

While the current analysis focuses exclusively on descriptive traits, future work will expand into quantitative morphometrics, including sensillum dimensions, socket architecture, and potential sex-specific differences. These results will be detailed in a separate manuscript. The structural information provided here enables a better understanding of how bark beetles have adapted olfactory organs in relation to host ecology and offers morphological insights relevant for the development of species-specific pest monitoring strategies. 220
221
222
223
224
225
226

4. Discussion 227

This study provides the first comparative morphological assessment of antennal sensilla in *Ips acuminatus* and *Ips cembrae*, two conifer-associated bark beetles of growing importance in European forests. Our scanning electron microscopy (SEM) analysis revealed that both species share a highly conserved antennal architecture, consistent with previous observations in related *Ips* species such as *I. typographus* and *I. sexdentatus* (Hallberg, 1982; Faucheux, 1989). The club-shaped terminal segment in both *I. acuminatus* and *I. cembrae* houses sensilla arranged within three well-defined sensory bands (A, B, and C), a trait considered diagnostic for the genus. 229
230
231
232
233
234
235
236

Across both species, we identified five major types of sensilla: chaetica, basiconica, trichodea, coeloconica, and Böhm's sensilla, all of which have been previously reported in other scolytine bark beetles. Despite this general conservation, our observations also indicate interspecific differences in sensillar subtype diversity and distribution patterns, which may reflect ecological specialization or divergence in olfactory function. 237
238
239
240
241

4.1 Conserved Antennal Organization with Subtle Differences 242

The presence and arrangement of sensilla across the antennal surface were largely similar between *I. acuminatus* and *I. cembrae*. In both species, sensilla were densely localized within sensory bands A and B, with band C showing more restricted types such as trichodea. This organization parallels the sensory band pattern seen in *I. typographus* and *I. duplicatus* (Hallberg, 1982; Shewale et al. 2023), suggesting that the peripheral olfactory system in these beetles is evolutionarily stable. 243
244
245
246
247
248

However, minor differences in sensilla subtypes were evident. For example, *I. cembrae* displayed more frequent lateral branching in sensilla chaetica, which could suggest an enhanced mechanosensory function. Similarly, the density and spatial distribution of sensilla basiconica subtypes appeared slightly more uniform in *I. acuminatus* than in *I. cembrae*, although this observation remains qualitative. 249
250
251
252
253

This study demonstrates that the peripheral olfactory system in *I. acuminatus* and *I. cembrae* is built upon a structurally conserved antennal basis, with consistent sensilla organization across species. However, subtle morphological differences, such as distinct sensilla subtypes and potentially species-specific olfactory sensory neuron (OSN) arrangements, may reflect adaptations linked to ecological specialization. 254
255
256
257
258

4.2 Functional Implications of Sensilla Types 259

The chaetica sensilla, concentrated along the margins of the antennal club, are likely mechanosensory, assisting in antennal orientation and contact-based navigation. The presence of multibranched subtypes in both species may indicate a conserved role across sexes or potentially a subtle dimorphism that requires further morphometric 260
261
262
263

investigation. Similar patterns of sexual dimorphism in *chaetica* sensilla have been reported in *I. sexdentatus* and *T. lineatum* (Moeck, 1968; Faucheux, 1989), often linked to mating or oviposition behavior. 264
265
266

Basiconica sensilla, especially subtype SBI, were the most numerous in both *I. acuminatus* 267 and *I. cembrae*, forming dense clusters in sensory bands A and B. These sensilla are 268 known to contain multiple olfactory sensory neurons and are thought to detect host 269 volatiles and pheromonal cues, as demonstrated electrophysiologically in *I. typographus* (270 Andersson et al., 2009; Kandasamy et al., 2019, 2023). Their prominence in both species 271 underscores their likely central role in mediating host selection and aggregation behavior. 272

Trichodea sensilla, primarily located in band C, exhibited three distinct morphological 273 subtypes in both species. Their porous structure indicates an olfactory function, likely 274 tuned to long-range semiochemicals such as sex or aggregation pheromones. Although 275 similar subtypes have been reported in other bark beetles, one particularly elongated 276 variant was more pronounced in *I. acuminatus*, which may reflect differences in communication 277 or host detection strategies. 278

Coeloconica sensilla, though less abundant, were present in both species and followed 279 a peg-in-pit morphology typical of thermo- and hygroreceptors (Altner et al., 1977; Hall- 280 berg, 1982). Their sparse distribution suggests a specialized function, perhaps for detecting 281 microclimatic conditions or volatile cues such as ketones or aldehydes, known to be 282 relevant in host discrimination. 283

Böhm's sensilla, located at the base of the scape and pedicel, were consistently observed 284 in both species. Their small size and fixed socket indicate a proprioceptive function, likely 285 involved in monitoring antennal position during host exploration or flight behavior 286 (Merivee et al., 1999). 287

4.3 Evolutionary and Ecological Considerations 288

The general pattern of sensilla types and their distribution observed in *I. acuminatus* 289 and *I. cembrae* reflects the genus-wide conservation of antennal design. However, the 290 observed morphological nuances such as branching in *chaetica* sensilla or subtype richness 291 in basiconica and trichodea highlight how structural adaptations may fine-tune olfactory 292 systems to meet species-specific ecological demands. 293

These findings support the hypothesis that bark beetle olfactory systems balance structural 294 conservation with adaptive plasticity, allowing different species to respond to distinct 295 chemical environments while maintaining core functions. Comparative studies 296 across additional *Ips* species, particularly with functional data such as single sensillum 297 recordings (SSR), will be essential for mapping specific OSN classes to sensilla subtypes 298 and determining their behavioral roles. 299

300

5. Conclusion 301

This study provides the first detailed comparative account of antennal sensilla morphology 302 and distribution in *Ips acuminatus* and *Ips cembrae*, two ecologically important bark 303 beetle species associated with conifer hosts in European forests. Using scanning electron 304 microscopy, we identified five principal sensilla types—*chaetica*, *basiconica*, *trichodea*, 305 *coeloconica*, and Böhm's sensilla distributed across three distinct sensory bands on the 306 antennal club. While the overall antennal architecture was conserved in both species, subtle 307

differences in sensilla subtype diversity and spatial arrangement suggest species-specific adaptations related to their ecological niches. 308
309

These qualitative findings highlight a structurally stable peripheral olfactory system across 310
the genus *Ips*, with microstructural variation likely supporting functional divergence in 311
odor detection. The antennal sensilla maps generated here provide essential morphological 312
groundwork for future electrophysiological studies aimed at characterizing olfactory 313
sensory neuron (OSN) responses to pheromones, host volatiles, and environmental cues. 314
By enhancing our understanding of antennal sensilla organization, this research contributes 315
to broader efforts in bark beetle sensory biology and supports the development of 316
more targeted, species-specific semiochemical-based pest management strategies. 317

6. Data availability statement 318

The original contributions presented in the study are included in the article, further 319
inquiries can be directed to the corresponding author. 320

7. Author contributions 321

MKS: Data curation, Formal analysis, Investigation, Visualization, Validation, Writing—original 322
draft. JD: Methodology, Writing—review & editing. JS: Methodology, Writing—review & editing. 323
JN: Methodology, Supervision. MH: Methodology, Supervision. AJ: Conceptualization, 324
Methodology, Supervision, Validation, Writing—review & editing. 325

8. Funding 326

The author(s) declare financial support was received for the research, authorship, and/or 327
publication of this article. Mayuri K. Shewale and Anna Jirošová were funded by the funding 328
agency Czech Science Foundation GACR 23-07916S, Czech Republic. Research funding Internal 329
Grant Commission at the Faculty of Forestry and Wood Sciences, Czech University of Life Sciences 330
Prague, Czech Republic; [MKS, IGA: A_08_24]. Publication fee funding: Faculty of Forestry and 331
Wood Sciences, Czech University of Life Sciences Prague. 332

9. Acknowledgments 333

The English language was edited using ScholarAI (2025), ScholarAI: AI-powered research 334
assistant. OpenAI. Available at: <https://notilo.ai>. 335

336

10. Conflict of interest 337

The authors declare that the research was conducted in the absence of any commercial or 338
financial relationships that could be construed as a potential conflict of interest. 339

340

341

342

343

11. References	344
	345
1. Altner, H., Sass, H. and Altner, I. (1977). Relationship between structure and function of antennal chemo-, hygro-, and thermoreceptive sensilla in <i>Periplaneta americana</i> . <i>Cell and Tissue Research</i> , 176(3), 389–405. https://doi.org/10.1007/BF00221796 .	346
	347
2. Jankowiak, R., Rossa, R. and Mista, K. (2007). Survey of fungal species vectored by <i>Ips cembrae</i> to European larch trees in Raciborskie forests (Poland). <i>Czech Mycology</i> , 59(2), 227–239. https://doi.org/10.33585/cmy.59209 .	349
	350
3. Hulcr, J., Atkinson, T.H., Cognato, A.I., Jordal, B.H. and McKenna, D.D. (2015). Morphology, taxonomy, and phylogenetics of bark beetles. In: Vega, F.E. and Hofstetter, R.W. (eds.) <i>Bark Beetles: Biology and Ecology of Native and Invasive Species</i> . Elsevier, pp. 41–84. https://doi.org/10.1016/B978-0-12-417156-5.00002-2 .	352
	353
4. Hallberg, E. (1982a). Sensory organs in <i>Ips typographus</i> (Insecta: Coleoptera) - Fine structure of antennal sensilla. <i>Protoplasma</i> , 111, 206–214. https://doi.org/10.1007/BF01281968 .	356
	357
5. Francke, W., Pan, M., Bartels, J., König, W.A., Vité, J.P., Krawielitzki, S., et al. (1986). The odour bouquet of three pine engraver beetles (<i>Ips</i> spp.). <i>Journal of Applied Entomology</i> , 101, 453–461. https://doi.org/10.1111/j.1439-0418.1986.tb00819.x .	359
	360
6. Faucheu, M.J. (1989). Morphology of the antennal club in the male and female bark beetles <i>Ips sexdentatus</i> Boern. and <i>I. typographus</i> (L.) (Coleoptera: Scolytidae). <i>Annales Des Sciences Naturelles. Zoologie et Biologie Animale</i> , 10(4), 231–243.	362
	363
7. Faucheu, M.J. (1994). Distribution and abundance of antennal sensilla from two populations of the pine engraver beetle, <i>Ips pini</i> (Say) (Coleoptera, Scolytidae). <i>Annales Des Sciences Naturelles. Zoologie et Biologie Animale</i> , 15(1), 15–31.	365
	366
8. Byers, J.A. (2007). Chemical ecology of bark beetles in a complex olfactory landscape. In: Lieutier, F., Day, K.R., Battisti, A., Grégoire, J.C. and Evans, H.F. (eds.) <i>Bark and Wood Boring Insects in Living Trees in Europe: A Synthesis</i> . Dordrecht: Springer, pp. 89–134. https://doi.org/10.1007/978-1-4020-2241-8_8 .	368
	369
9. Bakke, A. (1978). Aggregation pheromone components of the bark beetle <i>Ips acuminatus</i> . <i>Oikos</i> , 31, 184–188. https://doi.org/10.2307/3543236 .	372
	373
10. Kirisits, T. (2004). Fungal associates of European bark beetles with special emphasis on the ophiostomatoid fungi. In: Lieutier, F., Day, K.R., Battisti, A., Grégoire, J.C. and Evans, H.F. (eds.) <i>Bark and Wood Boring Insects in Living Trees in Europe: A Synthesis</i> . Springer, pp. 181–236.	374
	375
11. Netherer, S., Kandasamy, D., Jirošová, A., Kalinová, B., Schebeck, M. and Schlyter, F. (2021). Interactions among Norway spruce, the bark beetle <i>Ips typographus</i> , and its	378
	379

fungal symbionts in times of drought. *Journal of Pest Science*, 94, 591–614. 380
<https://doi.org/10.1007/s10340-021-01341-y>. 381

12. Payne, T.L., Moeck, H.A., Willson, C.D., Coulson, R.N. and Humphreys, W.J. (1973). 382
Bark beetle olfaction—II. Antennal morphology of sixteen species of Scolytidae 383
(Coleoptera). *International Journal of Insect Morphology and Embryology*, 2, 177–192. 384
[https://doi.org/10.1016/0020-7322\(73\)90015-4](https://doi.org/10.1016/0020-7322(73)90015-4). 385

13. Pfeffer, A. (1955). *Fauna ČSR. Svazek 6: Kůrovci-Scolytoidea*. Praha: Brouci-Coleoptera. 386
Nakladatelství Československé Akademie Věd. 387

14. Postner, M. (1974). *Ips cembrae*. In: *Die Forstschädlinge Europas. II. Band. Käfer*. Hamburg: 388
Paul Parey, pp. 458–459. 389

15. Schneider, C.A., Rasband, W.S. and Eliceiri, K.W. (2012). NIH image to ImageJ: 25 years 390
of image analysis. *Nature Methods*, 9(7), 671–675. <https://doi.org/10.1038/nmeth.2089>. 391

16. Schneider, D. (1964). Insect Antennae. *Annual Review of Entomology*, 9(1), 103–122. 392

17. Shewale, M.K., Nebesářová, J., Grosse-Wilde, E. and Kalinová, B. (2023). Microscopic 393
morphology and distribution of the antennal sensilla in the double-spined bark beetle, 394
Ips duplicatus (Coleoptera: Curculionidae). *Microscopy Research and Technique*, 86, 1610– 395
<https://doi.org/10.1002/jemt.24397>. 396

18. Shi, X., Zhang, S.F., Liu, F., Zhang, Z., Xu, F.Y., Yin, S.Y. and Kong, X.B. (2021). Sensilla 397
on antennae and mouthparts of adult spruce bark beetle *Ips typographus* (Coleoptera: 398
Curculionidae). *Microscopy Research and Technique*, 84(7), 1484–1497. 399
<https://doi.org/10.1002/jemt.23704>. 400

19. Wermelinger, B. (2004). Ecology and management of the spruce bark beetle *Ips typographus* – 401
A review of recent research. *Forest Ecology and Management*, 202, 67–82. 402
<https://doi.org/10.1016/j.foreco.2004.07.018>. 403

20. Zhang, Q.H. and Niemeyer, H. (1992). Morphological characteristics for sexing living 404
adults of *Ips cembrae* (Heer) (Coleoptera: Scolytidae). *Journal of Applied Entomology*, 114, 405
403–409. <https://doi.org/10.1111/j.1439-0418.1992.tb01144.x>. 406

21. Merivee, E., Rahi, M. and Luik, A. (1999). Antennal sensilla of the click beetle, *Melanotus* 407
villosus (Geoffroy) (Coleoptera: Elateridae). *International Journal of Insect Morphology and 408
Embryology*, 28(1–2), 41–51. [https://doi.org/10.1016/S0020-7322\(98\)00032-4](https://doi.org/10.1016/S0020-7322(98)00032-4). 409

22. Moeck, H.A. (1968). Electron microscopic studies of antennal sensilla in the ambrosia 410
beetle *Trypodendron lineatum* (Olivier) (Scolytidae). *Canadian Journal of Zoology*, 46(3), 411
521–556. <https://doi.org/10.1139/z68-072>. 412

23. Kandasamy, D., Gershenson, J., Andersson, M.N. and Hammerbacher, A. (2019). 413
Volatile organic compounds influence the interaction of the Eurasian spruce bark 414

beetle (*Ips typographus*) with its fungal symbionts. *ISME Journal*, 13, 1788–1800. 415
<https://doi.org/10.1038/s41396-019-0390-3>. 416

24. Kandasamy, D., Zaman, R., Nakamura, Y., Zhao, T., Hartmann, H., Andersson, M.N., 417
et al. (2023). Conifer-killing bark beetles locate fungal symbionts by detecting volatile 418
fungal metabolites of host tree resin monoterpenes. *PLoS Biology*, 21, e3001887. 419
<https://doi.org/10.1371/journal.pbio.3001887>. 420

25. Andersson, M.N., Larsson, M.C. and Schlyter, F. (2009). Specificity and redundancy in 421
the olfactory system of the bark beetle *Ips typographus*: Single-cell responses to 422
ecologically relevant odors. *Journal of Insect Physiology*, 55, 556–567. 423
a. <https://doi.org/10.1016/j.jinsphys.2009.01.015>. 424

425

426

Paper IV

Moliterno, A. A. C. †, **Shewale, M.K.** †, Basile, S., Synek, J., Jirošová, A. (2025) Size- and dose-dependent behavioral responses to 1,8-cineole and (+)-isopinocamphone: a potential host selection strategy in female *Ips typographus* L. Submitted to *Annals of Forest Science*. under revision.

†Equal contribution as first author

Title of the article

Size- and dose-dependent behavioral responses to 1,8-cineole and (+)-isopinocamphone: a potential host selection strategy in female *Ips typographus* L.

Antonioni Acacio Campos Moliterno^{1†**}, Mayuri Kashinath Shewale^{1†}, Sara Basile¹, Jiří Synek¹, Anna Jirošová^{1*}

¹Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Czech Republic

†equal contribution

* Corresponding and **co-corresponding author

Email addresses of all the authors

AAC Moliterno: moliterno@fld.czu.cz

M K Shewale: shewale@fld.czu.cz

S Basile: basile@fld.czu.cz

J Synek: synekj@fld.czu.cz

A Jirošová: jirosovaa@fld.czu.cz

ORCID identifier of authors

AAC Moliterno: orcid.org/0000-0003-4126-1912

M K Shewale: orcid.org/0000-0001-8021-695X

S Basile: orcid.org/0000-0002-8039-6193

J Synek: not available

A Jirošová: orcid.org/0000-0002-5054-5821

Keywords: bark beetle, olfaction, pheromone, oxygenated monoterpenes, phenotypic variations, host choice

• Funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. Ministry of Education, Youth, and Sport, Operational Programme Research, Development, and Education, Czech Republic; “EXTEMIT-K,” No. CZ.02.1.01/0.0/0.0/15_003/0000433. Research funding Internal Grant Commission at the Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Czechia; [AACM, IGA: 43950_1312_21; SB, IGA: 43170_1312_3128; MKS, IGA:43150_1312_3127].

• Authors' contributions

AACM conceived and designed the study experiments. JS assisted in insect maintenance and rearing. AACM and MKS performed morphometric and electrophysiological analyses and collected data. AACM performed modeling work and statistical analysis of output data. SB prepared the figures and tables. AACM wrote the first draft. AACM, MKS, SB, and JS edited the draft. AJ and JH supervised the work, edited text, and provided valuable feedback.

• Acknowledgements

We are grateful to Prof. Rikard Unelius, Linnaeus university, Sweden for providing (+)-isopinocamphone for experiments. We thank Katerina Beránková for the field data from 2019. We also would like to thank both doctoral

students, Rajarajan Ramakrishnan and Strádal Jaroslav for their assistance during the sex determination of beetles, and Jaromír Bláha for managing beetle infested logs.

- **Availability of data and material (data transparency)** Mandatory

The additional data is uploaded as Appendix material as filename: Data_file S1 (sheet A to F)

The raw data is available in: http://datadryad.org/stash/share/0VDe7mjUBYWuyw3_XG-NkWnytjtm-T58Z5kwwKKXfV8

- **Code availability (software application or custom code)**

The code and scripts used for this article can be found online at Dryad repository:

URL: <http://datadryad.org/share/eMlJtgCcS32RG6YXPuE8Bhnm0CdgOpg3uX2hJlbpiks>.

- **Conflicts of interest/Competing interests**

The authors declare no competing interests.

- **Ethics approval (include appropriate approvals or waivers)**

Ethical approval was not required for this study. We have performed all beetle experiments that comply with the ARRIVE guidelines and were carried out in accordance with (Scientific Procedures) Act, 1986 and associated guidelines, EU Directive 2010/63/EU for animal experiments.

- **Consent to participate (include appropriate statements)**

Not applicable

- **Consent for publication (include appropriate statements)**

All authors gave their informed consent to this publication and its content.

Total number of characters: 47512

Number of tables: 3; **Number of figures:** 3

Reference to pre-print servers (when relevant):

Not applicable

Size-dependent behavioral and antennal responses to doses of (+)-isopinocamphone and 1,8-cineole mixed with pheromone: a potential host selection strategy in female *Ips typographus* L.

Key message

This study revealed differing behavioral and antennal responses between large and small female *I. typographus* to two bioactive oxygenated monoterpenes, (+)-isopinocamphone and 1,8-cineole, which serve contrasting ecological roles as aggregation pheromone synergist and inhibitor. Larger females were more attracted to (+)-isopinocamphone and had larger antennal clubs leading to enhanced antennal sensitivity, potentially improving their ability to select suitable host trees. In contrast, smaller females were less repelled by 1,8-cineole but had higher antennal sensitivity despite having smaller antennae. This discrepancy can be explained by behavioral decisions made after downstream olfactory signal processing in the central nervous system (CNS) and by the co-localization of 1,8-cineole with pheromone-sensitive neurons. Ecologically, small females may avoid competition with larger females by selecting less suitable trees. In conclusion, females' body size influences olfactory-driven response to potential host selection decisive volatiles, which can impact reproductive success and bark beetle population dynamics.

Abstract

Context:

Ips typographus, a major pest of Norway spruce (*Picea abies*) in Europe, is experiencing more frequent outbreaks due to climate change. These outbreaks involve shifts in population dynamics and phenotypic traits, influencing beetle responses to olfactory cues from stressed host trees.

Aims:

The study examines the size-dependent behavioral and antennal responses of female *I. typographus* to two host selection-deciding volatiles with contrasting ecological roles: 1,8-cineole, which inhibits attraction to unsuitable trees, and (+)-isopinocamphone, a pheromone synergist. Size-linked morphological and olfactory adaptations may influence females' ability to select suitable host trees for reproduction.

35 **Methods:**

1 36 In field trap experiments conducted in 2019 and 2022, the body size of *I. typographus* females
2 37 caught in response to different doses of (+)-isopinocamphone or 1,8-cineole in combination
3 38 with pheromone was compared. Female *Ips typographus* were sorted based on body length, the
4 39 size of the antennal club was measured, and size-dependent antennal responses to these volatiles
5 40 were analyzed using electroantennography.

10 41
11 42 **Results:**

12 43 Larger females were more attracted to (+)-isopinocamphone in combination with pheromone
13 44 in the field, showed stronger antennal detection, and had proportionally larger antennal clubs
14 45 than smaller females. In contrast, smaller females were less repelled by 1,8-cineole added to
15 46 pheromone but, in contradiction, antennally detected it more strongly than larger females
16 47 despite having smaller antennal clubs.

17 48
18 49 **Conclusion:** The total body length significantly influences semiochemical detection in *I.*
19 50 *typographus* females. (+)-isopinocamphone was detected more effectively by larger females,
20 51 implying an advantage in the selection of suitable host trees. In contrast, the discrepancy
21 52 between behavioral and antennal responses to 1,8-cineole in smaller females suggests
22 53 involvement of not only peripheral detection but also central nervous processing of olfactory
23 54 signals driving behavior. This adaptation may enable smaller females to reduce competition
24 55 with large ones by selecting less suitable trees. These findings provide new insights into the
25 56 ecological relationship between beetle morphology and olfactory cues, with implications for
26 57 tree–bark beetle interactions.

27 58
28 59 **Keywords:** bark beetle, olfaction, pheromone, oxygenated spruce monoterpenes, phenotypic
29 60 variations, host choice

68 **1. Introduction**

1 69
2
3 70 The Eurasian spruce bark beetle, *Ips typographus* L. 1758 (Coleoptera: Curculionidae), is a
4 major pest associated with the Norway spruce (*Picea abies*) in Europe (Hlásny et al. 2021;
5 Powell et al. 2021). Outbreaks of this species have intensified in frequency and severity, mainly
6 due to climate change, and are facilitated by its complex and sophisticated chemical
7 communication system (Biedermann et al. 2019). Male *I. typographus* play a pivotal role in
8 locating weakened or stressed spruce trees using a combination of visual and chemical cues
9 across both long and short distances (Birgersson and Bergström 1989; Netherer et al. 2021;
10 Lehmann et al. 2023). After initiating attack by boring into the bark (Wermelinger 2004),
11 males produce aggregation pheromones (Birgersson et al. 1984; Ramakrishnan et al. 2022) to
12 attract conspecifics for coordinating mass attacks to colonize the host tree and overcome tree
13 defenses (Franceschi et al. 2005; Raffa et al. 2016). The success of this colonization process is
14 highly influenced by host-emitted volatile organic compounds.

15
16 82 Norway spruce releases a range of monoterpenes, including highly abundant compounds such
17 as α -pinene, β -pinene, β -phellandrene, and limonene (Netherer et al. 2021). These compounds
18 have been tested to enhance the attraction of *I. typographus* (Erbilgin et al. 2007; Hulcr et al.
19 2006). In addition to these dominant volatiles, many studies have identified several low-
20 abundance compounds emitted by spruce, comprising approximately 1% of the total volatile
21 profile. While present in low amounts, these compounds elicit strong antennal responses in
22 beetles (Kalinová et al. 2014; Schiebe et al. 2019), highlighting their ecological significance in
23 tri-trophic interactions with beetles, its symbiotic microbiota, and the host tree (Netherer et al.
24 2021). Most of these minor yet biologically active volatiles are oxygenated spruce
25 monoterpenes, with a few exceptions such as estragole and styrene, which have phenolic
26 character. Oxygenated monoterpenes are produced within the spruce–bark beetle–symbiotic
27 microorganism niche through multiple mechanisms. They can be formed via the oxidation of
28 major spruce monoterpene hydrocarbons, either naturally by air exposure or enzymatically by
29 the spruce microbiome. This transformation becomes especially prominent when trees
30 experience stress, such as after being cut, windthrown, or infested by bark beetles (Netherer et al.
31 2021; Schiebe et al. 2019). Under these conditions, the levels of compounds such as
32 isopinocamphone, camphor, pinocarvone, terpinen-4-ol, and terpineol significantly increase.
33 However, they remain minor components of spruce volatile profile compared to the main
34 terpenic hydrocarbons.

101 Additionally, monoterpene hydrocarbons can be hydroxylated (introducing oxygen to
102 molecule) by the beetles' enzymatic detoxification systems. For example, α -pinene can be
103 converted into myrtenol or *cis*-verbenol (Blomquist and Vogt 2021), while limonene may be
104 transformed into carvone (Duetz et al. 2001). Over evolutionary time, several of these oxidation
105 products have been co-opted by bark beetles as pheromonal compounds e.g. *cis*-verbenol in *I.*
106 *typographus* (Francke and Vite 1983). Moreover, the beetle-associated intestinal microbiome
107 also plays a key role in modifying host volatiles. It contributes not only to the oxidation of tree
108 hydrocarbons but also to the further oxidation of *cis*-verbenol into verbenone, a potent bark
109 beetle anti-aggregation signal (Frühbort et al. 2023). In parallel, beetle-exosymbiotic
110 ophiostomatoid fungi, which are inoculated into trees by boring beetles during colonization,
111 also metabolize monoterpenes to their oxidative forms (Kandasamy et al. 2023). On the other
112 hand, some oxygenated monoterpenes, namely 1,8-cineole, are directly *de novo* formed through
113 the cyclization of oxygenated intermediates within the spruce tree enzymatic system and not by
114 oxidation of hydrocarbon precursors (Celedon and Bohlmann 2019).

115 Like many insects, bark beetles depend on highly specialized olfactory systems located in their
116 antennae to navigate and interact with their environment (Hansson and Stensmyr 2011). In *I.*
117 *typographus*, olfactory sensory neurons (OSNs) are housed within hair-like sensilla on the
118 antennal surface. These neurons enable precise discrimination among a wide array of odor cues,
119 including aggregation pheromones, host- and nonhost-derived tree volatiles, and volatiles
120 produced by symbiotic microorganisms (Andersson et al. 2009). OSNs differ in their
121 specificity. Some range from highly selective specialists detecting specific pheromones
122 (Wojtasek et al. 1998) while some are broadly tuned generalists responsive to diverse
123 environmental cues like host volatiles (Andersson et al. 2010; Binyameen et al. 2014). This
124 specificity is determined by odorant receptors (ORs) located on their dendrites (Carey et al.
125 2010; Hallem and Carlson 2006). Upon odor detection, signals are transmitted to the antennal
126 lobes (ALs), where glomeruli integrate input (Vosshall et al. 2000), and projection neurons
127 relay this information to the mushroom bodies, which are involved in learning and memory,
128 and the lateral horn, associated with innate behavioral responses (Galizia 2014; Clark and Ray
129 2016). This finely tuned chemosensory system plays a critical role in mediating behaviors such
130 as host location, mate finding, and avoidance of unsuitable environments (Andersson et al.
131 2009; Zhang and Schlyter 2004).

132 Functional mapping of these neurons in *I. typographus* has identified specific OSN classes that
133 respond to oxygenated spruce monoterpenes, including 1,8-cineole and (+)-isopinocamphone
134 ((+)-IPC) (Andersson 2012; Kandasamy et al. 2023). Interestingly, OSNs activated by 1,8-
135 cineole are consistently co-localized within the same sensilla as those tuned to the pheromonal
136 component *cis*-verbenol (Andersson et al. 2009; Andersson et al. 2010). This arrangement of
137 OSNs enables peripheral-level signal integration, where exposure to high concentrations of 1,8-
138 cineole suppresses the neural response to *cis*-verbenol (Andersson et al. 2009; Binyameen et al.
139 2014). In contrast, OSNs responsive to (+)-isopinocamphone in *I. typographus* are individually
140 localized and have not been observed in co-localization with neurons detecting other
141 compounds. The specificity of this response is attributed to the olfactory receptor ItypOR29,
142 located on the OSN membrane, which binds selectively to (+)-isopinocamphone, as confirmed
143 through receptor expression and functional characterization in *I. typographus* (Hou et al. 2021).

144 Behavioral studies further support the ecological relevance of these olfactory interactions of
145 oxygenated spruce monoterpenes. Field experiments have shown that 1,8-cineole, when added
146 to pheromone blends containing *cis*-verbenol, inhibits beetle attraction in a clear dose-
147 dependent manner (Andersson et al. 2010; Jirošová et al. 2022). Moreover, studies on the
148 functional role of neuronal co-localization, where one neuron within the same sensillum
149 responds to an attractant and another to an inhibitor, have demonstrated that 1,8-cineole induces
150 more precise spatial avoidance of beetles from the pheromone source than verbenone.
151 Verbenone is a known anti-attractant (Frühbort et al. 2023), yet its corresponding neuron has
152 never been found to be co-localized with those for pheromonal compounds (Binyameen et al.
153 2014). Interestingly, a significantly higher content of 1,8-cineole has been found in spruce trees
154 that are less susceptible to bark beetle attacks or that survived infestations more successfully
155 (Schiebe et al. 2012). Additionally, preliminary feeding studies further indicate that 1,8-cineole
156 exhibits greater toxicity to female *I. typographus* than to males (Zaman et al. 2024). This
157 suggests that 1,8-cineole could serve as a potential chemical marker of bark beetle-resistant
158 trees. In contrast to the inhibitory effects of 1,8-cineole, field studies showed that (+)-
159 isopinocamphone significantly enhanced *I. typographus* captures at pheromone-baited traps
160 and acted as a synergist with pheromone activity (Moliterno et al. 2023). Among the several
161 tested compounds including estragole, 1,8-cineole, (\pm)-camphor, ($-$)-carvone, α -terpineol, ($-$)-
162 terpinen-4-ol, (+)-pinocamphone, and (+)-isopinocamphone, each evaluated at three different
163 doses; (+)-isopinocamphone was the only one to exhibit this relatively rare synergistic effect
164 with pheromone. Additionally, (+)-isopinocamphone was also identified as a substantial

165 component of the volatile bouquet produced by *Grossmania penicillata*,
166 *Leptographium europhoides* and *Ophiostoma bicolor* which are beetle-associated fungi, when
167 cultured on spruce phloem media. This fungal volatile blend was shown to attract beetles in
168 short-range Petri-dish bioassays (Kandasamy et al. 2023).

169 Variations in abiotic and biotic factors significantly influence tree physiology, which directly
170 affects host suitability and selection by bark beetles (Netherer et al. 2024). During endemic
171 population stages, beetles prefer high-quality trees with low competition, conditions that favor
172 offspring growth and fitness. However, during epidemic outbreaks, beetles are often forced to
173 colonize suboptimal hosts, leading to reduced offspring vigor, including smaller body size
174 (Foelker and Hofstetter 2014; Sallé and Raffa 2007). This decline in body size has cascading
175 effects, as it can negatively influence pheromone production (Anderbrant et al. 1985;
176 Pureswaran and Borden 2003), ultimately reducing mating success (Dacquin et al. 2024). The
177 reproductive biology of *I. typographus* is closely linked to chemical signals. Males produce
178 pheromones that serve not only for aggregation but also function partially as sexual attractants.
179 As polygynous species, males typically mate with up to four females, increasing their mating
180 success and overall fecundity (Schebeck et al. 2023). Female beetles are central to reproductive
181 success, as they are responsible for gallery construction and oviposition. Consequently, females
182 play a more selective role in reproduction, evaluating both mate quality and host tree suitability
183 to optimize offspring survival and fitness (Schlyter and Zhang 1996, Paynter et al. 1990),
184 relying on signals from both male-produced pheromones and tree-emitted volatile cues. The
185 precision of pheromone-based recognition is well documented at the interspecific level among
186 *Ips* beetles, suggesting strong selective pressures on olfactory systems (Schlyter et al. 2015).
187 Variations in female total body length, combined with pheromonal and host tree chemical cues,
188 are crucial for understanding ecological adaptations, such as host selection strategies (Muller et
189 al. 2020; Schlyter and Anderbrant 1993).

190 This study explores size-specific behavior in female *I. typographus*, with a focus on their
191 olfactory assessment of host tree quality, which is a critical factor for survival and reproductive
192 success. We examine whether large and small females respond differently to two oxygenated
193 spruce monoterpenes, 1,8-cineole and (+)-isopinocamphone, tested in combination with
194 aggregation pheromones in a trap-capturing experiment. Additionally, we investigate if their
195 antennae exhibit size-dependent differences in sensitivity to these compounds using
196 electroantennographic analysis, and whether the antennal club shape differs between large and
197 small females. Building on these objectives and the current understanding of bark beetle

198 chemical ecology, this study is guided by the core hypothesis: "Larger and smaller *I.*
1 199 *typographus* females will exhibit distinct behavioural and electrophysiological responses to the
2 200 two oxygenated spruce monoterpenes with contrasting ecological roles: 1,8-cineole, which
3 201 inhibits attraction to unsuitable trees, and (+)-isopinocamphone, which enhances the attraction
4 202 to aggregation pheromones. These behavioral differences could be caused by size-dependent
5 203 variations in antennal sensitivity for these two compounds, which is potentially influenced by
6 204 morphological differences in the antennal clubs."

7 205 The ecological impact of these size-dependent differences, driven by morphological and
8 206 olfactory adaptations, may affect *I. typographus* females' ability to select high-quality host
9 207 trees. This, in turn, could have broader implications for the beetles' reproductive strategies and,
10 208 consequently, their population dynamics.

11 209

210 2. Material and methods

211 2.1. Experimental approach

212 We evaluated the responses of *I. typographus* females using two complementary assays. The
213 first was a field assay involving traps baited with either 1,8-cineole or (+)-isopinocamphone at
214 three different doses in combination with a pheromone, and we compared the sex-ratio and
215 body length of beetle captures to those from traps baited with pheromone alone. The second
216 assay included electroantennography (EAG) analysis to measure the antennal responses of
217 small and large females to varying doses of 1,8-cineole or (+)-isopinocamphone. We also
218 conducted a morphometric analysis of antennal club size in these two groups.

219

220 2.2. Field experiment area and pheromone traps

221 The trapping experiments were conducted in 2019 and 2022 at the Forest CZU property in
222 Kostelec nad Černými lesy, Czech Republic. The experiments took place in a mature, 100-year-
223 old Norway spruce forest, a natural habitat for *I. typographus*, located at 600 meters above sea
224 level. In 2019, the experiment was conducted at coordinates (49°56'02"N, 14°52'21"E), while
225 the 2022 experiment took place at (49°55'57"N, 14°55'13"E). Both experiments were
226 conducted during the same time frame: June 3 to July 28 of each year. In both the 2019 and
227 2021 experiments, traps were set up approximately 30 meters from the forest edge in a two-
228 229

230 year-old clearing. They were arranged in a row, with a minimum distance of 15 meters between
1 231 each trap, and were installed on wooden poles 1.5 meters above the ground.
2

3 232 In 2019, seven cross-vane Ecotrap (Fytofarm, Slovak Republic) were used for the collecting
4 233 data for this experiment: three traps were baited with three different doses (low, medium, high)
5 234 of 1,8-cineole or (+)-isopinocamphone, respectively, in combination with pheromone. One trap
6 235 was baited with pheromone alone and served as a control (for baits composition see Table 1 for
7 236 details). To minimize positional bias, the positions of the tested baits among these seven traps
8 237 were changed seven times according to a randomization scheme based on a Latin square design
9 238 (Evans et al. 2020).
10

11 239 In 2022, for each compound (1,8-cineole and (+)-isopinocamphone), one block was set up,
12 240 consisting of four traps arranged in a row: three traps baited with different doses of the tested
13 241 compounds in combination with pheromone, and one trap with pheromone only (control). The
14 242 positions of the tested baits among these four traps were changed four times according to a
15 243 randomization scheme based on a Latin square design (Evans et al. 2020). These four rotations
16 244 were repeated twice for each compound, resulting in a total of eight collections of catches for
17 245 each treatment (Moliterno et al. 2023). Insects collected during the field experiment in both
18 246 localities were preserved in ethanol for further analysis, including counting, sex sorting, and
19 247 measurement.
20

21 248
22 249 **Table 1. Description of treatment bait characteristics used in the experiments conducted in 2019 and 2022**

36 37 38 39 Chemical	36 37 38 39 Source	36 37 38 39 Purity (%)	36 37 38 39 Dose	36 37 38 39 Nominal	36 37 38 39 Field 2019 ±SEM (n=3) †	36 37 38 39 Field 2022 ±SEM(n=3) †	36 37 38 39 Dispenser design	
40 41 42 43 1,8-cineole	40 41 42 43 Sigma- Aldrich	40 41 42 43 98	40 41 42 43 L	40 41 42 43 0.1	40 41 42 43 0.1 ± 0.04	40 41 42 43 0.1 ± 0.01	40 41 42 43 Kartell 731 without hole plus 1 mL of paraffin oil;	
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 (+)- isopinoca mphone	44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 *	44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 99	44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 L	44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 M	44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 1	44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 6.03± 4.78	44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 5.7 ± 6.7	44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 Foil sachet: hole by syringe (1mm); Kartell 730, lid hole by syringe (2mm)

1	2	3	4	5	2-methyl- 3-buten-2- ol	Across	97	H	10	11.31± 8.9	9.10 ±16.1	PE-vial (Kartell 731): 1mm lid hole
6	250	cis- Verbenol	Sigma- Aldrich	95	H	1	0.93± 1.17	0.85 ±1.34	PE-vial (Kartell 731): 9 mm lid hole			

Doses are represented by low dose (L), medium dose (M) and high dose (H). For further details (see Moliterno et al. 2023). * = synthesized compound by Dr. Prof. Unelius from Linnaeus University, Sweden. †-established by gravimetric analysis. SEM indicates standard error mean.

2.3. Source and selection of beetles used for body length and antennal size measurement and electroantennographic detection analysis

For further measurement, fifty beetles were randomly selected from the ethanol-stored beetles caught in one of three doses of 1,8-cineole or (+)-isopinocamphone combined with pheromone, or caught with pheromone alone (a total of 8 groups each consisting of 50 randomly selected beetles). These beetles were selected from each replication of the experiments conducted in 2019 and 2021. Selected beetles were dried on tissue paper at 25°C for two hours, sorted by sex and measured for body length. Damaged specimens were excluded from the analysis.

For antennal club size measurements and electroantennography studies, *I. typographus* (F0 generation) emerged from naturally infested Norway spruce logs ($n= 12$; $\pm 50 \times 28$ cm) collected in Kostelec nad Černými Lesy from June to July 2024 were used. The beetles were collected by placing naturally infested Norway spruce logs into fine mesh emergence cages under controlled laboratory conditions. The logs were monitored daily, and newly emerged adult beetles were collected manually from the mesh enclosures. Only females, ± 3 days old, were selected after sorting by sex for further measurements and experiments.

2.4. Morphometric Analysis

The total body length of adult female *I. typographus* collected from field traps was measured in millimetres as demonstrated from the apical margin of the pronotum to the distal end of the elytra, using traditional linear morphometric analysis. The body size of the captured females was measured using a graticule (1–10 mm) integrated into a Nikon SMZ800N stereomicroscope at 30X magnification. Measurements were taken by the same researcher to ensure consistency, with recorded sizes ranging from 4.2 to 5.3 mm millimetres. Based on this size range, two individuals were classified into two distinct size categories were established for further analysis. Female specimens selected for antennal club measurements and electroantennography were divided into:

282 1. Large-sized females: Body length \geq 4.80 mm (n = 30)
1 283 2. Small-sized females: Body length \leq 4.70 mm (n = 30)

284 To measure the antennal club measurements and electroantennography, excised antennae were
285 mounted on borosilicate glass and imaged using a Nikon DFK 33UX250 camera (Imaging
286 Source®, Germany) attached to a Nikon SMZ800N stereomicroscope. The antennal club length
287 was measured from the apical end (ventral side) to the tip of the last antennomere, while the
288 width was measured at the midpoint of the antennal club (ventral side). Measurements were
289 obtained using IC Capture - Image Acquisition 4.0 software. The average measurements,
290 calculated from the left and right antennae of each individual, were recorded in micrometres.

291 **2.5. Electroantennographic (EAG) analysis**

292 The sources and purity of the chemicals used for electroantennography (EAG) experiments
293 were the same as described in Table 1. Dose-response tests were conducted using an aggregation
294 pheromone in a 10:1 ratio of 2-methyl-3-buten-2-ol (MB) to *cis*-verbenol (cV), as well as the
295 individual compounds 1,8-cineole and (+)-isopinocamphone. Antennae from large and small
296 females were stimulated with odor stimuli at seven doses: 0.001 μ g, 0.01 μ g, 0.1 μ g, 1 μ g, 10
297 μ g, 100 μ g, and 1000 μ g. For odor cartridge preparation, 10 μ l of each odor stimuli solution at
298 the corresponding concentration (diluted in hexane) was applied to a 1 \times 1 cm strip of Whatman
299 No. 1 filter paper. The solvent was allowed to evaporate for 1 minute before the strip was
300 inserted into a glass Pasteur pipette (10 cm in length, 6 mm outer diameter), which was then
301 used as an odor delivery cartridge for stimulation. Electrophysiological analyses were
302 conducted using *I. typographus* females (F0 generation), as previously described. The F0
303 generation was chosen to directly represent the wild population of beetles originating from
304 natural spruce forests. Prior to Analysis, insects were immobilized by cooling at 4°C for 5
305 minutes. This approach ensured the selection of morphometrically classified females within two
306 size categories: large (\geq 4.80 mm, n = 10) and small (\leq 4.70 mm, n = 10).

307 Electroantennogram (EAG) analysis were conducted as described (Zhang et al. 2000). The sex
308 of the beetles was determined through dissection, and the heads of female beetles were excised
309 using a microblade. Two capillary glass electrodes filled with Ringer's solution were used: one
310 electrode was connected to the antennal club, while the other served as a reference by being
311 inserted into the excised beetle head. The electrodes were attached to holders with an EAG
312

314 probe (Syntech, Germany) and connected to a pre-amplifier. A constant stream of humidified
1 315 air (200 ml/min) was directed over the antenna using a Syntech stimulus controller.
2 316 Odor cartridges (prepared as described above) were used to stimulate the antenna, and responses
3 317 were recorded using EAG Pro software (Syntech, IDAC-4). Each stimulus (odor or control)
4 318 was delivered as a 0.5-second pulse into the airstream directed at the antennal preparation,
5 319 ensuring brief and consistent exposure. Control and odor stimuli were presented sequentially,
6 320 with a one-minute interval between stimulations, allowing for antennal recovery and avoiding
7 321 adaptation. The EAG probe was configured with a 0–32 Hz filter and a sampling rate of 100
8 322 Hz. Antennal responses were recorded as downward deflection signals in millivolts (mV), with
9 323 response amplitudes defined as the peak depolarization of the olfactory sensilla of antennae
10 324 measured during the 0.5-second odor stimulation. For each female beetle, recordings were made
11 325 starting with the control stimulus and followed by sequential doses of the respective compound,
12 326 increasing from the lowest to the highest concentration (0.001 μ g to 1000 μ g) to minimize
13 327 sensory adaptation. Each biological replicate consisted of a single female beetle tested once per
14 328 stimulus ($n = 10$ individuals per tested compound). The mean peak response amplitude across
15 329 all replicates was calculated to assess antennal sensitivity to each compound.
16 330
17 331
18 332
19 333
20 334
21 335
22 336
23 337
24 338
25 339
26 340
27 341
28 342
29 343
30 344
31 345
32 346
33 347
34 348
35 349
36 350
37 351
38 352
39 353
40 354
41 355
42 356
43 357
44 358
45 359
46 360
47 361
48 362
49 363
50 364
51 365
52 366
53 367
54 368
55 369
56 370
57 371
58 372
59 373
60 374
61 375
62 376
63 377
64 378
65 379

2.6. Statistical Analysis

333 We tested normality within each treatment group from 2019 or 2022 using the Shapiro-Wilk
334 test, and homogeneity of variances was assessed using Levene's test. The raw data (total body
335 length of adult female *I. typographus*) were exponentially transformed (Manly 1976), adjusting
336 the assumption toward normality and equal variance. One-way ANOVAs were conducted
337 separately for each year to assess whether insect body size differed significantly among
338 treatment groups. Each ANOVA was followed by Tukey's HSD test for post hoc comparisons,
339 controlling the experiment-wise error rate. The Pearson's Chi-squared test with Yates'
340 continuity correction was applied to check whether female proportion diverge regardless the
341 dosage tested (Zar 2014).

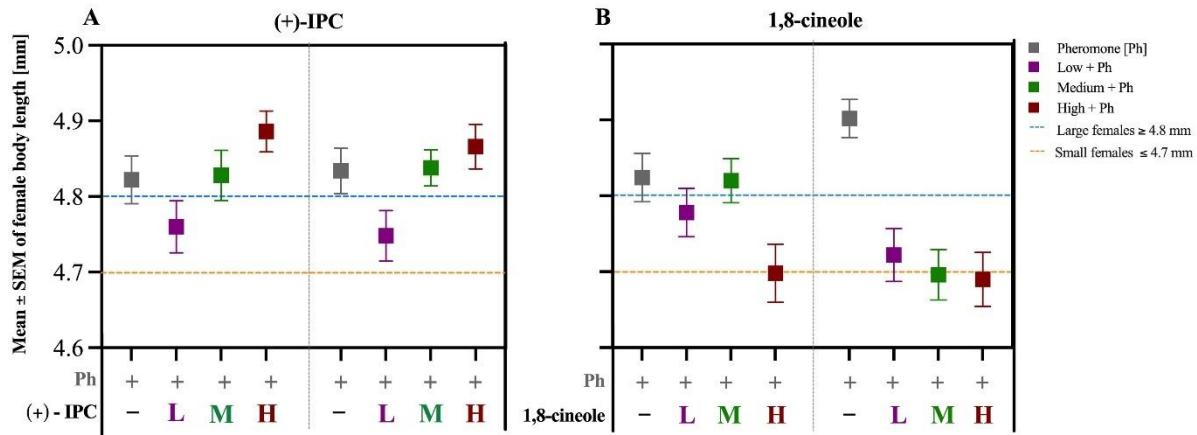
342
343 The data obtained from small and large female *I. typographus* were compared using the
344 Wilcoxon signed rank test (Harris and Hardin 2013; Hothorn et al. 2022). The two-sample
345 analysis assessed differences in:

1. total body length between large and small females;

348 2. antennal club length between large and small females;
1 349 3. antennal club width between large and small females;
2 350
3 351
4 352
5 353
6 354 The chosen test deal with non-normality assumption as described before, but also paired-
7 355 samples (the emerged adults insects collected from the same Norway spruce logs) and repeated
8 356 measurement from antennal club length and width. The posterior analysis evaluated whether
9 357 antennal club growth follows an isometric or allometric pattern relative to body size, we
10 358 employed the Standardized Major Axis (SMA) regression using the "smatr" package in R
11 359 (Warton, 2012). Before conducting an SMA regression, the length and width were log-
12 360 transformed (ln= log natural), providing comparability, addressing potential scale issues, and
13 361 making the relationship linear for better interpretation (Legendre and Legendre 1998). SMA
14 362 regression was selected because it accounts for measurement errors in body size and antennal
15 363 club length. SMA evaluates slopes >1 indicated isometric relationships, while deviations from
16 364 <1 indicated allometry (Jolicoeur 1990; Warton et al. 2006). To evaluate the dose-response in
17 365 electroantennography (EAG) analysis between large ($n = 10$) and small females ($n = 10$), the
18 366 Wilcoxon signed rank test for repeated measurements was applied. All statistical analyses were
19 367 performed using RStudio version 4.1.1 (Core R Team 2015), with a significance level (alpha)
20 368 of 0.05. The dataset and R script used for the analysis are publicly available in the Dryad Digital
21 369 Repository: <https://doi.org/10.5061/dryad.rxwdbrvn1> (Moliterno et al. 2025). All figures were
22 370 created using GraphPad Prism (version 9.5.0) software for macOS.

36 370
37 371 **3. Results**
38 372
39 373
40 374
41 375
42 376
43 377
44 378
45 379
46 380
47 381
48 382
49 383
50 384
51 385
52 386
53 387
54 388
55 389
56 390
57 391
58 392
59 393
60 394
61 395
62 396
63 397
64 398
65 399

42 371 We analyzed the sex ratio of beetles caught in the field using pheromone traps baited with three
43 372 doses of 1,8-cineole and (+)-isopinocamphone in combination with pheromone, collected in
44 373 2019 (N=7) and 2022 (N=8) (Moliterno et al. 2023). In both years, females comprised 70–85%
45 374 of the captures across treatments and pheromone-only groups (supplementary material, figure
46 375 1A and table 1A). In 2022, the proportion of females was significantly higher for all three doses
47 376 of (+)-isopinocamphone combined with pheromone compared to the appropriate doses of 1,8-
48 377 cineole combined with pheromone (Table 2, refer supplementary Table 1E and 1F for more
49 378 details).


380 **Table 2. Pearson's Chi-squared test with Yates' continuity correction comparing male and female *Ips***
 1 ***typographus* catches for two compounds, (+)-isopinocamphone ((+)-IPC) and 1,8-cineole across different**
 2 **dose levels and years.**

Group	Absolute catches per females and compound		(+)-IPC vs 1,8-cineole		
	(+)-IPC females/total catches of beetles	1,8-Cineole females/total catches of beetles	Chi-sq	df	p-value
2019 - Low	1267/1508	892/1059	0.008	1	0.9285
2019 - Medium	2329/2875	1682/2103	0.755	1	0.3848
2019 - High	2031/2477	294/370	1.217	1	0.2699
2022 - Low	1052/1267	482/651	21.152	1	<0.001**
2022 - Medium	1125/1406	389/519	5.488	1	0.0191*
2022 - High	1495/1917	183/258	6.028	1	0.0141*

383
 384 Data represents absolute beetle catches pooled from the respective number of trap rotations per year (2019: 7
 385 rotations; 2022: 8 rotations). Chi-squared values indicate the results of contingency tests comparing female catches
 386 across treatments. Df represents degrees of freedom. p-values indicate the significance level of the observed
 387 differences between male respectively female catch proportions for respective compound and dose, with
 388 significance considered at $p < 0.05$ (*), $p < 0.001$ (**). Refer supplementary Table 1G for more details.

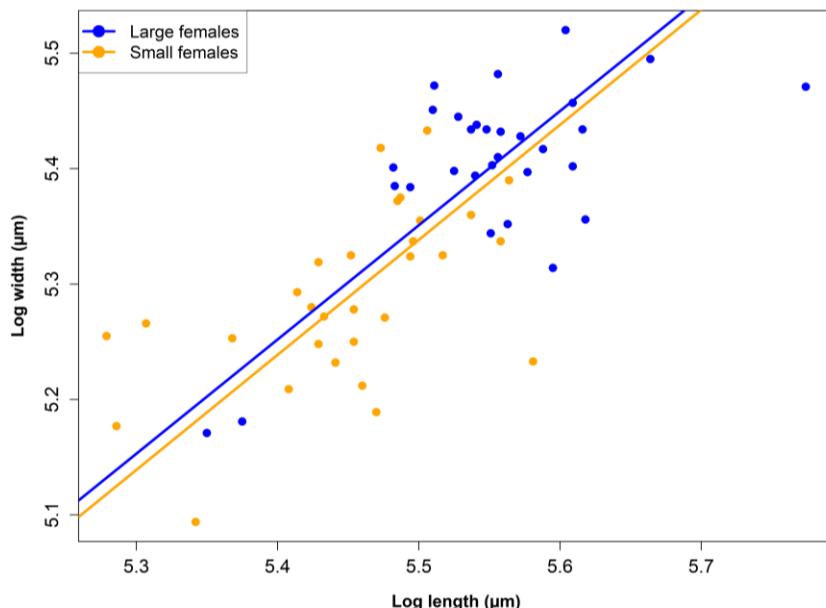
389
 390 **3.1. Prevalence and total body length differences in female captures across treatments and**
 391 **years**

392
 393 Females captured in control traps containing only pheromones had an average body length of
 394 4.82 mm (SD = 0.22) in 2019 and 4.90 mm (SD = 0.17) in 2022. In contrast, females captured
 395 in traps baited with a high dose of 1,8-cineole were smaller, with an average body length of
 396 4.69 mm (SD = 0.26), ($F = 3.15$, $p = 0.026$) in 2019 and 4.69 mm (SD = 0.23), ($F = 9.59$, $p <$
 397 0.001) in 2022 (Fig. 1A). For (+)-isopinocamphone, trap catches showed significant differences
 398 based on dose. In 2019, females captured in traps baited with a low dose of (+)-
 399 isopinocamphone had an average body length of 4.75 mm (SD = 0.24) ($F = 3.03$, $p = 0.03$),
 400 while in 2022, the average was 4.75 mm (SD = 0.23) ($F = 2.95$, $p = 0.03$). Conversely, traps
 401 baited with a high dose of (+)-isopinocamphone attracted larger females, with average body
 402 lengths of 4.88 mm (SD = 0.19) in 2019 and 4.86 mm (SD = 0.20) in 2022 (Fig. 1B). Detailed
 403 data and statistical analyses, including results from ANOVA followed by Tukey's HSD test
 404 (supplementary material, Table 1B) and visualized in Fig. 1.

Figure 1. Mean body size of female *I. typographus* captured in response to three doses (low, medium, high) of (A) 1,8-cineole and (B) (+)-IPC is (+)-isopinocamphone, along with a control (pheromone only = Ph), in 2019 and 2022. Colors represent different doses or the control, with a sample size of $n = 50$ per group. Vertical bars show the standard error of the mean, and (*) indicates significant differences between groups based on Tukey's HSD test ($p = 0.05$).

3.2. Total body length, antennal club size of large and small females is isometric to body size.

The Wilcoxon signed rank for dependent sample analysis showed total body size ($V = 465$, $p < 0.001$), length, antennal club in length ($V = 416$, $p < 0.001$), and width ($V = 431$, $p < 0.001$) measurements differed significantly between large versus small females (Table 3).


Table 3. Means of measurements in total body length and antennal club (length and width) of large and small females of *Ips typographus*; mean \pm SD.

Parameters (mean \pm SD)	Large females (N=30)	Small females (N=30)
Body length (mm)	4.88 ± 0.079	4.59 ± 0.105
Antennal club length (μm)	258.72 ± 20.05	233.59 ± 17.35
Antennal club width (μm)	222.76 ± 16.11	198.75 ± 14.94

Total body length data from females of *Ips typographus* was defined as large ≥ 4.80 mm ($n = 30$) versus small ≤ 4.70 mm ($n = 30$) and its respective antennal club measurements.

The standardized major axis (SMA) regression focusing on the correlation between length and width indicated significant and positive correlations (Large: $R^2 = 0.43$, $p \leq 0.001$) and (Small: $R^2 = 0.32$, $p = 0.001$). The relationship between antennal club length and width log-transformed indicated that both were scaled isometrically, with slopes close to 1 (Large: 0.99, Small: 1.0)

426 (supplementary material, Table 1C). This suggests a proportional relationship between length
1 427 and width in both groups, where the two variables increase at similar rates (Fig. 2).
2
3 428
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25 429
26 430 **Figure 2. Standardized Major Axis (SMA) regression analysis representing positive trend in log (ln) length**
27 431 and width of categorized as "large females ≥ 4.80 mm" ($n=30$) and "small females ≤ 4.70 mm" ($n=30$) from
28 432 *antennal club of females of I. typographus*. Each colour represents the measurements taken in length and width
29 433 expressed in micrometers (μm). Blue line and dots represent the "large females" group. Orange line and dots
30 434 represent the "small females" group.

31 435
32
33 436 **3.3. Larger females are more responsive to (+)-isopinocamphone, whereas smaller females**
34
35 437 **have higher antennal sensitivity to 1,8-cineole**

36
37 438
38
39 439 EAG responses to the pheromone blend (MB:cV/ 10:1) did not differ significantly between
40 440 large ($n = 10$) and small ($n = 10$) females (Exact Wilcoxon Rank Sum Test, Fig. 3A). Large
41 441 females showed significantly stronger responses to four higher doses of (+)-isopinocamphone
42 442 (1 μg to 1000 μg ; log doses 0 to 3) ($V= 48$, $p = 0.048$; Fig. 3B). Conversely, small females
43 443 exhibited significantly stronger EAG responses to three higher doses of 1,8-cineole (10 μg , 100
44 444 μg , 1000 μg ; log doses 1 to 3) compared to large females ($V= 7$, $p = 0.037$; Fig. 3C). Additional
45 445 details are provided in supplementary material (Table 1D).

51 446

52

53

54

55

56

57

58

59

60

61

62

63

64

65

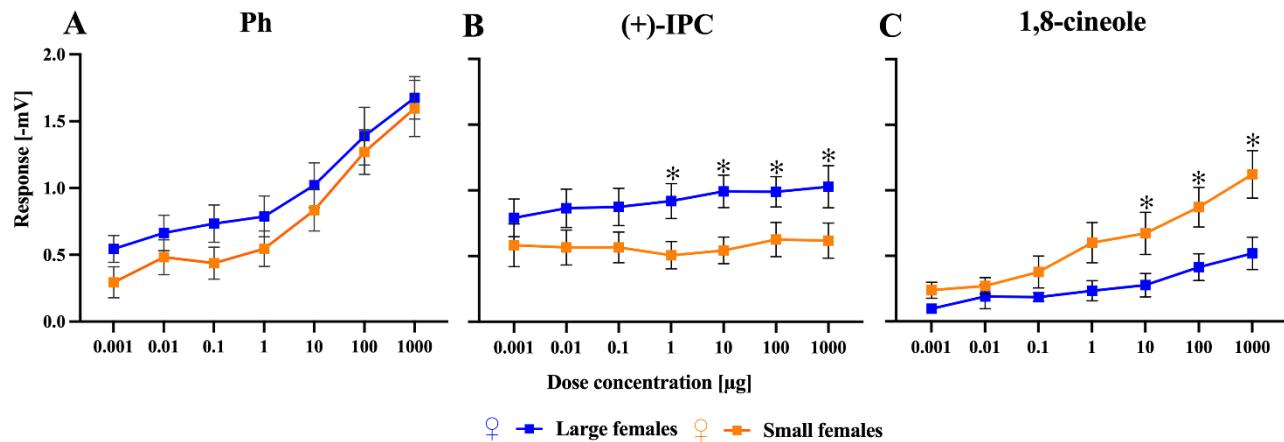


Figure 3. Dose-response curves based on electroantennographic (EAG) responses in female *Ips typographus*, categorized by body size: "large" (≥ 4.80 mm, $n = 10$) and "small" (≤ 4.70 mm, $n = 10$). Responses are shown for (A) Pheromone, (B) 1,8-cineole, and (C) (+)-isopinocamphone. Each compound was tested across a concentration range of 0.001 μ g to 1000 μ g, with hexane serving as the solvent control. EAG responses are expressed as the mean amplitude of antennal depolarizations (in millivolts), normalized by subtracting the response to hexane (blank). Error bars represent the standard error of the mean (SEM). Asterisks (*) indicate statistically significant differences between size groups at individual doses, based on the Exact Wilcoxon Rank Sum Test ($p < 0.05$).

4. Discussion

Our findings demonstrate that large and small female *I. typographus* respond differently to two ecologically relevant oxygenated spruce monoterpenes, 1,8-cineole and (+)-isopinocamphone, which serve as a pheromone inhibitor and a pheromone synergist, respectively. These semiochemicals influence female attraction and decision-making, with clear size-dependent variation in both antennal responses and field behavior.

4.1. Enhanced sensitivity and attraction of larger *Ips typographus* females to (+)-isopinocamphone may facilitate the selection of higher-quality host trees.

In our field experiments, larger females were significantly more attracted to high doses of (+)-isopinocamphone, a compound known to synergize pheromone attraction, when it was presented alongside the aggregation pheromone. This behavioral pattern was supported by electroantennography (EAG) analyses, which showed that larger females exhibited stronger olfactory responses to high doses of (+)-isopinocamphone compared to smaller females. Morphometric analysis further revealed that larger females possess proportionally broader and

473 longer antennal clubs. This increased antennal surface area likely improves their odour
1 detection capabilities. Across various insect taxa, a correlation between antennal size and odour
2 sensitivity has been widely documented (Makarova et al. 2022; Spaethe et al. 2007; Elgar et al.
3 475 2018; Lockey and Willis 2015). Longer antennae can house longer sensilla with greater pore
4 476 density, which enhances the detection of odorants and the resulting neural activation (Mohebbi
5 477 et al. 2022; Steinbrecht 2007; Liu et al. 2021). Miniaturized insects often display reductions in
6 478 the antennomere number and sensilla count, as well as have shorter sensilla (Makarova et al.
7 479 2022; Steinbrecht 2007), although the diversity of sensilla types is typically maintained,
8 480 allowing the detection of ecologically relevant odors (Polilov 2015; Diakova and Polilov 2020).
9 481 These structural traits likely contribute to the higher sensitivity to (+)-isopinocamphone
10 482 observed in larger females in our study.
11
12
13
14
15
16
17
18
19
20

21 484 The ecological implications of stronger attraction to (+)-isopinocamphone in larger females are
22 somewhat speculative but may confer adaptive advantages. Notably, several symbiotic
23 485 ophiostomatoid fungi associated with bark beetles, *G. penicillata*, *L. europhiooides*, and *O.*
24 486 *bicolor* can metabolize host tree monoterpenes into substantial quantities of (+)-
25 487 isopinocamphone (Kandasamy et al. 2023). An increased olfactory response to this compound
26 488 could help larger, dominant females locate trees where fungal symbionts have already
27 489 detoxified monoterpenes, thereby increasing the likelihood of successful colonization. This
28 490 relationship may also benefit the fungi. Larger females tend to excavate longer galleries and
29 491 transport greater fungal spore loads, potentially enhancing both fungal dispersal and
30 492 establishment (Foelker and Hofstetter 2014; Sallé and Raffa 2007; Sallé et al. 2005). These
31 493 dynamics suggest a potential feedback loop in which fungal metabolites selectively attract the
32 494 most fecund or competitive beetles, reinforcing mutualistic interactions. Future research should
33 495 investigate whether larger *I. typographus* females exhibit specific preferences for fungal species
34 496 producing (+)-isopinocamphone and how this might shape the evolution of beetle–fungus
35 497 mutualisms. Additionally, natural enemies of *I. typographus* are responsive to
36 498 isopinocamphone (Pettersson and Boland 2003), suggesting potential, yet unexplored, tri-
37 499 trophic interactions linking beetle body size, fungal volatiles, and predator attraction (Souza et
38 500 al. 2024; Wegensteiner et al. 2015). Trap data also indicated a higher proportion of large
39 501 females in 2022 compared to 2019 caught to treatments, even the mean size of all females
40 502 caught to pheromone-only was the same in both years. We attribute a shift in the proportion of
41 503 large females caught to treatments to the transition from the endemic bark beetle population in
42 504 2019 to the epidemic population that occurred in 2022. During endemic periods, selective
43 505 61
44 62
45 63
46 64
47 65

506 pressure on host quality increases, potentially favouring larger females that can better
1 507 discriminate among semiochemical cues (Sallé et al. 2005). These findings suggest that total
2 508 body length-linked behavioral strategies are modulated by population density.
3
4
5
6 509
7
8
9
10 510 **4.2. The unexpectedly heightened antennal sensitivity of smaller *Ips typographus* females**
11 511 **to 1,8-cineole contrasts with their higher behavioral attraction to this anti-attractant**
12
13 512
14
15 513 An interesting contradiction was observed in the response of smaller females to 1,8-cineole.
16
17 514 Although this compound is well-documented as an anti-attractant and toxic to *I. typographus*
18
19 515 (Andersson et al. 2010; Jirošová et al. 2022; Zaman et al. 2024), and its addition significantly
20
21 516 reduced the overall number of beetles captured in our field experiment to pheromone (Moliterno
22
23 517 et al. 2024), a size-dependent pattern in females was observed. Specifically, we observed a
24
25 518 higher proportion of smaller females in catches when exposed to high doses of 1,8-cineole
26
27 519 combined with pheromone, compared to larger females. This pattern could still align with the
28
29 520 antennal size hypothesis discussed earlier: those larger females with larger antennae, may detect
30
31 521 the anti-attractant more effectively and are, therefore, more strongly repelled. However,
32
33 522 contrary to expectations, electroantennographic (EAG) data showed that smaller females
34
35 523 exhibited greater antennal sensitivity to 1,8-cineole than larger females despite having shorter
36
37 524 and narrower antennal clubs.

38 525 One possible explanation for increased antennal sensitivity is that cineole-sensitive olfactory
39
40 526 sensory neurons (OSNs) are co-localized with pheromone (*cis*-verbenol)-sensitive neurons,
41
42 527 which suppress pheromone detection at high doses of 1,8-cineole (Andersson et al. 2010).
43
44 528 Another explanation is that, while differences in peripheral sensitivity at the antennal surface
45
46 529 between small and large females are influenced by antennal morphology, their host choice and
47
48 530 decision-making may be shaped by higher-order processing in CNS regions, such as the
49
50 531 mushroom bodies and lateral horns. These central brain areas integrate olfactory input with
51
52 532 learning, memory, and behavioral context. Insects' age, mating status, and energy reserves can
53
54 533 influence both odor detection and the downstream processing of olfactory signals (Wiesel et al.
55
56 534 2022, Anton et al. 2007; Bodin et al. 2008; Martin et al. 2011). Consequently, the same odor
57
58 535 may trigger different or even opposite behaviors within the same species, depending on the
59
60 individual's internal factors. Smaller females may have stronger neural connections mediating
61
62
63
64
65

537 responses between cineole-sensitive OSNs and central brain regions, such as the lateral horn,
1 538 which controls avoidance behaviors and suppresses their repulsive responses.
2
3
4

5 539 A potential ecological rationale for this pattern is linked to findings that trees with higher levels
6 540 of 1,8-cineole are generally more resistant to bark beetle attacks (Schiebe et al. 2012). Larger
7 541 *I. typographus* females, typically associated with higher fitness and greater capacity to kill trees
8 542 (Grodzki 2004), may actively avoid such trees, recognizing them as poor-quality hosts. Doing
9 543 so may increase their chances of successful colonization and reproduction (Raffa et al. 2016).
10 544 In contrast, smaller females, less competitive during outbreaks, may tolerate trees with high
11 545 1,8-cineole levels as a form of competitive escape. This strategy allows them to occupy less
12 546 suitable trees while avoiding competition from larger females despite the higher risks posed by
13 547 the compound's toxicity. Since our experiments were conducted in June-July, when the
14 548 nutritional feeding of beetles and sister brood females from the first generation may overlap
15 549 with the emergence of second-generation beetles searching for new hosts, we cannot precisely
16 550 narrow down the ecological explanation solely to females seeking mates alongside suitable
17 551 trees. However, we expect that the ecological principle of finding suitable host trees, where
18 552 large females prefer trees with compromised defense, while smaller females avoid competition,
19 553 will also apply to secondary-emerging and sister-brooding females.
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

554 4.3. Expanding future research framework to include males

38 555 Our analysis focused exclusively on females due to their central role in reproduction and host
39 556 colonization. Additionally, field captures showed a female-biased sex ratio in traps baited with
40 557 either synthetic oxygenated monoterpenes combined with pheromone or pheromone alone. This
41 558 pattern is consistent with earlier reports of female-biased attraction to both aggregation
42 559 pheromone (Franklin et al. 2000; Schlyter et al. 1987) and 1,8-cineole (Jirošová et al. 2022).
43 560 However, it is also important to consider the potential implications for males. As the pioneer
44 561 sex, males initiate host colonization and benefit from detecting semiochemicals related to the
45 562 host tree's nutritional quality and the tree's defense ability. Unfortunately, in our catches of
46 563 beetles with (+)-isopinocamphone and 1,8-cineole, there weren't enough males for body length
47 564 measurements after sorting by sex through dissection, making it impossible to obtain a
48 565 statistically significant dataset. However, similarly to the total beetle catches, we observed that
49 566 more males were attracted to the combination of (+)-isopinocamphone and pheromone
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

569 (Moliterno et al., 2023) than to pheromone alone and in contrast, fewer males were attracted to
1 570 the mixture of cineole and pheromone compared to pheromone alone.
2
3
4

5 571 Interestingly, when focusing on the sex ratio, we found a lower proportion of males attracted to
6 572 (+)-isopinocamphone than to 1,8-cineole. However, previous studies have identified olfactory
7 573 sensory neuron classes in males and females of *Ips typographus* that are primarily tuned to both
8 574 (+)-isopinocamphone and 1,8-cineole (Andersson et al., 2009; Kandasamy et al., 2023),
9 575 suggesting that males are equally sensitive on the periphery to both compounds as females. To
10 576 better understand the signal processing in the beetle's olfactory system and the ecological
11 577 relevance of our findings, further research on sex-specific electrophysiological responses, as
12 578 well as size-dependent behavior and detection abilities in males, is needed.
13
14
15
16
17
18
19
20
21 579
22 580 **5. Conclusion**
23 581
24
25
26
27 582 Our study demonstrates how body size influences adaptive responses in semiochemical-
28 583 mediated host selection among female bark beetles. We report clear size-dependent olfactory
29 584 and behavioral strategies in female *I. typographus*, linking antennal morphology, olfactory
30 585 sensitivity, and host-selection behavior. The de novo spruce-derived oxygenated monoterpane
31 586 1,8-cineole and the multisource-derived hydroxylated (+)-isopinocamphone, with their
32 587 contrasting ecological roles as pheromone synergist or inhibitor, respectively, may significantly
33 588 influence responses in *I. typographus* females based on their size. Larger females exhibited
34 589 greater olfactory sensitivity and attraction to (+)-isopinocamphone, allowing them to more
35 590 effectively discriminate between suitable, more stressed, and/or fungus-colonized hosts. In
36 591 contrast, smaller females were less repelled and, surprisingly, more antennally sensitive to 1,8-
37 592 cineole, possibly reflecting an alternative strategy to avoid competition with larger females by
38 593 exploiting lower-quality or riskier habitats. These findings suggest that body size can influence
39 594 olfactory detection and subsequent CNS processing, leading to behavioral decision-making that
40 595 may impact reproductive success and population dynamics of bark beetles. While our focus was
41 596 on females due to their crucial role in reproduction and colonization, future research should
42 597 investigate whether similar size-dependent responses occur in males.
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57 598
58
59
60
61
62
63
64
65

599 **Supplementary data**

1
2
3
4 601 The additional data is uploaded as Supplementary material, and available via Dryad Digital
5 602 Repository: <https://doi.org/10.5061/dryad.rxwdbrvn1>
6

7 603 URL: <http://datadryad.org/share/eMlJtgCcS32RG6YXPuE8Bhnm0CdgOpg3uX2hJlpiks>.
8
9 604

10 605 **References**
11 606
12
13
14 607 Anderbrant O, Schlyter F, Birgersson G (1985) Intraspecific competition affecting parents and
15 608 offspring in the bark beetle *Ips typographus*. *Oikos* 45: 89–98. doi: 10.2307/3565226
16
17 609 Andersson MN (2012) Mechanisms of odor coding in coniferous bark beetles: from neuron to
18 behavior and application. *Psyche A Journal of Entomology* 2012: 1–14.
19 doi.org/10.1155/2012/149572
20
21 612 Andersson MN, Larsson MC, Blaženec M, Jakůš R, Zhang Q-H, Schlyter F (2010) Peripheral
22 613 modulation of pheromone response by inhibitory host compound in a beetle. *Journal of*
23 614 *Experimental Biology* 213: 3332–3339. doi.org/10.1242/jeb.044396
24
25
26 615 Andersson MN, Larsson MC, Schlyter F (2009) Specificity and redundancy in the olfactory
27 616 system of the bark beetle *Ips typographus*: single-cell responses to ecologically relevant odors.
28 617 *Journal of Insect Physiology* 55: 556–567. doi.org/10.1016/j.jinsphys.2009.01.018
29
30
31
32 618 Anton S (2007) Central olfactory pathways in mosquitoes and other insects. In: Ciba
33 619 Foundation Symposium 200 – Olfaction in Mosquito–Host Interactions. Chichester, UK: John
34 620 Wiley & Sons. pp. 184–196. doi: [10.1002/9780470514948.ch14](https://doi.org/10.1002/9780470514948.ch14)
35
36
37 621 Biedermann PH, Müller J, Grégoire JC, Gruppe A, Hagge J, Hammerbacher A, et al. (2019)
38 622 Bark beetle population dynamics in the Anthropocene: challenges and solutions. *Trends in*
39 623 *Ecology & Evolution* 34: 914–924. doi: 10.1016/j.tree.2019.06.002
40
41
42 624 Binyameen M, Jankuvová J, Blaženec M, Jakůš R, Song L, Schlyter F, Andersson MN (2014)
43 625 Co-localization of insect olfactory sensory cells improves the discrimination of closely
44 626 separated odor sources. *Functional Ecology* 28: 1216–1223. doi.org/10.1111/1365-2435.12252
45
46
47 627 Birgersson G, Schlyter F, Löfqvist J, Bergström G (1984) Quantitative variation of pheromone
48 628 components in the spruce bark beetle *Ips typographus* from different attack phases. *Journal of*
49 629 *Chemical Ecology* 10: 1029–1055. doi: 10.1007/BF00987511
50
51
52 630 Birgersson G, Bergström G (1989) Volatiles released from individual spruce bark beetle
53 631 entrance holes: quantitative variations during the first week of attack. *Journal of Chemical*
54 632 *Ecology* 15: 2465–2483. doi.org/10.1007/BF01020377
55
56
57 633 Blomquist GJ, Vogt RG (2021) Production and reception of insect pheromones – Introduction
58 634 and overview. In Blomquist GJ, Vogt RG (eds) *Insect Pheromone Biochemistry and Molecular*
59 635 *Biology*, pp. 1–12. Academic Press, London. doi.org/10.1016/B978-0-12-819628-1.00001-8
60
61
62
63
64
65

636 Bodin A, Barrozo RB, Couton L, Lazzari CR (2008) Temporal modulation and adaptive
1 637 control of the behavioural response to odours in *Rhodnius prolixus*. *Journal of Insect*
2 638 *Physiology* 54: 1343–1348. doi: [10.1016/j.jinsphys.2008.07.004](https://doi.org/10.1016/j.jinsphys.2008.07.004)
3
4
5 639 Carey A, Wang G, Su CY, et al. (2010) Odorant reception in the malaria mosquito *Anopheles*
6 640 *gambiae*. *Nature* 464: 66–71. doi: [10.1038/nature08834](https://doi.org/10.1038/nature08834)
7
8 641 Clark JT, Ray A (2016) Olfactory mechanisms for discovery of odorants to reduce insect-host
9 642 contact. *Journal of Chemical Ecology* 42: 919–930. doi: [10.1007/s10886-016-0770-3](https://doi.org/10.1007/s10886-016-0770-3)
11
12 643 Celedon JM, Bohlmann J (2019) Oleoresin defenses in conifers: chemical diversity, terpene
13 644 synthases, and limitations of oleoresin defense under climate change. *New Phytologist* 224:
14 645 1444–1463. Doi.org/10.1111/nph.15984
15
16
17 646 Core R Team (2015) R: A language and environment for statistical computing.
18
19 647 Dacquin P, Caiti E, Grégoire J-C, Aron S (2024) Preemergence mating, inbreeding, and their
20 648 consequences in the bark beetle *Ips typographus*. *Journal of Pest Science* 97: 1005–1016.
21 649 doi.org/10.1007/s10340-023-01650-4
22
23
24 650 Diakova AV, Polilov AA (2020) Sensation of the tiniest kind: the antennal sensilla of the
25 651 smallest free-living insect *Scydosella musawensis* (Coleoptera: Ptiliidae). *PeerJ* 8: e10401.
26 652 doi: [10.7717/peerj.10401](https://doi.org/10.7717/peerj.10401)
27
28
29 653 Duetz WA, Fjällman AH, Ren S, Jourdat C, Witholt B (2001) Biotransformation of D-limonene
30 654 to (+)-trans-carveol by toluene-grown *Rhodococcus opacus* PWD4 cells. *Applied and*
31 655 *Environmental Microbiology* 67: 2829–2832. doi: 10.1128/AEM.67.6.2829-2832.2001
32
33
34 656 Elgar MA, Zhang D, Wang Q, Wittwer B, Thi Pham H, Johnson TL, Freelance CB,
35 657 Coquilleau M (2018) Insect antennal morphology: the evolution of diverse solutions to
36 658 odorant perception. *Yale Journal of Biology and Medicine* 91: 457–469. PMID: 30588211;
37 659 PMCID: PMC6302626
38
39
40 660 Erbilgin N, Krokene P, Kvamme T, Christiansen E (2007) A host monoterpenes influences *Ips*
41 661 *typographus* (Coleoptera: Curculionidae, Scolytinae) responses to its aggregation pheromone.
42 662 *Agricultural and Forest Entomology* 9: 135–140. doi.org/10.1111/j.1461-9563.2007.00329.x
43
44
45 663 Evans AB, Martin NG, Minden K, Ollis MA (2020) Infinite Latin squares: neighbor balance
46 664 and orthogonality. *Electronic Journal of Combinatorics* 27: 53. doi: 10.37236/8020
47
48
49 665 Foelker CJ, Hofstetter RW (2014) Heritability, fecundity, and sexual size dimorphism in four
50 666 species of bark beetles (Coleoptera: Curculionidae: Scolytinae). *Annals of the Entomological*
51 667 *Society of America* 107: 143–151. doi.org/10.1603/AN12153
52
53
54 668 Franceschi VR, Krokene P, Christiansen E, Krekling T (2005) Anatomical and chemical
55 669 defenses of conifer bark against bark beetles and other pests. *New Phytologist* 167: 353–376.
56
57
58 670 Francke W, Vité JP (1983) Oxygenated terpenes in pheromone systems of bark beetles.
59 671 *Zeitschrift für Angewandte Entomologie* 96: 146–156. doi: 10.1111/j.1439-
60 672 0418.1983.tb03655.x
61
62
63
64
65

673 Franklin AJ, Debruyne C, Grégoire J-C (2000) Recapture of *Ips typographus* L. (Col.,
1 Scolytidae) with attractants of low release rates: localized dispersion and environmental
2 influences. Agricultural and Forest Entomology 2: 259–270. doi.org/10.1046/j.1461-
3 9563.2000.00075.x
4 677
5 678 Frühbrodt T, Du B, Delb H, Burzlaff T, Kreuzwieser J, Biedermann PHW (2023) Know when
6 you are too many: density-dependent release of pheromones during host colonization by the
7 European spruce bark beetle, *Ips typographus* (L.). Journal of Chemical Ecology.
8 doi.org/10.1007/s10886-023-01453-y
9
10 681
11 682 Galizia CG (2014) Olfactory coding in the insect brain: data and conjectures. European Journal
12 of Neuroscience 39: 1784–1795. doi: [10.1111/ejn.12558](https://doi.org/10.1111/ejn.12558)
13
14 683
15 684 Grodzki W (2004) Some reactions of *Ips typographus* (L.) (Col.: Scolytidae) to changing
16 breeding conditions in a forest decline area in the Sudeten Mountains, Poland. Journal of Pest
17 Science 77: 43–48. doi.org/10.1007/s10340-003-0026-1
18
19 686
20 687 Hallem EA, Carlson JR (2006) Coding of odors by a receptor repertoire. Cell 125: 143–160.
21 doi: 10.1016/j.cell.2006.01.050
22
23 688
24 689 Hansson BS, Stensmyr MC (2011) Evolution of insect olfaction. Neuron 72: 698–711.
25
26 690 Doi.org/10.1016/j.neuron.2011.11.003
27
28 691 Harris T, Hardin JW (2013) Exact Wilcoxon signed-rank and Wilcoxon Mann–Whitney
29 ranksum tests. The Stata Journal 13: 337–343. doi: [10.1177/1536867X1301300208](https://doi.org/10.1177/1536867X1301300208)
30
31 692
32 693 Hlásny T, Zimová S, Merganičová K, Štěpánek P, Modlinger R, Turčáni M (2021) Devastating
33 outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management
34 implications. Forest Ecology and Management 490: 119075.
35
36 695
37 696 doi.org/10.1016/j.foreco.2021.119075
38
39 697 Hou X-Q, Yuvaraj JK, Roberts RE, Zhang D-D, Unelius CR, Löfstedt C, Andersson MN (2021)
40 Functional evolution of a bark beetle odorant receptor clade detecting monoterpenoids of
41 different ecological origins. Molecular Biology and Evolution 38: 4934–4947.
42 doi.org/10.1093/molbev/msab218
43
44 700
45 701 Hothorn T, Hornik K, Hothorn MT (2022) Package ‘exactRankTests.’ Available at
46 https://rdrr.io/cran/exactRankTests
47
48 702
49 703 Hulcr J, Ubik K, Vrkoc J (2006) The role of semiochemicals in tritrophic interactions between
50 the spruce bark beetle *Ips typographus*, its predators, and infested spruce. Journal of Applied
51 Entomology 130: 275–283. doi.org/10.1111/j.1439-0418.2006.01069.x
52
53 705
54 706 Jolicoeur P (1990) Bivariate allometry: interval estimation of the slopes of the ordinary and
55 standardized normal major axes and structural relationship. Journal of Theoretical Biology 144:
56 275–285. doi: 10.1016/s0022-5193(05)80326-1
57
58 708
59 709
60
61
62
63
64
65

709 Jirošová A, Kalinová B, Modlinger R, Jakuš R, Unelius CR, Blaženec M, Schlyter F (2022)
1 710 Anti-attractant activity of (+)-trans-4-thujanol for Eurasian spruce bark beetle *Ips typographus*:
2 711 Novel potency for females. Pest Management Science 78: 1992–1999. doi.org/10.1002/ps.6819
3
4 712 Kalinová B, Břízová R, Knížek M, Turčáni M, Hoskovec M (2014) Volatiles from spruce trap-
5 713 trees detected by *Ips typographus* bark beetles: chemical and electrophysiological analyses.
6 714 Arthropod-Plant Interactions 8: 305–316. doi.org/10.1007/s11829-014-9310-7
7
8 715 Kandasamy D, Zaman R, Nakamura Y, Zhao T, Hartmann H, Andersson MN, Hammerbacher
9 716 A, Gershenzon J (2023) Conifer-killing bark beetles locate fungal symbionts by detecting
10 717 volatile fungal metabolites of host tree resin monoterpenes. PLoS Biology 21: e3001887.
11 718 doi.org/10.1371/journal.pbio.3001887
12
13
14
15
16 719 Legendre P, Legendre L (1998) Numerical ecology. 2nd English ed., Developments in
17 720 Environmental Modeling. Elsevier, Amsterdam.
18
19
20 721 Lehmann LMA, Kandasamy D, Andersson MN, Netherer S, Alves EG, Huang J, Hartmann H
21 722 (2023) Addressing a century old hypothesis – Do pioneer beetles of *Ips typographus* use volatile
22 723 cues to find suitable host trees? New Phytologist. doi.org/10.1111/nph.18865
23
24
25 724 Liu F, Chen Z, Ye Z, Liu N (2021) The olfactory chemosensation of hematophagous
26 725 hemipteran insects. *Frontiers in Physiology* 12: 703768. doi: [10.3389/fphys.2021.703768](https://doi.org/10.3389/fphys.2021.703768)
27
28
29 726 Lockey JK, Willis MA (2015) One antenna, two antennae, big antennae, small: total antennae
30 727 length, not bilateral symmetry, predicts odor-tracking performance in the American cockroach
31 728 *Periplaneta americana*. Journal of Experimental Biology 218: 2156–2165. doi:
32 729 [10.1242/jeb.117721](https://doi.org/10.1242/jeb.117721)
33
34
35 730 Makarova AA, Diakova AA, Chaika SY, Polilov AA (2022) Scaling of the sense organs of
36 731 insects. 2. Sensilla. Discussion. Conclusion. Entomological Review 102: 323–346. doi:
37 732 [10.1134/S0013873822030058](https://doi.org/10.1134/S0013873822030058)
38
39
40 733 Manly BFJ (1976) Exponential data transformations. Journal of the Royal Statistical Society
41 734 Series D: The Statistician 25: 37–42. doi: [10.2307/2988129](https://doi.org/10.2307/2988129)
42
43
44 735 Martin JP, Beyerlein A, Dacks AM, Reisenman CE, Riffell JA, Lei H, Hildebrand JG (2011)
45 736 The neurobiology of insect olfaction: sensory processing in a comparative context. Progress in
46 737 Neurobiology 95: 427–447. doi: [10.1016/j.pneurobio.2011.09.007](https://doi.org/10.1016/j.pneurobio.2011.09.007)
47
48
49 738 Mohebbi N, Schulz A, Spencer TL, Pos K, Mandel A, Casas J, Hu DL (2022) The scaling of
50 739 olfaction: moths have relatively more olfactory surface area than mammals. Integrative and
51 740 Comparative Biology 62: 81–89. doi: [10.1093/icb/icac006](https://doi.org/10.1093/icb/icac006)
52
53
54 741 Moliterno AAC, Jakuš R, Modlinger R, Unelius CR, Schlyter F, Jirošová A (2023) Field effects
55 742 of oxygenated monoterpenes and estragole combined with pheromone on attraction of *Ips*
56 743 typographus and its natural enemies. *Frontiers in Forests and Global Change* 6.
57 744 doi.org/10.3389/ffgc.2023.1292581
58
59
60
61
62
63
64
65

745 Moliterno, A., Shewale, M. K., Basile, S., Synek, J., & Jirošová, A. (2025). Dataset for: Size-
1 746 dependent behavioral and antennal responses to doses of (+)-isopinocamphone and 1,8-cineole
2 747 mixed with pheromone: a potential host selection strategy in female *Ips typographus* L. Dryad
3 748 Digital Repository. <https://doi.org/10.5061/dryad.q573n5tst>
4 749
5
6 749 Müller C, Caspers BA, Gadau J, Kaiser S (2020) The power of infochemicals in mediating
7 750 individualized niches. Trends in Ecology and Evolution 35: 981–989.
8 751 doi.org/10.1016/j.tree.2020.07.001
9
10
11 752 Netherer S, Kandasamy D, Jirošová A, Kalinová B, Schebeck M, Schlyter F (2021) Interactions
12 753 among Norway spruce, the bark beetle *Ips typographus*, and its fungal symbionts in times of
13 754 drought. Journal of Pest Science 94: 591–614. doi.org/10.1007/s10340-021-01341-y
14
15
16 755 Netherer S, Lehmann L, Bachlehner A, Rosner S, Schmidt A, Huang J, Paiva MR, Mateus
17 756 E, Hartmann H, Gershenzon J (2024) Drought increases Norway spruce susceptibility to the
18 757 Eurasian spruce bark beetle and its associated fungi. New Phytologist 242: 1000–1017.
19 758 doi.org/10.1111/nph.19635
20
21
22 759 Paynter QE, Anderbrant O, Schlyter F (1990) Behavior of male and female spruce bark beetles,
23 760 *Ips typographus*, on the bark of host trees during mass attack. Journal of Insect Behavior 3:
24 761 529–543. doi.org/10.1007/BF01052016
25
26
27 762 Pettersson E, Boland W (2003) Potential parasitoid attractants, volatile composition throughout
28 763 a bark beetle attack. Chemoecology 13: 27–37. doi.org/10.1007/s000490300003
29
30
31 764 Polilov AA (2015) Consequences of miniaturization in insect morphology. Moscow
32 765 University Biological Sciences Bulletin 70: 136–142. doi: 10.3103/S0096392515030098
33
34
35 766 Powell D, Große-Wilde E, Krokene P, Roy A, Chakraborty A, Löfstedt C, Vogel H, Andersson
36 767 MN, Schlyter F (2021) A highly contiguous genome assembly of a major forest pest, the
37 768 Eurasian spruce bark beetle *Ips typographus*. Communications Biology 4: 1059. doi:
38 769 10.1038/s42003-021-02602-3
39
40
41 770 Pureswaran DS, Borden JH (2003) Is bigger better? Size and pheromone production in the
42 771 mountain pine beetle, *Dendroctonus ponderosae* Hopkins (Coleoptera: Scolytidae). Journal of
43 772 Insect Behavior 16: 765–782. doi.org/10.1023/B:JOIR.0000018319.37649.c4
44
45
46 773 Raffa KF, Andersson MN, Schlyter F (2016) Host selection by bark beetles: playing the odds
47 774 in a high-stakes game. Advances in Insect Physiology 50: 1–74.
48 775 doi.org/10.1016/bs.aiip.2016.02.001
49
50
51 776 Ramakrishnan R, Hradecký J, Roy A, Kalinová B, Mendez RC, Synek J, Bláha J, Svatoš A,
52 777 Jirošová A (2022) Metabolomics and transcriptomics of pheromone biosynthesis in an
53 778 aggressive forest pest *Ips typographus*. Insect Biochemistry and Molecular Biology 140:
54 779 103680. Doi.org/10.1016/j.ibmb.2021.103680
55
56
57 780 Sallé A, Baylac M, Lieutier F (2005) Size and shape changes of *Ips typographus* L. (Coleoptera:
58 781 Scolytinae) in relation to population level. Agricultural and Forest Entomology 7: 297–306.
59 782 doi.org/10.1111/j.1461-9555.2005.00274.x
60
61
62
63
64
65

783 Sallé A, Raffa KF (2007) Interactions among intraspecific competition, emergence patterns, and
1 784 host selection behavior in *Ips pini* (Coleoptera: Scolytinae). *Ecological Entomology* 32: 162–
2 785 171. doi.org/10.1111/j.1365-2311.2006.00833.x

3 786 Schebeck M, Schopf A, Ragland GJ, Stauffer C, Biedermann PHW (2023) Evolutionary
4 787 ecology of the bark beetles *Ips typographus* and *Pityogenes chalcographus*. *Bulletin of*
5 788 *Entomological Research* 113: 1–10. doi.org/10.1017/S0007485321000353

6 789 Schiebe C, Hammerbacher A, Birgersson G, Witzell J, Brodelius PE, Gershenson J, Hansson
7 790 BS, Krokene P, Schlyter F (2012) Inducibility of chemical defenses in Norway spruce bark is
8 791 correlated with unsuccessful mass attacks by the spruce bark beetle. *Oecologia* 170: 183–198.
9 792 doi.org/10.1007/s00442-012-2298-8

10 793 Schiebe C, Unelius CR, Ganji S, Binyameen M, Birgersson G, Schlyter F (2019) Styrene, (+)-
11 794 trans-(1 R, 4 S, 5 S)-4-thujanol and oxygenated monoterpenes related to host stress elicit strong
12 795 electrophysiological responses in the bark beetle *Ips typographus*. *Journal of Chemical Ecology*
13 796 45: 474–489. doi.org/10.1007/s10886-019-01070-8

14 797 Schlyter F, Anderbrant O (1993) Competition and niche separation between two bark beetles:
15 798 existence and mechanisms. *Oikos* 68: 437–447. doi.org/10.2307/3544911

16 799 Schlyter F, Birgersson G, Byers JA, Löfqvist J, Bergström G (1987) Field response of spruce
17 800 bark beetle, *Ips typographus*, to aggregation pheromone candidates. *Journal of Chemical
18 801 Ecology* 13: 701–716. doi.org/10.1007/BF01020153

19 802 Schlyter F, Zhang Q-H (1996) Testing avian polygyny hypotheses in insects: harem size
20 803 distribution and female egg gallery spacing in three *Ips* bark beetles. *Oikos* 76: 57–69.
21 804 doi.org/10.2307/3545748

22 805 Schlyter F, Jakuš R, Han F-Z, Ma J-H, Kalinová B, Mezei P, Sun J-H, Ujhelyiová L, Zhang Q-
23 806 H (2015) Reproductive isolation of *Ips nitidus* and *I. shangrila* in mountain forests of western
24 807 China: Responses to chiral and achiral candidate pheromone components. *Journal of Chemical
25 808 Ecology* 41: 678–688. doi: 10.1007/s10886-015-0594-6

26 809 Sousa M, Andersson A, Englund J-E, Flöhr A, Pollet M, Karlsson Green K, Birgersson G,
27 810 Becher PG (2024) Behavioral responses of predatory flies of the genus *Medetera Fischer von*
28 811 *Waldheim* (Diptera: Dolichopodidae) and the tree-killing beetle *Ips typographus* L.
29 812 (Coleoptera: Scolytinae) to odor compound blends. *Annals of Forest Science* 81: 42.
30 813 doi.org/10.1186/s13595-024-01261-8

31 814 Spaethe J, Brockmann A, Halbig C, Tautz J (2007) Size determines antennal sensitivity and
32 815 behavioral threshold to odors in bumblebee workers. *Naturwissenschaften* 94: 733–739. doi:
33 816 10.1007/s00114-007-0251-1

34 817 Steinbrecht RA (2007) Structure and function of insect olfactory sensilla. In: Ciba Foundation
35 818 Symposium 200 – Olfaction in Mosquito–Host Interactions. Chichester, UK: John Wiley &
36 819 Sons. pp. 158–183. doi: 10.1002/9780470514948.ch13

37 820

38 821

39 822

40 823

41 824

42 825

43 826

44 827

45 828

46 829

47 830

48 831

49 832

50 833

51 834

52 835

53 836

54 837

55 838

56 839

57 840

58 841

59 842

60 843

61 844

62 845

63 846

64 847

65 848

820 Vosshall LB, Wong AM, Axel R (2000) An olfactory sensory map in the fly brain. *Cell* 102:
1 821 147–159. doi: 10.1016/S0092-8674(00)00021-0
2
3
4 822 Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for
5 823 allometry. *Biological Reviews* 81: 259–291. doi: 10.1017/S1464793106007007
6
7 824 Warton DI, Duursma RA, Falster DS, Taskinen S (2012) smatr 3 – An R package for estimation
8 825 and inference about allometric lines. *Methods in Ecology and Evolution* 3: 257–259.
9 826 doi.org/10.1111/j.2041-210X.2011.00153.x
10
11 827 Wegensteiner R, Wermelinger B, Herrmann M (2015) Natural enemies of bark beetles:
12 828 predators, parasitoids, pathogens, and nematodes. In Vega FE, Hofstetter RW (eds) *Bark*
13 829 *Beetles*, pp. 247–304. Academic Press, San Diego. doi.org/10.1016/B978-0-12-417156-
14 830 5.00007-1
15
16 831 Wermelinger B (2004) Ecology and management of the spruce bark beetle *Ips typographus* – A
17 832 review of recent research. *Forest Ecology and Management* 202: 67–82.
18 833 doi.org/10.1016/j.foreco.2004.07.018
19
20
21
22
23 834 Wiesel E, Kaltofen S, Hansson BS, Wicher D (2022) Homeostasis of mitochondrial Ca^{2+}
24 835 stores is critical for signal amplification in *Drosophila melanogaster* olfactory sensory
25 836 neurons. *Insects* 13: 270. doi: 10.3390/insects13030270
26
27
28 837 Wojtasek H, Hansson BS, Leal WS (1998) Attracted or repelled?—A matter of two neurons,
29 838 one pheromone binding protein, and a chiral center. *Biochemical and Biophysical Research*
30 839 *Communications* 250: 217–222. doi: [10.1006/bbrc.1998.9278](https://doi.org/10.1006/bbrc.1998.9278)
31
32
33 840 Zaman R, Jain A, Hammerbacher A, et al. (2024) A rationale for chemical defense mixtures in
34 841 spruce oleoresin: most monoterpenes are highly toxic to either bark beetles or to their symbiotic
35 842 fungi, but not both. Preprint, Research Square, 16 August 2024. doi: 10.21203/rs.3.rs-
36 843 4919445/v1.
37
38
39 844 Zar JH (2014) *Biostatistical analysis*. Pearson Education
40
41 845 Zhang Q-H, Schlyter F, Birgersson G (2000) Bark volatiles from nonhost angiosperm trees of
42 846 spruce bark beetle, *Ips typographus* (L.) (Coleoptera: Scolytidae): chemical and
43 847 electrophysiological analysis. *Chemoecology* 10: 69–80. doi.org/10.1007/s000490050010
44
45
46
47 848 Zhang QH, Schlyter F (2004) Olfactory recognition and behavioural avoidance of angiosperm
48 849 nonhost volatiles by conifer-inhabiting bark beetles. *Agricultural and Forest Entomology* 6: 1–
49 850 20. doi: [10.1111/j.1461-9555.2004.00202.x](https://doi.org/10.1111/j.1461-9555.2004.00202.x)
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Paper V

Shewale, M. K., Bláha, J., Synek, J., Schebeck, M., Andersson, M. N., Kandasamy, D., & Jirošová, A. (2025) Comparative analysis of olfactory sensory neurons in two *Ips* species reveals conserved and species-specific olfactory adaptations. *Frontiers in Forests and Global Change*, 8, 1588866. doi: 10.3389/ffgc.2025.1588866

 Check for updates

OPEN ACCESS

EDITED BY

Milica Zlatkovic,
University of Novi Sad, Serbia

REVIEWED BY

Paul Greer,
University of Massachusetts Medical School,
United States
Patrick Christian Pageat,
Institut de Recherche en Sémi chimie et
Ethologie Appliquée (IRSEA), France
Jiaxing Fang,
Chinese Academy of Forestry, China

*CORRESPONDENCE

Anna Jirošová
✉ jirosova@fld.czu.cz

†These authors share senior authorship

RECEIVED 06 March 2025

ACCEPTED 14 May 2025

PUBLISHED xx xx 2025

CITATION

Shewale MK, Bláha J, Synek J, Schebeck M, Andersson MN, Kandasamy D and Jirošová A (2025) Comparative analysis of olfactory sensory neurons in two *Ips* species reveals conserved and species-specific olfactory adaptations. *Front. For. Glob. Change* 8:1588866. doi: 10.3389/ffgc.2025.1588866

COPYRIGHT

© 2025 Shewale, Bláha, Synek, Schebeck, Andersson, Kandasamy and Jirošová. This is an open-access article distributed under the terms of the [Creative Commons Attribution License \(CC BY\)](#). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Comparative analysis of olfactory sensory neurons in two *Ips* species reveals conserved and species-specific olfactory adaptations

Mayuri Kashinath Shewale¹, Jaromír Bláha¹, Jiří Synek¹, Martin Schebeck², Martin N. Andersson^{3†}, Dineshkumar Kandasamy^{1,3†} and Anna Jirošová^{1,2*}¹Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia,²Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Ecosystem Management, Climate and Biodiversity, BOKU University, Vienna, Austria, ³Department of Biology, Lund University, Lund, Sweden

Introduction: Bark beetles spend most of their lives under the bark of trees, with some species being economically significant pests that cause widespread tree mortality. Their behavior is primarily driven by olfactory signals, with aggregation pheromones playing a prominent role alongside volatiles from hosts, non-host trees and associated microbes. These signals are detected by olfactory sensory neurons (OSNs) housed in hair-like sensilla on the antennae. In this study, we focused on two *Ips* species with distinct host preferences: *Ips acuminatus*, which infests pine species, and *Ips cembrae*, which primarily attacks European larch. To better understand species-specific adaptations and shared olfactory mechanisms, we compared their olfactory responses with those of *Ips typographus*, a major pest of Norway spruce. By investigating the frequency, specificity, and antennal distribution of various OSN classes, we aimed to uncover both conserved and different olfactory mechanisms across *Ips* species with different host associations.

Methods: We conducted single sensillum recordings (SSR) to examine OSN responses in the antennal olfactory sensilla of *I. acuminatus* and *I. cembrae*. The responses were compared to existing data from *I. typographus* to identify potential species-specific adaptations and conserved olfactory mechanisms. A panel of 57 ecologically relevant odorants was tested, comprising interspecific and intraspecific pheromones, along with compounds associated with host- and non-host trees, as well as symbiotic fungi.

Results and discussion: Based on their response profiles, we identified nineteen OSN classes in both *I. acuminatus* and *I. cembrae*. A few selected OSN classes were further analyzed using dose-response tests to assess their specificity and sensitivity. Three OSN classes in *I. acuminatus* and four in *I. cembrae* were specific to host-related compounds. Two OSN classes responded to non-host volatiles, while one OSN class exhibited strong responses to microbial volatiles in both species. Several OSN classes specific to pheromone compounds, non-host and microbial volatiles showed similar response profiles in both *I. acuminatus* and *I. cembrae* as well as in OSN classes previously reported in *I. typographus*, potentially reflecting close phylogenetic relationships and shared ecological traits among these species.

109
110
111
112
113
114
115
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

Q8

KEYWORDS

electrophysiology, olfactory sensory neurons, bark beetles, aggregation pheromones, monoterpenes, semiochemicals

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

Q9 1 Introduction

Q10

Abiotic disturbances in forests are becoming more frequent and severe due to climate change, leading to increased bark beetle infestations (Jaime et al., 2024). Rising temperatures and prolonged droughts amplify disturbances such as wildfires or windthrow, creating more favorable conditions for bark beetles (Allen et al., 2015; Jakoby et al., 2019; Senf et al., 2018). Warmer climates accelerate beetle development and reproduction, resulting in outbreaks with significant ecological and economic impacts (Biedermann et al., 2019; Dobor et al., 2020; Sommerfeld et al., 2021; Hlásny et al., 2021). The increasing frequency of droughts and extreme weather events will further impact forests, making them more vulnerable to infestations (Netherer et al., 2024). Bark beetles (Coleoptera: Curculionidae: Scolytinae) comprise more than 6,000 species worldwide (Hulcr et al., 2015; Knížek and Beaver, 2007), including some of the most destructive conifer pests, particularly in the northern hemisphere. Bark beetles spend most of their life cycle under the tree bark, where many species feed and develop in the phloem. Many bark beetle species vector symbiotic fungi (particularly ophiostomatoid blue-stain fungi), which further impair tree defenses and contribute to tree decline and potential mortality (Krokene, 2015).

Bark beetles rely on a diverse array of semiochemicals to coordinate their host selection, mass attack, and regulation of colonization density (Byers, 2007). The colonization process typically begins with the detection of host tree volatiles, which help beetles identify and locate suitable coniferous hosts (Jirošová et al., 2022a; Moliterno et al., 2023). In contrast, non-host volatiles (NHWs) emitted by deciduous trees act as repellents, helping beetles avoid unsuitable hosts (Zhang and Schlyter, 2004). Once a host is selected, pioneer beetles release aggregation pheromones, which attract conspecifics and facilitate coordinated mass attacks, a crucial strategy for overcoming tree defenses (Christiansen and Bakke, 1988; Wood, 1982; Raffa et al., 2016; Keeling et al., 2021). As colonization progresses, bark beetles also respond to volatiles produced by their symbiotic ophiostomatoid fungi, which can influence both aggregation behavior and host suitability assessment (Jirošová et al., 2022b; Kandasamy et al., 2019, 2023). To avoid overcrowding and resource depletion, beetles release anti-aggregation pheromones at later stages, which regulate colonization density and promote dispersal to uncolonized trees (Frühbrodt et al., 2024). Beyond intraspecific signaling, bark beetles are also capable of detecting volatiles emitted by other bark beetle species and associated fungi, suggesting a broader role for interspecific chemical communication in mediating competition and spatial distribution (Andersson et al., 2009; Schiebe et al., 2019; Yuvaraj et al., 2024; Zhao et al., 2019; Kandasamy et al., 2019, 2023).

The pine bark beetle, *Ips acuminatus*, and the larch bark beetle, *Ips cembrae*, are both ecologically significant species of coniferous forests in Europe (Papek et al., 2024; Postner, 1974). *Ips acuminatus* mainly infests stressed Scots pine (*Pinus sylvestris*), with outbreaks increasing due to drought and warming (Liška et al., 2021; Wermelinger et al., 2008; Thabeet et al., 2009). It prefers the thin-barked upper trunk and crown, avoiding competition by *I. sexdentatus* (Pettersson, 2000;

Pfeffer, 1955; Wood and Bright, 1992), and other bark beetle species such as *Tomicus piniperda* and *T. minor* (Foit and Čermák, 2014; Hlávková and Doležal, 2022). Males release a pheromone blend of S-(-)-ipsenol, S-(+)-ipsdienol, and (4S)-*cis*-verbenol to attract conspecifics (Bakke, 1978; Francke et al., 1986), with mating occurring in a polygynous system (Kirkendall, 1989, 1990). It is associated with ophiostomatoid fungi, including blue-stain species that may support beetle development and survival (Francke-Grosmann, 1965; Villari et al., 2012; Papek et al., 2024).

Similarly, *I. cembrae* primarily infests European (*Larix decidua*) and Japanese larch (*Larix kaempferi*) but can also colonize other conifer species (Postner, 1974). While typically a secondary pest of weakened or felled trees, warming and drought can trigger outbreaks (Grodzki, 2008; EFSA on Plant Health et al., 2017). It colonizes the entire trunk (Pfeffer, 1955) and competes in the crown with bark beetles from several genera, such as *Pityophthorus*, *Pityogenes*, and *Cryphalus* (Postner, 1974). Males emit S-(-)-ipsenol, S-(+)-ipsdienol, and 3-methyl-3-buten-1-ol to initiate aggregation (Kohnle et al., 1988; Stoakley et al., 1978), followed by mating with 2–4 females in a chamber (Postner, 1974). *I. cembrae* also vectors *Endoconidiophora laricola*, a pathogenic blue-stain fungus that contributes to tree mortality (Redfern et al., 1987; Kirisits, 2004; Jankowiak et al., 2007).

The primary olfactory organ of bark beetles are the club-shaped antennae (Payne et al., 1973), covered with multi-porous sensilla that house olfactory sensory neurons (OSNs) (Hallberg, 1982a). In *Ips* species, the flattened antennal club has the most olfactory sensilla concentrated on the anterior surface, organized into three distinct sensory bands labeled A, B, and C (Hallberg, 1982a; Shewale et al., 2023). Most bark beetle OSNs are narrowly tuned, responding strongly to a single or a few structurally similar compounds, while some exhibit broader tuning (Andersson et al., 2009; Kandasamy et al., 2019, 2023). The dendritic membrane of the OSNs contains chemoreceptor proteins, such as odorant receptors (ORs) (Clyne et al., 1999) and ionotropic receptors (IRs) (Benton et al., 2009), which translate odor information of the environment into electrical signals. These signals can be interpreted by the brain, potentially leading to behavioral responses (Andersson et al., 2015).

Early single sensillum recording (SSR) experiments in bark beetles investigated OSN responses to pheromones and some host volatiles in *I. typographus* (Tømmerås, 1985). Studies on olfactory detection of mainly pheromone compounds are also available for other *Ips* species, such as *Ips pini*, *Ips paraconfusus*, and *Ips grandicollis* (Ascoli-Christensen et al., 1993; Mustaparta et al., 1979; Mustaparta et al., 1980, 1977). *Ips typographus*, a major pest of Norway spruce (*Picea abies*), is the most well-studied *Ips* species in terms of peripheral odor detection, with extensive research reporting the antennal abundance of different OSN classes and the spatial distribution of OSNs tuned to pheromones, host volatiles, NHVs, and microbial volatiles (Andersson et al., 2009; Kandasamy et al., 2019, 2023; Raffa et al., 2016; Schiebe et al., 2019; Yuvaraj et al., 2024). The comprehensive OSN data from *I. typographus* allows for detailed comparison with OSN data from other congeneric species with different host preferences to better understand their olfactory detection mechanisms. Although

225 semiochemicals are often classified as pheromones, allomones, or
226 kairomones, these classes might be unclear in this study, given their
227 overlapping ecological activities. Therefore, we classify compounds in
228 this study based on their biosynthetic origin, i.e., beetle-produced,
229 host-derived, or microbial, to maintain clarity and avoid confusion.
230 The chemical communication mechanisms that underlie their
231 behavior, including pheromone-mediated aggregation and detection
232 of plant and microbial volatiles, are critical for understanding their
233 success as pests. Addressing these knowledge gaps is especially
234 important given the increasing risks posed by these species under
235 changing environmental conditions.

236 This study aimed to functionally characterize the OSN classes in
237 two *Ips* species with different host preferences, specifically
238 *I. acuminatus* on pine and *I. cembrae* on larch. By comparing our
239 findings with existing data for the spruce bark beetle, *I. typographus*,
240 we investigated whether the OSN frequencies and response patterns
241 vary between species, and which of these patterns are conserved
242 across *Ips* species. Using SSR, we examined OSN responses to 57
243 ecologically relevant odorants, including pheromones and volatiles
244 from host trees, non-host trees, and fungi. Gas chromatography-
245 electroantennographic detection (GC-EAD) using essential oils was
246 also performed to investigate whether the antennae of the studied
247 species respond to host volatiles. This study advances our
248 understanding of olfactory adaptations in *Ips* species, particularly in
249 pheromone communication and host detection. Additionally, our
250 findings provide new insights that could be useful for species-specific
251 monitoring and pest management, essential for maintaining forest
252 health under climate change.

2 Materials and methods

2.1 Bark beetle collection

254 Both bark beetle species were collected from forests near the
255 village of Rouchovany in central Czech Republic (49.0704°N,
256 16.1076°E) during late spring 2024. Species identification was
257 conducted directly in the field. Branches of *P. sylvestris* (DBH
258 2–10 cm) infested by *I. acuminatus* were collected, along with logs of
259 *L. decidua* (DBH 20–50 cm) infested by *I. cembrae*. Infested logs were
260 maintained in university rearing facilities (FFWS, CULS) within insect
261 cages (60 × 60 × 110 cm) under controlled laboratory conditions
262 (25°C during the day, 19°C at night, 60% RH, and a 16:8 light/dark
263 photoperiod). Adult beetles began emerging three to 4 weeks after
264 field collection. The emerged beetles were collected and sexed under
265 a stereomicroscope based on external morphology, specifically by the
266 shape of elytral spines (Pfeffer, 1955; Zhang and Niemeyer, 1992).
267 Before use in experiments, adult beetles were individually stored in
268 Falcon tubes lined with moist paper at 4°C for at least 1 week. Each
269 adult beetle was used for ten screenings using single sensillum
270 recordings, whereas each beetle was used only once for dose-response
271 studies. To obtain enough beetles, another batch of *I. acuminatus* was
272 collected in spring 2024 from naturally infested *P. sylvestris* in
273 northeastern Austria (Schönberg am Kamp; 48.5185°N, 15.7322°E)
274 due to unavailability at the original location. Colonized logs (60 cm in
275 length) were transferred to incubators at BOKU University, Vienna,
276 where they were maintained at 25°C with a 16:8 light/dark
277 photoperiod and monitored daily for newly emerged beetles. The
278

279 emerged beetles were sexed and then express-mailed to Lund
280 University, Sweden, for subsequent SSR experiments.

2.2 Chemical stimuli

281 The odor panel included 57 ecologically relevant compounds,
282 including beetle pheromones, host-, non-host-, and microbial-related
283 volatiles (Supplementary Table 2). These compounds were selected
284 based on previous studies on *Ips* species, including *I. typographus*
285 (Andersson et al., 2009; Kandasamy et al., 2023). Stock odor solutions
286 (10 µg/µL) were prepared in paraffin oil and further diluted for use in
287 experiments. For stimulation, 10 µL of the solution was applied to a
288 piece of filter paper placed inside glass Pasteur pipettes. Control
289 stimuli consisted of paraffin oil alone. Pipettes were stored at –18°C
290 between experiments and replaced frequently to minimize odor
291 depletion (Andersson et al., 2012b). For GC-EAD experiments,
292 essential oils of *L. decidua* and *P. sylvestris* were purchased from
293 Oshadhi Ltd. (United Kingdom). Stock odor solutions (10 µg/µL)
294 were prepared in hexane and further diluted for use. For GC-EAD
295 experiments, 1 µL of the solution was directly injected into GC.

2.3 Single-sensillum recordings (SSR)

296 SSR was performed on live adult individuals of *I. acuminatus* and
297 *I. cembrae* to investigate OSN response profiles using previously
298 described procedures (Andersson et al., 2012a). Beetles were
299 immobilized in a 200 µL pipette tip, leaving the antennae and head
300 exposed. One antenna was carefully secured with dental wax onto a
301 microscope slide, ensuring optimal positioning for electrode insertion
302 and light penetration from below. Mounted antennae were observed
303 using a light microscope (Nikon Eclipse E6000FN) at ×500
304 magnification. Electrophysiological recordings were conducted using
305 tungsten microelectrodes that were electrolytically sharpened with
306 10% KNO₃. The reference electrode was inserted into a pre-made hole
307 in the beetle's pronotum, while the recording electrode was inserted
308 at the base of an olfactory sensillum. The recording electrode was
309 mounted on a Sensapex micromanipulator (uMp-3, Oulu, Finland)
310 for precise positioning. Signals were amplified and digitized using an
311 IDAC4 interface (Syntech), and real-time recordings were visualized
312 in AutoSpike v. 3.9 (Syntech). A continuous stream of charcoal-filtered
313 and humidified air (1.2 L/min) was directed onto the antenna via a
314 6 mm inner diameter glass tube positioned 15 mm from the antenna.
315 Odor stimuli were delivered as 0.5 s puffs (0.3 L/min) using a stimulus
316 controller (CS-02, Syntech), allowing the odorant to mix into the
317 continuous airflow and reach the antenna. Odor pipettes for screening
318 experiments were used for a maximum of two consecutive days or ten
319 stimulations per compound. Dose-response pipettes were freshly
320 prepared daily and used for a maximum of two stimulations. To
321 characterize OSN response profiles, a high-dose stimulus (10 µg;
322 10 µL of a 1 µg/µL solution) was used for initial screening. Odor
323 compounds were tested in random order, and OSNs were allowed to
324 regain basal spontaneous activity between stimulations. OSNs were
325 classified based on their response profiles during the screening
326 experiments. Additionally, five OSN classes for *I. acuminatus* and
327 three OSN classes for *I. cembrae* were selected for dose-response tests.
328 Compounds were tested in increasing concentrations (10 pg. to 10 µg)
329

341 to minimize sensory adaptation, starting with the least active
342 compound identified during the screening phase.
343
344

345 2.4 Data analysis

346

347 Neuronal responses were quantified offline in AutoSpike v3.9 by
348 calculating spike frequencies during the first 0.5 s of the odor response
349 and subtracting the pre-stimulation activity. Responses to the paraffin
350 oil control were also subtracted. At the screening dose, responses
351 below 20 Hz were considered biologically non-significant. Excitatory
352 responses were categorized as intermediate responses (40–60 Hz) and
353 strong responses (>80 Hz). Poor-quality recordings or incompletely
354 screened neurons were excluded. All data graphs and heatmaps were
355 generated using GraphPad Prism (version 10.1.2, GraphPad Software,
356 San Diego, CA, USA). The venn diagram was created using
357 InteractiVenn (Heberle et al., 2015).

358
359

360 2.5 Gas chromatography coupled 361 electroantennographic (GC-EAD) 362 experiments

363 For GC-EAD, the head of the beetle with antennae was prepared
364 and connected between glass microelectrodes filled with Ringer's
365 solution (Olsson and Hansson, 2013). Signals from the antenna were
366 recorded using a Universal probe (Syntech) and integrated with
367 IDAC 2 (Syntech). The results were processed using the software
368 GcEad v. 4.6.1 (Syntech). At least five recordings were made for each
369 sample, and a volatile was considered active if at least two antennal
370 responses were recorded in *I. acuminatus* and *I. cembrae*. For the
371 experiments, an Agilent 7890B GC was used, equipped with an HP-5
372 column (Agilent Technologies, Inc), 30 m in length, 0.32 mm in
373 diameter, and with a film thickness of 0.25 μ m, ending in a splitter.
374 From the splitter, 5 m of the same column was led to the FID detector
375 and 1 m of the column on the antenna. At the column outlet, the
376 chemical components were mixed with humidified air at a flow rate
377 of 2 L/min and blown onto the prepared antenna. Samples were
378 injected splitless, and the carrier gas for the GC was helium with a
379 constant column flow rate of 3 mL/min. The inlet temperature was
380 set to 250°C, the initial oven temperature was set to 40°C for 1 min,
381 then increased by 10°C/min to 100°C, held for 0.5 min, then
382 increased by 20°C/min to 150°C, and then increased by 40°C/min to
383 a final temperature of 300°C, with 3 min hold. The FID temperature
384 was set to 300°C.
385
386

387 3 Results

388

389 3.1 General classification of OSN types

390 The responses of OSN in *I. acuminatus* (IAc) and *I. cembrae* (IC)
391 were examined using single sensillum recordings (SSR) from
392 antennal olfactory sensilla. Most sensilla housed two OSNs,
393 distinguishable by their spike amplitudes (A neuron: large amplitude
394 cell; B neuron: small amplitude cell). Some sensilla appeared to house
395 a single OSN, while a few seemed to house three. However, the
396 presence of three neurons was rare and sometimes difficult to confirm

397 due to suboptimal signal quality. The OSNs frequently responded to
398 multiple compounds, but the primary compounds elicited the
399 strongest responses, frequently exceeding 80 Hz. The compounds
400 that triggered weaker secondary responses were often structurally
401 similar to the primary compounds. The OSN response activity
402 generally followed a phasic-tonic pattern with a sharp initial rise in
403 firing rate, followed by a gradual decline to baseline levels
404 (Supplementary Figure 1). However, most responses were rather
405 tonic, with increased firing well beyond stimulus offset, whereas
406 some neurons responded in a phasic manner, with responses quickly
407 returning to baseline activity. The highest response frequencies
408 reached 150 Hz in *I. acuminatus* and 200 Hz in *I. cembrae*. Notably,
409 the compounds that elicited the strongest responses at the high
410 screening dose (10 μ g on the filter paper) were also associated with
411 the lowest detection thresholds.
412
413

414 A screening experiment using 57 ecologically relevant odorants at
415 10 μ g revealed that 69 out of 82 contacted sensilla (~84%) in
416 *I. acuminatus* (males, $n = 17$; females, $n = 23$) and 62 out of 85 sensilla
417 (~73%) in *I. cembrae* (males, $n = 28$ and females, $n = 18$), responded
418 to at least one compound. The remaining sensilla (12 in *I. acuminatus*
419 and 23 in *I. cembrae*) did not respond to any of the tested compounds.
420 Additionally, a small number of sensilla (three in *I. acuminatus* and
421 two in *I. cembrae*) were excluded due to poor recording quality or
422 signal loss during the experiment, which prevented OSN classification.
423 OSNs responding strongly (>80 Hz) to at least one compound were
424 categorized into OSN classes based on their response profiles
425 (Figures 1, 2). In contrast, OSNs with weak to intermediate responses
426 (20–80 Hz) were not assigned to any OSN class because their primary
427 compounds were likely missing from the test odor panel
428 (Supplementary Table 1 shows detailed OSN responses).
429
430

431 3.2 Olfactory sensory neuron responses in 432 *I. acuminatus*

433 3.2.1 OSNs responding to aggregation 434 pheromone components in *I. acuminatus*

435 Three OSN classes in *I. acuminatus* were strongly activated by its
436 aggregation pheromone components, with distinct ligand specificities
437 and dose-dependent responses. The IAc1 class (*I. acuminatus* OSN
438 class 1) responded strongly (>80 Hz) to (4S)-*cis*-verbenol ($n = 5$)
439 which is the major aggregation component in this species. Weaker
440 secondary responses (<60 Hz) were elicited by structurally similar
441 compounds, including (+)-*trans*-verbenol, (−)-*trans*-verbenol,
442 (−)-verbenone, and chalcogran. These A neuron OSNs were
443 co-localized with a B neuron OSN class (IAc2), which strongly
444 responded (>80 Hz) to 1,8-cineole, a host tree defense compound
445 (Figure 3A). Sensilla housing IAc1 neurons were predominantly
446 located on the distal antennal club in the sensory band C (Figure 4A).

447 The IAc3 class responded primarily (>80 Hz) to S-(−)-ipsenol
448 ($n = 6$), which is the naturally occurring enantiomer of ipsenol. These
449 A neurons showed weak secondary responses (<60 Hz) to R-(+)-
450 ipsenol and ipsdienol enantiomers. Dose-response tests confirmed
451 the high specificity for S-(−)-ipsenol, with a response threshold as
452 low as 100 pg. (Figure 4E). The OSNs of this class were mainly
453 distributed in the sensory band B (Figure 4A). The IAc4 class also
454 exhibited enantiomer-specific detection, responding strongly
455 (>80 Hz) to R-(−)-ipsdienol ($n = 3$). These A neurons were

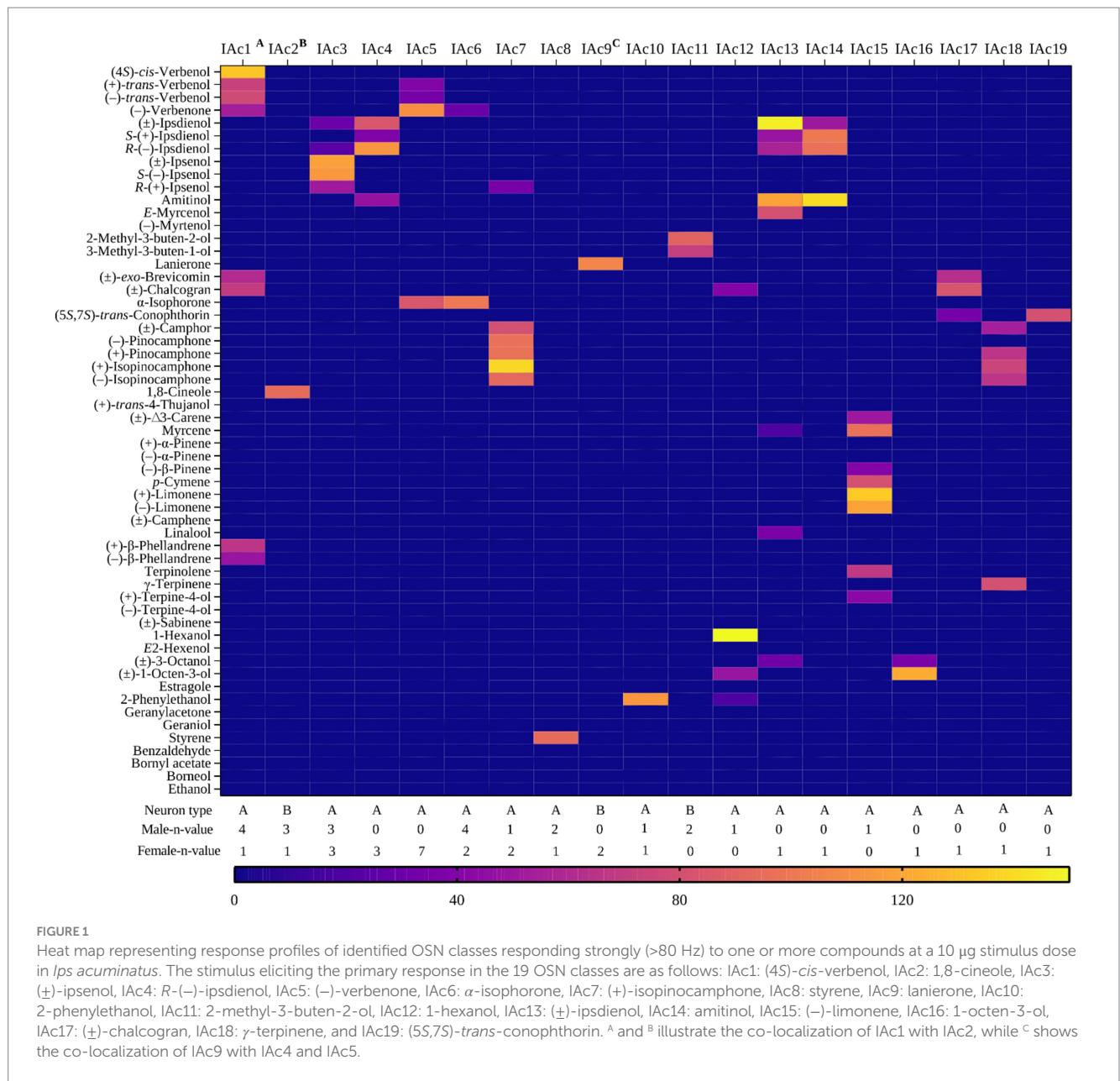
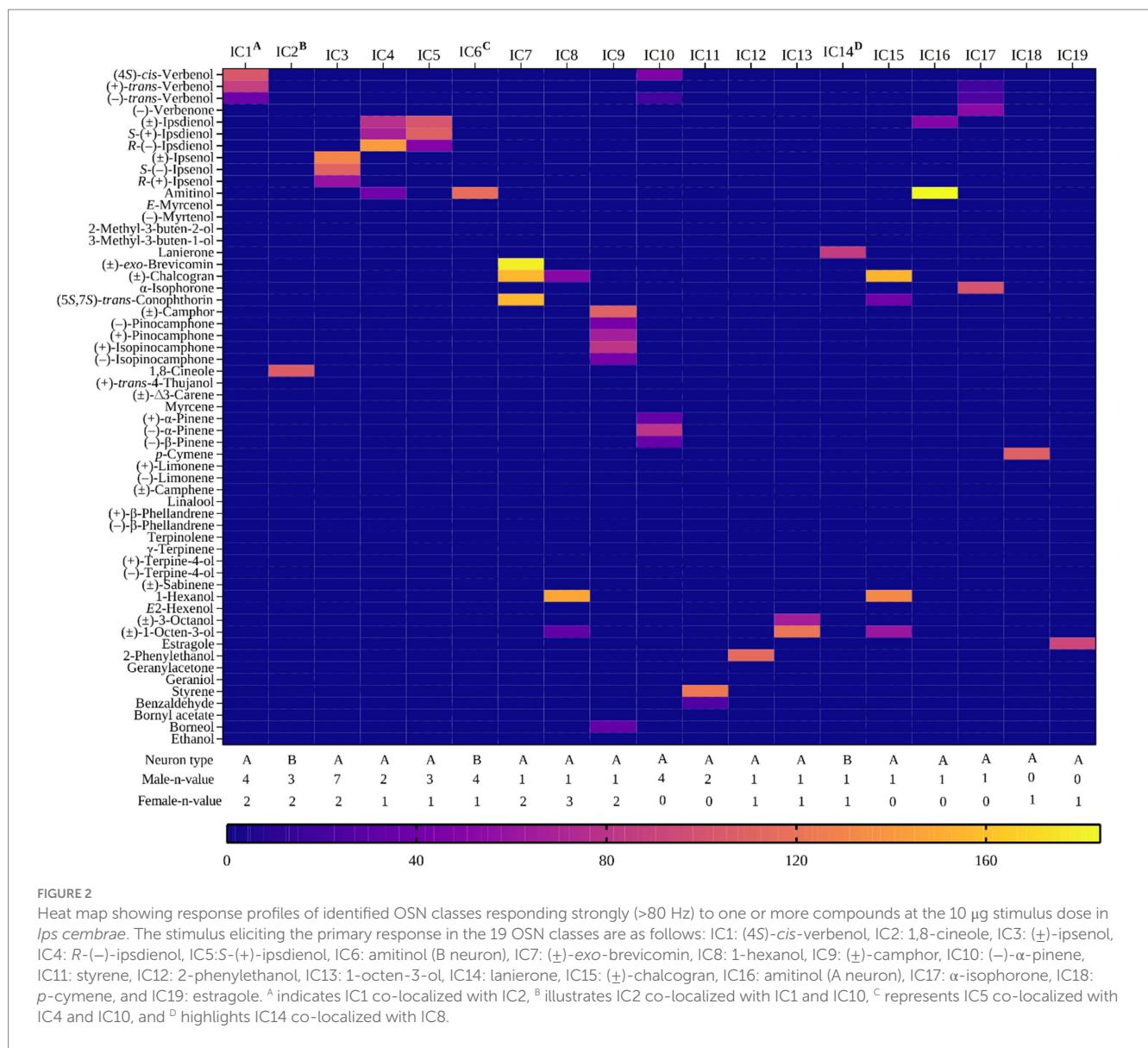


FIGURE 1

Heat map representing response profiles of identified OSN classes responding strongly (>80 Hz) to one or more compounds at a 10 μ g stimulus dose in *Ips acuminatus*. The stimulus eliciting the primary response in the 19 OSN classes are as follows: IAc1: (4S)-*cis*-verbenol, IAc2: 1,8-cineole, IAc3: (±)-ipsenol, IAc4: R-(-)-ipsdienol, IAc5: (-)-verbenone, IAc6: α -isophorone, IAc7: (+)-isopinocampnone, IAc8: styrene, IAc9: lanierone, IAc10: 2-phenylethanol, IAc11: 2-methyl-3-buten-2-ol, IAc12: 1-hexanol, IAc13: (±)-ipsdienol, IAc14: amitinol, IAc15: (-)-limonene, IAc16: 1-octen-3-ol, IAc17: (+)-chalcogran, IAc18: γ -terpinene, and IAc19: (55,75)-*trans*-conophthorin. ^A and ^B illustrate the co-localization of IAc9 with IAc4 and IAc5, while ^C shows the co-localization of IAc9 with IAc14.


co-localized with lanierone-responsive B neurons (IAc9 class, described below). Weaker secondary responses were observed for the S- (+)-enantiomer, the racemic mixture, and amitinol. This class was distributed on the sensory bands A and B on the antennal surface (Figure 4A) and was observed only in females. In contrast to the screening experiments, dose-response studies demonstrated the strongest response to the other enantiomer, to S- (+)-ipsdienol, with minimal responses to secondary compounds at lower concentrations (Figure 4E). Interestingly, during initial screening experiments, we did not identify any sensilla that strongly responded to S- (+)-ipsdienol. This discrepancy between the screening and dose-response data suggests that two distinct OSN classes likely exist in *I. acuminatus*, each specifically tuned to either S- (+)-ipsdienol or R- (-)-ipsdienol.

Additionally, OSN class IAc13, ($n = 1$, A neuron) responded strongly (>80 Hz) to racemic ipsdienol, with intermediate secondary

responses to amitinol, *E*-myrcenol and ipsdienol enantiomers. Another OSN class, IAc14 ($n = 1$, A neuron), responded most strongly to amitinol with weaker secondary responses to racemic ipsdienol and its enantiomers (Figure 1; Supplementary Table 1).

3.2.2 OSNs responding to other beetle-produced compounds in *I. acuminatus*

Five OSN classes were tuned to additional beetle-produced compounds. The IAc5 class responded strongly (>80 Hz) to (-)-verbenone ($n = 7$) and exhibited weaker secondary responses to α -isophorone, (+)-*trans*-verbenol, and (-)-*trans*-verbenol. These A neurons, primarily distributed across the sensory bands A and B, mostly in the middle region of the antennal club, displayed dose-dependent responses with a response threshold at ~1 ng (Figure 4E). This was the most abundant OSN class in this species (Figure 4B) and was found exclusively in females ($n = 7$). The IAc6 class showed

high specificity (>80 Hz) to α -isophorone ($n = 6$). These A neurons did not respond to verbenone or any other compounds from the odor panel, and dose-response tests revealed an exceptionally low response threshold at 10 pg., indicating high sensitivity (Figure 4E). This OSN class was distributed mainly in the sensory band B on the antennal club (Figure 4A). Additional pheromone-responsive OSN classes included IAc9, a B neuron class strongly responding (>80 Hz) to lanierone ($n = 2$, both females), with one B-neuron co-localized with an *R*-($-$)-ipsdienol-responsive A neuron and the other B-neuron with a non-responsive A neuron. The IAc10 class, also an A neuron, responded strongly (>80 Hz) to 2-phenylethanol ($n = 2$). Another OSN class, IAc11, a B neuron, strongly responded to 2-methyl-3-buten-2-ol ($n = 2$, both males) with secondary responses to 3-methyl-3-buten-1-ol (Figure 4C). These OSNs were co-localized with non-responsive A neurons (Figure 4D). Most of these pheromone-sensitive OSN classes were distributed in all three sensory bands on the antennal surface (Figure 4A). Another A neuron class, IAc17, showed a strong response (>80 Hz) to chalcogran followed by intermediate secondary responses (>50 Hz)

to (\pm)-exo-brevicomin and weaker responses (<40 Hz) to (5S,7S)-*trans*-conophthorin (Figure 4D).

3.2.3 OSN classes responding to host, non-host, and microbial volatiles in *I. acuminatus*

We observed three OSN classes with strong primary responses (>80 Hz) to host volatiles. OSN class IAc2 was a B neuron which showed strong responses to only 1,8-cineole. OSN class IAc15 was an A neuron which responded strongly (>80 Hz) to ($-$)-limonene and (+)-limonene followed by intermediate (>50 Hz) secondary responses to myrcene, *p*-cymene, terpinolene, and Δ -3-carene, and weak responses (<40 Hz) to (+)-terpine-4-ol and ($-$)- β -pinene (Figure 1). OSN class (IAc18) was an A neuron, which primarily responded strongly (>80 Hz) to γ -terpinene and secondarily to (+)-isopinocamphone, ($-$)-isopinocamphone, (+)-pinocamphone and racemic camphor (Figure 4D). Most of the OSN classes responding to host volatiles were distributed on the sensory band B (Figure 4A). Notably, pheromone-sensitive and host-specific OSN classes were generally not spatially segregated across the antennal

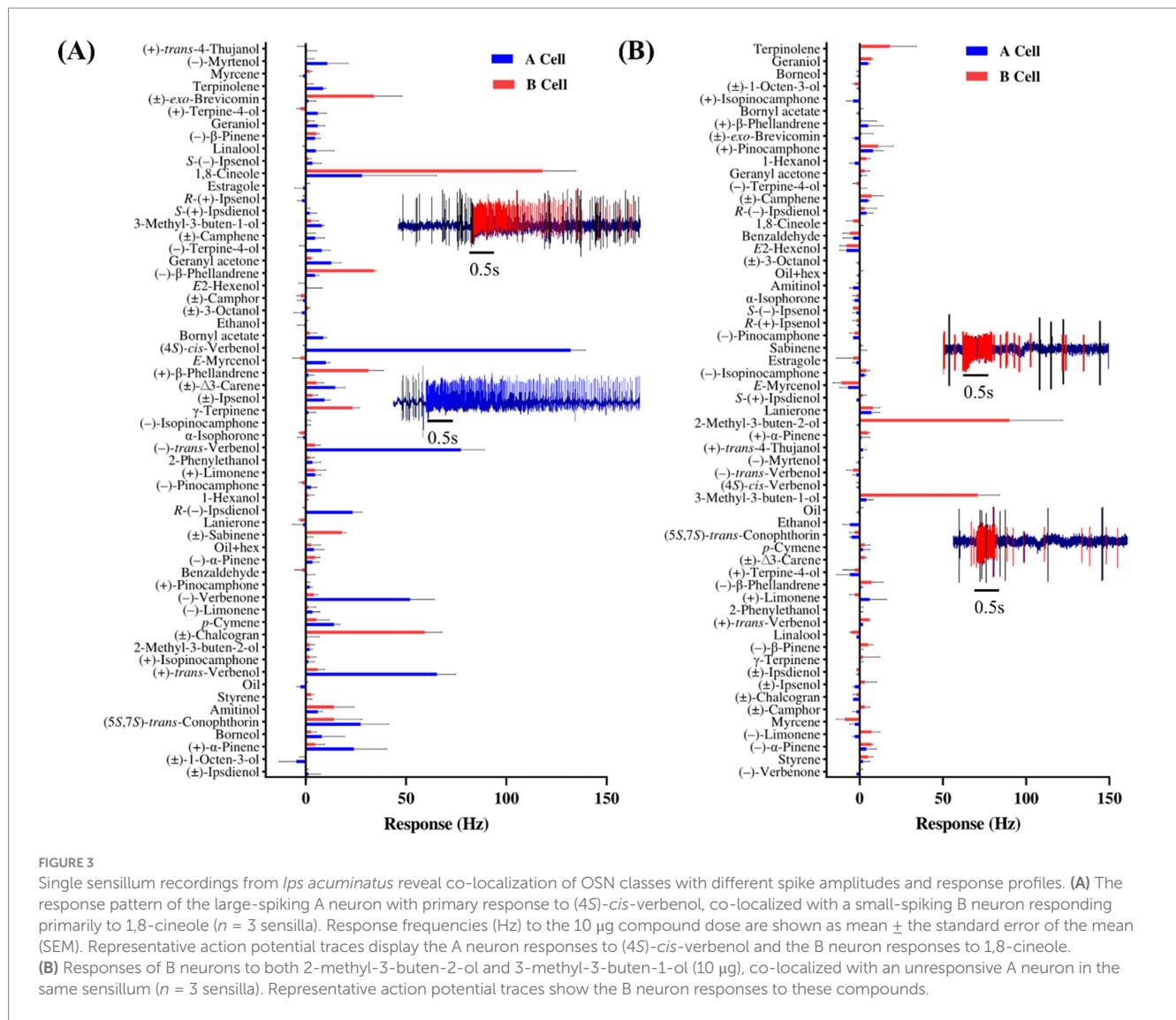


FIGURE 3

Single sensillum recordings from *Ips acuminatus* reveal co-localization of OSN classes with different spike amplitudes and response profiles. (A) The response pattern of the large-spiking A neuron with primary response to (4S)-*cis*-verbenol, co-localized with a small-spiking B neuron responding primarily to 1,8-cineole ($n = 3$ sensilla). Response frequencies (Hz) to the 10 μ g compound dose are shown as mean \pm the standard error of the mean (SEM). Representative action potential traces display the A neuron responses to (4S)-*cis*-verbenol and the B neuron responses to 1,8-cineole. (B) Responses of B neurons to both 2-methyl-3-buten-2-ol and 3-methyl-3-buten-1-ol (10 μ g), co-localized with an unresponsive A neuron in the same sensillum ($n = 3$ sensilla). Representative action potential traces show the B neuron responses to these compounds.

surface, with the exception of (4S)-*cis*-verbenol-responsive neurons, which were exclusively localized within sensory band C (Figure 4A).

Three OSN classes, all A neurons, exhibited strong responses (>80 Hz) to non-host volatiles. OSN class IAc12 responded strongly to 1-hexanol. Secondary responses (<50 Hz) were observed for other compounds, such as racemic 1-octen-3-ol and chalcogran. OSN class IAc16 displayed strong responses to racemic 1-octen-3-ol and weak responses to racemic 3-octanol (Figure 1). Another OSN class, IAc19, responded strongly (>80 Hz) to the bicyclic ketal (5S,7S)-*trans*-conophthorin ($n = 1$). Two OSN classes exhibited strong responses (>80 Hz) to microbial volatiles (Figure 4B). The IAc7 class was an A neuron which responded strongly to (+)-isopinocamphone ($n = 3$). Secondary responses (60–80 Hz) were observed to related oxygenated monoterpenes from trees and microbes, including (−)-isopinocamphone, (+)-pinocamphone, (−)-pinocamphone, and racemic camphor. These responses suggest broad tuning to structurally similar oxygenated host monoterpenes (Figure 4D). The IAc8 class was an A neuron specific to styrene, with secondary responses to benzaldehyde and racemic camphor ($n = 3$).

3.3 Olfactory sensory neuron responses in *I. cembrae*

3.3.1 OSN classes responding to aggregation pheromone components of *I. cembrae*

We identified two OSN classes specific to the aggregation pheromone components of *I. cembrae*. OSN class IC1 was an A neuron ($n = 6$), which responded primarily (>80 Hz) to (4S)-*cis*-verbenol with dose-dependent responses and a response threshold of 100 pg. Weaker secondary responses (40–60 Hz) to (+)-*trans*-verbenol and (−)-*trans*-verbenol were observed (Figure 5E). Five out of six of these (4S)-*cis*-verbenol-responsive OSNs were co-localized with IC2, which was a B neuron responding to 1,8-cineole (Figure 6A). The distribution was mostly in the distal antennal club region on sensory band C, while few were located on sensory band B (Figure 5A). (4S)-*cis*-Verbenol is a male-produced aggregation pheromone component in both *I. typographus* and *I. acuminatus* but not reported as an aggregation pheromone component in *I. cembrae*.

The OSN class IC3 (A neuron) was the most frequently observed class (found in ~14% of the responding sensilla), responding strongly

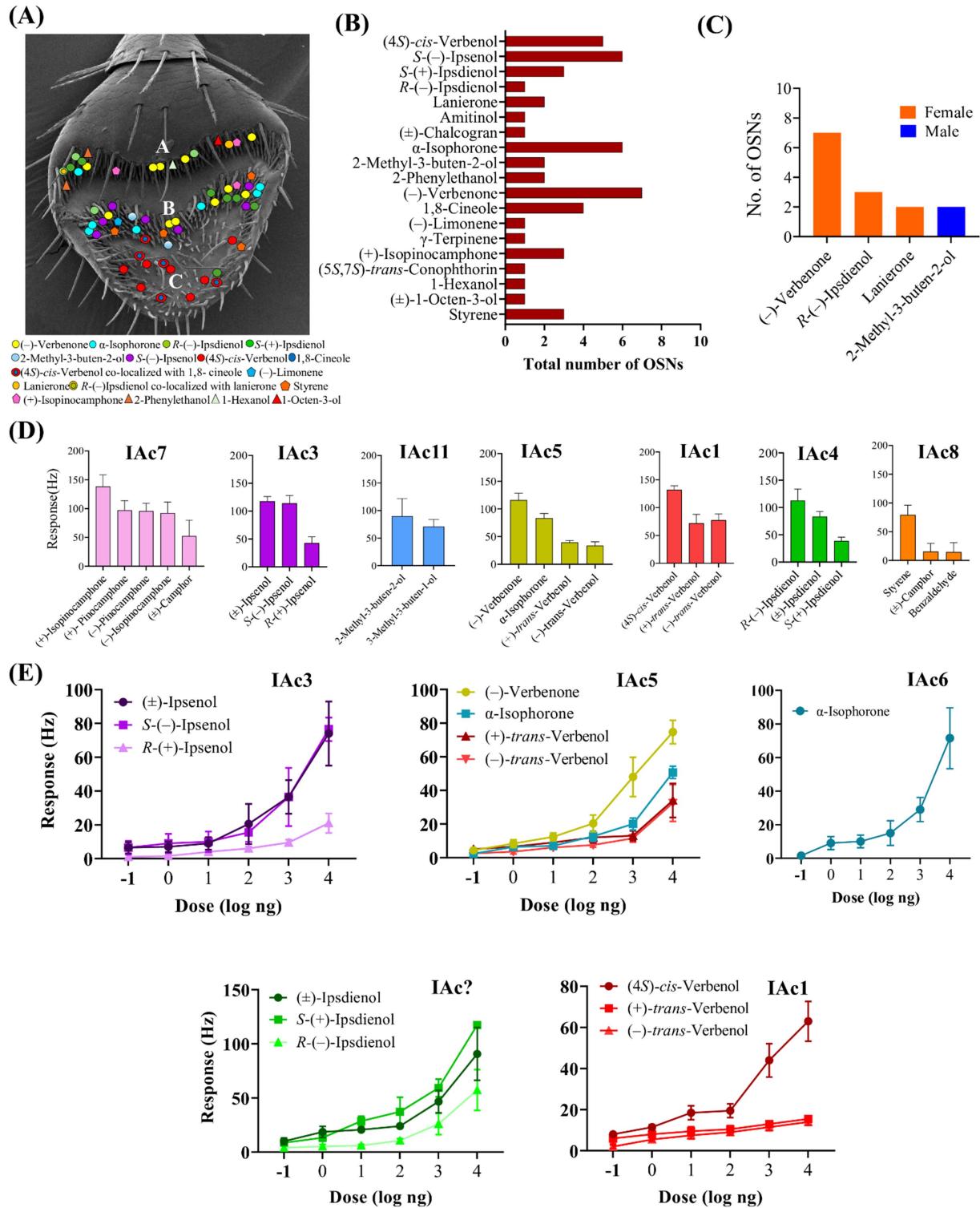
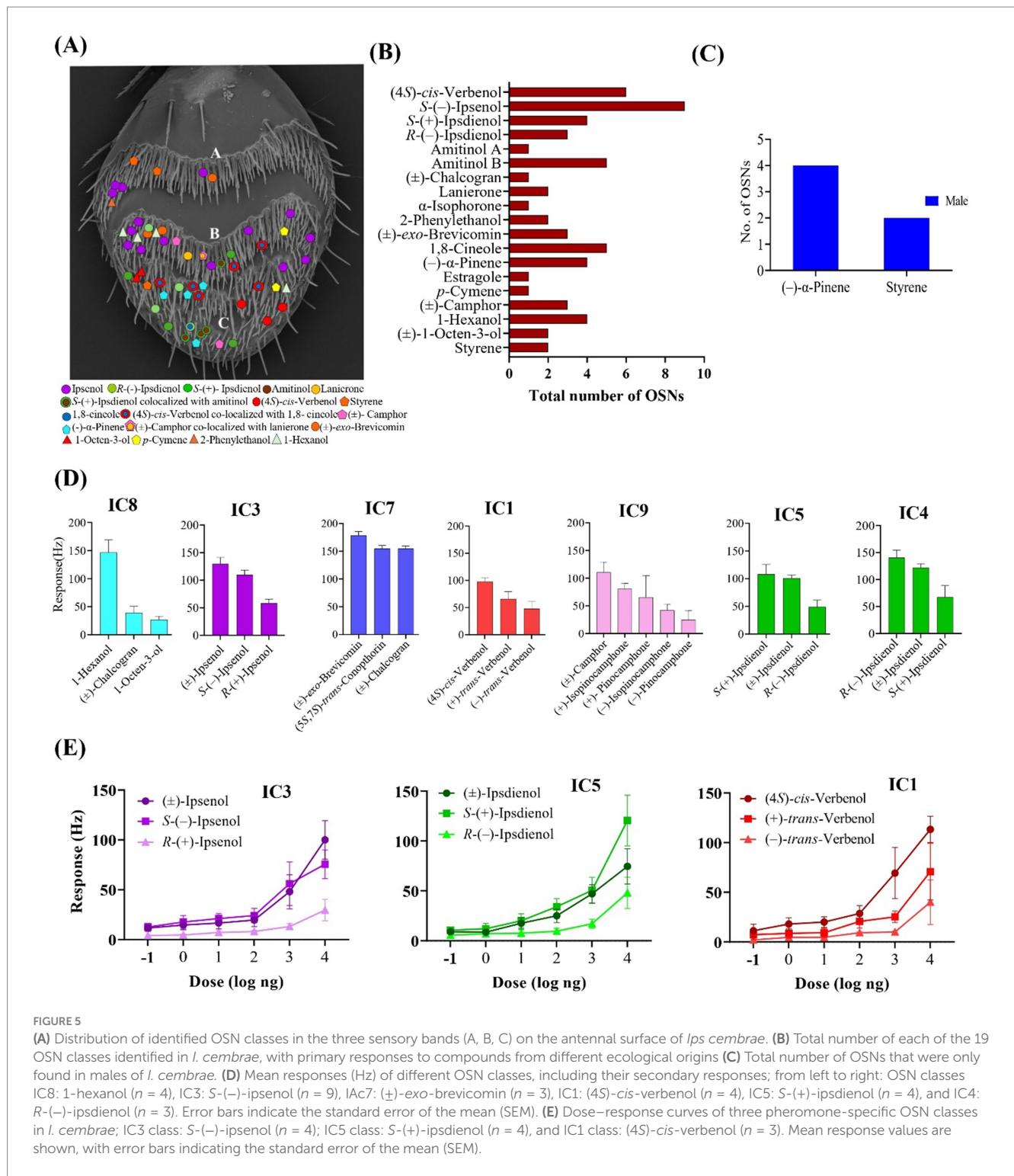



FIGURE 4

(A) Distribution of identified OSN classes in *Ips acuminatus* on the antennal surface with three sensory bands A, B and C. (B) Total number of each of the 19 OSN classes identified in *I. acuminatus*, with primary responses to compounds from different ecological origins. (C) Total number of OSN that were only found in one of the sexes of *I. acuminatus*. (D) Mean response (Hz) of the different OSN classes, including their secondary responses; from left to right: OSN classes IAc7: (+)-isopinocamphone ($n = 3$), IAc3: S-(-)-ipsenol ($n = 6$), IAc11: 2-methyl-3-buten-2-ol ($n = 3$), IAc5: (-)-verbenone ($n = 6$), IAc1: (4S)-cis-verbenol ($n = 3$), IAc4: R-(-)-ipsdienol ($n = 3$), and IAc8: styrene ($n = 3$). Error bars indicate standard error of the mean (SEM). (E) Dose-response curves of five OSN classes in *I. acuminatus*; IAc3 class: S-(-)-ipsenol ($n = 4$); IAc5 class: (-)-verbenone ($n = 6$); IAc? class: S-(+)-ipsdienol ($n = 3$) [the IAc? OSN class was observed only in dose-response tests and not while screening]; IAc1 class: (4S)-cis-verbenol ($n = 4$), and IAc6 class: α-isophorone ($n = 4$). Mean response values are shown, with error bars indicating the standard error of the mean (SEM).

FIGURE 5
(A) Distribution of identified OSN classes in the three sensory bands (A, B, C) on the antennal surface of *Ips cembrae*. **(B)** Total number of each of the 19 OSN classes identified in *I. cembrae*, with primary responses to compounds from different ecological origins **(C)** Total number of OSNs that were only found in males of *I. cembrae*. **(D)** Mean responses (Hz) of different OSN classes, including their secondary responses; from left to right: OSN classes IC8: 1-hexanol ($n = 4$), IC3: S-(+)-ipsenol ($n = 9$), IC7: (+)-exo-brevicomin ($n = 3$), IC1: (4S)-cis-verbénol ($n = 4$), IC5: S-(+)-ipsdiol ($n = 4$), and IC4: R-(+)-ipsdiol ($n = 3$). Error bars indicate the standard error of the mean (SEM). **(E)** Dose-response curves of three pheromone-specific OSN classes in *I. cembrae*; IC3 class: S-(+)-ipsenol ($n = 4$); IC5 class: S-(+)-ipsdiol ($n = 4$), and IC1 class: (4S)-cis-verbénol ($n = 3$). Mean response values are shown, with error bars indicating the standard error of the mean (SEM).

(>80 Hz) to racemic ipsenol and S-(+)-ipsenol ($n = 9$) (Figure 5B). Ipsiencol is the major component of the aggregation pheromone in *I. cembrae*. The response threshold of these OSNs was around 100 pg. (Figure 5E). R-(+)-ipsenol elicited minimal responses in this OSN class, consistent with its absence in the natural pheromone blend (Stoakley et al., 1978). This OSN class was uniformly distributed across sensory bands A and B (Figure 5A). The OSN class IC4, which was an A neuron, responded strongly to R-(+)-ipsdiol ($n = 3$) and

weaker to the S-enantiomer and the racemic mixture (Figure 5D). However, we did not find this OSN class during dose-response tests. Additionally, OSN class IC5 ($n = 4$), also an A-neuron, responded specifically to S-(+)-ipsdiol, with a response threshold of 1 ng (Figure 5E). Another OSN class, IC6, was a B neuron responding strongly to amitinol ($n = 5$); this class was always co-localized with OSN class IC5 (Figure 6B). The S-(+)-ipsdiol specific OSN class and R-(+)-ipsdiol specific OSN class were distributed across the sensory

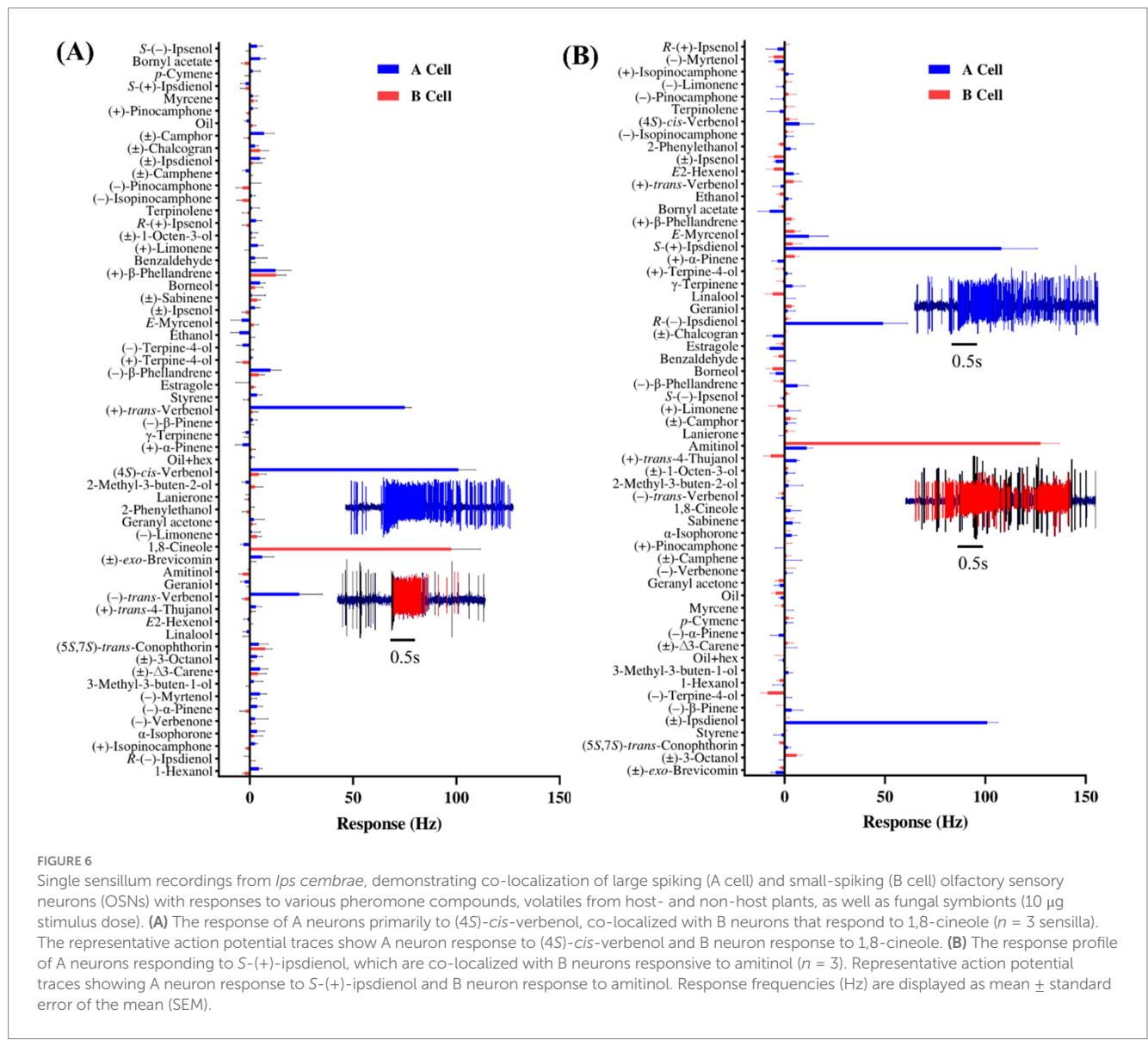


FIGURE 6

Single sensillum recordings from *Ips cembrae*, demonstrating co-localization of large spiking (A cell) and small-spiking (B cell) olfactory sensory neurons (OSNs) with responses to various pheromone compounds, volatiles from host- and non-host plants, as well as fungal symbionts (10 μ g stimulus dose). (A) The response of A neurons primarily to (4S)-cis-Verbenol, co-localized with B neurons that respond to 1,8-cineole ($n = 3$ sensilla). The representative action potential traces show A neuron response to (4S)-cis-Verbenol and B neuron response to 1,8-cineole. (B) The response profile of A neurons responding to S-(+)-ipsdienol, which are co-localized with B neurons responsive to amitinol ($n = 3$). Representative action potential traces showing A neuron response to S-(+)-ipsdienol and B neuron response to amitinol. Response frequencies (Hz) are displayed as mean \pm standard error of the mean (SEM).

band C on the antennal club surface and rarely on sensory band B (Figure 5A). It is noteworthy that during our screening, we did not detect neurons that responded to 3-methyl-3-buten-1-ol, which is a pheromone component of *I. cembrae*.

3.3.2 OSNs responding to other beetle-produced compounds in *I. cembrae*

We observed four additional OSN classes strongly responding to different beetle-produced compounds. The OSN class IC7 (A neuron) strongly responded (>80 Hz) to (\pm)-exo-brevicomin ($n = 3$), with secondary responses to chalcogran and (5S,7S)-trans-conophthorin (Figure 5D). Another OSN class, IC14, a B neuron, responded strongly to lanierone ($n = 2$). These neurons were co-localized with OSN class IC9 or a non-responsive A neuron. Additionally, OSN class IC12 class (A neuron) responded strongly (>80 Hz) and specifically to 2-phenylethanol ($n = 2$) with no secondary responses. OSN class IC15 was an A neuron primarily tuned to chalcogran with secondary responses to 1-hexanol, 1-octen-3-ol, and (5S,7S)-trans-conophthorin ($n = 1$). OSN class IC16 (A neuron) displayed strong responses

(>80 Hz) to amitinol with secondary responses to racemic ipsdienol ($n = 1$). Lastly, OSN class IC17 was an A neuron, which responded strongly to α -isophorone followed by secondary responses to ($-$)-verbenone, ($+$)-trans-Verbenol and ($-$)-trans-Verbenol ($n = 1$). These OSN classes were mostly found in the distal region of the antennal surface (Figure 5A).

3.3.3 OSN classes responding to host, non-host and microbial volatiles in *I. cembrae*

Five OSN classes were specifically tuned to host volatiles, including OSN class IC2, a B neuron specific for 1,8-cineole. The OSN class IC9 showed strong responses (>80 Hz) to camphor ($n = 3$), with strong secondary responses to ($+$)-isopinocamphone (>80 Hz) and weaker secondary responses to other related oxygenated monoterpenes, such as ($-$)-isopinocamphone, ($+$)-pinocamphone, ($-$)-pinocamphone and borneol (Figures 4, 5D). This IC9 A neuron was co-localized with B neurons responding specifically (>80 Hz) to lanierone (IAC14). Additionally, the OSN class IC10 was an A neuron specific for ($-$)- α -pinene ($n = 4$, all males). This class also showed

weak to intermediate (20–40 Hz) secondary responses to (4S)-*cis*-verbenol, (+)- α -pinene, (−)- β -pinene and (+)-*trans*-verbenol. Another OSN class, IC18 (A neuron), showed strong responses (>80 Hz) to *p*-cymene ($n = 1$). Lastly, OSN class IC19 strongly responded (>80 Hz) to estragole ($n = 1$). The OSN classes corresponding to host volatiles were distributed on the sensory bands B and C on the antennal surface (Figure 5A).

Two OSN classes responded to non-host volatiles. The OSN class IC8 (A neuron) responded primarily to the green leaf volatile 1-hexanol ($n = 4$). This class also showed weak to intermediate secondary responses (<50 Hz) to other compounds, including chalcogran, racemic 1-octen-3-ol and 2-phenylethanol. The IC13 class was also an A-neuron responding to racemic 1-octen-3-ol ($n = 2$), with weaker secondary responses to racemic 3-octanol. These OSN classes were observed on sensory bands B and C on the antennal surface (Figure 5A). Additionally, the OSN class IC11 (A neuron) responded to microbial volatile styrene ($n = 2$, both males) (Figure 4), with weak secondary responses (<40 Hz) to benzaldehyde.

3.4 Comparative analysis of OSN profiles and distribution among *I. acuminatus* and *I. cembrae* with previously characterized *I. typographus*

Our comparative analysis revealed that *I. acuminatus*, *I. cembrae*, and *I. typographus* show both conserved olfactory adaptations and species-specific differences (Table 1, Supplementary Figure 2). Of the 23 OSN classes identified in *I. typographus* (Andersson et al., 2009; Kandasamy et al., 2019, 2023; Yuvaraj et al., 2024) and the 19 OSN classes found in both *I. cembrae* and *I. acuminatus*, 11 were shared among all three species based on similarities in response profiles. These shared OSN classes were tuned to beetle-produced compounds, host or non-host tree, and microbial volatiles (See Table 1 for details on OSN classes). Four OSN classes, specific to 2-methyl-3-buten-2-ol, (−)-verbenone, α -isophorone, (+)-isopinocamphone and (5S,7S)-*trans*-conophthorin, respectively, were found exclusively in *I. typographus* and *I. acuminatus* (Andersson et al., 2009; Kandasamy et al., 2019, 2023), while two OSN classes tuned to *p*-cymene and estragole were shared between *I. typographus* and *I. cembrae* (Andersson et al., 2009; Raffa et al., 2016). Additionally, OSN classes specific to racemic chalcogran and α -isophorone were shared between *I. acuminatus* and *I. cembrae*. Species-specific OSN differences were particularly evident in responses to host and fungal volatiles. *I. cembrae* had four unique OSN classes tuned to amitinol (B neuron), racemic camphor, racemic *exo*-brevicomin, and (−)- α -pinene, respectively, whereas *I. acuminatus* had two unique OSN classes tuned to (−)-limonene and γ -terpinene (Supplementary Figure 2).

3.5 Antennal responses of pine and larch essential oils in *I. acuminatus* and *I. cembrae* using GC-EAD

Since only a few OSN classes specific to host monoterpenes were identified in *I. acuminatus* (OSN classes IAc2, IAc15 and IAc18) and *I. cembrae* (OSN classes IC2 and IC9, IC18 and IC19), we further evaluated the antennal responses of both species to monoterpenes

using GC-EAD analysis. We tested the antennae of *I. acuminatus* with pine essential oil and *I. cembrae* with larch essential oil, both with known chemical compositions, to assess their olfactory sensitivity to host-related compounds. GC-EAD analyses with pine essential oil revealed four potential chemical cues that elicited antennal responses from *I. acuminatus*, whereas *I. cembrae* responded to five potential cues in the larch essential oil (Figure 7). The EAD active compounds that elicited antennal response in *I. acuminatus* were identified as α -pinene, limonene, linalool and isobornyl acetate (Figure 7A) while *I. cembrae* responded to β -pinene, *p*-cymene, linalool, terpinen-4-ol and camphor (Figure 7B). Surprisingly, no EAD responses were observed in *I. acuminatus* to highly abundant pine host volatiles, such as 3-carene, terpinolene, and β -phellandrene. Similarly, *I. cembrae* showed no responses to key larch volatiles, including α -pinene, limonene, β -phellandrene, and myrcene.

4 Discussion

This study provides the first electrophysiological characterization of olfactory sensory neuron (OSN) responses in *I. acuminatus* and *I. cembrae*. By testing a comprehensive panel of ecologically relevant compounds, including pheromones, volatiles from the hosts and non-host trees, and associated microbes, we identified 19 OSN classes in both species. Most OSN classes exhibited narrow tuning, responding strongly to only one or a few structurally similar compounds, while fewer were broadly tuned. Furthermore, several of our dose–response tests in both species revealed greater OSN specificity at lower doses, consistent with findings in *I. typographus*, where OSNs exhibited high specificity to either pheromones or to compounds from the host or non-host trees and microbes (Andersson et al., 2009; Kandasamy et al., 2019, 2023).

Ips acuminatus and *I. cembrae* have several OSNs tuned to the enantiomers of ipsenol and ipsdienol, their key aggregation pheromone components (Francke and Vité, 1983; Renwick and Dickens, 1979). Interestingly, the ipsenol-responsive OSNs were highly specific, showing the strongest responses to the naturally occurring enantiomer, *S*-(−)-ipsenol, the main pheromone component in both species. This finding is consistent with previous studies in *I. typographus* and other *Ips* species such as *I. pini* and *I. paraconfusus* (Mustaparta et al., 1979; Mustaparta et al., 1980; Tømmerås, 1985). Also, the ipsdienol-responsive OSNs demonstrated enantiomer-specific tuning, suggesting two distinct OSN classes responding to *R*-(−)-ipsdienol and *S*-(+)-ipsdienol, respectively, in both species. In *I. acuminatus*, initial screenings identified only one OSN class primarily tuned to *R*-(−)-ipsdienol. However, dose–response tests revealed a stronger response to *S*-(+)-ipsdienol, suggesting the presence of distinct OSN classes tuned to each ipsdienol enantiomer. In *I. cembrae*, screenings identified distinct OSN classes specifically tuned to each ipsdienol enantiomer. However, dose–response testing was conducted only for *S*-(+)-ipsdienol, which exhibited high sensitivity. These results align with earlier reports of two enantiomer-specific ipsdienol-responsive OSN classes in *I. typographus* and other *Ips* species (Mustaparta et al., 1980; Tømmerås, 1985). Behavioral studies in *I. acuminatus* suggest that *S*-(+)-ipsdienol and *S*-(−)-ipsenol function as attractants, while *R*-(−)-ipsdienol likely serves as an attraction inhibitor in field (Bakke, 1978; Kohnle et al., 1986).

TABLE 1 Olfactory sensory neurons (OSNs) classified based on their response profiles at a 10 μ g screening dose in *I. acuminatus* and *I. cembrae* and comparison to previously characterized OSN classes in *I. typographus*.

Biological origin	OSN class↓/Species→	<i>I. typographus</i> (IT)	<i>I. acuminatus</i> (IAc)	<i>I. cembrae</i> (IC)
Beetle	(4S)- <i>cis</i> -Verbenol	✓ ^{a,b}	✓	✓
Beetle	S-(+)-Ipsdienol	✓ ^a	✓	✓
Beetle	R-(−)-Ipsdienol	✓ ^a	✓	✓
Beetle	S-(−)-Ipsenol	✓ ^c	✓	✓
Beetle	R-(+)-Ipsenol	-	-	-
Beetle	Amitinol	✓ ^a	✓	✓ (A and B neuron)
Beetle	2-Methyl-3-buten-2-ol	✓ ^{a,c} (B neuron)	✓ (B neuron)	-
Beetle	3-Methyl-3-buten-1-ol	-	-	-
Beetle	Lanierone	✓ ^c (B neuron)	✓ (B neuron)	✓ (B neuron)
Beetle	(±)-Chalcogran	-	✓	✓
Beetle	α -isophorone	-	✓	✓
Beetle/fungi	(−)-Verbenone	✓ ^{a,d}	✓	-
Beetle/ fungi	(±)- <i>exo</i> -Brevicomin	-	-	✓
Beetle/fungi	2-Phenylethanol	✓ ^c	✓	✓
Host	(+)-3-Carene	✓ ^a	-	-
Host	Myrcene	✓ ^{a,b,c}	-	-
Host	(+)- α -Pinene	✓ ^a	-	-
Host	(−)- α -Pinene	-	-	✓
Host	<i>p</i> -Cymene	✓ ^a	-	✓
Host	(−)-Limonene	-	✓	-
Host	γ -Terpinene	-	✓	-
Host	1,8-Cineole	✓ ^{a,c} (B neuron)	✓ (B neuron)	✓ (B neuron)
Host/fungi	(±)-Camphor	-	-	✓
Host/fungi	(+)-Isopinocamphone	✓ ^d	✓	-
Host/fungi	Estragole	✓ ^g	-	✓
Host/fungi	(+)- <i>trans</i> -4-Thujanol	✓ ^{b,d}	-	-
Non-host	1-Hexanol	✓ ^a	✓	✓
Non-host/fungi	(±)-3-Octanol	✓ ^a	-	-
Non-host/fungi	(±)-1-Octen-3-ol	✓ ^a	✓	✓
Non-host/fungi	Geranyl acetone	✓ ^c	-	-
Non-host/fungi	(5S,7S)- <i>trans</i> -Conophthorin	✓ ^a	✓	-
Fungi	Styrene	✓ ^{b,d}	✓	✓

✓ OSN class identified; – OSN class not found yet.

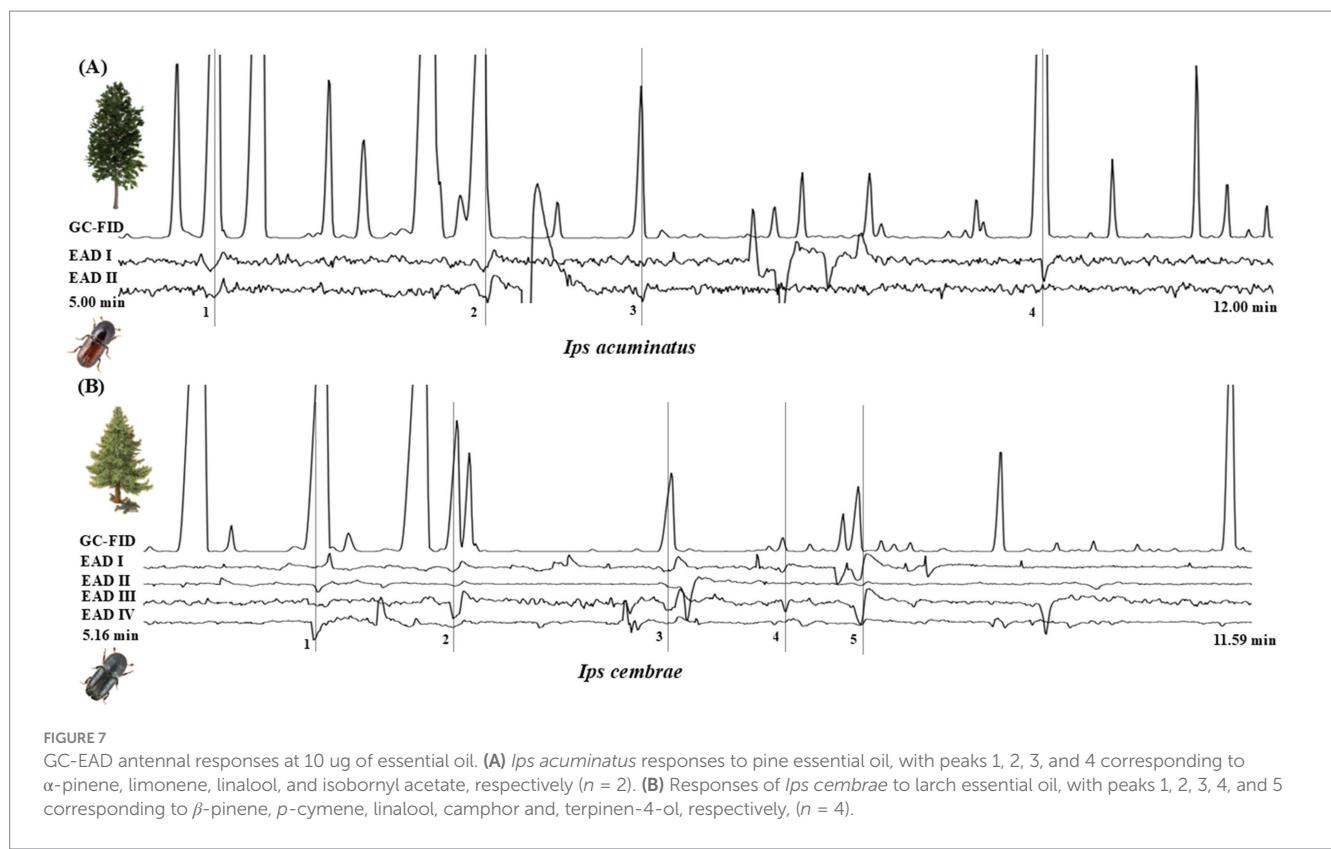
^aAndersson et al. (2009).

^bSchiebe et al. (2019).

^cKandasamy et al. (2019).

^dKandasamy et al. (2023).

^eYuvaraj et al. (2024).


^fTømmerås (1985).

^gRaffa et al. (2016).

(4S)-*cis*-Verbenol elicited strong responses in an OSN class in both *I. acuminatus* and *I. cembrae*. While this compound serves as a key aggregation pheromone component in *I. acuminatus*, it does not play a similar role in *I. cembrae*, despite the detection of trace amounts in this species (Kohnle et al., 1988). Interestingly, the presence of (4S)-*cis*-verbenol disrupts *I. cembrae* aggregation in field studies, possibly serving as an interspecific signal from

I. typographus, which relies on this compound as a key aggregation pheromone (Schlyter et al., 1989).

A few examples of OSN co-localization were observed in both *I. acuminatus* and *I. cembrae*. The co-localization patterns of ipsdienol-responsive OSNs differed between the two species. In *I. cembrae*, S-(+)-ipsdienol-responsive A neurons were co-localized with amitinol-responsive B neurons. In contrast, in *I. acuminatus*,

R-(-)-ipsdienol-responsive A neurons were co-localized with lanierone-responsive B neurons, corresponding to the observations in *I. typographus* (Yuvaraj et al., 2024). Additionally, in both species, (4S)-*cis*-verbenol- and 1,8-cineole-responsive OSNs were co-localized within the same sensilla, consistent with the co-localization pattern previously reported in *I. typographus* (Andersson et al., 2009). In *I. typographus*, such co-localization is thought to enhance the ability to differentiate odors based on spatial and temporal cues. It may also improve sensitivity to ecologically relevant odor blends by detecting specific ratio differences and regulating olfactory signaling at the peripheral level (Andersson et al., 2010; Baker et al., 1998; Binyameen et al., 2014; Bruce et al., 2005). Similar mechanisms may play a role in *I. acuminatus* and *I. cembrae*. Although the OSN responses in our study were characterized using pure compounds, it is well established that most insect semiochemicals function as multicomponent blends, with specific behavioral roles determined by the precise ratio and combination of constituents (Silverstein and Young, 1976). Such blends can activate distinct combinations of neurons depending on the ecological context, ultimately shaping behavioral outcomes.

Additionally, several OSN classes in *I. cembrae* and *I. acuminatus* responded to pheromone components produced by other *Ips* species, suggesting conserved detection mechanisms (Andersson et al., 2009; Tømmerås, 1985; Yuvaraj et al., 2024). Amitinol is not an aggregation pheromone component in either *I. acuminatus* (Bakke, 1978; Francke et al., 1986) or *I. cembrae* (Kohnle et al., 1986; Stoakley et al., 1978), despite one earlier report mentioning its presence in *I. cembrae* (Kohnle et al., 1986). Amitinol-responsive OSNs were identified in both species, exhibiting strong secondary responses to racemic ipsdienol, likely due to structural similarity and the presence of trace amounts of amitinol in the ipsdienol stimulus, corresponding to OSNs

observed in *I. typographus* (Andersson et al., 2012b; Andersson et al., 2009). Interestingly, field studies indicate that amitinol enhances aggregation in *I. cembrae* but reduces attraction in *I. acuminatus*, potentially mediating interspecific interactions (Francke et al., 1986; Kohnle et al., 1986). Lanierone-responsive OSNs were identified in both species studied here, but the frequency of these OSNs was low. This is in absolute contrast to *I. typographus*, in which lanierone-specific OSNs represent the most abundant of all OSN classes (Yuvaraj et al., 2024). In *I. acuminatus*, OSN B neurons responsive to 2-methyl-3-butene-2-ol occurred at relatively low abundance, similar to observations in *I. typographus* (Kandasamy et al., 2019, 2023). Although this compound serves as an aggregation pheromone component in *I. typographus* (Lanne et al., 1989), its ecological role in *I. acuminatus* remains uncertain.

The OSN class responsive to (-)-verbenone, a known bark beetle anti-attractant (Frühbrodt et al., 2024), was the most abundant in *I. acuminatus*. Notably, we observed this OSN class only in female *I. acuminatus* and not at all in *I. cembrae*. *Ips typographus* possesses fewer (-)-verbenone-responsive OSNs than *I. acuminatus*; however, it exhibits strong behavioral avoidance in both sexes in laboratory assays (Yuvaraj et al., 2024) and in field studies (Schlyter et al., 1989). In *I. typographus*, (-)-verbenone-responsive neurons also show secondary responses to α - and β -isophorone, of which the latter compound was reported from hindguts of mated females (Birgersson et al., 1984). However, dose-response tests indicate that this OSN class is sensitive to α -isophorone (Kandasamy et al., 2023). In contrast, *I. acuminatus* possesses two distinct OSN classes: one specifically tuned to (-)-verbenone and another primarily responding to α -isophorone, with weak secondary responses to (-)-verbenone. Similarly, in *I. cembrae*, an OSN class specific to α -isophorone was also

1501 observed, exhibiting secondary responses not only to (–)-verbenone
1502 but also to *trans*-verbenol enantiomers, corresponding to an OSN
1503 class previously observed in *I. typographus* (Kandasamy et al., 2023).
1504 The behavioral role of α - and β -isophorone remains unclear.

1505 *Ips acuminatus* and *I. cembrae* exhibited OSN responses to
1506 pheromones produced by non-*Ips* bark beetles, differing from OSN
1507 responses in *I. typographus*. Both species had an OSN class highly
1508 responsive to chalcogran, a pheromone of many *Pityogenes* species
1509 (Francke, 1977; Francke et al., 1995). Additionally, *I. cembrae*
1510 possessed a separate OSN class tuned to (\pm)-*exo*-brevicomin, which is
1511 a pheromone of *Dendroctonus* species and is also produced by a beetle
1512 symbiotic fungus (Zhao et al., 2019). This broader heterospecific
1513 pheromone detection in *I. cembrae* may reflect its ability to colonize
1514 different hosts, including *Abies*, *Picea*, and *Pinus* trees and frequent
1515 interactions with bark beetles from other genera such as *Pityophthorus*,
1516 *Pityogenes*, and *Cryphalus* (Postner, 1974; Pfeffer, 1955). In contrast,
1517 *I. typographus* OSNs primarily responsive to the non-host volatile
1518 (5S,7S)-*trans*-conophthorin exhibit strong secondary responses to
1519 both chalcogran and *exo*-brevicomin, likely due to structural
1520 similarities (Andersson et al., 2009).

1521 Major monoterpene hydrocarbons such as α -pinene, β -pinene,
1522 limonene, and myrcene are key volatiles in coniferous trees, the
1523 primary hosts of *Ips* bark beetles (Wajs et al., 2007). However, OSN
1524 classes responding to monoterpenes were relatively rare in both
1525 species. In *I. acuminatus*, one OSN class responded mostly to
1526 (–)-limonene, with secondary responses to myrcene, *p*-cymene,
1527 terpinolene, and β -pinene. Another distinct OSN class was tuned
1528 specifically to γ -terpinene. Notably, we did not identify OSN classes
1529 for key pine volatiles such as α -pinene, 3-carene, β -pinene, and
1530 myrcene. In contrast, *I. cembrae* had an OSN class that responded
1531 primarily to (–)- α -pinene, with weak secondary responses to
1532 β -pinene. Another OSN class was specifically tuned to *p*-cymene.
1533 However, no OSN class was identified for major larch volatiles such as
1534 β -pinene, 3-carene, limonene, and myrcene. Given the suggested role
1535 of monoterpenes in bark beetle behavior (Erbilgin et al., 2007),
1536 we conducted GC-EAD analyses using pine and larch essential oils.
1537 *Ips acuminatus* antennae exhibited weak responses to α -pinene,
1538 limonene, linalool, and isobornyl acetate, whereas *I. cembrae*
1539 responded to β -pinene, *p*-cymene, linalool, and terpinen-4-ol. The
1540 absence or inconsistency of responses to major host volatiles,
1541 combined with the finding that *I. acuminatus* does not exhibit
1542 attraction to host trees in field studies (Brattli et al., 1998), suggests
1543 that these compounds may not play a primary role in host tree
1544 attraction for these species. Volatile compounds produced in minor
1545 amounts by Norway spruce, such as 1,8-cineole (Jirošová et al., 2022a;
1546 Schiebe et al., 2019) and estragole (Moliterno et al., 2023; Joseph et al.,
1547 2001), elicit antennal responses in *I. typographus* and function as anti-
1548 attractants. In this study, we identified OSNs specifically responsive to
1549 1,8-cineole in both *I. acuminatus* and *I. cembrae*, while estragole-
1550 responsive OSNs were observed only in *I. cembrae*. Given that
1551 1,8-cineole has been previously linked to conifer resistance against
1552 *I. typographus* attack (Schiebe et al., 2012), its detection by OSNs in
1553 the two species examined here suggests a similar ecological role in
1554 their host interactions.

1555 Low-abundance oxygenated host monoterpenes, whose
1556 concentrations increase in stressed or fungus-infected conifers, likely
1557 play a crucial role in beetle discrimination of suitable hosts
1558 (Lehmansi et al., 2023). Although present only in trace amounts,

1559 these metabolites of monoterpene hydrocarbons can be produced via
1560 microbial activity or the tree's own metabolism and may significantly
1561 influence bark beetle host selection and colonization strategies
1562 (Moliterno et al., 2023; Kandasamy et al., 2023). In our study,
1563 *I. acuminatus* exhibited strong OSN responses primarily to
1564 (+)-isopinocamphone and secondarily to structurally similar
1565 pinocamphone and camphor, closely resembling the OSN responses
1566 described in *I. typographus* (Kandasamy et al., 2019, 2023). In contrast,
1567 *I. cembrae* had OSNs primarily responsive to racemic camphor, with
1568 secondary responses to pinocamphone and isopinocamphone
1569 enantiomers. Isopinocamphone, an oxygenated metabolite of pinene
1570 (the main component of pine resin), and camphor, a hydroxylated
1571 metabolite of borneol from larch-derived bornyl acetate, are produced
1572 by beetle-symbiotic fungi (Kandasamy et al., 2023), which can also
1573 be associated with stressed host trees (Schiebe et al., 2019).

1574 *Ips acuminatus* and *I. cembrae* vector different ophiostomatoid
1575 fungi (Papek et al., 2024; Jankowiak et al., 2007), whose volatile
1576 profiles have not yet been characterized but are likely to differ. Both
1577 species exhibited strong OSN responses to fungal volatiles
1578 (2-phenylethanol, styrene, 1-octen-3-ol), while (5S,7S)-*trans*-
1579 conophthorin-responsive OSNs were detected only in *I. acuminatus*.
1580 These OSN classes have previously been identified in *I. typographus*
1581 (Andersson et al., 2009; Kandasamy et al., 2019, 2023). *trans*-
1582 Conophthorin has been shown to disrupt aggregation pheromone
1583 activity in conifer-infesting bark beetles, including *I. typographus*, in
1584 field studies (Huber et al., 2000; Zhang et al., 2002; Zhang and Schlyter,
1585 2004). These compounds, along with oxygenated host monoterpenes
1586 (Kandasamy et al., 2023) and (\pm)-*exo*-brevicomin (Zhao et al., 2019),
1587 are also produced by fungi. They likely indicate fungus-colonized or
1588 weakened host trees, potentially guiding beetles towards suitable
1589 hosts. Additionally, fungi may produce volatiles that elicit a positive
1590 response from beetles, as they potentially act as nutritional resources
1591 for bark beetles (Kandasamy et al., 2019, 2023). However, further
1592 research is needed to clarify their precise ecological roles and the
1593 mechanisms by which beetles interpret these chemical cues. Both
1594 species exhibited OSN responses to NHVs, helping conifer-feeding
1595 bark beetles avoid unsuitable angiosperm trees. OSNs in *I. acuminatus*
1596 and *I. cembrae* responded selectively to 1-hexanol, a known anti-
1597 attractant emitted by green leaves of non-host trees (Schlyter et al.,
1598 1989, 2000; Zhang et al., 1999).

1599 Some OSN classes were only found in one of the sexes of
1600 *I. acuminatus* and *I. cembrae*, which may suggest differences in
1601 olfactory-driven behaviors between males and females. In
1602 *I. acuminatus*, OSN classes for (–)-verbenone, *R*(–)-ipsdienol, and
1603 lanierone were observed in females, whereas 2-methyl-buten-2-ol
1604 OSNs were found in males. These female-biased responses may
1605 be associated with the species' polygynous mating system, where
1606 males form large harems (2–12 females per male), and pseudogamous
1607 females breed independently (Kirkendall, 1989, 1990). Thus, these
1608 olfactory cues may help females to avoid overcrowded trees and
1609 reduce interspecific competition with other conifer bark beetle species
1610 (Papek et al., 2024). In *I. cembrae*, OSN classes specific to (–)- α -
1611 pinene and styrene were found in males, suggesting a role in host
1612 location. However, further recordings from additional sensilla and
1613 behavioral experiments are needed to determine whether these OSN
1614 classes are sex-specific, sex-biased, or simply missed during sampling.

1615 The antennal distribution of OSNs varies among species. Ipsenol-
1616 responsive OSNs in *I. cembrae* were located mainly in sensory bands

1617 A and B, similar to *I. typographus* (Andersson et al., 2009), but
1618 restricted to band B in *I. acuminatus*, unless we failed to find them in
1619 band A. Conversely, ipsdienol-responsive OSNs occurred
1620 predominantly in bands B and C in *I. cembrae*, while in *I. acuminatus*
1621 they were distributed across bands A and B, resembling the
1622 distribution reported in *I. typographus* (Andersson et al., 2009). OSNs
1623 responding to (4S)-*cis*-verbenol are predominantly located in band C
1624 in all three species. These differences in OSN distribution may reflect
1625 species-specific olfactory adaptations related to their pheromone
1626 detection, distinct host selection, and chemical communication within
1627 their distinct ecological contexts. While our study was confined to
1628 OSNs housed in the antennae, it is noteworthy to point out that *Ips*
1629 beetles also possess chemosensory sensilla on the maxillary palps
1630 (Hallberg, 1982b; Hallberg et al., 2003), potentially capable of
1631 detecting less volatile or contact-mediated compounds, a subject of
1632 interest which needs further investigation.

1633 The olfactory responses we observed in *I. acuminatus* and
1634 *I. cembrae* are consistent with broader insect patterns, where selective
1635 olfactory systems are shaped by evolutionary pressures. OSNs are
1636 frequently specifically tuned to ecologically important stimuli also in
1637 non-beetle species, such as moths and *Drosophila*, whereas other
1638 neurons may be more broadly tuned (Hallem et al., 2004; de Bruyne
1639 and Baker, 2008; Andersson et al., 2015). Additionally, other
1640 congeneric species often share several conserved OSN classes, and
1641 display a few species-specific ones. This has been shown, for example,
1642 in beetles from other families, such as clover seed weevils (*Apionidae*)
1643 in the *Protaetia* genus (*P. fulvipes* and *P. trifolii*) and scarab beetles
1644 (Scarabaeidae) in the *Pachnoda* genus (*P. interrupta* and *P. marginata*)
1645 (Bengtsson et al., 2011; Andersson et al., 2012a; Carrasco et al., 2019).
1646 At a molecular level, 12 odorant receptors (ORs) have been
1647 functionally characterized in *I. typographus* (Hou et al., 2021; Roberts
1648 et al., 2021, 2022; Yuvaraj et al., 2021, 2024; Biswas et al., 2024), with
1649 responses resembling several of the OSN responses observed in this
1650 study. While many OSN classes identified here exhibit response
1651 patterns similar to *I. typographus*, it remains unknown whether
1652 conserved ORs are responsible. Given that *I. typographus* and
1653 *I. duplicatus* share numerous conserved OR orthologs (Johny et al.,
1654 2024), similar conservation is likely in *I. acuminatus* and *I. cembrae*.
1655 Further OR characterization and comparative genomic analyses across
1656 *Ips* species could provide deeper insights into OSN specificity and
1657 pheromone detection mechanisms.

1658 Overall, our findings provide valuable insights for improving bark
1659 beetle management by refining pheromone-based strategies. Although
1660 the pheromone-baited “trap and kill” approach has shown limited
1661 success due to spillover infestations and low overall efficacy (Jakuš
1662 et al., 2003), pheromone traps remain useful for monitoring beetle
1663 activity. Cross-attraction among *Ips* species has been observed (Byers,
1664 1989; Etxeberria et al., 2012), emphasizing the need for species-specific
1665 approaches. Several anti-aggregation compounds show potential for
1666 spruce protection, including verbenone (Frühbrodt et al., 2024),
1667 spruce volatiles like trans-4-thujanol and 1,8-cineole (Andersson
1668 et al., 2010; Jirošová et al., 2022a), and others such as hexanol, 1-octen-
1669 3-ol, and *trans*-conophorin (Schiebe et al., 2011; Zhang and Schlyter,
1670 2004; Unelius et al., 2014). These have been repeatedly tested in
1671 various combinations against *I. typographus* (Schiebe et al., 2011;
1672 Zhang and Schlyter, 2004; Unelius et al., 2014; Jakuš et al., 2024),
1673 though they also suffer from spillover effects due to their repellent
1674 nature (Jakuš et al., 2003; Schiebe et al., 2011). Push-pull strategies,

1675 which combine anti-attractants with pheromone traps (Jakuš et al.,
1676 2022) or baited trap trees (Lindmark et al., 2022), offer a potential
1677 improvement. However, their effectiveness decreases under high
1678 beetle population density and severe tree stress (Deganutti et al.,
1679 2024). The use of anti-attractants for *I. acuminatus* and *I. cembrae*
1680 remains untested (Frühbrodt et al., 2024), highlighting the need for
1681 further behavioral studies with compound combinations designed
1682 according to this study to evaluate their field efficacy.

5 Conclusion

1683 This is the first electrophysiological study to functionally
1684 characterize OSNs in *I. acuminatus* and *I. cembrae*, identifying 19
1685 OSN classes in each species. These OSNs exhibited distinct tuning to
1686 aggregation pheromones, host monoterpenes, NHVs, and fungal-
1687 derived odors, highlighting their crucial role in bark beetle ecology.
1688 Comparative analysis with *I. typographus* revealed both conserved and
1689 species-specific OSN response patterns. While certain OSN profiles
1690 were shared across *Ips* species, suggesting common olfactory strategies
1691 for aggregation and host detection, species-specific differences likely
1692 reflect adaptations to their respective host tree preferences. The
1693 detection of heterospecific pheromones, along with fungal volatiles,
1694 further supports the role of multiple chemical cues in species
1695 coexistence and host colonization. Although OSN response profiles
1696 were generally similar between sexes, further research is needed to
1697 determine whether subtle differences influence mate and host
1698 selection behaviors. From an applied perspective, our findings support
1699 the use of specific compositions of ipsenol and ipsdienol mixtures,
1700 including their enantiomeric ratios, in combination with other
1701 detected compounds for species-specific *Ips* beetles monitoring and
1702 pest management. Integrating NHVs and host volatiles into conifer
1703 tree protection strategies could enhance its efficiency. Furthermore,
1704 future studies should explore a broader range of volatile compounds
1705 to identify additional OSN classes and incorporate molecular analyses
1706 of olfactory receptor function to refine our understanding of olfactory
1707 coding mechanisms in bark beetles. A deeper disentangling of these
1708 mechanisms could enable targeted interventions by disrupting the
1709 detection of key compounds by beetles at the gene level. This study
1710 lays the groundwork for further exploration of bark beetle olfactory
1711 systems, offering insights into ecological interactions and improved
1712 pest management strategies.

Data availability statement

Q14

1713 The original contributions presented in the study are included in
1714 the article/[Supplementary material](#), further inquiries can be directed
1715 to the corresponding author.

Ethics statement

Q15

1724 Ethical approval was not required for the study involving animals
1725 in accordance with the local legislation and institutional requirements
1726 because Ethical review and approval were not required for the study
1727 on animals in accordance with the local legislation and institutional
1728 requirements. We have performed all beetle experiments that comply
1729 with the relevant laws and regulations.

with the ARRIVE guidelines and were carried out in accordance with (Scientific Procedures) Act, 1986 and associated guidelines, EU Directive 2010/63/EU for animal experiments.

1738 **Author contributions**

1739 **Q16** MKS: Data curation, Formal analysis, Investigation, Validation, 1740 Visualization, Writing – original draft, Writing – review & editing. JB: 1741 Data curation, Investigation, Writing – original draft. JS: Data 1742 curation, Writing – review & editing. MS: Methodology, Writing – 1743 review & editing. MA: Conceptualization, Methodology, Supervision, 1744 Validation, Writing – review & editing. DK: Conceptualization, 1745 Methodology, Supervision, Validation, Writing – review & editing. AJ: 1746 Conceptualization, Methodology, Supervision, Validation, Writing – 1747 review & editing.

1750 **Q17** Funding

1751 The author(s) declare that financial support was received for the 1752 research and/or publication of this article. MKS and AJ were funded by 1753 the funding agency, the Czech Science Foundation GACR 23-07916s, 1754 Czech Republic. Research funding Internal Grant Commission at the 1755 Faculty of Forestry and Wood Sciences, Czech University of Life 1756 Sciences Prague, Czech Republic; [MKS, IGA: A_08_24] and 1757 ERASMUS Exchange Program for funding research internship at Lund 1758 University, Sweden. Publication fee funding: Faculty of Forestry and 1759 Wood Sciences, Czech University of Life Sciences, Prague. MS was 1760 financially supported by the Austrian Federal Ministry of Agriculture, 1761 Forestry, Regions and Water Management ('Waldfonds' projects 1762 'NewIPS', grant no. 101686, and 'IpsEMAN', grant no. 101687).

1763 Acknowledgments

1764 We thank Eva Papek (BOKU University, Vienna, Austria) for 1765 providing the beetles used in this study for the SSR experiments. 1766 **Q19**

1767 References

1768 Allen, C. D., Breshears, D. D., and McDowell, N. G. (2015). On underestimation of 1769 global vulnerability to tree mortality and forest die-off from hotter drought in the 1770 Anthropocene. *Ecosphere* 6, 1–55. doi: 10.1890/ES15-00203.1

1771 Andersson, M. N., Larsson, M. C., Blaženec, M., Jakůš, R., Zhang, Q.-H. H., and 1772 Schlyter, F. (2010). Peripheral modulation of pheromone response by an inhibitory host 1773 compound in a beetle. *J. Exp. Biol.* 213, 3332–3339. doi: 10.1242/jeb.044396

1774 Andersson, M. N., Larsson, M. C., and Schlyter, F. (2009). Specificity and redundancy 1775 in the olfactory system of the bark beetle *Ips typographus*: single-cell responses to 1776 ecologically relevant odors. *J. Insect Physiol.* 55, 556–567. doi: 10.1016/j.jinsphys.2009.01.018

1777 Andersson, M. N., Larsson, M. C., Svensson, G. P., Birgersson, G., Rundlöf, M., 1778 Lundin, O., et al. (2012a). Characterization of olfactory sensory neurons in the white 1779 clover seed weevil, *Apion fulvipes* (Coleoptera: Apionidae). *J. Insect Physiol.* 58, 1780 1325–1333. doi: 10.1016/j.jinsphys.2012.07.006

1781 Andersson, M. N., Löfstedt, C., and Newcomb, R. D. (2015). Insect olfaction and the 1782 evolution of receptor tuning. *Front. Ecol. Evol.* 3:53. doi: 10.3389/fevo.2015.00053

1783 Andersson, M. N., Schlyter, F., Hill, S. R., and Dekker, T. (2012b). What reaches the 1784 antenna? How to calibrate odor flux and ligand-receptor affinities. *Chem. Senses* 37, 1785 403–420. doi: 10.1093/chemse/bjs009

1786 Ascoli-Christensen, A., Salom, S. M., and Payne, T. L. (1993). Olfactory receptor cell 1787 responses of *Ips grandicollis* (Eichhoff) (Coleoptera: Scolytidae) to intra- and 1788 interspecific behavioral chemicals. *J. Chem. Ecol.* 19, 699–712. doi: 10.1007/BF00985002

1789 We also thank Erling Jirle (Lund University, Sweden) for his valuable 1790 technical support. We acknowledge Venkatesh Pal Mahadevan and 1791 Department of Forest Protection and Entomology, CZU Prague. 1792 We are grateful to Jakub Dušek for providing scanning electron 1793 micrographs of *I. acuminatus* and *I. cembrae*.

1794 **Conflict of interest**

1795 The authors declare that the research was conducted in the 1796 absence of any commercial or financial relationships that could 1797 be construed as a potential conflict of interest.

1798 **Generative AI statement**

1799 The authors declare that Gen AI was used in the creation of this 1800 manuscript. The English language was edited using ScholarAI (2025), 1801 ScholarAI: AI-powered research assistant. OpenAI. Available at: 1802 <https://notilo.ai>. We recognize it in acknowledgement section in 1803 the article.

1804 **Publisher's note**

1805 All claims expressed in this article are solely those of the authors 1806 and do not necessarily represent those of their affiliated 1807 organizations, or those of the publisher, the editors and the 1808 reviewers. Any product that may be evaluated in this article, or claim 1809 that may be made by its manufacturer, is not guaranteed or endorsed 1810 by the publisher.

1811 **Supplementary material**

1812 The Supplementary material for this article can be found online 1813 at: <https://www.frontiersin.org/articles/10.3389/ffgc.2025.1588866/full#supplementary-material>

1814 Baker, T. C., Fadapiro, H. Y., and Cosse, A. A. (1998). Moth uses fine tuning for odour 1815 resolution. *Nature* 393:530. doi: 10.1038/31131

1816 Bakke, A. (1978). Aggregation pheromone components of the bark beetle *Ips 1817 acuminatus*. *Oikos* 31, 184–190. doi: 10.2307/3543561

1818 Bengtsson, J. M., Khaish, H., Reinecke, A., Wolde-Hawariat, Y., Negash, M., 1819 Seyoum, E., et al. (2011). Conserved, highly specialized olfactory receptor neurons for 1820 food compounds in two congeneric scarab beetles, *Pachnoda interrupta* and *Pachnoda 1821 marginata*. *Chem. Senses* 36, 499–513. doi: 10.1093/chemse/bjr002

1822 Benton, R., Vannice, K. S., Gomez-Diaz, C., and Vosshall, L. B. (2009). Variant 1823 ionotropic glutamate receptors as chemosensory receptors in *Drosophila*. *Cell* 136, 1824 149–162. doi: 10.1016/j.cell.2008.12.001

1825 Biedermann, P. H., Müller, J., Grégoire, J. C., Gruppe, A., Hagge, J., Hammerbacher, A., 1826 et al. (2019). Bark beetle population dynamics in the Anthropocene: challenges and 1827 solutions. *Trends Ecol. Evol.* 34, 914–924. doi: 10.1016/j.tree.2019.06.002

1828 Binyameen, M., Blaženec, M., Jakůš, R., Song, L., Jankuvová, J., Andersson, M. N., 1829 et al. (2014). Co-localization of insect olfactory sensory cells improves the discrimination 1830 of closely separated odor sources. *Funct. Ecol.* 28, 1216–1223. doi: 10.1111/1365-2435.12252

1831 Birgersson, G., Schlyter, F., Löfqvist, J., and Bergström, G. (1984). Quantitative 1832 variation of pheromone components in the spruce bark beetle *Ips typographus* from 1833 different attack phases. *J. Chem. Ecol.* 10, 1029–1055. doi: 10.1007/BF00987511

1849 Biswas, T., Sims, C., Yuvaraj, J. K., Roberts, R. E., Löfstedt, C., and Andersson, M. N. 1850 (2024). Functional characterization supports multiple evolutionary origins of pheromone receptors in bark beetles. *Mol. Biol. Evol.* 40, 1–15. doi: 10.1093/molbev/msad232

1851 Brattli, J. G., Andersen, J., and Nilssen, A. C. (1998). Primary attraction and host tree 1852 selection in deciduous and conifer-living Coleoptera: Scolytidae, Curculionidae, Cerambycidae, and Lymexylidae. *J. Appl. Entomol.* 122, 345–352. doi: 10.1111/j.1439-0418.1998.tb01511.x

1853 Bruce, T. J. A., Wadhams, L. J., and Woodcock, C. M. (2005). Insect host location: a 1854 volatile situation. *Trends Plant Sci.* 10, 269–274. doi: 10.1016/j.tplants.2005.04.003

1855 Byers, J. A. (1989). Chemical ecology of bark beetles. *Experientia* 45, 271–283. doi: 1856 10.1007/BF01951813

1857 Byers, J. A. (2007). “Chemical ecology of bark beetles in a complex olfactory 1858 landscape” in Bark and Wood boring insects in living trees in Europe, a synthesis. eds. F. Lieutier, K. R. Day, A. Battisti, J. C. Grégoire and H. F. Evans (Dordrecht: Springer), 89–134.

1859 Carrasco, D., Nyabuga, F. N., Anderbrant, O., Svensson, G. P., Birgersson, G., Lankinen, Å., et al. (2019). Characterization of olfactory sensory neurons in the red clover 1860 seed weevil, *Protaetia trifolii* (Coleoptera: Brentidae), and comparison to the closely 1861 related species *P. fulvipes*. *J. Insect Physiol.* 119:103948. doi: 10.1016/j.jinsphys.2019.103948

1862 Christiansen, E., and Bakke, A. (1988). “The spruce bark beetle of Eurasia” in Dynamics of Forest insect populations. Population ecology. ed. A. A. Berryman (Boston, MA: Springer).

1863 Clyne, P. J., Warr, C. G., Freeman, M. R., Lessing, D., Kim, J., and Carlson, J. R. (1999). 1864 A novel family of divergent seven-transmembrane proteins: candidate odorant receptors 1865 in *Drosophila*. *Neuron* 22, 327–338. doi: 10.1016/s0896-6273(00)81093-4

1866 De Bruyne, M., and Baker, T. C. (2008). Odor detection in insects: volatile codes. *J. 1867 Chem. Ecol.* 34, 882–897. doi: 10.1007/s10886-008-9485-4

1868 Deganutti, L., Biscontin, F., Bernardinelli, I., and Faccoli, M. (2024). The 1869 semiochemical push-and-pull technique can reduce bark beetle damage in disturbed 1870 Norway spruce forests affected by the Vaia storm. *Agric. For. Entomol.* 26, 115–125. doi: 10.1111/afe.12600

1871 **Q22** Dobor, L., Hlásný, T., and Zimová, S. (2020). Contrasting vulnerability of monospecific 1872 and species-diverse forests to wind and bark beetle disturbance: the role of management. *Ecol. Evol.* 10, 12233–12245. doi: 10.1002/ece3.6901

1873 EFSA on Plant HealthJeger, M., Bragard, C., Caffier, D., Candresse, T., Chatzivassiliou, E., et al. (2017). Pest categorization of *Ips cembrae*. *EFSA J.* 15:e05039. doi: 10.2903/j.efsa.2017.5040

1874 Erbilgin, N., Krokene, P., Kvamme, T., and Christiansen, E. (2007). A guest 1875 monoterpane influences *Ips typographus* (Coleoptera: Curculionidae, Scolytinae) 1876 responses to its aggregation pheromone. *Agric. For. Entomol.* 9, 135–140. doi: 10.1111/j.1461-9563.2007.00329.x

1877 Etxebera, I., Álvarez, G., Pérez, G., and Pajares, J. A. (2012). Field response of the six- 1878 toothed pine bark beetle, *Ips sexdentatus* (Col.: Curculionidae, Scolytinae), to pheromonal 1879 blend candidates. *J. Appl. Entomol.* 136, 431–444. doi: 10.1111/j.1439-0418.2011.01677.x

1880 Foit, J., and Čermák, V. (2014). Colonization of disturbed *scots pine* trees by bark- and 1881 wood-boring beetles. *Agric. For. Entomol.* 16, 184–195. doi: 10.1111/afe.12048

1882 Francke, W. (1977). 2-ethyl-1,6-dioxaspiro[4.4] nonane, principal aggregation 1883 pheromone of *Pityogenes chalcographus* (L.). *Entomology* 64, 590–591. doi: 10.1007/BF00450651

1884 Francke, W., Bartels, J., Meyer, H., Schroder, F., Kohnle, U., Baader, E., et al. (1995). 1885 Semiochemicals from bark beetles: new results, remarks, and reflections. *J. Chem. Ecol.* 21, 1043–1063. doi: 10.1007/BF02033807

1886 Francke, W., Pan, M.-L., Bartels, J., König, W. A., Vité, J. P., Krawielitzki, S., et al. 1887 (1986). The odour bouquet of three pine engraver beetles (*Ips* spp.). *J. Appl. Entomol.* 101, 453–461. doi: 10.1111/j.1439-0418.1986.tb00879.x

1888 Francke, W., and Vité, J. P. (1983). Oxygenated terpenes in pheromone systems of bark 1889 beetles. *Z. Angew. Entomol.* 96, 146–156. doi: 10.1111/j.1439-0418.1983.tb03655.x

1890 Francke-Grosmann, H. (1965). Ein Symbioseorgan bei dem Borkenkäfer 1891 *Dendroctonus frontalis* Zimm. (Coleoptera, Scolytidae). *Naturwissenschaften* 52:143. doi: 10.1007/BF00638532

1892 Frühbrodt, T., Schebeck, M., Andersson, M. N., Holighaus, G., Kreuzwieser, J., 1893 Burzlaff, T., et al. (2024). Verbenone—the universal bark beetle repellent? Its origin, 1894 effects, and ecological roles. *J. Pest. Sci.* 97, 35–71. doi: 10.1007/s10340-023-01690-8

1895 Grödzki, W. (2008). *Ips cembrae* Heer. (Col.: Curculionidae, Scolytinae) in young larch 1896 stands – a new problem in Poland. *Forstschutz Aktuell* 44, 1–42.

1897 Hallberg, E. (1982a). Sensory organs in *Ips typographus* (Insecta: Coleoptera)—fine 1898 structure of antennal sensilla. *Protoplasma* 111, 206–214. doi: 10.1007/BF01281968

1899 Hallberg, E. (1982b). Sensory organs in *Ips typographus* (Insecta: Coleoptera): fine 1900 structure of the sensilla of the maxillary and labial palps. *Acta Zool.* 63, 191–198. doi: 10.1111/j.1463-6395.1982.tb00778.x

1901 **Q23** Hallberg, E., Hansson, B. S., and Löfstedt, C. (2003). “Sensilla and proprioceptors” in 1902 Handbuch der Zoologie. Band 4: Arthropoda, 2. Hälfte: Insecta, Lepidoptera, moths and butterflies, Teilband (part 36), 267–288.

1903 Hallem, E. A., Ho, M. G., and Carlson, J. R. (2004). The molecular basis of odor coding 1904 in the *Drosophila* antenna. *Cell* 117, 965–979. doi: 10.1016/j.cell.2004.05.012

1905 Heberle, H., Meirelles, G. V., da Silva, F. R., Telles, G. P., and Minghim, R. (2015). 1906 InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. *BMC 1907 Bioinformatics* 16:169. doi: 10.1186/s12859-015-0611-3

1908 Hlásný, T., Zimová, S., Merganičová, K., Štěpánek, P., Modlinger, R., and Turčáni, M. 1909 (2021). Devastating outbreak of bark beetles in the Czech Republic: drivers, impacts, 1910 and management implications. *For. Ecol. Manag.* 490:119075. doi: 10.1016/j.foreco.2021.119075

1911 Hlávková, D., and Doležal, P. (2022). Cambiyoxylophagous pests of scots pine: 1912 ecological physiology of European populations—a review. *Front. For. Glob. Change* 5:806571. doi: 10.3389/ffgc.2022.806571

1913 Hou, X. Q., Yuvaraj, J. K., Roberts, R. E., Zhang, D. D., Unelius, C. R., Löfstedt, C., et al. (2021). Functional evolution of a bark beetle odorant receptor clade detecting 1914 monoterpenoids of different ecological origins. *Mol. Biol. Evol.* 38, 4934–4947. doi: 10.1093/molbev/msab231

1915 Huber, D. P. W., Gries, R., Borden, J. H., and Pierce, H. D. Jr. (2000). A survey of 1916 antennal responses by five species of coniferophagous bark beetles (Coleoptera: Scolytidae) to bark volatiles of six species of angiosperm trees. *Chemoecology* 10, 1917 103–113. doi: 10.1007/PL00001811

1918 **Q24** Hulcr, J., Atkinson, T. H., Cognato, A. I., Jordal, B. H., and McKenna, D. D. (2015). 1919 “Morphology, taxonomy, and phylogenetics of bark beetles” in Bark beetles: Biology and 1920 ecology of native and invasive species. eds. F. E. Vega and R. W. Hofstetter (Elsevier), 41–84.

1921 Jaime, L., Batllori, E., and Lloret, F. (2024). Bark beetle outbreaks in coniferous forests: 1922 a review of climate change effects. *Eur. J. For. Res.* 143, 1–17. doi: 10.1007/s10342-023-01623-3

1923 Jakobý, O., Lischke, H., and Wermelinger, B. (2019). Climate change alters elevational 1924 phenology patterns of the European spruce bark beetle (*Ips typographus*). *Glob. Chang. Biol.* 25, 4048–4063. doi: 10.1111/gcb.14766

1925 Jakuš, R., Modlinger, R., Kašpar, J., Majdak, A., Blaženec, M., Koroljova, N., et al. 1926 (2022). Testing the efficiency of the push-and-pull strategy during severe *Ips typographus* 1927 outbreak and extreme drought in Norway spruce stands. *Forests* 13:2175. doi: 10.3390/f13122175

1928 Jakuš, R., Schlyter, F., Zhang, Q. H., Blaženec, M., Vaverčák, R., Grodzki, W., et al. 1929 (2003). Overview of development of an anti-attractant based technology for spruce 1930 protection against *Ips typographus*: from past failures to future success. *Anz. Schädlingskd. J. Pest Sci.* 76, 89–99. doi: 10.1046/j.1439-0280.2003.03020.x

1931 Jakuš, R., Trubin, A., Singh, V. V., Zabihi, K., Jirošová, A., Modlinger, R., et al. (2024). 1932 Spruce protection against *Ips typographus* with anti-attractant blend of tree-based 1933 Semiochemicals: from small experimental plots to stand scales. *Forests* 15:356. doi: 10.3390/f15020356

1934 Jankowiak, R., Rossa, R., and Mista, K. (2007). Survey of fungal species vectored by 1935 *Ips cembrae* to European larch trees in Raciborskie forests (Poland). *Czech Mycol.* 59, 227–239. doi: 10.33585/cmy.59209

1936 Jirošová, A., Kalinová, B., Modlinger, R., Jakuš, R., Unelius, C. R., Blaženec, M., et al. 1937 (2022a). Anti-attractant activity of (+)-trans-4-thujanol for Eurasian spruce bark beetle 1938 *Ips typographus*: novel potency for females. *Pest Manag. Sci.* 78, 1992–1999. doi: 10.1002/ps.6819

1939 Jirošová, A., Modlinger, R., Hradecký, J., Ramakrishnan, R., Beránková, K., and 1940 Kandasamy, D. (2022b). Ophiostomatoid fungi synergize attraction of the Eurasian 1941 spruce bark beetle *Ips typographus* to its aggregation pheromone in field traps. *Front. Microbiol.* 13:980251. doi: 10.3389/fmicb.2022.980251

1942 Johny, J., Große-Wilde, E., Kalinová, B., and Roy, A. (2024). Antennal transcriptome 1943 screening and identification of chemosensory proteins in the double-spine European 1944 spruce bark beetle, *Ips duplicatus* (Coleoptera: Scolytinae). *Int. J. Mol. Sci.* 25:9513. doi: 10.3390/ijms25179513

1945 Joseph, G., Kelsey, R. G., Peck, R. W., and Niwa, C. G. (2001). Response of some 1946 scolytid and their predators to ethanol and 4-allylanisole in pine forests of Central 1947 Oregon. *J. Chem. Ecol.* 27, 697–715. doi: 10.1023/A:1010345817756

1948 Kandasamy, D., Gershenson, J., Andersson, M. N., and Hammerbacher, A. (2019). 1949 Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle 1950 (*Ips typographus*) with its fungal symbionts. *ISME J.* 13, 1788–1800. doi: 10.1038/s41396-019-0390-3

1951 Kandasamy, D., Zaman, R., Nakamura, Y., Zhao, T., Hartmann, H., Andersson, M. N., et al. (2023). Conifer-killing bark beetles locate fungal symbionts by detecting volatile 1952 fungal metabolites of host tree resin monoterpenes. *PLoS Biol.* 21:e3001887. doi: 10.1371/journal.pbio.3001887

1953 Keeling, C. I., Tittiger, C., MacLean, M., and Blomquist, G. J. (2021). “Pheromone 1954 production in bark beetles” in Insect pheromone biochemistry and molecular biology. 1955 eds. G. J. Blomquist and R. G. Vogt (Academic Press), 123–162.

1956 Kirisits, T. (2004). “Fungal associates of European bark beetles with special emphasis 1957 on the ophiostomatoid fungi” in Bark and Wood boring insects in living trees in Europe, 1958 a synthesis. eds. F. Lieutier, K. R. Day, A. Battisti, J. C. Grégoire and H. F. Evans (Springer), 181–236.

1959 **Q25** Kirisits, T. (2004). “Fungal associates of European bark beetles with special emphasis 1960 on the ophiostomatoid fungi” in Bark and Wood boring insects in living trees in Europe, 1961 a synthesis. eds. F. Lieutier, K. R. Day, A. Battisti, J. C. Grégoire and H. F. Evans (Springer), 181–236.

1962 **Q26** Kandasamy, D., Zaman, R., Nakamura, Y., Zhao, T., Hartmann, H., Andersson, M. N., et al. (2023). Conifer-killing bark beetles locate fungal symbionts by detecting volatile 1963 fungal metabolites of host tree resin monoterpenes. *PLoS Biol.* 21:e3001887. doi: 10.1371/journal.pbio.3001887

1965 Kirkendall, L. R. (1989). Within-harem competition among *Ips* females, an overlooked
1966 component of density-dependent larval mortality. *Univ. Bergen* 12, 477–487. doi:
10.1111/j.1600-0587.1989.tb00925.x

1967 Kirkendall, L. R. (1990). Sperm is a limiting resource in the pseudogamous bark beetle
1968 *Ips acuminatus* (Scolytidae). *Oikos* 57:80. doi: 10.2307/3565740

1969 **Q27** Knížek, M., and Beaver, R. (2007). “Taxonomy and systematics of bark and
1970 ambrosia beetles” in Bark and Wood boring insects in living trees in Europe, a
1971 synthesis. eds. F. Lieutier, K. R. Day, A. Battisti, J. C. Grégoire and H. F. Evans
(Springer), 41–54.

1972 Kohnle, U., Kopp, S., and Francke, W. (1986). Inhibition of the attractant pheromone
1973 response in *Ips acuminatus* (Gyll.) by *I. sexdentatus* (Boerner) (Coleoptera, Scolytidae).
J. Appl. Entomol. 101, 316–319. doi: 10.1111/j.1439-0418.1986.tb00864.x

1974 Kohnle, U., Vité, J. P., Erbacher, C., Bartels, J., and Francke, W. (1988). Aggregation
1975 response of European engraver beetles of the genus *Ips* mediated by terpenoid
1976 pheromones. *Entomol. Exp. Appl.* 49, 43–53. doi: 10.1111/j.1570-7458.1988.tb02475.x

1977 **Q28** Krokene, P. (2015). “Conifer defense and resistance to bark beetles” in Bark beetles
(Academic Press), 177–207.

1978 Lanne, B. S., Ivarsson, P., Johnsson, P., Bergström, G., and Wassgren, A. B. (1989).
1979 Biosynthesis of 2-methyl-3-buten-2-ol, a pheromone component of *Ips typographus*
(Coleoptera: Scolytidae). *Insect Biochem.* 19, 163–167. doi: 10.1016/0020-1790(89)90087-5

1980 Lehmann, L. M., Kandasamy, D., Andersson, M. N., Netherer, S., Alves, E. G.,
1981 Huang, J., et al. (2023). Addressing a century-old hypothesis—do pioneer beetles of *Ips*
1982 *typographus* use volatile cues to find suitable host trees? *New Phytol.* 238, 1762–1770.
doi: 10.1111/nph.18865

1983 Lindmark, M., Wallin, E. A., and Jonsson, B. G. (2022). Protecting forest edges using
1984 trap logs – limited effects of associated push-pull strategies targeting *Ips typographus*.
For. Ecol. Manag. 505:119886. doi: 10.1016/j.foreco.2021.119886

1985 Liška, J., Knížek, M., and Véle, A. (2021). Evaluation of insect pest occurrence in areas
1986 of calamitous mortality of scots pine. *Cent. Eur. For. J.* 67, 85–90. doi:
10.2478/forj-2021-0006

1987 Moliterno, A. A. C., Jakuš, R., Modlinger, R., Unelius, C. R., Schlyter, F., and
1988 Jirošová, A. (2023). Field effects of oxygenated monoterpenes and estragole combined
1989 with pheromone on attraction of *Ips typographus* and its natural enemies. *Front. For.*
1990 *Glob. Chang.* 6:1292581. doi: 10.3389/ffgc.2023.1292581

1991 Mustaparta, H., Angst, M. E., and Lanier, G. N. (1977). Responses of single receptor
1992 cells in the pine engraver beetle, *Ips pini* (SAY) (Coleoptera: Scolytidae) to its aggregation
1993 pheromone, ipsdienol, and the aggregation inhibitor, ipsenol. *J. Comp. Physiol. A* 121,
343–347. doi: 10.1007/BF00613013

1994 Mustaparta, H., Angst, M. E., and Lanier, G. N. (1979). Specialization of olfactory cells
1995 to insect- and host-produced volatiles in the bark beetle *Ips pini* (say). *J. Chem. Ecol.* 5,
109–123. doi: 10.1007/BF00987692

1996 Mustaparta, H., Angst, M. E., and Lanier, G. N. (1980). Receptor discrimination of
1997 enantiomers of the aggregation pheromone ipsdienol, in two species of *Ips*. *J. Chem. Ecol.*
1998 6, 689–701. doi: 10.1007/BF00987679

1999 Netherer, S., Lehmann, L., Bachlehner, A., Rosner, S., Savi, T., Schmidt, A., et al.
2000 (2024). Drought increases Norway spruce susceptibility to the Eurasian spruce bark
2001 beetle and its associated fungi. *New Phytol.* 242, 1000–1017. doi: 10.1111/nph.19635

2001 Olsson, S. B., and Hansson, B. S. (2013). “Electroantennogram and single sensillum
2002 recording in insect antennae” in Neuroethology of insect olfaction. eds. B. S. Hansson
2003 and T. A. Christensen (Cham: Springer), 157–177.

2004 Papel, E., Ritzer, E., Biedermann, P. H., Cognato, A. I., Baier, P., Hoch, G., et al. (2024).
2005 The pine bark beetle *Ips acuminatus*: an ecological perspective on life-history traits
2006 promoting outbreaks. *J. Pest. Sci.* 97, 1093–1122. doi: 10.1007/s10340-024-01765-2

2007 Payne, T. L., Moeck, H. A., Willson, C. D., Coulson, R. N., and Humphreys, W. J. (1973).
2008 Bark beetle olfaction—II. Antennal morphology of sixteen species of Scolytidae
2009 (Coleoptera). *Int. J. Insect Morphol. Embryol.* 2, 177–192. doi: 10.1016/0020-7322(73)90027-5

2010 **Q29** Pettersson, E. M. (2000). Vital volatiles: Host location in parasitic wasps attacking bark
2011 beetles. [Ph.D. dissertation]. [Göteborg: Chemical ecology, botanical institute, Univ.].
2012 Available online at: <http://hdl.handle.net/2077/13633>

2013 Pfeffer, A. (1955). Fauna ČSR. Svazek 6: Kůrovcí-Scolytoidea. Praha: Brouci-
2014 Coleoptera. Nakladatelství Československé Akademie Věd.

2015 Postner, M. (1974). “*Ips cembrae*” in Die Forstsäädlinge Europas II. ed. B. Käfer
2016 (Hamburg: Paul Parey), 458–459.

2017 Raffa, K. F., Andersson, M. N., and Schlyter, F. (2016). Host selection by bark beetles:
2018 playing the odds in a high-stakes game. *Adv. Insect Physiol.* 50, 1–74. doi:
10.1016/bs.aiip.2016.02.001

2019 Redfern, D. B., Stoakley, J. T., Steele, H., and Minter, D. W. (1987). Dieback and death
2020 of larch caused by *Ceratocystis laricicola* sp. nov. following attack by *Ips cembrae*. *Plant
Pathol.* 36, 467–480. doi: 10.1111/j.1365-3059.1987.tb02264.x

2021 Renwick, J. A. A., and Dickens, J. C. (1979). Control of pheromone
2022 production in the bark beetle, *Ips cembrae*. *Physiol. Entomol.* 4, 377–381. doi:
10.1111/j.1365-3032.1979.tb00630.x

2022 Roberts, R. E., Biswas, T., Yuvaraj, J. K., Grosse-Wilde, E., Powell, D., Hansson, B. S.,
et al. (2022). Odorant receptor orthologues in conifer-feeding beetles display conserved
responses to ecologically relevant odors. *Mol. Ecol.* 31, 3693–3707. doi:
10.1111/mec.16494

2023 Roberts, R. E., Yuvaraj, J. K., and Andersson, M. N. (2021). Codon optimization of
2024 insect odorant receptor genes may increase their stable expression for functional
2025 characterization in HEK293 cells. *Front. Cell. Neurosci.* 15:744401. doi:
2026 10.3389/fncel.2021.744401

2027 Schieber, C., Blaženec, M., Jakuš, R., Unelius, C. R., and Schlyter, F. (2011).
2028 Semiochemical diversity diverts bark beetle attacks from Norway spruce edges. *J. Appl.
Entomol.* 135, 726–737. doi: 10.1111/j.1439-0418.2011.01624.x

2029 Schieber, C., Hammerbacher, A., Birgersson, G., Witzell, J., Brodelius, P. E.,
2030 Hansson, B. S., et al. (2012). Inducibility of chemical defenses in Norway spruce bark is
2031 correlated with unsuccessful mass attacks by the spruce bark beetle. *Oecologia* 170,
183–198. doi: 10.1007/s00442-012-2298-8

2032 Schieber, C., Unelius, C. R., Ganji, S., Binyameen, M., Birgersson, G., and Schlyter, F.
2033 (2019). Styrene, (+)-trans-(1R,4S,5S)-4-Thujanol and oxygenated monoterpenes related
2034 to host stress elicit strong electrophysiological responses in the bark beetle *Ips typographus*.
J. Chem. Ecol. 45, 474–489. doi: 10.1007/s10886-019-01070-8

2035 Schlyter, F., Birgersson, G., and Leufvén, A. (1989). Inhibition of attraction to
2036 aggregation pheromone by verbenone and ipsenol. *J. Chem. Ecol.* 15, 2263–2277. doi:
10.1007/BF01014114

2037 Schlyter, F., Zhang, Q.-H., Anderson, P., Byers, J. A., Wadhams, L. J., Löfqvist, J., et al.
2038 (2000). Electrophysiological and behavioural responses of *Tomicus piniperda* and
2039 *Tomicus minor* (Coleoptera: Scolytidae) to non-host leaf and bark volatiles. *Can.
Entomol.* 132, 965–981. doi: 10.4039/Ent132965-6

2040 Senf, C., Dirk, P., Zhiqiang, Y., Sebald, J., Knorn, J., Neumann, M., et al. (2018).
2041 Temperate forests over the last three decades. *Nat. Commun.* 9:4978. doi:
10.1038/s41467-018-07539-6

2042 Shewale, M. K., Nebesářová, J., Grosse-Wilde, E., and Kalinová, B. (2023). Microscopic
2043 morphology and distribution of the antennal sensilla in the double-spined bark beetle,
2044 *Ips duplicatus* (Coleoptera: Curculionidae). *Microsc. Res. Tech.* 86, 1610–1625. doi:
10.1002/jemt.24397

2045 Silverstein, R. M., and Young, J. C. (1976). Insects generally use multicomponent
2046 pheromones. *ACS Symp. Ser.* 23, 1–13. doi: 10.1021/bk-1976-0023.ch001

2047 Sommerfeld, A., Rammer, W., Heurich, M., Hilmers, T., Müller, J., and Seidl, R. (2021).
2048 Do bark beetle outbreaks amplify or dampen future bark beetle disturbances in Central
2049 Europe? *J. Ecol.* 109, 737–749. doi: 10.1111/1365-2745.13502

2050 Stoakley, J. T., Bakke, A., Renwick, J. A. A., and Vité, J. P. (1978). The aggregation
2051 pheromone system of the larch bark beetle, *Ips cembrae* Heer. *Z. Angew. Entomol.* 86,
174–177. doi: 10.1111/j.1439-0418.1978.tb01925.x

2052 Thabeet, A., Vennetier, M., Gadbin-Henry, C., Denelle, N., Roux, M., Caraglio, Y.,
2053 et al. (2009). Response of *Pinus sylvestris* L. to recent climatic events in the French
2054 Mediterranean region. *Trees* 23, 843–853. doi: 10.1007/s00468-009-0326-z

2055 Tømmerås, B. Å. (1985). Specialization of the olfactory receptor cells in the bark beetle
2056 *Ips typographus* and its predator *Thanatus formicarius* to bark beetle pheromones and
2057 host tree volatiles. *J. Comp. Physiol. A* 157, 335–341. doi: 10.1007/BF00618123

2058 Unelius, C. R., Schieber, C., Bohman, B., Andersson, M. N., and Schlyter, F. (2014).
2059 Non-host volatile blend optimization for forest protection against the European spruce
2060 bark beetle, *Ips typographus*. *PLoS One* 9:85381. doi: 10.1371/journal.pone.0085381

2061 Villari, C., Battisti, A., Chakraborty, S., Michelozzi, M., Bonello, P., and Faccoli, M.
2062 (2012). Nutritional and pathogenic fungi associated with the pine engraver beetle trigger
2063 comparable defenses in scots pine. *Tree Physiol.* 32, 867–879. doi: 10.1093/treephys/tps056

2064 Wajs, A., Pranovich, A., Reunanen, M., Willför, S., and Holmbom, B. (2007).
2065 Headspace-SPME analysis of the sapwood and heartwood of *Picea abies*, *Pinus sylvestris*,
2066 and *Larix decidua*. *J. Essent. Oil Res.* 19, 125–133. doi: 10.1080/10412905.2007.9699244

2067 Wermelinger, B. (2004). Ecology and management of the spruce bark beetle *Ips typographus*:
2068 a review of recent research. *For. Ecol. Manag.* 202, 67–82. doi:
10.1016/j.foreco.2004.07.018

2069 Wermelinger, B., Rigling, A., Schneider Mathis, D., and Dobbertin, M. (2008). Assessing
2070 the role of bark- and wood-boring insects in the decline of scots pine (*Pinus sylvestris*) in the
2071 Swiss Rhone valley. *Ecol. Entomol.* 33, 239–249. doi: 10.1111/j.1365-2311.2007.00960.x

2072 Wood, D. L. (1982). The role of pheromones, kairomones, and allomones in the host
2073 selection and colonization behavior of bark beetles. *Annu. Rev. Entomol.* 27, 411–446.
2074 doi: 10.1146/annurev.en.27.010182.002211

2075 Wood, S. L., and Bright, D. E. Jr. (1992). Hosts of Scolytidae and Platypodidae. *Great
2076 Basin Nat. Mem.* 13:12.

2077 Yuvaraj, J. K., Kandasamy, D., Roberts, R. E., Hansson, B. S., Gershenson, J., and
2078 Andersson, M. N. (2024). Eurasian spruce bark beetle detects lanierone using a highly
2079 expressed specialist odorant receptor, present in several functional sensillum types. *BMC
Biol.* 22:266. doi: 10.1186/s12915-024-02066-x

2080 Yuvaraj, J. K., Roberts, R. E., Sonntag, Y., Hou, X. Q., Grosse-Wilde, E., Machara, A.,
et al. (2021). Putative ligand binding sites of two functionally characterized bark beetle
odorant receptors. *BMC Biol.* 19, 16–21. doi: 10.1186/s12915-020-00946-6

Zhang, Q. H., and Niemeyer, H. (1992). Morphological characteristics for sexing living
adults of *Ips cembrae* (Heer) (Col., Scolytidae). *J. Appl. Entomol.* 114, 403–409. doi:
10.1111/j.1439-0418.1992.tb01144.x

2081 Zhang, Q. H., and Schlyter, F. (2004). Olfactory recognition and behavioral avoidance
2082 of angiosperm non-host volatiles by conifer-inhabiting bark beetles. *Agric. For. Entomol.*
2083 6, 1–20. doi: 10.1111/j.1461-9555.2004.00202.x 2139
2084 Zhang, Q., Schlyter, F., and Anderson, P. (1999). Green leaf volatiles interrupt
2085 pheromone response of spruce bark beetle *Ips typographus*. *J. Chem. Ecol.* 25, 2847–2861.
2086 doi: 10.1023/A:1020816011131 2140
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138

Zhang, Q. H., Tolasch, T., Schlyter, F., and Francke, W. (2002). Enantiospecific
2139 antennal response of bark beetles to spiroacetal (E)-conophthorin. *J. Chem. Ecol.* 28,
2140 1839–1852. doi: 10.1023/A:1020569303433
2141 Zhao, T., Ganji, S., Schiebe, C., Bohman, B., Weinstein, P., Krokene, P., et al. (2019).
2142 Convergent evolution of semiochemicals across kingdoms: bark beetles and their fungal
2143 symbionts. *ISME J.* 13, 1535–1545. doi: 10.1038/s41396-019-0370-7
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196