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Shrnuti

Disertacni prace nesouci nazev ,Multisenzorové zjiStovani vlastnosti stromi
pozemnimi metodami dalkového prizkumu Zemé“ se zabyva problematikou urcovani
nékolika stromovych parametrt, velmi dilezitych pro obor lesnictvi a inventarizace
lesti. Zminovanymi parametry jsou predevsim vycetni tloustka a vyska stojicich
stromi, které tato prace vyhodnocuje na zakladé prostorovych dat, ziskanych
modernimi postupy dalkového priizkumu Zemé (DPZ) — laserovym skenovanim c¢i
fotogrammetrii. Prace nicméné pojednava také o potencidlu prostorovych dat,
respektive 3D rekonstrukei stojicich stromi ve formé bodovych mracen, v zaleZitosti
odhadu zdravotniho stavu kmene nebo detailnéjSiho popisu architektury stromu.
Nejenze se prace pokousi o samotné odvozeni zminénych parametrti, nabizi také dva
dosud nepouzivané postupy implementované do autorského pocitacového programu.
V propojeni s jinymi, bézné vyuzivanymi algoritmy se nové navrzené metody zabyvaji
jednak detekci stromt vbodovém mraénu lesniho prostiedi, jednak piesnym
vypoctem vysek stroml nejen hlavniho patra drevinné vegetace, ale také stromi
nachézejicich se v nizSich patrech porostu. Tyto dva algoritmy vychazi z projekce
bodového mracéna do 2D, vypoctu hustoty bodli v sousedstvi a nasledném zpracovani
po prevedeni zpét do 3D. Zminéné tfi vlastnosti, tedy vyska stromu, tloustka kmene
v prsni vySce a pritomnost hniloby uvnitf kmene, jsou dilezitymi parametry pro
hodnoceni stavu lesa a planovani tézebnich ¢innosti v lese, tim padem se také zadsadnim
zptisobem promitaji do ekonomickych kalkulaci spojenych s prodejem diivi, jakoZto
produktu lesa. Proto je dtlezité, aby byl objem drfivi v lesnich porostech zjistovan
s velkou presnosti. K tomuto ticelu zpravidla byvaji vyuzivany hodnoty tlousték a vysek
stromii. Udaj o piitomnosti hniloby v kmeni mtiZze pfispét ke tvorbé piedstavy o
skuteéné hodnoté stromt stojicich v porostu a obohatit tak sadu informaci, které
soucasné techniky pozemniho DPZ dokaZou poskytnout.

Funkénost uvedenych metod, predev§im v otazce zjisténi vysek a tlousték stromd, je
v praci demonstrovana na vlastnich datech, vytvofenych jak na tizemi Ceské republiky,
tak na tzemi Finska a potvrzuje pouzitelnost popisovanych analyz 3D dat na datech
z riiznych typt lesa, ale také riznych typt senzort pozemniho DPZ. O platnosti metod
svéddi i Ctyti autorské védecké publikace, které jsou zahrnuty do této disertacni prace.



1.Uvod

Zjistovani stromovych parametri, predevsim tlousték v prsni vysce (di3 nebo DBH
z ,Diameter at Breast Height“) a vysek stromi, bylo a stale je dulezitym aspektem
evidence objemu diivi rostouciho v lesich. Po dlouha léta byly tyto parametry urcovany
ryze manualnimi postupy, zaloZenymi na prikladani lesnické primeérky ke kmeni a
odecitani tloustky ze stupnice tohoto nastroje. V pripadé vysek pak na odvozeni pomoci
goniometrického pristupu ¢i na principu stejnolehlosti trojuhelniki [1,2].

Tyto metody nachézi uplatnéni i v dneSni dobé a zjiStovani informaci o stromech
zlstava principialné stejné jiz od vzniku této discipliny. Vyviji se pouze pomiicky,
s nimiz lze tuto praci zrychlit a zjednodusit. Technologicky pokrok vsak prinesl novou
metodu laserového skenovani (LiDAR, ,Light Detection and Ranging®), ktera se ze
svych ptivodnich oblasti vyuZiti ve vojenstvi a meteorologii dostala az do lesnictvi [3],
a tak prinesla i mnoho nové inspirace do problematiky zjistovani parametra stromt
nebo celych porostli. Jedno z prvnich pouziti leteckého laserového skenovani (,ALS®)
v lesnictvi je popsano v publikacich autorti Nelsona a Krabilla z 80. let dvacatého
stoleti [4,5]. S pfelomem tisicileti se objem védeckych praci, zaméfenych na ALS,
vyrazné zvysil, a tak se LiDAR stal nedilnou soucasti dalkového prizkumu Zemé
(,DPZ“) vlesnictvi. O nékolik let pozdé€ji bylo predstaveno pouziti statického
pozemniho laserového skenu (,TLS“) pro lesnické ucely [6] a od té doby az
do soucasnosti se LiDAR ve smyslu leteckého i pozemniho skenovani uchytil a je
predmétem mnoha lesnickych vyzkumi s cilem urcovat tradi¢né ziskavané, ale i nové
parametry stromd.

LiDAR neni jedinou metodou DPZ efektivné pouzitelnou v lesnictvi. Podobnému
zajmu, jako v pripadé ALS a TLS, se t€si i pozemni fotogrammetrie (,,CRP*), predevsim
letecka fotogrammetrie (,DAP*) [7]. Tyto techniky jsou relativné starsi nez laserové
skenovani. AvSak pravé az soucasny rozvoj vypocetni techniky umoznuje jejich
efektivni pouzivani [8].

Ackoliv je potenciadl metod DPZ obrovsky, prijeti s nim spojenych vystupti a metod
zpracovani do praxe je do velké miry omezené. To miiZe byt dano jak pofizovaci cenou
prislusného vybaveni, tak také nutnou zdatnosti v praci stakovymi daty. Tyto
skutecnosti mohou odrazovat zaméstnance v lesnictvi od vyuzivani téchto metod [9].
Neprivétivé je Casto i podani védeckych algoritmi, poskytovanych jako vystupy
z vyzkumu. Povétsinou jsou prezentovany ve formé programovych knihoven a nejsou
snadno pouzitelné ani pro pokroc¢ilé uzivatele pocitac¢li, nehledé na vyrazné vypocetni
naroky algoritmt na vypocetni silu pocitace [8—10].
Motivaci pro tvorbu této prace je proto snaha o zpristupnéni algoritmi zpracovani



bodovych mracen verejnosti a to jednak ve formeé popisti pracovnich postupti, dale také
ve formé snadné pouzitelného pocitacového programu, ktery bez narokt na schopnost
pouzivani programovacich jazykti, umozni jednoduché zpracovani 3D dat. Jelikoz je
ale zpracovani dat az sekundarnim problémem, prace se zabyva i prvotnim sbérem dat,
a to jak za vyuziti levnych alternativ, tj. pozemni fotogrammetrie, levnych pozemnich
LiDAR skenert, tak i za vyuziti Spickového zarizeni ve formé statického terestrialni
laserového skeneru (,,TLS®), ¢i ru¢nich mobilnich laserovych skenert (,MLS®).

Potencialem a vyuzitim zminénych metod sbéru 3D dat (TLS, MLS a CRP) se zabyva
tato disertacni prace, ktera si poklada nasledujici vyzkumné cile:

« Navrhnout vlastnost stromu zjistitelnou z 3D dat a ovérit moznosti jejiho odvozeni.

» Analyzovat vyuzitelnost pozemniho laserového skenovani a fotogrammetrie pti
shromazdovani dat o lesnich porostech.

« Vytvorit pracovni postup pouzitelny pii zjistovani vycetni tloustky a vysky
jednotlivych stromi ve 3D bodovych mracnech.

Samotna diserta¢ni prace je strukturovana jako kompilat ¢ty védeckych publikaci,
které autor béhem svého studia publikoval. Ty budou blize popsany po teoretickém
uvodu, ktery obsdhne Kklicovou problematiku feSenou béhem tvorby védeckych
vystupii. Ke kazdé publikaci bude stru¢né popsan priibéh reseni, aplikované metody i
s praktickymi ukazkami, pripadné obtize, které reseni prace komplikovaly.

2.Teoretické pozadi pozemnich metod
dalkového pruzkumu Zemé

A) Pozemni senzory

Pro uplné pochopeni principu fungovani pozemnich metod skenovani lesniho
prostiedi jsou v této ¢asti prace popsany zpisoby, jakymi metody pracuji. Na zakladé
znalosti fyzikalnich principti a jevl, vyuZitych ve fotogrammetrii ¢i laserovém
skenovani, je poté v praktickych aplikacich mozno efektivné metody pouzit, predejit
znamym chybam a omezenim nebo vyhledat pri¢inu nezadouci vlastnosti skenu. To
souvisi s faktory ovliviiujicimi hustotu dat a specifickymi interakcemi s lesnim
prostredim. Jak jiz bylo zminéno vuvodu, tato prace cili vyhradné na pouziti
pozemnich postupti, které se v obecné rovineé lisi od leteckych predev§im svou ¢asovou
narocnosti, zasadami pro sbér dat, zachycenymi detaily a tim padem i veli¢inami, které
z nich lze pro lesni porosty, respektive jednotlivé stromy, odvozovat.
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1. Terestrialni laserové skenovani

Terestridlnim laserovym skenerem se rozumi zarizeni umisténé zpravidla na stativu,
které z jedné pozice skenuje své okoli do 3D reprezentace, neboli bodového mracna.
Podobné, jako i u MLS, pristroj vysila azké laserové paprsky a pomoci otoéného zrcadla
nebo otacéeni celé hlavice systematicky prohledava okolni prostor v horizontalnim
rozsahu az 360° a vertikalné typicky v takovém rozsahu, zZe neni naskenovano pouze
tésné okoli skeneru [11], v piipadé skeneru Trimble TX8, pouzitého v této praci, 317°.
Laserovy paprsek se odrazi od okolnich objektti a pro kazdy navraceny impulz skener
zaznamena zmeéienou vzdalenost a thel, pod kterym paprsek vyslal. Tato data uklada
a cCasto je potreba zpracovani surovych dat v prislusSném software, vytvoreném
vyrobcem skeneru [12,13]. Ten prevadi data zpolarni soustavy do kartézskych
soufadnic. Vysledkem je bodové mracno, tedy soubor tisicii az miliontt 3D bodt
reprezentujicich povrch okolnich objektli v prostoru. Bodové mraéno je definovano
v lokalnim souiadnicovém systému a do globalniho systému jej 1ze pievést pomoci
transformace napi. pies referenc¢ni cile. Pro pokryti vétsiho lesniho porostu se ¢asto
provadi vice skenovani z rtznych stanovisek a vysledky se koregistruji. Tim se
eliminuje zastinéni nékterych objektdi jinymi objekty a TLS tak dokaze detailné
zdokumentovat prostor lesa s centimetrovymi az milimetrovymi detaily [14].

Bézné se vyuzivaji dva hlavni typy méreni vzdalenosti skeneru od zasazeného objektu.
Jsou to Time-of-Flight (,ToF*) nebo phase-shift (,,PS-TLS“) systémy. U ToF skeneru je
vyslan kratky laserovy impuls a elektronika méti dobu, za kterou se odrazeny signal
vrati zpét — rychlost paprsku je rovna rychlosti svétla, a tak se ¢as vyd€li dvéma a
dopocte se vzdalenost. Tento princip umoznuje dosahovat velmi dlouhych méricich
vzdalenosti [15].

Na rozdil od toho fazovy skener vysila nepretrzity paprsek s proménnou frekvenci a
vyhodnocuje fazovy posun mezi vysilanou a prijatou vinou. Z posunuti faze ptijaté
svételné vlny odvozuje vzdalenost. Musi vSak Celit nejednoznacnosti (,ambiguity®)
méreni, protoze faze vlny se pravidelné opakuji, stejna faze viny miize byt odrazena od
riizn€ vzdalenych mist. Problém lze vytesit omezenim dosahu paprsku, aby se stejna
vlna nemohla podruhé vyskytnout nebo kombinaci vice frekvenci (dlouhou a kratkou),
aby nejednoznac¢nost mohla byt odstranéna sledovanim zmén na vlnach rtznych
frekvenci. Fazové systémy umoznuji velmi vysokou rychlost sniméani (i vice nez milion
bodi za sekundu) a vysokou presnost na kratsi vzdalenosti (typicky do ~100 m), ale
jejich dosah je omezené€jsi nez u pulznich systému prave kvili feseni ,ambiguity” [16].
Oba typy skenerii pracuji na principu odrazu svétla od povrchu objektti a difazni odraz
zajisti, Zze dostatec¢na ¢ast energie se vraci zpét k ¢idlu pro Gspésné zméreni vzdalenosti
[15,17].

11



Laserovy paprsek, pouzivany pri laserovém skenovani je tzky a témér rovnobézny.
Nicméné vykazuje malou rozbihavost, procez se jeho §irka s prekonanou vzdalenosti
zvétSuje. Napriklad u skeneru Trimble TX8, pouzivaného vramci této prace, je
divergence paprsku 0,8 mrad (=0,046°), coZ znamend, Ze pramér paprsku je sice
v deseti metrech od skeneru 6 mm, ve 100 metrech uz to ale je 34 mm [18]. Tato
vlastnost vSech laserovych skenerti vede k tomu, Ze paprsky zasahuji vice objekti
takrka v tomtéz case. Vysledna poloha zméreného bodu u phase-shift skeneru je tedy
vazenym prumérem toho, co paprsek skutec¢né zasahl [19], zatimco u ToF skenert
mohou byt vSechna zasazena mista zaznamenéana jako individualni body. To tzce
souvisi s rozliSovaci schopnosti paprskii, ktera se vzdalenosti klesa a ze skenu se ztraci
jemné detaily anebo vznika Sum, kvili ,,mixed pixel effect“ nebo jevu ,bias towards
stronger return®. ,Mixed pixel effect” je zptisoben u senzorii zachycujicich jen jeden
odraz, zpravidla fazovych skenerti [11], a vznika tim, Ze Siroky paprsek zasdhne ¢asti
svého priirezu hranu objektu a zbytkem priifezu pokracuje déle. Vysledna poloha bodu
miiZe byt vypoctena do neexistujiciho mista leziciho mezi obéma zasazenymi povrchy.
Aby byl objekt zrekonstruovan spolehlivé, musi byt tedy zasaZen alespon jednim
paprskem bez ,mixed pixel effectu“. RozliSovaci schopnost skeneru je proto dana
jednak Sitkou paprsku a jednak tthlovym rozliSenim, které definuje nejmensi thel mezi
dvéma body, zachytitelnymi skenerem [19]. K podobnému jevu muZe dojit, zasdhne-li
paprsek dva povrchy s riiznou odrazivosti. Tehdy se jedna o ,bias towards stronger
return® [20]. Odrazivost povrchu souvisi s intenzitou odrazeného signalu, tedy s tim,
jak silny odraz se vratil. Tato intenzita zavisi na vzdalenosti, materialu, barvé i thlu
dopadu paprsku [21] [22]. Pokud je néktery odraz paprsku vyrazné siln€jsi nez ostatni,
miize byt vysledny bod posunut smérem k silnému odrazu bez ohledu na jeho poradi
[23].

Na rozdil od vySe popsaného jednoodrazového systému, lze diky rozptylu a zvétSovani
~stopy paprsku“ ziskat v multi-return systémech informace o polohéach vice nez jen
jednoho bodu, resp. objektu. Naptiklad v lese paprsek miize zasdhnout casti svého
priifezu list (prvni odraz), a zbytek paprsku pokracuje dal a narazi na vétev ¢i zem,
odkud se odrazi dalsi odrazy [11]. Moderni ToF skenery podporuji vice odrazi:
zaznamenaji prvni odraz, posledni odraz, piipadné i vice (typicky 3—5) odrazi na jeden
vystreleny paprsek, nebo dokonce plnou odrazovou krivku (,full-waveform®), ktera
reprezentuje nepretrzité zaznamenanou odezvu laseru (viz Obrazek 1). Diky tomu lze
ziskat bohatsi informaci o hustoté a strukture vegetace, protoze viceodrazovy mod
umoznuje i odhaleni objektti ¢aste¢né krytych jinymi [11,24]. Naproti tomu fazové
posunové TLS standardné zaznamenavaji pouze jediny odraz v daném sméru, protoze
kontinualni vina neumoziuje snadno rozlisit vice cilid. To mtze vést k tomu, Ze prvni
odraz zastini vzdalené;jsi objekty [11].
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V lese je tedy potencialni dosah TLS omezen strukturou porostu. Jednak jsou
vzdalenéjsi casti ridceji pokryty vlivem zastinéni vyhledu skeneru, jednak ale také
vlivem Kklesajici presnosti paprski. Hustota bodi klesa s rostouci vzdalenosti a jemné
detaily mohou byt viditelné jen v okruhu desitek metrt [25].

To casto vyzaduje skenovani zvice stanovisek a mutze v né€kterych pripadech svou
¢asovou narocnosti presahovat tradi¢ni zptisoby meéreni lesa [11]. TLS vSak poskytuje
velmi detailni informace nejen o vyskach a tloustkach, ale i o stavbé stromi, ato i u
relativné vzdalenych stromd, pficemz schopnost zmérit pfesné parametry stromi je
velmi vysoka. Tloustky a vysky stromi z TLS lze urcit s chybou ~1 ¢cm, resp. ~1-2 m
v pripadé vysek [9,26—28]. Metoda je tedy pro ucely lesnictvi povazovana za
nejpresnéjsi a nejdetailnéjsi ze vSech pozemnich metod DPZ [14].

:

a | Single

return

One signal (peak) recording

>

-

b First / last

returns

First / last signals recording

>

-

Multiple
¢ returns

1 - 5 signals recording

>

3

d Full

waveform

/N

Obrazek 1 — Ukazka riiznych rezimit zaznamu TLS/MLS v lese:

(a) pouze pruni odraz, (b) zaznam pruniho a posledniho odrazu, (c) vice odrazil, (d) plna vinova kfivka.
U fazovijch TLS je mozZny pouze rezim (a). Vicenasobné odrazy poskytuji informaci o objektech stojicich za
sebou, pokud paprsek neni prunim objektem zcela odclonén. Zdroj: [11].

Entire waveform recording

2. Mobilni laserové skenovani

Mobilni laserové skenovani vyuziva podobny princip meéreni jako TLS, ale skener je
umistén na pohyblivé platformé napriklad na automobilu, traktoru, pripadné je
pouzivan ve formé batohového ¢i ru¢niho systému neseného operatorem [29—32]. To
umoznuje pokryt velké tizemi, eventudlné i Spatné pristupné tizemi rychle a bez
problému naskenovat i mista, ktera by z jednoho stanoviska nebyla vidét, jako to hrozi
v pripadé TLS [14]. Druhy senzort a zptisoby méfeni vzdalenosti objektti od skeneru
jsou totozné jako u TLS, coZ vede i k podobnym hodnotdm rozbihavosti paprski, jak je
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viditelné vtabulce 1. Zasadnim zptisobem se ale liS§i zplisob orientace skeneru
v prostredi. Zatimco TLS vzdy pracuji z jednoho mista, MLS systémy jsou béhem
skenovani v pohybu. Mohou pracovat za vyuziti dat zinercialni mérici jednotky
(,IMU*) a prijimace globalniho naviga¢niho systému (,GNSS®). V lese je ale signal
z druzic zpravidla nedostateény, a tak tento pristup, s moznosti detekce polohy skeneru
v okamzik vyslani paprsku a okamzitého georeferencovani bodového mracna, byva
vyuzivadn mimo lesni prostiedi [14]. Obvyklé je vSak vyuZiti skenerti spoléhajicich na
algoritmy SLAM (,,Simultaneous Localization and Mapping“). SLAM algoritmus
pribézné zpracovava nameérenad data za vyuziti nékterého z pristupti optimalizace,
nejcastéji ,,Graph-Based“ pristup zaloZzeny na snizovani druhych mocnin chyb,
hledanim nejlépe odpovidajici konfigurace uzlt (poloh skeneru) a hran (spojnic mezi
polohami skeneru). Snazi se odhadnout trajektorii skeneru soucasné s budovanim
mapy a mracna bodl. Vyuziva se pritom kombinace idajii o zrychleni a otaceni skeneru
z IMU a samotnych 3D bodt — algoritmus hleda shodné rysy v po sobé€ nasledujicich
skenech a optimalizuje polohu tak, aby na sebe mracéna co nejlépe navazovala [33].
Prakticky jde o postup podobny registraci TLS skenti nebo hledani poloh fotoaparatu
pii ,bundle adjustment® ve fotogrammetrii. SLAM ale probih4 neustile béhem
skenovani. Vysledkem je odhad drahy zafizeni a souvislé bodové mracno okoli bez
potieby informaci z GNSS, za predpokladu, Ze se ve skenovaném prostiedi nachazi
dostatek pevnych orientaénich bodt [34].

Tabulka 1 — Piehled zakladnich vlastnosti skenerit pouzitych v ramci disertaéni prace. Udaj oznadeny ,N/A“
nent zverejnény na webech vyrobce skeneru ani senzoru.

Bodiiza | . _ Uhlové rozliseni
Skener Typ | Dosah [m] Sirka paprsku
sekundu (Hor / Ver)
Trimble TX8 5 80 prad /80 prad
ToF | 120a2340 | 1000000 | 6mm@ 10 m
(TLS) [18] (= 0.005°)
FARO Orbis
ToF 120 640 000 13mm @ 10 m N/A
(MLS) [35]
GeoSLAM
ZEB Horizon | ToF 100 300000 10 az 30 mm* 0.1°-0.4°/ 2°
(MLS) [36]

3. Faktory ovliviiujici presnost a hustotu bodii z LIDAR

Faktorti ovliviiujicich vysledky laserového skenovani v lesnim prostredi je mnoho a
velmi casto je prave kviili vlastnostem lesa ani nelze odstranit. Pro dosazeni dobrych
vysledkii skenovani je dobré pamatovat na aspekty ovliviiujici jak TLS, tak MLS
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systémy a pokusit se je minimalizovat, nebo je pripadné zohlednit pri specifickych
analyzach skendt.

Za ucelem, obecné zadouciho, snizeni Sumu je vhodné pracovat sobéma typy
laserovych skenerti za klidného pocasi, bez vyrazného pohybu vétvi, bez desté, mlhy ¢i
velkého mnozstvi prachu. Kapky desté nejenze vstupuji do cesty vyslanym paprskiim a
vytvari Sum, mohou ale také ulpét na krytu senzoru a zkreslit data. Zaroven vsak plati,
ze 1 mokry povrch, napr. po desti, miize absorbovat nebo odrazet laserové paprsky
Spatnym smérem a snizovat tak pocet tispé$Sné zameérenych bodi [37] [21]. Na rozdil
od vétru a desté, je intenzita slune¢niho zareni jednim z méné limitujicich aspektt. Pri
laserovém skenovani neni pritomnost slunecniho svétla nutna a zaroven ani silné
sluneéni zareni zpravidla neplisobi potize skenertim, které jsou vybaveny optickymi
filtry pro svou pracovni vilnovou délku [11].

Kromé samotného pocasi je i struktura lesa nécim, co ptisobi obtize pri zachycovani
tohoto prostiredi skenerem. Piredev§im je to Casty zastin objektl jinymi objekty. To
hraje roli, jak pti snaze zachytit co nejsirsi okoli z jednoho stanoviska, zaroven je ale
problematické i skenovani korun stromt, a to zejména v listnatych lesnich, jejichz
husté listovi zabranuje paprskiim projit az na vrcholy stromi. Jehli¢nany zpravidla tak
husté asimila¢ni organy nemaji a je proto snazsi naskenovat jejich koruny a predev§im
vrcholy [11] [14].

U MLS je potteba zohlednit jeSté nékolik vlastnosti spojenych se SLAM algoritmy a
sice, ze prilis rychly pohyb nebo rychlé otaceni se skenerem miize vést k chybam ve
vypoctu trajektorie, tvorbé artefaktii, zdvojeni objektli, Spatnému umisténi casti
mracna ve skenu nebo rozmazani objektd. Pro lepsi funkci SLAM algoritmu je tudiz
vyhodné vracet se béhem skenovani na jiz navstivena mista [33,38]. To umoznuje
orientaci algoritmu podle zndmého prostredi. Pokud ale skenovani neprobihalo
spravné, pri opétovném naskenovani stejného mista, mtize a ¢asto dochazi k drobnym
chybam. Na sebe navazovani bodovd mracna pak mohou vykazovat vzijemny
nékolikacentimetrovy posun (tzv. drift) [39]. Pro naro¢né aplikace (inventarizace s
vysokou piesnosti) se proto nékdy MLS data v lese dodate¢né zpresnuji pomoci
referen¢nich bodi ¢i srovnavaji s nékolika statickymi TLS skeny v klicovych mistech.
Vyhodnou vlastnosti opétovného skenovani miize mimo jiné byt i skuteénost, ze
vicekrat navstivené plochy maji vyssi hustotu bodi a mohou tak poskytnout lepsi
informace o stavu lesa, coz lze ale také ovlivnit nastavenim pozadované hustoty bodi
v nastaveni pouzivaného MLS ¢i TLS zatizeni [18,27].

4. Pozemni fotogrammetrie

Jako posledni pozemni metoda DPZ pouzitdA vramci této prace je pozemni
fotogrammetrie (CRP — ,Close Range Photogrammetry®). Ta vyuziva klasické RGB
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fotografické snimky k vytvoreni 3D modelu, resp. bodového mracna prostoru. Vystupni
data jsou tedy stejnd jako z TLS ¢i MLS, ackoliv jejich hustota napri¢ vertikalni
strukturou porostu znatelné klesa[1]. Namisto aktivniho vysilani paprsku se vSak pti
CRP porizuje soubor prekryvajicich se fotografii, které pasivné zachycuji zajmové
prostiredi z riznych ahli pohledu. Pi dostateéném prekryti snimki 1ze nasledné pouzit
algoritmy pocitacového vidéni k nalezeni homologickych bod{ na viceru snimki a
pomoci triangulace vypoditat jejich prostorové souradnice[1,40]. K tomuto acelu je
vétSinou vyuzivan algoritmus SfM (,,Structure from Motion®), existuji ale i jiné
postupy, napt. Semi-Global-Matching ¢i Visual SLAM [40—42].

U SfM prakticky probiha rekonstrukce ve dvou fazich — tvorba fidkého bodového
mracna a tvorba hustého bodova mra¢na. Béhem tvorby fidkého bodového mrac¢na
jsou nejprve hledany vyrazné body na vsech fotografiich. Vyraznymi body lze rozumét
predevsim mista s velkym kontrastem, jako jsou hrany objektl, vzory aj. Hledani
vyraznych bodd probih& na nékolika drovnich rozostieni fotografii, ¢imz se podari
nalézt predevs§im ty body, které jsou skute¢né vyrazné a lze predpokladat, ze budou
viditelné i na sousednich fotografiich. K rozostteni se pouziva filtr ,Gaussian blur®.
Z rozmazanych snimki se tvofi DoG (Difference of Gaussians), jez slouzi k nalezeni
zminénych extrému na fotografiich (viz Obrazek 2).

Obrazek 2 - Vizualizace "Gaussian Blur" a detekce virazngch bodii.

Nalezené body, oznacované jako ,key points®, je poté nutno sparovat s ekvivalentnimi
body na ostatnich fotografiich, k éemuz se vyuzivd podobnost v gradientu kontrastu
okolo nich a zaroven odpovidajici poloha relativné k ostatnim bodiim. Pozorovanim
rychlosti posunu bodi na sousednich fotografiich 1ze pomoci paralaxy urcit, které body
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jsou bliz nebo dal od pozorovatele, tedy od sensoru fotoaparatu (viz Obrazek 3).

(] [ J o ® O
° o ® ° ¢} o

Obrazek 3 — Vizualizace paralaxy a sledovani pohybu dvou bodii, riizné vzdalenych od senzoru (Zeleny bod —
vzdaleny; Cerveny bod — blizky). Vijsledny posun bodii je nepiimo umérny jejich vzdalenosti od fotoaparatu.

Zaroven probiha propojovani ¢i zarovnavani bodt ve 3D prostoru a vypocet polohy,
odkud byl dany bod pozorovan ¢ili vyfotografovan. Tento problém je nazyvan ,bundle
adjustment“, snazi se o minimalizaci rozdili mezi 2D obrazovymi souradnicemi
v porizenych fotografiich a projekci vypocétenych 3D poloh bodi zpét do fotografie.
,Bundle adjustment” je cCasto feSen algoritmy SIFT, SURF ¢i ORB. Vysledné ridké
bodové mrac¢no sestava z tzv. ,tie points® a jsou teoreticky znama vSechna mista a thly
(tj. vnéjsi orientace fotoaparatu), z nichz byl bod pozorovan. Zaroven je pii ,bundle
adjustment® sledovana i vnitfni orientace fotoaparatu, ktera je ovlivhéna napi.
zkreslenim obrazu ¢ockou nebo ohniskovou vzdalenosti objektivu. , Tie points® jsou
podmnozinou ,key points“ a vznikly propojenim ,key points“ z vicera fotografii a
uvedenim do 3D prostoru, na konkrétni misto v ném. Soufadnicovy systém 3D
rekonstrukce je nicméné ,,pomyslny“ a neobsahuje idaje ani o geografické poloze, ani
o absolutnich rozmérech objektii, dokud tyto informace nejsou dodany pomoci méritek
¢i vlicovacich bodii [25].Cel4 rekonstrukce 3D prostredi z fotografii je snazsi, pokud
jsou k fotografiim zaznamenéany tdaje z GNSS a IMU. Tehdy je poloha fotoaparatu
v prostoru dan4, a tudiz i vysledné souradnice 3D bodi odpovidaji skutecnosti [43,44].

Ve druhé fazi rekonstrukce prostredi, kdy uz jsou znamy pozice odkud fotografie
vznikaly i pozice bodii fidkého bodového mraéna, je tvoreno husté bodové mracno. Pro
kazdy obrazovy bod na jedné fotografii se snazi Multi-View Stereo (MVS) algoritmus
najit odpovidajici bod na dalsich fotografiich a z jejich priniku vypocita 3D souradnice.
To udéla pro velké mnozstvi pixell, ¢imz vznika husté bodové mrac¢no. To muze
dosahovat hustoty blizké poc¢tu obrazovych bodi v prekrytych oblastech snimka a
zaroven nese barevnou informaci obsazenou na ptivodnich fotografiich, coz je vyhodné
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pri dalsi analyze, zejména pii klasifikaci objektii, nebo napt. ur¢ovani druhové skladby
porostii [1,25,45]. MVS algoritmus, ktery se béZzné pouZziva, je napt. COLMAP MVS.
Ten na zakladé fidkého mrac¢na vytvari hloubkové mapy, které zobrazuji, jak je kazdy
pixel vzdaleny od odhadnutych poloh fotoaparatu a s jejich pomoci, na zdkladé shody
z vice fotografii, dopliiuje body a barvy do mist, kde se pravdépodobné maji nachazet i
vrealité [45]. Z alternativnich algoritmt lze uvést PMVS, ktery je robustnéjsi ale
pomalejsi a méné detailni nez COLMAP. Princip jeho fungovani nezavisi na tvorbé
hloubkovych map, ale na hleddni shodnych textur ve snimcich a postupném
rozs§ifovani téchto vyraznych oblasti ,patch“ [46]. Pro letecké snimky je pak
optimalizovany algoritmus SURE [47].

Takovéto bodové mraéno je vétSinou predmétem dalSich analyz s cilem urcit parametry
stromi ¢i porostii, a tak se jiz vétSinou neprovadi tvorba polygonalniho 3D modelu —
meshe, ktery uz neni jen mnozinou bodt, ale povrch objektli uzavira a jevi se jako
souvisla plocha, ptipadné zobrazena i s texturou ziskanou z fotografii [25].

Ackoliv je vySe popsany pribéh fotogrammetrické 3D rekonstrukee slozity, cely proces
je dnes znaéné automatizovany v softwarovych balicich, jako napt. Agisoft Metashape,
RealityCapture, Pix4D aj. Z uzivatelského hlediska tedy stac¢i poridit dostatek
kvalitnich fotografii s dostateénym, optimalné cca 80%, prekryvem a software
vygeneruje 3D bodovy model scény bez nutnosti intervence uzivatele. Z hlediska ¢asové
naroc¢nosti je fotogrammetrie vypocetné intenzivni — zpracovani stovek fotek mize
trvat hodiny az dny, ale s moderni optimalizaci GPU je to zvladnutelné. V terénu je
foceni pomeérné rychlé, ale stale vétSinou pomalejsi nez laserové skenovani velké
plochy, na niZz se musi udélat velké mnozstvi fotografii s dostateénym pirekryvem. Na
druhou stranu pro malé tlohy, zhruba o velikosti tradi¢ni kruhové zkusné plochy (<10
artl), mize byt fotogrammetrie efektivnéjsi nez stéhovat TLS [1]. Prekryv fotografii je
vSak jen jednim z faktorti, které ovliviiuji presnost 3D rekonstrukce. Ve spojitosti s nim
je vhodné uvést, ze pro lepsi hloubkovou presnost se doporucuje, aby rozestup mezi
sousedicimi fotografiemi byl zhruba mezi 60 az 180 % vzdalenosti k objektu [48].
Jinymi slovy, pti ptilis velkém prekryvu fotografii hrozi vznik placaté 3D rekonstrukce.
Vétsi pocet fotografii z riznych mist obecné zvysuje kvalitu — jednak pokryji 1épe
vSechny casti prostiedi, jednak plati, Ze bod vidény na vice snimcich mé piesnéjsi
vyslednou polohu (primérovanim chyb). Ukazuje se, Ze kdyZ je kazdy bod vidét aspon
na priblizné 8 snimcich, presnost vyrazné stoupd, zatimco bod vidény jen na dvou
snimcich je nachylny k chybé [25].

Je nutno také brat v ivahu, Ze nelze zachytit v modelu detaily podrobnéjsi, nez jaké
jsou v pixelu zachycené fotografie. Presnost tak miize byt v fddu milimetrt, ale také
horsi, zejména s rostouci vzdalenosti fotoaparatu od objektu a je zavisla i na rozliSeni
fotoaparatu. Tyto parametry lze do zna¢né miry ovlivnit pfizptisobenim pouzitého
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zarizeni ¢i obchazené trajektorie pri samotném fotografovani. Lesni prostredi ale skyta
dal$i radu faktor®i, které lze ovlivnit méné, presto jsou duleZité pro tspéSnou
fotogrammetrii. Napf. opakujici se vzory na fotografiich, coz mohou byt podobné
stromy v monokulturnim lese, mohou mast algoritmus pro parovani bod, podobné
jako zmény v osvétleni prostiedi a odlesky [25,49]. Vlivem zastinéni a silného
slunec¢niho svitu mohou byt fotografie v nékterych ¢astech presvétlené a jinde tmavé,
coZ ztézuje nalezeni shodnych bodi. Kvili absenci specifickych gradienti v téchto
mistech a ve velkém Seru je RGB fotogrammetrie zcela nefunkcéni. Idealni jsou
podminky s rozptylenym svétlem, nebo teoreticky i vyfotografovani scény s expozi¢ni
bracketingem. Pokud mezi snimky dojde k vyrazné zméné osvétleni, tfeba vlivem
oblac¢nosti, miize se model rozdélit na ¢asti se vzajemnym posunem [50].

Velkym nepritelem fotogrammetrie je pohyb objektii, nejcastéji zptisobeny vétrem. Ten
miiZze znemoznit parovani ,key points“. Pokud napt. vitr pohne vétvi, jeji obrazova
projekce se mezi fotkami 1isi a software ji nemusi sparovat spravné — miize z toho
vzniknout zdvojenad nebo zvétSena struktura v mraénu, tzv. ,artefakt®. Pro
minimalizaci téchto chyb se foti v co nejkrat$im casovém tseku, pripadné se v softwaru
filtruji body s velkou rekonstrukéni chybou [1,25].

Kvalitné provedena pozemni fotogrammetrie dokaze poskytnout velmi detailni bodova
mracna — v malém rozsahu srovnatelna i s TLS. Napriklad rekonstrukce stromu z
fotografii s vysokym rozliSenim mtize mit vzdalenost mezi body na kmeni i pod 1 cm
[26]. Nicméné v praxi v lese Casto hustotu limituje to, Ze ne vSechny ¢asti jsou stejné
pokryté — nékteré plochy, napi. vyssi partie kmene, mivaji bod méné [51].

Presnost fotogrammetrickych méieni v lese miize byt prekvapivé dobra: napiiklad
odhady DBH (priamért ve vycetni vySce) mivaji RMSE kolem 1-3 cm, coz je
srovnatelné s TLS [26,51,52]. VySky stromu lze fotogrammetrii odhadnout hife,
protoze vrcholky zpravidla nejsou zdola dostate¢né viditelné — zde ma vyhodu TLS ¢i
leteckd fotogrammetrie. Védecké vysledky pozemni fotogrammetrie z pristupu
vyuzivajiciho SfM, aplikovaného na dospélé lesni porosty, nejsou dostupné.

Zminovana vysoka presnost fotogrammetrie ve srovnani s TLS se zpravidla poji
s relativné vysokou ¢asovou naroc¢nosti, danou nutnosti navstivit vétSinu zajmového
uzemi z blizkosti jednotek metrii, neustalou nutnosti dodrzovat podminky pro spravny
sbér fotografii, nepocitaje casovou naroc¢nost zpracovani fotografii, zejména pri vzniku
potizi s propojenim fotografii [49]. Z tohoto diivodu je potfeba preferenci pozemni
fotogrammetrie pred laserovym skenovanim dobte zvazit pti planovani sbéru dat.

B) Parametry odvozované z 3D bodovych mracen

Jak jiz bylo uvedeno, tvorba 3D bodovych mracen je teprve prvnim krokem k ziskani
informaci o lesnich porostech a jednotlivych stromech. Parametry, které jsou obvykle
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urcovany nejen pro ucely inventarizace lesa, budou v nasledujici kapitole strucné
popsany jak metodicky, tak pomoci vysledkii dosaZenych ve védeckych publikacich.
JelikoZ se disertacni prace zaméruje zejména na parametry jednotlivych stromi, bude
kladen diraz predev§im na né, a to za vyuziti 3D dat. Nékteré parametry je mozné
odvozovat i napf. z 2D fotografii, coz v§ak neni zajmem této prace.

1. Detekce jednotlivych stromt v bodovych mracnech

Velmi ¢asto samotnému odvozeni stromovych veli¢in predchazi vyskova normalizace
bodového mracna a také segmentace jednotlivych stromi z bodového mrac¢na. Tyto
kroky, predev§im segmentace individualnich stromi, jsou velmi dulezité a lze Tici, Ze
vétsi vliv na presnost odvozenych parametri méa kvalita segmentace stromu
zbodového mrac¢na, nez pouzitd metoda odvozeni DBH ¢i vySky [53]. Proto bude
v prvni ¢asti kapitoly rozebirana pravé detekce stromii a teprve pak urceni jejich
parametrid. Je potieba podotknout, Ze nékteré metody detekce stromi nebo kment
poskytuji primo i dal$i parametry, predev§im DBH, tak se rozdil mezi segmentaci
kmene a vypoctem jeho parametrti mtize smyvat.

Detekce a segmentace stromii (,,Individual Tree Detection and Segmentation®, ,ITDS®)
z pozemnich LiDAR dat, je klicova pro automatizovany sbér stromovych parametri.
Pozemni metody DPZ zachycuji les z bo¢niho pohledu a s vysokou hustotou bodii, coz
umoznuje zachytit detailni strukturu kmenti, vétvi i podrostu. Poskytuji tak
kompletnéjsi 3D informace o stromech nez letecké metody [54]. Obecné je ale lesni
prostiedi velmi sloZité a jeho vlastnosti, jako piekryvy sousednich stromi a pritomnost
polykormonti, komplikuji segmentaci. Moderni ptistupy se proto ¢asto snazi detekovat
kmeny a aZ néasledné priradit zbyvajici body ke spravnému stromu [9,55].
NiZe jsou uvedeny hlavni metody detekce stromii, vcetné jejich principli, vyhod a
nevyhod. VEtSi pozornost si v této disertaéni praci metody zaslouzi kviili snaze o jejich
porovnani s algoritmem pouzitym v programu DendRobot [56], ktery je soucasti
vysledkii této prace.

Metody detekce stromi vyuzivaji algoritmy analyzy shlukt bodi k rozdéleni bodového
mracéna na skupiny odpovidajici jednotlivym stromim. Pfitom pracuji pfimo se
strukturou bodového mracna a jsou nezavislé na jinych vstupnich datech, jako jsou
napriklad predem trénované klasifika¢ni modely.

Samotna analyza pak zpravidla zac¢ina identifikaci prvni ¢asti kmene, k niz se nasledné
priclenuji dalsi ¢asti kmene a koruna. Kmen byva snadno identifikovatelny diky své
vysoké hustoté bodi, ktera je na ném vyrazné vyssi nez hustota bodii na slabych vétvich
nebo asimilaénich organech. To je obzvlasté vyhodné pti zkoumani hustych lesnich
porostii, v nichZ postup timto zptisobem dosahuje dobrych vysledkti. Vyhodna mtize
byt také moznost odfiltrovani prili§ malych shlukd, tedy zpravidla Sumu, coz umoziiuje
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odstranit shluky predstavujici listi nebo kefe, zaroven ale muze vést k odstranéni
potencialné zajimavého zmlazeni ¢i tyckoviny. Ac¢koliv je detekce samotnych kmenti
timto zptisobem presna, pii snaze o prifazeni koruny ke kmeni dochazi casto ke
splynuti vicera korun nebo naopak rozdéleni jedné koruny na vicero [54,57,58]. To lze
do jisté miry osettit pridanim pravidel, jako ze kazdy strom musi mit jeden kmen,
definovany pocatecnim bodem (,seed point“) nebo Ze se kmeny nemohou nahote
spojit, pokud dole byly oddéleny [54,59].

Pro nalezeni kment je ¢asto pouzivan algoritmus DBSCAN (,,Density-Based Spatial
Clustering of Applications with Noise“), aplikovany na horizontalni vyse¢ z bodového
mracna, obvykle priblizné ve vysce 1,3 metrti nad zemi, nebo i v nékolika vyskach nad
zemi pro kazdy strom. Vyuziti vysedi z vicera vysek usnadnuje spravnou detekcei stromt
i v ptipadech u sebe blizko rostoucich stromii nebo pfi absenci bodi kmene kvili
zakryti kfovinami ¢i jinym télesem. Po nalezeni pocatecnich shlukii kmene nasleduji
dalsi kroky, prirazujici okolni body kmene ve vertikdlnim sméru, ¢imz se zajisti
segmentace stromu od paty az ke Spicce [55,59,60]. Lze k tomu pouzivat ,K-Nearest
Neighbours“ (KNN), Region growing i jiné méné bézné postupy, jako napt. ,metodu
nejkratsich cest” vychazejici z ekologického vztahu koruny a kmene [61], iterativni
hustotni clustering v cylindrickych objemech [62], ¢i fuzzy C-means shlukovani [63].
Ve spojeni s clusteringem nékteré studie jesté popisuji vyuziti poc¢atec¢nich bodi jako
vychodisek pro RANSAC (Random Sample Consensus) fitovani valcti a pfimou detekei
kmeni a jejich sklonu, coz ma oproti vyuzivani 2D reprezentaci mra¢na vyhodu pri
zpracovani naklonénych stromi [54]. Tehdy algoritmus ndhodné vybira podmnoziny
bodi a hleda parametry valce, nejlépe popisujici vétsSinu bodii kmene. Alternativné lze
vyuzit fitovani dvou kruznic na horni a dolni konec vysece kmene, coz také vede k
definici valce popisujiciho kmen. Vyhodou nahrazeni skute¢ného kmene valcem je
efektivni odfiltrovani Sumu a zlepSeni identifikace strom@ diky ziskani ddaja o
naklonéni stromu [54,64]. To je situace, v niZ metody pracujici s 2D zobrazenim
mracna castéji selhavaji. Vyhodou je i ptimé ziskani dalSich parametri, kdy z fitnutého
valce 1ze rovnou ¢ist tloustku ¢i sklon kmene. Citlivost na poéatecni nastaveni je mensi
nez u klasického clusteringu. Nevyhodna je vSak vypocetni narocnost iterativniho
fitovani valcti na kmeny [54]. Koruny se obvykle ptifazuji podle vzdalenosti bodu k ose
prislusného valce nebo pomoci biologickych pravidel a souvislosti mezi DBH, vyskou
stromu a velikosti jeho koruny, které definuji obvod, v némz se pravdépodobné nachazi
vSechny body stromu, mohou ale vést k prehlédnuti stromi niz§iho dfevinného patra.
Velmi podobné funguje postup pracujici s CHM (,,Canopy Height Model®) a delineaci
korun znéj. Korunové projekce prirazené k nalezenym kmentim pak slouzi jako
podklad pro vyjmuti stromu z bodového mracna. Opét ale dochazi k prehlédnuti
strom, jejichZ koruna neni na CHM viditelna [54,59,60,64].
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V poslednich letech doslo k vyraznému pokroku v segmentaci jednotlivych stromii z
LiDAR dat za vyuziti neuronovych siti. Klasické metody popsané vyse dokazou pri
peclivém nastaveni parametri poskytnout dobré vysledky, zejména v méné hustych
porostech. Ve slozitéjsich podminkach je ale vhodné ladéni vstupnich parametri, coz
miize klast vyssi casové naroky. Metody vyuzivajici hluboké uc¢eni naopak nabizeji vyssi
robustnost v komplikovanych scénéch s prekryvy korun, a postupné prekonavaji limity
rucné navrzenych algoritmu. Také pfi jejich pouziti neni nutné ruc¢né ladit parametry
algoritmii, protoZze model umélé inteligence tento vstup nevyzaduje a rozeznava
objekty na zakladé trénovacich dat. Modely hlubokého uceni umi bud pfimo
segmentovat celé stromy nebo nachazeji kostru stromt, k niz se pozdéji prirazuji i
okolni body vegetace na zakladé vzajemné vzdalenosti, ¢imZ vzniknou kompletni
bodova mracna jednotlivych stromi [65-67].

Casto pouzivanymi neuronovymi sitémi uréenymi k analyze 3D dat jsou PointNet nebo
PointNet++, kdy PointNet++ ma schopnost sémantické segmentace, tedy hledani
stromli v ptivodnim bodovém mrac¢nu porostu [67,68]. Obecné je vsak pouzivani
metod strojového uéeni naroéné na tvorbu vstupnich dat a jejich aplikovatelnost miize
byt limitovana jen na data ze stejného snimace jako trénovaci data a na geografickou
oblast. Jejich aplikaci komplikuje velkd vypocetni a casovd naroénost trénovani i
klasifikace [50].

2. Stromové parametry

V nésledujicim textu jiz bude vénovana pozornost stromovym parametrim, které
nejvice souvisi s tématem této prace a zaroven poskytuji zajimavé informace nejen
oboru inventarizace lesa, ale také ochrané lesa proti biotickym ¢i abiotickym vliviim,
pripadné i pro ekologické aplikace.

e Vycetni tloustka (DBH — Diameter at Breast Height)

Jedna se o zakladni udaj lesnické inventarizace. Jeho ziskani predchazi vyskova
normalizace bodového mraéna, po niz je mozné urcit presnou vysku kteréhokoliv bodu
nad terénem. Pro ziskdni DBH se pak zbodového mrac¢na vyjimaji vysece kment
z vySek okolo 1,3 metrti nad zemi a jejich optimalni tloustka je, dle predchozich studii,
7 ¢cm [51,69,70]. Tyto vysecCe jsou pak zpracovany bud’ jako 3D objekt nebo prevedeny
do 2D ignorovanim ,,z“ souradnice. V obou pripadech lze provést fitovani, ve 3D vSak
hrozi, Ze vysledny, fitovany objekt, kruznice, elipsa nebo valec, nebude ani priblizné
rovnobézny s terénem. Jako nejlepsi feseni fitovani totiz mize vyjit napt. kruznice
svisla k terénu. S pouzitim 2D vysece zase miiZe dojit k chybé vypocétu u naklonénych
stromi, kdy vyse¢ nabyva eliptického tvaru a fitovani kruznice nebude presné. Spravné
rozhodnuti o pouziti 2D ¢i 3D pristupu ma tedy vliv na vysledky uréeni DBH za cenu
ovlivnéni vypocetni doby a slozitosti implementace. VEtsi naroénost se spojuje i s vétsi
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mnozinou pouzitych bodd, kter4 ale vede k sniZeni vlivu mezer nebo vykyvii v datech,
napr. pritomnosti vétvi nebo netplného naskenovani obvodu kmene [53,71].
Bézné pouzivané fitovaci metody vyuzivaji Least Squares Fitting (metoda nejmensich
¢tvercli), RANSAC, Houghovu transformaci, hledani konvexniho obalu (Convex hull),
nebo metody zaloZené na sledovani gradientu a optimalizaci vzdalenosti bodi od
referencniho télesa [72,73]. Tyto metody se lisi svou robustnosti proti Sumu ve vysecich
kmene a tim padem i dosahovanou presnosti. Velmi casto se vyuziva RANSAC a
Houghova transformace, které jsou odolnéjsi vuci vlivu Sumu, ale za cenu vyssi
vypocetni narocnosti, ktera se projevuje zejména pri pouziti ve 3D [65,71]. Nalezeni
nejlepsiho feSeni RANSAC mitize vyzadovat porovnani milionti kombinaci, a proto se
zpravidla provadi jen omezeny pocet pokust znichz vysledkem je ten s nejmensi
chybou.

Metody uréeni DBH zaloZené na LiDAR i fotogrammetrii dosahuji vysoké presnosti.
Napriklad shoda DBH odvozeného z TLS s terénnim mérenim je R2 = 0.9-0.97[74,75].
TLS tak umoznuje ziskat DBH pro kazdy strom v podrostu rychle i presné, a dale
poslouzit k vypoctu kruhové zakladny, zasoby dieva a biomasy.

e Vyska stromu

Vyska stromu se stanovi jako vzdalenost nejvyssiho bodu daného stromu od terénu,
pricemz se predpoklada, ze strom nebo jeho vrchol, je jiz odlisSen od ostatnich jedinct
[75]. Vyhodou urceni vysky z pozemniho LiDAR skenovani, nikoliv v§ak z pozemni
fotogrammetrie, je objektivni a presny vysledek, ktery neni zatizen subjektivnim
odhadem, jako u méfeni vySkomérem [76]. Teoreticky je dosazitelnd presnost
v jednotkach centimetrli, nicméné vlivem zastinu skeneru se miize stat, Ze vrchol
stromu nebude zachycen a dojde k podhodnoceni vysky [1,77]. Oproti leteckému
LiDAR skenovani umoznuji pozemni pristupy zachyceni vysek stromti z nizSich pater
direvinné vegetace a tim padem je pozemni pristup vhodnéjsi i do komplexnéjsSich
porosti [781.
Pfi dostatecném pokryti vrcholu stromu lze pomoci TLS ziskat vySku s chybou
zpravidla do 1—2 metrti (RMSE ~1.5 m, tj. 92% presnost oproti referenci) [75,77]. Je
nutné v§ak podotknout, Ze vyska je ¢asto porovnavana s ru¢nim métfenim vyskomeérem,
coz neni dostateéné objektivni zdroj referen¢nich dat k porovnavani vysledki. Pesnost
urcovani vysky z LiIDAR tak zfejmé bude vyssi, nez jakou nedestruktivni metody
porovnani vykazuji [28,76].

Ve vysledku MLS a TLS poskytuji velmi presné adaje o vyskach stromii, pokud je dobie
zachycen vrchol. To je typicky snadné pro nizsi a stredné vysoké stromy, nebo tam kde
je tidsi zapoj. U velmi vysokych nebo hustych porosti muze byt potieba pocitat
s doplnénim dat o LiDAR sken z dalsich stanovisek nebo akceptovat, zZe vysky mohou
byt podhodnocené vlivem zastinéni skeneru. Navzdory tomu mitize poskytnout
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kompletni vyskové udaje pro celé spektrum stromi vlese a to velice presné a
objektivné [75].

 Kmenovy profil

Kmenovy profil, popisujici tvar kmene, ve smyslu souboru primeéri kmene v riznych
vyskach, lze z TLS mracna odvodit metodami jako jsou kvantitativni strukturalni
modely (QSM) nebo sekvenénim fitovanim valci ¢i kruhti do vyrezi z kmene, které se
principialné nelisi od vypoctu DBH. Vysledkem je morfologicka kfivka kmene, z niz 1ze
identifikovat odchylky tvaru, napt. korenové nabehy, které je pak mozné zahrnout do
vypoctu presného objemu drivi. Takova analyza v oblasti koruny stromu éasto narazi
na problém se zavétvenim kmene, kdy vétve kmen zakryvaji, brani jeho kompletnimu
naskenovani a také komplikuji segmentaci kmene od vétvi. Kazdopadné jsou ziskané
udaje dutlezitym podkladem pro presny vypocet dievni zasoby a pro studium
mechanické stability stromu. Napi. metodou QSM, ktera postupné nahrazuje celé
bodové mrac¢no odpovidajicimi valci, 1ze z LIDAR dat urcit primér kmene v libovolné
vysce, stejné jako objem hroubi a nehroubi a tim pak i vytvarnici. Je nutno podotknout,
ze urceni kmenového profilu z LIDAR ma velky potencial pro zpresnéni vypocti
objemi diivi [79,80]. Dosud je velky diraz kladen predevSim na zjiSténi tloustky
v prsni vySce, to ale nevyuziva cely potencidl 3D dat, ktery bude v nasledujicim textu
dale rozebran.

e Objem kmene a vétvi

Odhadem tvaru kmene, napt. pomoci QSM modelu, l1ze presné€ vypocitat nejen
objem kmene, ale i vétvi. QSM rozklada cely strom na malé valce a rekonstruuje
architekturu stromu od kmene az po nejmensi vétve, pricemz je schopen kmen i vétve
vzdjemné odliSovat. Sec¢tenim objemi téchto valcti, lze presné vypoditat prislusny
objem drfevni hmoty [80,81]. Porovnani objemu zji§téného z 3D dat s objemem
z objemovych tabulek ¢i destruktivniho méreni vykazuje dobrou shodu, s chybami
vjednotkach procent. QSM modely jsou tim padem schopné nedestruktivnim
zptisobem poskytnout informace o celkové nadzemni biomase stromu (,,Above-Ground
Biomass®“; AGB) [79,81,82]. MozZnost presného uréeni objemu pomoci LiDAR je
povazovana za prilezitost kalibrovat a zpresnovat tradi¢ni alometrické rovnice, jelikoz
studie ukézaly, ze 3D model kmene a vétvi z laserového skenovani vyrazné zlepsuje
odhad nadzemni biomasy oproti empirickym rovnicim a odhaluje v nich systematické
chyby [81].
e Pocet vétvi a hierarchie vétveni

Krom objemu kmene a vétvi, je ze 3D dat mozné automaticky extrahovat také
informace o hierarchii vétveni (tzv. rady vétveni), pocty vétvi, jejich délky, tloustky
nebo i thly, pod kterymi na sebe vétve vzajemné nasedaji [79]. K tomuto ucelu lze
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vyuzit jiz zminéné QSM, ale také algoritmy pro skeletonizaci, tj. tvorbu kostry stromu
[83].

Zminéné vlastnosti jsou dulezité pro porozumeéni architektufe stromu a jeho ristu.
Porovnanim takovychto dat s ru¢nim destruktivhim meérenim potvrdilo, Ze pocty a
délky vétvi l1ze ziskat s chybou RMSE ~0.6 m pro délku vétvi a ~3 cm pro tloustku vétvi
[79]. Uvedené informace jsou nicméné vhodné napt. pro modely odolnosti vii¢i vétru,
k vypoctim rozloZeni biomasy v koruné€, ekologickym vyzkumtim a mohou indikovat
dokonce i druhové rozdily [79,84].

e Urcéeni druhu dreviny

Urceni druhu dreviny ze 3D dat je velmi diilezitym, ale obtiznym tkolem. Pro pouziti
spravnych objemovych rovnic nebo pro plnohodnotny odhad zasoby porostu je nutné
znat i jeho druhové sloZzeni porostu. Ktomuto tcelu lze vyuzit bud parametry
architektury jako tvar koruny a zplisob vétveni [84] nebo spektralni informaci
obsazenou ve fotogrammetrickych datech [85]. Vyzkum prokazal, Zze pomoci
parametri jako je vySka stromu, Stihlostni koeficient (h/d), velikost a objem koruny,
uhly nasazeni vétvi, index listové plochy (,Leaf Area Index“; LAI) a dalSich, je
mozné rozlisit mensi pocet druhi s piresnosti od 77 % do 90 % [84].

Jinou moznosti, jak klasifikovat dievinné druhy je za vyuziti algoritmi strojového
uceni. Ty automaticky klasifikuji druhy stromt pfimo z mra¢na bez nutnosti definovat
konkrétni analyzované parametry. RozliSovat lze dva dil¢i pristupy, bud’ klasifikaci
primo na zakladé€ 3D dat nebo na zaklad€ 2D projekci bodovych mraéen. Druhy pristup
prakticky vytvori snimky individualnich stromt ze stran a na zakladé téchto
sfotografii“ probiha klasifikace [86]. Timto 2D pristupem byla Gispé€sné provedena
Kklasifikace 4 druhti s 95.6% tspésnosti [86].

Alternativné se zpracovava ptimo 3D bodové mraéno pomoci tzv. ,point-based neural
networks®, kterou je napi. PointNet++. Tyto pristupy jsou zatim méné presné nez 2D
projekcee, ale rychle se zdokonaluji [87,88].
Metody strojového uc¢eni umi samy objevit klicové rysy ve strukture stromu a vyuzit je
ke svému tcelu. Nelze vsak presné urcit na zakladé ceho se rozhoduji a k tispéchu je
potieba velkého mnozstvi trénovacich dat.

e Zdravotni stav

Podobné obtiznym utkolem je i urcovani zdravotniho stavu stromi, at uz jde o
klasifikaci zivych a mrtvych stromt nebo hledani poskozeni kmene. Postupovat 1ze
opét na zakladé geometrickych pravidel, za vyuziti strojového ucéeni [89] a v pripadé
pouziti fotogrammetrie i ze spektralnich informaci.
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Relativné jednoduchym tkolem vramci této problematiky je detekce odumftelych
strom, ktera mtize probihat na zakladé€ analyzy intenzitu odrazu LiDAR paprski nebo
na zakladé pribéhu ,kmenového profilu“. Intenzita odrazu je vyssi u mrtvych stromd,
nebot je nezakryvaji asimilacni organy, mize chybét borka a svétly kmen lépe odrazi
laserové paprsky. Na zakladé geometrie, tedy ,kmenového profilu“ zohlednujiciho i
pritomnost vétvi, lze zase pozorovat absenci vétvi v korunach a zmenseni koruny. Jinou
moznosti je odhalovani neolisténych stromti v letnim obdobi, opét za vyuziti intenzity
odrazu laserovych paprskii [90o—92].

Podrobnéjsi zdravotni stav Zivych stromt byva odvozovan na zakladé hustoty listovi
v koruné. TLS je schopné detekovat defoliaci porovnanim mracen tychz stromi pred a
po opadu listi. Z takovychto dat byl tspésné zjistén ubytek listové plochy vlivem
napadeni hmyzem mezi dvéma sezonami, coz se projevovalo i poklesem projekéni
plochy koruny o desitky procent [92]. Dale Ize uvést snahu o detekci poskozeni kmene
jako jsou rany, dutiny, oloupana kiira ¢i pozarem poskozené ¢asti z MLS skenovani
v kombinaci s fotogrammetrii. Zjistit lze pocet a délku ran na kmeni, a ve srovnani
s terénnim prizkumem se ukazalo, Ze metody jsou z mracna schopny detekovat
zejména vétsi poskozeni do 10—15 m vySky kmene. Do budoucna tak tato metoda miize
nahradit vizualni hodnoceni zdravotniho stavu kmene a umoznit sledovani vyvoje
poskozeni v ¢ase opakovanym skenovanim [93].

e Dalsi parametry

Kromé vysSe popsanych parametrii se zbodovych mracen urcuji i mnohé jiné
parametry, které mohou zpfesnit vypocet zasoby diivi, porostnich parametri nebo
poslouzit pii ekologickych vyzkumech. Mezi né patii i odvozeni velikosti koruny a
plochy korunové projekce pro odhad konkurence mezi stromy, zastinu ptdy, potazmo
vyuziti produkéni plochy porostu. Pro takovy tcel se z LIDAR mracna urcuji projekce
korun, napt. pomoci konvexniho obalu kazdé koruny stromu [59,94]. Provadét takové
analyzy lze jak pfimo na 3D bodovych mracnech segmentovanych stromt, tak na
rasterizované podobé (2D) bodového mrac¢na porostu/ stromu, pripominajici pohled
z letadla.

Vyska nasazeni koruny je také zajimavy parametr, ktery do jisté miry souvisi s popisem
kvality dfivi, potencialni sortimentaci kmene nebo s ochranou lesa proti polomim a
pozartim. Zjistuje se z vertikalniho profilu bodového mraéna stromu, bud podobné
jako pri detekci mrtvych stojicich stromi, nebo napt. analyzou bodové hustoty kmene
a koruny, ktera se zacéne lisit v misté nasazeni koruny [59,94]. Studie na TLS datech
prokazaly, ze vysku nasazeni koruny lze takto mérit s presnosti kolem RMSE 1 m a
koeficientem determinace 0.84 [75].

O néco slozitéjsi analyzou mize byt vypocten objem a povrch koruny, ktery je
pouzivany pro odhady biomasy a uhliku vkoruné a také koreluje s plochou
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asimilac¢nich organi. Z TLS mracna lze povrch koruny ziskat jako povrch jejiho 3D
konvexniho obalu, zatimco objem koruny jako objem 3D konvexniho obalu vsech bodt
koruny [95]. To v§ak miize nadhodnotit objem kviili zahrnuti prazdnych prostor uvnitr
koruny. Presnéjsi je tedy metoda konkavnich obalti v Fezech (,,concave hull by slices®),
kde je objem sumou vSech diléich segmentli, zohlednujicich mezery [95].
Zminéna plocha asimila¢niho aparatu, z niz se odvozuje i Leaf Area Index (LAI), patri
k morfologickym charakteristikam spojenym s fotosyntetickou kapacitou. Ziskani této
informace primo z TLS je pomérné narocné, ale mozné. Vyzaduje to segmentaci bodt
listi od dieva a nasledné odvozeni plochy listti. Jednou z cest je vyuZzit rozdili mezi
skenem vzimé (bez listi)) a vI1été [92] nebo vyuzit algoritml strojového uceni
vytrénovanych pro tento tcel [96]. Hodnoty LAI z LiDAR skenovani dobie koreluji
s tradi¢énimi metodami jako je napi. hemisféricka fotografie [97].

3. Porostni parametry

3D bodova mracna jsou dostatecné detailnim podkladem pro ziskani jiz zminénych
parametri jednotlivych stromi, proto je mozné z nich odvodit i metriky popisujici celé
porosty. At uz na zakladé vysledkdi z analyzy jednotlivych stromli nebo z analyzy
samotného kompletniho bodového mracna lze z pozemnich metod DPZ vypocitat
bézné pouzivané parametry, s vyhodou objektivniho a automatického zpracovani.
Jednim z parametri lesniho porostu, ktery Ize ziskat, je pocet stromli a na ném zavisla
hustota porostu. Bodové mra¢no z pozemniho skenovani lze rozdélit na jednotlivé
stromy dfive popsanymi algoritmy pro segmentace kment [59,60,79]. Tim je odvozen
pocet stromil i jejich prostorové rozmisténi. Z této informace lze pak odhadovat
hustotu porostu ve smyslu poc¢tu stromii na hektar ¢i mensi plochu, a tuto informaci
zohlednit napf. prti stratifikaci. Pozemni pristupy DPZ dokazi odhalit také stromy
v podrostu. Proto je mozné odvozovat i miru zmlazeni ¢i blize zkoumat vertikalni
rozloZeni, tedy patrovitost porostu [75,98]. Velmi husté porosty v§ak mohou branit
v naskenovani vSech jedincti, proto je ¢asto nutné skenovat z vice stanovist TLS nebo
vyuzit MLS k obchéazeni prekazek a detailnimu naskenovani vsech zakouti.

Po Gspésné segmentaci individualnich stromi a vypoctu jejich tlousték je samoziejmé
mozné velmi presné vypocitat také kruhovou zakladnu a stredni tloustku porostu.
Studie ukazuji velmi dobrou shodu TLS odhadi kruhové plochy porostu s tradi¢nimi
inventurami a chybu RMSE asi 1 m2 na hektar [74]. Neni tedy problémem vytvorit
frekvencni rozdéleni DBH pro celé skenované tzemi. Podobné jako v pripadé poctu
stromt, v hustych porostech mohou mit odhady uvedenych parametri mirné vyssi
chybu kvili absenci tenkych stromki [74]. Nicméné, stale jsou poskytnuty cenné
informace pro inventarizaci lesa nebo ekologické vyzkumy. Obdobné je mozné
postupovat i pri vypoctu stiedni ¢i horni vysky porostu, kterézto parametry mohou byt
odvozovany na zakladé znalosti vySek vSech stromii v porostu, coz je pri tradi¢nich
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postupech méreni lesa z ¢asovych divodd nevyhodné. Diky pozemnimu DPZ je tak
mozno vytvaret pomérné automatizované i presné vyskové kiivky porostu na zakladé
méreni vysek s chybou okolo jednoho metru oproti tradi¢cnimu postupu, coz prinasi
nové prilezitosti do oboru modelovani ristu lesa [74,75,77].

Zajimavym parametrem, ktery lze vypocitat z bodového mrac¢na, poptipadé z jeho 2D
projekcee, je pokryti plochy porostu korunovym zapojem, tj. projekcemi korun strom.
ZMLS a TLS lze tento parametr odhadnout bud agregaci projekénich ploch
jednotlivych korun, pokud stromy byly segmentovany, nebo neprimo, analyzou TLS
bod@ mitenych vzhiiru. Druhy zptisob porovnava to, kolik paprskt proslo korunovym
zapojem vs. kolik se jich odrazilo od listi [99]. Obé metody davaji podobny vysledek —
napr. horizontalni pokryv projekcemi korun, se srozdily vjednotkach procent,
shodoval s tradi¢nimi odhady vyuzivajicimi fotoaparaty s objektivem typu ,,rybi oko“.
Zapoj urceny z TLS je pritom detailné€jsi, 1ze ho urcit pro libovolnou ¢ast porostu a
identifikovat i malé mezery [75,94,99].

Jak je z vySe popsanych skutec¢nosti patrné, potencial 3D dat pozemniho skenovani je
velky a je predmétem vyzkumu nescetnych praci. Pouziti dil¢ich algoritmd,
popisovanych v téchto pracich je ale ¢asto obtizné, zejména pro zajemce bez zkusenosti
s programovanim nebo bez dostateéné vykonného poditace. Tyto aspekty, po boku
vysoké porizovaci ceny laserovych skenert, jsou ziejmé hlavnimi pri¢inami toho, proc¢
metody DPZ pronikaji do praktického vyuzivani v lesnictvi pozvolna a jsou spise
predmeétem lesnického vyzkumu [9].

C)Existujici softwarové nastroje

Ve snaze zpristupnit analyzu 3D bodovych mracen Sirsi vefejnosti vznikaji rtzna
softwarova TeSeni, kterd maji nabidnout privétivé rozhrani, skytajici mozZnost
automatickych analyz dat. Nékteré z téchto programii, zejména open-source, proto
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budou predstaveny v nésledujici ¢asti této prace.
1.  Samostatny software

e 3DFIn (3D Forest Inventory)

3DFIn je vsoucasnosti pravdépodobné nejlépe dostupnym softwarem pro
inventarizaci lesa. Je dostupny jako samostatny software nebo jako plugin do
programu CloudCompare. 3DFIn slouzi k automatické detekci kmenti, jejich poloh,
vySek a tlousték. Algoritmus programu lze nastavit zménou riiznych volitelnych
parametrd, je vSak vytvoren tak, aby to pro zakladni analyzu nebylo nutné. Zpracovat
1ze jakékoliv bodové mracéno z pozemniho laserového skenovani nebo fotogrammetrie,
a to s uvadénou chybou urceni tloustky pod 2 cm a takika 100% uspésnosti detekce
stromi [9].
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Pribéh detekce stromi je zaloZeny na vyjmuti vysece zbodového mrac¢na, a to
v pfedem nastavené vySce, napf. 0.5 az 4.5 metrti nad zemi. Pro tuto vysec je spocitana
geometricka vlastnost ,Verticality” [100] o rozpéti o az 1. Sjeji pomoci je mozné
snadno identifikovat svislé (~1) nebo vodorovné objekty (~0). Po odfiltrovani
nevertikalnich struktur je provedeno docdisténi, které pomoci clusterovaciho algoritmu
DBSCAN nachézi jednotlivé souvislé objekty a pokud jsou prili§ malé, odstranuje je.
Zaroven jsou takto od sebe odliSeny i jednotlivé kmeny.

Vypoctem pribéhu osy kmenid a jejim protazenim je pak provedeno prirazeni
zbyvajicich bodii bodového mrac¢na kjednotlivym stromtm. Aby se predeslo
propojovanim korun vicera stromi, provadi se voxelizace a odstranéni prilis ridkych
voxelli okolo kmene. Neni vSak cilem pfesné segmentovat cely strom. V dals$im kroku
je vypoctena vyska stromu, coZ je prosta vyska nejvyssiho bodu stromu nad terénem.
Pomoci 3DFIn lze vypocditat tloustky stromii v libovolné vysce, avSak program neresi
problémy vzniklé pritomnosti koruny, procez vysledek obsahuje presné udaje o kmeni
jen do vysky nasazeni koruny [9].

Vysledky analyzy jsou na zavér exportovany jako .csv nebo .xlsx soubor a jsou tak
snadno dostupné a Citelné.

* 3D Forest

Zajimavym néastrojem pro analyzu bodovych mracen je 3D Forest, dostupny jako
samostatny pocitacovy program s piehlednym uZivatelskym prostiedim. Program je
schopen automatické segmentace stromi, vypoctu jejich zakladnich, ale i pokrocilych
metrik a podporuje i jiné specifické analyzy lesniho prostredi.

Kromé DBH a vysky stromii je mozné pomoci programu analyzovat koruny, tj. objem,
povrch ¢i projekce koruny a také jejich vzajemné prolinani v podminkach hustsich
porostli. Velmi zajimava je moznost tvorby QSM modeli a snimi souvisejici
sortimentace vytezii kmene [59].

Princip detekce jednotlivych stromi je zaloZen na postupném skladani vyiezl stromu.
Na zakladé blizkosti k predchozimu, niz§imu vyiezu a také pomoci thlu mezi jejich
centroidy se postupné sklada cely strom a dochazi kefektivni segmentaci.
Vypocet DBH je vprogramu mozny dvéma zplsoby fitovani kruznice. Pomoci
Houghovy transformace nebo metodou nejmensich ¢tvercti, vyuzivajici 10cm vysec
kmene vprsni vysSce, pripadné i vdalsich vySkach, ma-li byti rekonstruovana
morfologicka krivka kmene [59].

Program nabizi nastroje pro pokrocilou analyzu dat, neni vSak zamyslen jako zcela
automatizovany algoritmus, provadeéjici vSechny dostupné analyzy najednou. Nutné je
také uvést skute¢nost, zZe je program pomeérné nestabilni a dochéazi k jeho ¢astym
selhanim.
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e Computree

Computree je samostatny pocitacovy program s grafickym rozhranim, pouzitelny jako
modularni rozhrani pro vlastni analyzy. Filozofie stojici za jeho vznikem si zaklada na
moznosti zpracovavat data lesniho prostiedi v jednom programu, vjednom fretézci,
podporujicim bodova mracna, 3D objekty a vektorové i rastrové GIS vrstvy. UZivatel
si tak vytvari z dostupnych funkei a pluginti vlastni workflow, automaticky provadéjici
urcitou analyzu jeho dat, umoznujici napriklad i tvorbu QSM, vypocty DBH, vysky,
segmentaci korun stromti, vypocet porostnich charakteristik aj. [101,102]

e CloudCompare

Jak jiz bylo uvedeno, CloudCompare v sobé zahrnuje program 3DFIn, ale také jiné
pluginy, pouzitelné pro lesnictvi, zejména ,treeseg® [60], ureny pro automatickou
segmentaci stromi z bodového mrac¢na. Nicméné€, jako soubor mnoha néastroji pro
analyzu bodovych mracen, 3D objekt a vektorovych GIS vrstev, je CloudCompare
vhodny pro Siroké spektrum aplikaci. Jeho potencial je zaloZen na moznostech vypocti
geometrickych vlastnosti objektli, rasterizaci, ba dokonce automatické klasifikaci
objekti ve 3D prostoru. Ackoliv neni tento program specializovany na lesnictvi, stale
se jedna o néstroj, s jehoz pomoci lze provadét manualni ¢i automatizované analyzy
dat. Dtlezitou soucasti programu je ,Command line mode“, ktery umoziuje
naprogramovani slozitych analyz a jejich automatické provedeni. Jelikoz je pro tento
pristup k dispozici vétsina funkei programu CloudCompare, dokaze takovouto analyzu
provést i uzivatel s malymi znalostmi z programovani.

Kromé uvedenych open-source programu existuji jesté komeréni feseni, napt. — ,,AID-
Forest“ [103] a ,,LIDAR360“ [104] , ktera rovnéz poskytuji béZné parametry lesa pro
lesni inventarizaci. Zahrnuji v sob€ metody detekce stromt pomoci modelti strojového
uceni a jiz drive popsané metody odvozeni tlousték a vysek stromi. Nicméné vlivem
svého zpoplatnéni nejsou tyto programy béznymi néstroji pouzivanymi ve védeckych
pracich. Avsak je dilezité poznamenat, zZe existuji a vykazuji dobré vysledky s 97%
uspésnosti detekce kmenti a chybou uréeni DBH RMSE = 5.2 %, objemu RMSE = 14.3
% a vySkou RMSE = 11.5 % [103].

2. Programovaci knihovny

Vedle samostatnych programii existuje také cel4d fada knihoven pro programovaci
jazyky Python, R, MATLAB a dalsi. Jelikoz je jejich pocet velky, jsou pro prehlednost
uvedeny pouze vtabulce 3, spolu sparametry, které dokazou odvodit.
Cilem této reprezentace mnoha dostupnych softwarovych feseni je odhaleni toho, jaké
zakladni stromové parametry nejsou dostate¢né zkouméany. Z uvedenych 20 programt
je jeden, ktery se nezabyva zpracovanim 3D dat (,allometric“), nicméné muize byt
zajimavym prostfedkem k odvozeni nékterych parametrt stromt po dosazeni DBH,
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vysky a druhu dreviny [105]. Dale jsou uvedeny 2 programy, které sice zpracovavaji 3D
data, jejich ucel vSak neni urc¢eni dendrometrickych veli¢in. Program Crossing3Dforest
je urcéen pro ekologicky vyzkum a zabyva se prostorem, ktery je nevyuzity stromy, tedy
mezerami v porostu [106]. Druhy software se zase zabyva detekci poskozeni stojicich
stromd, k ¢emuz vyuziva metody strojového uceni [89]. Ze zbyvajicich 17 programi se
jich jen malé mnozZstvi vénuje detailnim analyzam stromi, coZ je doména hlavné
softwari zaméfenych na tvorbu QSM. Zadny program nicméné nerozpoznava druhy
dievin. Bliz$i statistika ke sledovanym parametrim stromi je rozepsana v tabulce 2.

Tyto skuteénosti tedy navadi ktomu, Ze je predevSim potfeba se zamérit na
rozpoznavani druhti dfevin v bodovych mracnech, pfipadné také na stanoveni objemu
vétvi nebo celkové biomasy. Algoritmy strojového uéeni rozpoznavajici druhy stromi
jiz existuji, neexistuji ale programy, které by je obsahovaly, coz nabizi prilezitost
k vytvoreni takového nastroje a osloveni velké komunity zajemci.

Tabulka 2 — Pocty pocitacovych programil, které dokazou odvozovat uvedené parametry.

Urceni Urcen’l Ur’(ienl Objem Objem Vyska ,
kmenového vysky .. . |nasazeni
DBH . kmene vetvi
profilu stromu koruny
ANO 17 9 15 10 4 2
NE 3 8 5 9 14 17
CASTECNE 0 3 0 1 2 1
Korunova Druhova |Segmentace|Vypocet | Vyuziti
projekce QSM model klasifikace vétvi biomasy Al
ANO 6 5 0 7 1 4
NE 13 14 20 11 18 16
CASTECNE 1 1 0 2 1 0

Z uvedeného tedy vyplyva, Ze prostor pro inovace je velky a budouci témata vyzkumu
by se méla zabyvat slozitéjsimi tikoly, nez je samotné odvozeni tloustky a vysky stromu.
Ve snaze o rozvinuti této problematiky byly proto feSeny ¢tyri autorské védecké studie,
jejichz pribéhu se bude vénovat nasledujici ¢ast této disertacni prace.
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3.Reseni cila disertaéni prace
Béhem zpracovani cili disertacni prace byly provedeny ¢tyii rozsahlejsi studie, které
mély prispét k jejich splnéni. Jelikoz kazda z téchto ¢tyt praci vyuziva jina zafizeni, jiny
software a jejich cil neni vzdy tentyz, budou nasledujici ¢asti textu jmenovité rozebirat
vyuzité prostiedky. V ramci popisti bude uveden tcel, resp. studie, ke které byl vybrany
pristroj nebo software vyuzit. Dale budou bliZe rozvedeny pouzité pracovni postupy a

s nimi spojené detaily. Jednotlivé prostfedky budou vice zarazeny do kontextu prace
az v sekci s vysledky vyzkumu.

A) Sbér dat

Sbér dat probihal na réiznych lokalitich Ceské republiky a Finské republiky, jak je
detailnéji popsano v jednotlivych priloZenych publikacich. Data z Finska byla porizena
ve spolupraci se spole¢nosti Oy Arbonaut Ltd a finskym lesnickym centrem
(Metsakeskus) v prtibéhu studentské staze. Sestavaji jednak zdat pravidelné
inventarizace lesa ve formé vektorovych GIS vrstev, jednak z bodovych mraden,
porizenych skenerem FARO Orbis. Zminéna bodova mracéna byla pofizena autorem
této disertacni prace. Porizend data vSak nejsou verejné pristupné, nebot byla
poskytnuta pro interni poti‘eby obou spolec¢nosti, v ramci jejich spoluprace. Tato data
slouzila k vyvoji a testovani autorského programu DendRobot, popsaného v ramci této
prace.

Dalsi sadou dat, vzniklou ve spolupréaci se spolecnosti Lazenské lesy a parky Karlovy
Vary (LLKPV), jsou tomograficka, fotogrammetricka a LiDAR data z Gzemi ve spraveé
této spoleénosti. Jedna se o data popisujici stav oddenki stojicich stromti v méstskych
parcich Karlovych Varii a mésta Mastov. Porizena byla pomoci akustického tomografu
Arbor Sonic 3D spole¢nosti Fakopp, zaptjéeného spravou LLKPV. Zbylé podklady
vznikly za vyuziti laserového senzoru a RGB kamery telefonu iPhone 12 Pro. Fotografie
zachycuji zkoumané stromy pted a po provedeni tomografie. Mista vpicht senzorti byla
totiz béhem tomografie oznadena kridou, coz pomohlo k vypocétu presné vzajemné
vzdalenosti senzorli z fotogrammetrickych dat a ke zpresnéni vysledkli tomografie.
Primarni Gcel fotogrammetrie v této studii byl pro tvorbu 3D modela a jejich vyuziti
k detekci hniloby kmene.

Novéjsi verze telefonu, konkrétné iPhone 14 Pro, byla vyuzivana pro sbér fotografii
malych stromkii vzahradach Ceské zemédélské univerzity v Praze. Fotografie byly
uréeny pro fotogrammetrickou rekonstrukci architektury stromi, pozdéji
porovnavanou s modely z magnetického digitizéru Polhemus Fastrak.
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Posledni sada dat byla porizena v lesich pri okraji méstské ¢asti Praha — Suchdol.
Sestavaji z laserovych skenti TLS a MLS. Pro jejich sbér byla vyuZita zatizeni Trimble
TX8 (TLS), GeoSLAM ZEB Horizon (MLS), mapry LAo3 a iPhone 14 Pro. Data vznikla
za Gcelem porovnani kvalit skenerti prednich znacek a jejich levnéjsich alternativ. Pro
stejné tzemi byla vytvorena také fotogrammetrickd rekonstrukce, ktera ale nebyla
v dosavadnich pracich nikterak zkoumana.

1. Statické laserové skenovani

TLS data byla porizovana zarizenim Trimble TX8 (Obrazek 4), umistovaného na
trojnozku. Krom své vysoké presnosti a velkého potencialu dat, disponuje toto zarizeni
také vysokou hmotnosti, coz jeho atraktivnost pro vyuziti v nepristupnych oblastech
snizuje. Celkova hmotnost skeneru (11.8 kg), podstavce (680 g), baterii (4x660 g),
prepravniho boxu (10.6 kg), trojnozky (cca 5 kg) a dalsitho drobného prislusenstvi, ¢ini
priblizné 31 kg.

Trimble TX8 disponuje jak laserovym skenerem o
pracovni délce infraderveného svétla 1500 nm, tak RGB
kamerou, schopnou poskytnout barevnou informaci pro
obarveni bodového mracna.

Jak jiz bylo uvedeno drive, skener zachycuje témér celé
své okoli a umoziuje skenovat rychlosti az 1 000 000
pulsti/s do maximalni vzdalenosti 320 metri. V bézném

rezimu skenuje do okoli asi 120 m, lze jej ale nastavit pro
skenovani do vzdalenosti 320 m za cenu nizsi hustoty .. . 4 — TLS Trimble TX8.[18]
vysledného bodového mracna. Tehdy ale prtimér jeho

paprsku roste az na 7.5 cm, ¢imz se snizuje detailnost takto zachycenych, vzdalenych
mist. V zavislosti na poZadovanych detailech lze zvolit ze Ctyi rezimi skenovani

s riznym rozliSenim a dosahem paprski. Od vybraného rezimu se pak odviji i ¢as
skenovani, kdy jeden sken trva od dvou do dvaceti minut [18].

Zarizeni je ovladano pres dotykovy displej a data se ukladaji na USB flash disk. Pred
zpracovanim je vSak nutno data prevést do formatu bodového mraéna v programu
Trimble Real Works [12]. Ten umoziiuje mimo jiné také spojovani skent z vicera
stanovisek, coz je Cdasto pouzivany postup pri skenovani s TLS.
Takovéto propojeni program déla bud'to na zakladé podobnosti bodovych mracen nebo
za vyuziti referen¢nich objektti.

Jako referencni objekt se pouzivaji bilé koule s vysokou svételnou odrazivosti. Ty je
nutno pred skenovanim rozmistit do prostoru a po celou dobu sbéru dat s nimi
nepohybovat. Z tohoto diivodu je jejich rozmisténi a rozmisténi stanovisek skenovani
potfeba rozmyslet pred zahdjenim sbéru dat. Pfitom se musi dbat na viditelnost co
nejvétsiho poctu kouli ze stanoviska skeneru.
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Referenéni koule lze vyuzit jako vlicovaci body pro georeferencovani bodového
mracna. Program Trimble Real Works je schopen koule detekovat a po uvedeni jejich
zemeépisnych souradnic bude bodové mracno umisténo do souradnicového systému.
Pro dalsi analyzu to ale nebyva nezbytné, protoze métitko bodového mrac¢na se timto
krokem neméni.

Béhem sbéru dat pro acely této disertacni prace byl skener Trimble TX8 pouzivan pri
porovnavani vykonu low-cost LiDAR skenerti se skenery ptrednich vyrobct. V této
studii byl vyuZit ke skenovani zhruba 0.4ha plochy, k ¢emuz byl postaven postupné na
13 stanovisek. Z nich probéhlo skenovani v bézném rezimu (dosah paprski 120 m) a
zvolena byla stfedni troven kvality zdznamu. Zaroven bylo pouzito 12 referen¢nich
kouli, rozmisténych po porostu tak, aby kazda z nich byla zachycena na vice nez jednom
skenu. K referenc¢nim koulim byly presné zaméreny geografické souradnice, procez
timto zptisobem vzniklo detailni a georeferencované bodové mracno celého porostu.

2. Mobilni laserové skenovani

Tato sekce obsahuje informace o mobilnich skenerech, pouzivajicich SLAM algoritmus
pro orientaci v terénu a je tedy mozné s nimi volné prochazet skenované tzemi, coz
spolu s jejich nizkou hmotnosti, priblizné okolo tri kilogrami, nabizi intuitivni a
pohodlny zptisob sbéru dat. Obecnou zasadou pti pouzivani téchto zafizeni je snaha o
minimalizaci rychlych zmén sméru a prudkych pohybii, ¢ehoz lze dosdhnout normalni
rychlosti chiize a opatrnym, pozvolnym ota¢enim. Uzemi o velikosti 0.5 ha takto Ize
naskenovat béhem nizsich desitek minut.

Porovnani vykonu vSech zde popsanych skenerii je popsano v dalsi ¢asti této prace,
v kapitole ,,Vyuziti low-cost skenerii®.

e GeoSLAM ZEB Horizon

Tento skener je velmi podobny pristroji FARO Orbis. GeoSLAM ZEB Horizon (ZEB) je
ale starsi, a tak i jeho specifikace jsou o néco horsi nez u FARO Orbis. Jinak jsou rozdily
pomérné malé (viz Obrazek 5).

Dosah skenovani je maximalné do 100 metrii, prakticky ale asi do 50 metri, s rychlosti
skenovani 300 000 pulsi za sekundu [36]. Skener podporuje pouze jeden navrat
paprsku, coz zptisobuje netplnost skenu v korunach stromt. Na rozdil od FARO Orbis
neposkytuje, kviili absenci kamery, adaje o RGB barvach, takze vysledné bodové
mracno je vzdy bezbarvé.

Pristroj sestava ze samotného skeneru a z dataloggeru s baterii. Propojeni mezi témito
dvéma hlavnimi ¢astmi je provadéno vhodnym kabelem. V nékterych pripadech se
stava, ze pristroj behem sbéru dat ukonci skenovani. Pri¢inou tohoto problému byl
v pripadé disertac¢ni prace poskozeny propojovaci kabel.

Ovladani skeneru probiha prakticky pomoci dvou tlacitek. Jedno slouzi pro zapnuti
dataloggeru a tim i zdroje elektfiny, druhé ke spusténi a ukonceni sbéru dat. Cely
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proces je tedy jednoduchy a nenabizi prili§ moznosti. Nicméné umoznuje vytvaret
referencni body, vhodné pro georeferencovani. Ty jsou rozpoznany tak, Zze operator
zastavi nad pozadovanym mistem na dobu priblizné 10 sekund.

Sesbirana data jsou ukladana do dataloggeru. Jejich stazeni je mozné po zasunuti USB
flash disku do prislusné zdirky. Zde je nezbytné dbat instrukeci k pristroji, nebot
neopatrnou manipulaci miize dojit ke ztraté dat. Na jejich stazeni je totiz pouze jeden
pokus.

Aby mohly byt stazené souboru ve formatu ,.geoslam® prevedeny na bodova mracna,
je nezbytné pouzit proprietarni program ,,GeoSLAM Hub“ nebo ,,GeoSLAM Connect®.
Ten umoziiuje prevedeni surovych dat do bodového mraéna, export trajektorie
skenovani, georeferencovani pomoci potizenych referen¢nich bodi aj. [36,107]

Toto zarizeni bylo pouzito ve stejné studii jako TLS Trimble TX8 a pozdéji popisovany
skener mapry LAo3. Pri skenovani tzemi bylo postupovéno tak, aby skener po celou
dobu obchéazeni 0.4ha plochy mifil zhruba na jeji stred. Jelikoz byly po plose
rozmistény referenéni koule, byly polohy nékterych z nich ve skenu zaznamenavany
vySe uvedenym zptsobem, procez bylo mozné bodové mracno georeferencovat a
presné porovnat s dal§imi skeny.

Obrazek 5 — Vlevo GeoSLAM ZEB Horizon; vpravo FARO Orbis.[35,107]

e FARO Orbis

Novéjsi verzi skeneru ZEB je FARO Orbis. Zasadni rozdily mezi nimi spoéivaji v tom,
ze FARO Orbis lze ovladat i pres mobilni aplikaci s ukazkou postupu skenovani
v realném case. Dalsi rozdil je v kvalité LiDAR senzoru. Ten m& podobny maximalni
dosah a poskytuje 640 000 bodii za sekundu, s mensim primérem paprskii, coz vede
k aspésnéjsimu skenovani korunového prostoru.

Dalsi vyznamnou zmeénou je pritomnost RGB kamery, kterd miize poskytovat
informace o barvach prostredi. Jejich kvalita ale neni v lesnim prostredi prili§ dobra a
casto ani nedojde ke konzistentnimu obarveni mracna po zpracovani v programu
FARO Connect.
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Kromé skenovani za pohybu, umoziiuje FARO Orbis vytvoreni tzv. ,Flash Scan®, ktery
probiha zjednoho mista, podobné jako skenovani TLS. Vyhodou této moznosti je
zmens$eni chyby urceni polohy bodi, tedy presnéjsi bodové mra¢no s mensim Sumem
a bez rizika chyb, vzniklych praci SLAM algoritmu.

Celkove je prace s timto skenerem prehlednéjsi, nez se skenerem ZEB. V mnohém je
ale velmi podobna, a to plati i o rozhrani programu FARO Connect. Stahovani dat
z dataloggeru lze provadét pravé pres néj, v nékterych pripadech vsSak selhava a
nasledné se musi pouzit stejny postup jako u ZEB, tj. stahovani dat pires USB flash disk.
Vlastnosti skeneru zajistuji pomérné kvalitni naskenovani vertikalni struktury porostu,
coZ bylo ovéreno v podminkich borealniho lesa. Kvalita skenu pravdépodobné bude
nizsi v podminkach listnatych lesi [35,38].

Skener FARO Orbis byl pouzivan pro sbér dat ve Finsku. Tato data byla vyuzita pti
testovani pocitacové aplikace pro inventarizaci lesa ,DendRobot“. Skenovani probihalo
na polygonalnich zkusnych plochach s nejednotnou velikosti, procez nebylo mozné
pouzivat jednotnou trajektorii naptic¢ jimi vSemi. Obecnym vzorem, pouzitym v ramci
sbéru dat, vsak byla tvorba dvou soustiednych kruhovitych tras, z nichZ prvni vedla po
obvodu plochy a druha uvniti plochy, asi v poloviné vzdalenosti od jejiho stiedu
k okraji. Skener po celou dobu sbéru dat mifil na stfed plochy.

Béhem tohoto procesu byly zachycovany polohy referencnich kolikii se znamymi
geografickymi souradnicemi. To je diky propojeni skeneru s mobilnim telefonem
snadné a prehledné. Diky georeferencovani bodového mrac¢na tak mohly byt snadno
porovnany vysledky analyzy 3D dat s ruéné provadénou inventarizaci, a to na Grovni
jednotlivych stromi.

e mapry LAO3

Tento skener je jednim ze dvou low-cost LiDAR skenerti, produkovanych japonskou
spolecnosti ,mapry“ (viz Obrazek 6). Jeho cena se pohybuje okolo 45 000,- K¢, coz ho
¢ini asi 10kréat levnéj$im, nez je vySe uvedeny FARO Orbis.

Skener je ptivodné urceny pro neseni na zadech, ptricemz zachyceni celého okoli
zajistuje 360° laserovy skener Livox Mid-360. Spolehlivy dosah jeho paprskii je 40 m
a skenovani probiha rychlosti 200 000 bodii za sekundu [108]. Zachycovan je pouze
prvni odraz, coz se projevuje na nedostatecné rekonstrukei vyskové struktury porostu,
jako v pripadé ZEB. Déle je skener vybaven RGB kamerou, uréenou pro zachyceni
videa.

Ovladani skeneru zprostredkovava aplikace ,mapry“, urena pro zarizeni Android.
Podporovana jsou vSak jen néktera zatizeni, nebof je vyzadovana operac¢ni pamét
zatizeni 6 GB. Pro zpristupnéni funkei spjatych se skenerem, je potieba kontaktovat
vyrobce. Do té doby nelze skener ovladat. Zpristupnéné funkce pak nabizeji nastaveni
hustoty bodového mrac¢na do tfi trovni a nastaveni videozdznamu. Pomoci aplikace je
spoustén a zastavovan sken, coz pri testovani skeneru v ramci pozdéji popsaného
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¢lanku nefungovalo spravné. Po spusténi skenovani aplikace prestala reagovat a
skenovani poté probihalo bez ovladaci aplikace az do chvile, kdy byl skener vypnut.
Tato metoda nicméné nefungovala pfi pouziti druhého skeneru mapry LAo1 (viz
Obrazek 6), ktery byl proto zcela vyrazen z porovnani. BohuZel, odezva uzivatelské
podpory k této zalezitosti byla nedostatecna.

Porizena data jsou béhem skenovani ukladana primo na USB disk ve forméatu ,,.pcd,
coz je na rozdil od ZEB a FARO Orbis praktické. Nicméné se to pravdépodobné poji i
s kvalitami SLAM algoritmu, ktery je u ZEB a FARO lépe vyladény a nezpiisobuje
vyrazné chyby v pospojovani mraéna jako u mapry LA03.

Skener LA03 dale neoSetfuje body, zachycené blizko skeneru, coz vede k tvorbé
artefakti ve skenu, predevsim k zachyceni casti t€la operatora, které pak pri analyze
bodového mraéna mohou piisobit potize a Ize je jen obtizné odstranit.

MLS LAo03 byl vyuzit v porovnani se skenry Trimble TX8, GeoSLAM ZEB Horizon a
iPhone 14 Pro. Byl dodrZovan stejny postup skenovani jako se zatizenim ZEB Horizon,
ale referencni body nemohly byt zachyceny, nebot to skener LA03 neumozioval.
Georeferencovani tak probéhlo fitovinim bodového mra¢na kjinému
georeferncovanému 3D skenu. Skener LA03 je mysSlen jako batohovy systém. Pro
uvedenou studii byl ale nesen pred télem, obdobné jako ostatni pouzité MLS skenery.

Obrazek 6 - Vievo skener mapry LA0O3; vpravo skener mapry LAO1.
e iPhone 12 Pro

Posledni studovany LiDAR senzore je soucasti n€kterych mobilnich telefoni iPhone.

Stejné jako u vSech predchozich systémi, i vtomto piipadé se jedna o ToF senzor, zde
ale propojeny s RBG-D kamerou. Primarné je tento systém urcéen k urcovani hloubky
scény, pro lepsi zaostreni objektu na fotografii a vytvoreni syntetického bokeh efektu.
Za vyuziti ARKit knihovny pro iPhone lze vsak tento senzor vyuzit i ke skenovani okoli,
coZ umoznuje napt. aplikace ,3d Scanner App“ [109], mimo jiné pouzita i v jinych
studiich o skenovani lesniho prostfedi [110]. Export dat z aplikace je snadny a lze
provést do vSech bézné pouzivanych formatti bodovych mracen, ktera obsahuji i
barevnou informaci, ziskanou skrz RGB-D fotoaparat.
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Skener na telefonech iPhone je sice kapesnim reSenim, s tim se ale pojiijeho maly, 5m,
dosah a SLAM algoritmus, nevyladény pro skenovani vétsiho tizemi. Ten cCasto ztraci
orientaci a zpusobuje chyby v napojeni objekti i b€hem velmi kratkych skenovacich
casti. Vyhodou ale je, ze vysledek skenovani je viditelny v redlném case, a tak lze
skenovani okamzité prerusit a zacit znovu.

Ackoliv iPhone predstavuje zajimavou moznost, svou efektivitou nepredci klasické
méreni primérkou. Jednak je dosah skeneru velmi kratky a vyzaduje, aby operator
dosel az na dosah stromu, a jednak nedokaze poskytnout spolehlivé informace o
polohach strom1i, které jsou casto dtlezité.

Tato low-cost alternativa byla vyuzita ve stejné studii jako predchozi popsany skener
LA03. Telefon vyuZzivajici aplikaci “3D Scanner App“ byl nesen na selfie tyci
s jednoosym stabilizatorem a po celou dobu skenovani mifil ke stfedu plochy. Jelikoz
neni mozné zachytit polohu referenénich bodi pifimo béhem skenovani,
georeferencovani probéhlo ruénim posunutim bodového mracna kjinému,
georeferencovanému mraénu, porovnanim stejnych objekti vobou bodovych
mracnech.

3. Pozemni fotogrammetrie

Pro sbér fotografii za tcéelem rekonstrukce oddenki kment, architektury malych
stromki a rekonstrukei lesnich porosti, byly vyuzivany fotoaparaty mobilnich telefont
iPhone 12 Pro a iPhone 14 Pro. Ty umoznuji sbér fotografii v rozliseni 12 nebo 48 Mpx
a vyuziti tfi druhti objektivii — Sirokotthlého, ultra-Sirokothlého nebo teleobjektivu.
Vysoké, 48Mpx rozliSeni nebylo v ramci této prace pouzivano, nebot je uz pomérné
vysoké a pro nutnost umélého zesilovani zachyceného svételného signalu miize vést
k vy$simu Sumu v potizenych fotografiich. Zaroven se poji s nutnosti ukladat fotografii
do RAW formatu, ktery obsahuje velké mnozstvi informaci a zabira vyrazné vice mista
v tlozisti telefonu. Krom toho bylo pii provadéni studii hniloby stojicich kment
zjisténo, Ze porizovani velkého mnozstvi takto objemnych dat v kratkém casu zahlcuje
procesor telefonu, ktery pak nestiha potizovat, zpracovavat a ukladat fotografie vcas.
Tento problém nastava i u 12Mpx fotografii, ale v mensi mire.

Porizovani fotografii probihalo za vyuziti sekvencniho snimani, automaticky
porizujiciho fotografii v predem stanoveném intervalu, tj. 0.5 sekundy nebo 1 sekunda.
K tomuto ucelu byla vyuzivana aplikace ,Lens Buddy“ [111]. Ta nabizi také moznost
zamcéeni zoomu, aby se predesSlo nechténému pouziti digitdlniho zoomu, snizujiciho
kvalitu fotografie. Diilezita je i moZnost automatického ztmaveni displeje v pribéhu
porizovani sekvence, protoze telefon ma tendenci se pri této ¢innosti prehrivat a
spotfebovavat rychle baterii, coz lze ztmavenim displeje zmirnit. Zaroven soucasné
dobijeni telefonu, béhem fotografovani nebo LiDAR skenovani, také vede k ohiivani
telefonu, coz mutze vést ke spusténi jeho automatickych ochrannych mechanismi.
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Aby mohlo fotografovani probihat ergonomicky, byla pouzivana selfie ty¢ s jednoosym
stabilizatorem, kterd jednak umoznuje snazsi manipulaci s telefonem, ale také
dosazeni na hiife dostupna mista vysoko nad zemi, nebo hloubéji v koruné mensiho
stromu.

Sprava potizenych dat u telefonti iPhone je relativné slozitd, nebot zafizeni
s konektorem Lightning nepodporuji ,On The Go* ¢teni USB flash disku. K tomu je
nutno pouzit specialni adaptér, pripojeny na externi zdroj napajeni. Zalohovani dat a
uvolnéni paméti v terénnich podminkéach tak mutze byt slozité a pomalé. Pfenos dat
z telefonu primo do pocitace se systémem Windows se neobejde bez programu iTunes
nebo cloudovych sluzeb.

Dalsi zpracovani fotografii probihalo v programu Agisfot Metashape. Pti zpracovani
fotografii v ramci této disertacni prace se potvrdilo, ze vyuziti sekvencéniho snimkovani
zajistuje dostatecny prekryv fotografii a rekonstrukce scén je pomérné spolehliva.

V réamci studii o rekonstrukei architektury stromki a detekei vyskytu hniloby v kmeni,
byly fotografie porizovany ze soustfednych kruhovitych trajektorii. Prvni, Sirsi kruh
zachycoval cely objekt (maly stromek nebo bazi kmene) vcetné 12bitovych znacek.
Druhy kruh byl uzsi a sousttedil se na zachyceni detailii objektu, pticemz 12bitové
znacky uz byly zachycovany jen mimodécné. V pripadé fotografovani malych stromkt
bylo v nékterych pripadech nutné objekt obejit vicekrat a fotografie sousttedit
postupné jak na kmen, tak na korunu, pripadné zachytit stromek shora, coz
usnadniovalo vyuziti selfie tyée. Pro jednotlivé kmeny nebo stromky tak vznikaly
desitky az niz$i stovky fotografii, dale zpracovanych do 3D bodového mrac¢na.

4. Akusticka tomografie

Pro vyzkum detekce vnitini hniloby stojicich stromt byla vyuzivdna akusticka
tomografie, jako zdroj referenc¢nich dat. Princip této metody spociva v rozmisténi
vibracnich senzorti — akcelerometrii, do borky stromu a méieni rychlosti siteni vibraci
mezi nimi. Pokud se signal $ifi pomalu, indikuje to vyskyt hniloby a priitbéh Sireni
signali se zobrazuje v tzv. tomogramech [112]. To bylo provadéno az ve ctyfech
urovnich od 0.5 m do 2 m nad zemi, v zavislosti na pfistupnosti kmene.
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V pripadé této studie byl vyuzivin tomograf
ArborSonic 3D od spolecnosti Fakopp (viz
Obrazek 7). Ten sestdva  zdvanacti
akcelerometrti, Sesti zesilova¢i signélu,
napéjeci jednotky a kabelaze.

Cela sestava musi byt zapojena, pripevnéna
rovnhomérné po obvodu stromu, propojena

s pocitacovym programem ArborSonic 3D [113]
a poklepavanim kladivkem na senzory probiha Obrazek 7 — ZaFizeni ArborSonic 3D v
analyza. Jeji vysledky jsou okamzité k vidéni ~ rozloZeném stavu.

v pocitacovém programu. Ten predpoklada, Ze tvar kmene je kruhovy, elipticky nebo
polygonalni. Vramci studie byl nejprve pouzivan kruhovy tvar kmene, pozdéji
zpresnény na polygon, dle vysledkli urceni tvaru kmene fotogrammetrii.

Proces méreni lze aplikovat v libovolném poétu vysek na kmeni a pro kazdou z nich
zabere priblizné deset minut, véetné instalace senzorti. Nevyhodou metody je pomérné
rychlé opotifebovani senzort. Ty se, zfejmé vlivem nérazl pii jejich zatloukani do
kmene pryZzovym kladivem, poskozuji a mohou prestat reagovat na poklepy kovovym
kladivkem pii samotném méreni. Zatizeni také neni zptisobilé pro provoz v desti, ktery

mimo jiné ptisobi i nechténé impulzy pii dopadu kapek na senzory.

B) Zpracovani dat

V nadchéazejicim textu jsou uvedeny informace k nejéastéji pouzivanému softwaru,
ktery byl béhem tvorby diserta¢ni prace vyuzivin. Méné vyuzivané programy, jako
napriklad Trimble Real Works a GeoSLAM Hub nebudou popisovany, ackoliv byly také
béhem prace pouzity. Podil téchto programi na analyze dat vSak neni vyznamny, nebot
jde o programy zpracovavajici data ze skenert do jiného formatu.

1. Agisoft Metashape

Komerc¢ni software Agisoft Metashape [114] nabizi skvélé prostiedi a funkce pro
zpracovani fotogrammetrickych modeld. Celé jeho rozhrani je piehledné a hlavni kroky
zpracovani fotografii (,Workflow“) jsou uvedeny v intuitivni posloupnosti, takze
zakladni prace s programem je snadna.

Pro zpracovani fotografii z telefonti iPhone je potfeba pamatovat na to, zZe Agisoft
Metashape nepodporuje nativni format fotografii z iPhone (,,.heic“ a ,,.dng"). Proto je
potieba fotografie bud prevést do jiného forméatu, nejéastéji ,,.jpeg“ nebo nastavit
telefon, aby porizoval fotografie v kompatibilnim formatu, coz lze i primo v aplikaci
»,Lens Buddy*.

Samotné ,Workflow“ sestava z krokdi pro import fotografii, propojeni fotografii a
tvorbu ridkého bodového mracna (tzv. ,alignment®), tvorbu hustého bodového
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mracna, pripadné tvorbu ortofotomozaiky, kompaktniho 3D modelu, digitalniho
vyskového modelu aj. Pro uéely prace vSak zpravidla stac¢i kroky vedouci k tvorbé
hustého bodového mracna.

Pri nastaveni jednotlivych kroki je dilezity zejména vybér kvality propojeni fotografii
(,Align photos“ — ,Accuracy“). To méa nejvétsi vliv na tspésnost jejich propojeni a
nalezeni ,key points“ a ,tie points“. Zpravidla je tedy nejvhodnéjsi pouzit nejvyssi
moznou presnost a vypnout funkce ,,Generic preselection i ,,Reference preselection®.
Po priitbéhu funkce vznikne idké bodové mracno, jehoz hustota zavisi od nastaveného
poctu hledanych ,key points” a ,tie points®. Ve vétsiné pripadi je ale dostacujici pouzit
vychozi hodnoty téchto dvou parametr.

Casova naroc¢nost tohoto kroku je pomérné vysoka, protoZe vy$e popsané nastaveni
pouziva co nejmensi pocet prvki, které cely proces, za cenu méné presného zpracovani.
Doba zpracovani samoziejmé zavisi i na poétu porizenych fotografii, kterych miize byt
pri fotografovani vétsiho tizemi i pres tisic.

Po vytvoreni hustého bodového mraéna, pomoci néstroje ,,Build Point Cloud* a zvoleni
libovolné vysledné hustoty, vznika bezrozmérné 3D reprezentace prostiedi. Aby ji bylo
mozné pouZit pro analyzu, je nezbytné dodat informace o rozmérech. Na to je nutné
myslet uz pred zahdjenim fotografovani a po prostoru rozmistit nepohyblivd méritka,
nejlépe ve formé 12bitovych kruhovych znacek (viz Obrazek 8). Tyto znacky lze Vytvorlt
primo v programu Agisoft Metashape. Na jednom papire &
spolu musi byt vytiStény alesponn dvé a nesmi se svymi
obvody prekryvat. Pravitkem je mozné zmérit skuteénou
vzdalenost stfedli znacek a tu zanést do bodového mracna.
V prostfedi programu se ktomuto ucéelu musi zaprvé
detekovat znacky ve fotografiich. To je mozné automaticky
nebo ruc¢né. Zadruhé se mezi nalezenymi znackami vytvori
ru¢né meéritka, tzv. ,,Scale bars®. Vlastnosti kazdého ,,Scale
bar“ je jeho délka, kterou je tfeba rucné nastavit na

pravitkem zmeérenou hodnotu. Po téchto ukonech a oprazek 8 - Meritka pro dodant

rozmeri fotogrammetrickému

aktualizaci bodového mraéna je jiz mozné vystup exportovat . 9y
bodovému mracénu

a analyzovat, nebot uZ obsahuje presné informace o

rozmeérech prostoru.

Pro tvorbu spolehlivych 12bitovych znacek 1ze doporucit nasledujici postup.

Aby byly znacky stabilni ve vétru, zachovavaly tvar a byly odolné k vlhkému podkladu,
je dobré vyuzit vystrizek kartonu a kancelarskou eurofolii. Vlozenim kartonu a vytisku
12bitovych znacek do eurofolie vznikne objekt pomérné stabilni ve vétru, zabranujici
znehodnoceni tisténych znacek. Po vysttizeni okénka do eurofolie se zaroven predejde
nezadoucim odraziim slunce od folie a znacky piijde na fotografiich presné detekovat.
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Proces tvorby fotogrammetrického bodového mraéna je ¢asto plny tiskali, souvisejicich
s rekonstruovanou scénou. Zejména pri rekonstrukei lesa s proménnym osvétlenim,
pohyby ve vétru a podobnymi objekty, se algoritmus casto ztraci a fidké bodové mraéno
je potteba vytvaret i na vice pokust. Pii nich byva nutné ve fotografiich ruc¢né
vyznacovat orienta¢ni body, jako jsou vyrazné kameny, pafezy apod. Pokud je
rekonstruovana jednodussi scéna, jak tomu bylo v pripadé studii zamérenych na
hnilobu kmenti ¢i architekturu malych stromk, je proces tspésnéjsi i bez velkych
manualnich intervenci.

Program Agisoft Metashape je mozno vyuzivat i pres programovaci jazyk Python.
Timto zplisobem lze nékteré kroky, nezahrnujici manualni tpravy, automatizovat.
Vétsinou je ale dostacujici vyuziti hromadného zpracovani, nastavitelného pres
privétivé grafické rozhrani programu.

2. CloudCompare

Tento program je vhodny pro vS§eobecnou praci s 3D daty. Slouzi jak k prohliZeni, tak
k apravam i analyzam bodovych mracen a jinych 3D objekti. Jeho velkou prednosti je
stabilita, efektivita a vSestrannost. Témér vSechny kroky vedouci k segmentaci stromt
a vypoc¢tim nékterych jejich parametrti lze provadé€t v tomto programu. Je k tomu
nicméné potreba pouzit spravné nastroje nebo vyuzit implementované pluginy pro
lesnictvi.

Uzivatelem prednastavenou sekvenci jednotlivych dostupnych néstroji lze vyuzit i
automatizovaneé pti pouziti tzv. ,Command Line Mode“.

Vlastni skripty je mozné implementovat do sloZitéjSich programi napi. v jazyce Python
(viz Vzorec 1). V ném je potieba zavolat ptikazovy fadek pomoci knihovny ,,subprocess®
a ovladat CloudCompare pres prikazovy fadek neprimo, pomoci prislusnych prikazt
[115].

Timto pristupem byla vytvarena prvotni verze programu DendRobot, popsaného
v kapitole ,Automatizace odvozeni dendrometrickych veli¢in“. Novéjsi verze programu
jsou jiz na CloudCompare nezavislé. ,Command Line Mode* je vyuzivan i pro pripravu
dat pti detekci shnilych stromi v kapitole ,Stanoveni vyskytu hniloby ve stojicim
kmeni*“.
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command = "\

{ClCexedir} -silent \ Vzorec 1 - Pouziti "CloudCompare—

Command Line Mode" skrz Python.
-AUTO_SAVE OFF \

Funkce provadi detekci terénu pomoci

-O -GLOBAL_SHIFT AUTO {input_data} \ hledani nejnizsich bodit v rovnomérné
miizce; prevadi je na 3D mesh (Model
-RASTERIZE -GRID_STEP {rasterizestep} -PROJ MIN \ terénu); pocita vzddalenost bodit od terénu;
vyjima z bodového mracéna body do 6
-SOR 60\ metrit nad zemi; a uklada je jako textovy
soubor. Funkce run_process() je vlastni
-DELAUNAY \ pomocnd funkce volajict prikazovy radek a

vkladajict sekvenci tikolil.
-O -GLOBAL_SHIFT FIRST {input_data} \

-C2M_DIST -MAX_DIST 7\
-FILTER_SF 06 \
-REMOVE_ALL_SFS \
-C_EXPORT_FMT ASC -EXT xyz \
-SAVE_CLOUDS \

run_process(command)

Ze subjektivné nejuziteénéjsich nastrojii programu CloudCompare 1ze uvést napf. tyto
funkce:

e Ofez bodového mrac¢na pomoci ,..shp“ polygoni (funkce ,,Segment®)
e Vypocet geometrickych vlastnosti (,,Compute geometric features®)

e Filtrovani podle hodnot atributii bodi (,,Filter points by value®)

e Filtrovani Sumu (napf. ,Statistical Outlier Filter®)

e Hledéani shluki (,,Label connected components®)

e Rasterizace (,,Rasterize”)

e adalsi...

Pozornost si zaslouzi predevsim funkce ,Compute geometric features®, umoznujici
vypocet mnoha parametrii, zvyraznujicich urcité vlastnosti bodového mracna [100],
naprt. ,Verticality” (viz Obrazek 9). Tato geometricka vlastnost je dobrym nastrojem
pro odfiltrovani bodl terénu a nalezeni stojicich kmeni.

Tato vlastnost je vyuzivana také v programu 3DFIn k detekci kment, coz svéd¢i o jeji
prakti¢nosti.

Pro jiné aplikace se vSak mohou 1épe hodit jiné geometrické vlastnosti nebo funkce
implementované do programu CloudCompare. Diky privétivému uzivatelskému
prostiedi a vyladéni programu tak muze uzivatel docilit pozadovaného cile velmi
efektivné.
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Obrazek 9 — Geometrickd vlastnost bodového mracna "Verticality". Vlevo pied filtrovanim, vpravo po ponechant
bodii s hodnotou 0.6 az 1.

3. TreeQSM

Velmi specifickym a sofistikovanym nastrojem je TreeQSM v programovacim jazyce
MATLAB. Nabizi mozZnost pfesné analyzy architektury stromu a je vytvoren primarné
pro bodova mrac¢na z TLS. V ramci disertacni prace byl v§ak tspésné pouzit za vyuziti
fotogrammetrickych bodovych mracen.

Nevyhodami programu je skutecnost, Ze prostredi MATLAB je placené a Ze TreeQSM
nenabizi uzivatelské rozhrani. Poskytuje vSak rozsdhlou dokumentaci, z niz 1ze odvodit,
jaké funkce je potieba pouzit pro analyzu stromu. Moznost ptimych tprav kédu ale
skyta vétsi potencial pro uzivatele se zkuSenosti v programovani. Pro béznou analyzu
je mozno pouzit kod uvedeny nize v textu (viz Vzorec 2). Piredchazi mu vSak jesté
nahrani bodového mracna ve formatu ,,.txt“ do MATLAB, pripadné pozménéni cilovych
slozek k ukladani vystupi, a to primo v kodu.

Program umoznuje také zpracovani vétSiho poctu bodovych mracen, automatické
urceni hodnot vstupnich proménnych, i vétsi pocet pokusii o rekonstrukei stromu.

create_input Vzorec 2 — Powziti TreeQSM pro jedno bodové mracéno
stromu.
_ Lcreate_input® vytvari tabulku pro definici vstupnich
P=table2array(strom) Darametrii,
. Ltable2array“ prevadi bodové mracno do kompatibilniho
mputs.tree = 007 formatu.

Linputs.tree” definuje piedponu nazvu vystupnich souborit

QSM=tree qsm(P,input s) Jtreeqsm* spousti hlavni funkci a vytvairi QSM.

Tvorba QSM neni deterministickd kviili nahodilé slozce fitovani valci na bodové

mracno. Pri vice pokusech o rekonstrukci program dokaze vybrat nejpresn€jsi reseni a
interpretovat ho formou grafi a tabulek.
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Vystup obsahuje velké mnoZzstvi parametri stromu, jako napf.: celkovy objem, objem
kmene, objem vétvi, vySka stromu, délka oddenku, délka vétvi, pocet vétvi, DBH,
rozmeéry koruny aj. Vytvorena je i vizualizace vysledki (viz Obrazek 10).

Tree segment volume per diameter class
354

Branch volume per branching order |

Stem taper

Diameter (m)

1 5
Distance from base (m)

Obrazek 10 — Vlevo vstupni fotogrammetrické bodové mracno; vpravo nékteré vystupy programu TreeQSM.

Pomoci TreeQSM je tedy mozno provadét velmi detailni analyzy architektury stromu a
potencial vyuziti tohoto néastroje je velky. Nicméné tspésnost pouziti zavisi do velké
miry na kvalité bodového mracna, které musi byt s co nejmensim mnozstvi Sumu.
TreeQSM totiz povazuje vSechny dostupné body za soucast stromu a pfritomnost Sumu
zpusobuje chyby v odvozeném poctu vétvi, jejich tloustek aj.

4. Visual Studio Code — Python

Vyvoj autorského programu DendRobot, ktery provadi analyzu bodovych mracen a
extrahuje veli¢iny individudlnich stromt, probiha v jazyce Python za vyuziti open-
source editoru kodu ,,Visual Studio Code® [116]. Obdobné byl vytvaren i kéd k analyze
bodovych mracen stojicich kment za acelem detekce jejich vnitini hniloby.
Programovaci jazyk Python nabizi moznosti, jak naprogramovat prakticky libovolny
program, k ¢emuz prispiva velké mnozstvi internetovych podkladii, masivni komunita
uzivateld a samoziejmé také generativni Al ve formé chatbotti, schopnych generovat
funkéni kod.

Klasifikace zdravych nebo shnilych stromi byla programovana v jazyce Python, jako
sada funkci, které provadéji vSechny kroky k pripravé dat, trénovani i testovani
klasifikatoru, zaloZzeném na neuronové siti PointNet [117]. Konkrétné funkce
automatizované provadi tyto kroky:

« Vytvoreni struktury slozek

« Ttidéni dat podle atributti (napt. druh dreviny, vyskytu hniloby aj.)

« Pripravu bodovych mracen (napt. segmentace kmenti a terénu, tvorba 3D mesh,
vzorkovani bodi na 3D mesh aj.)

« Roztridéni testovacich a trénovacich dat
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o Trénovani a testovani klasifikatoru

Pii trénovani klasifikatoru je dilezita volba tzv. ,hyperparametri®, které ovliviuji
pribéh trénovani klasifikatoru. Témito parametry jsou:

» Pocet bodi v bodovém mrac¢nu — vSechna bodova mra¢na musi obsahovat stejny
pocet bodii
« ,Batch size“ — pocet mracen, ktera neuronova sit zpracovava najednou v jednom
kroku uceni
« Pocet epoch uéeni — udava kolikrat neuronova sit data prochazi
« ,Learn rate” — udava, jak velky krok déla optimalizacni algoritmus pti hledani
nejlepsiho feseni
Hodnoty téchto parametrti nelze jednoduse urcit a hledaji se iterativné, s ohledem na
vyslednou presnost testovani klasifikatoru, coz je zalezitost velmi ¢asoveé narocna a
miiZe se pohybovat v ramci tydnii i mésicti.

Druhym, ponékud komplexnéjsim programem, vyvijenym v prostredi ,,Visual Studio
Code“, je DendRobot. Ten nabizi jednoduché grafické rozhrani a automatizovany
pracovni proces, pro jehoz pouziti stac¢i uvést pouze zjakého typu snimani pochazi
vloZené bodové mracéno a vlozit bodové mracno. Vysledkem analyzy je v zakladnim
rezimu digitdlni model vysky korunového zapoje (CHM) v rastrové podobé,
polygonova vrstva nesouci idaje o skenovaném uzemi, bodova vrstva sudaji o
jednotlivych stromech a bodové vrstva vypovidajici o kmenovém profilu stromu az do
prednastavené vysky. Tyto vektorové vrstvy jsou ukladany ve formatu ESRI Shapefile
(5.shp®).

Zpracovani probihd v mnoha dil¢ich krocich a vétsina znich vyuziva vice jader
procesoru pro rychlejsi odvozeni vysledki. Detailni popis algoritmu bude rozveden
ve vysledcich disertacni prace.

4.Vysledky

Tato ¢ast disertaéni prace se vénuje vysledkim publikovanych ¢i recenzovanych
védeckych studii vytvofenych v pribéhu doktorského studia. Jedna se o étyri
publikace, jejichz priibéh, feseni a vyvozené zaveéry budou v kratkosti popsany.

Studie se snazi nalézt feSeni vyzkumnych cild, uvedenych na zacatku této prace, které

zni:
« Navrhnout vlastnost stromu zjistitelnou z 3D dat a ovérit moznosti jejiho odvozeni.
« Analyzovat vyuzitelnost pozemniho laserového skenovani a fotogrammetrie pri

shromazd’ovani dat o lesnich porostech.
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« Vytvorit pracovni postup pouzitelny pii zjistovani vycéetni tloustky a vysky
jednotlivych stromi ve 3D bodovych mraénech.

Prvni vyzkumny cil je fesen v ramci podkapitol ,,Stanoveni vyskytu hniloby ve stojicim
kmeni“ a ,,Popis detailni architektury stromu®.

Druhy cil je popisovan predev§im v podkapitolach ,Vyuziti low-cost skeneri® a
~Automatizace odvozeni dendrometrickych veli¢in“. Hluboka souvislost je vSak
pritomna i v sekci ,,Popis detailni architektury stromu®.

Posledni cil je dikladné rozebran v sekci ,,Automatizace odvozeni dendrometrickych
velicin®.

A) Stanoveni vyskytu hniloby ve stojicim kmeni

Touto problematikou se zabyva ¢lanek nesouci nazev ,Internal Tree Trunk Decay
Detection Using Close-Range Remote Sensing Data and the PointNet Deep Learning
Method“ [50]. Clanek byl publikovan vroce 2023, vZurnilu Remote Sensing,
vydavatelstvi MDPI.

Studie vychazela zpiedpokladu, Zze je mozné vizualné a nedestruktivné urcit
pritomnost hniloby v Zivém stromé. Tento predpoklad se opira o typickou deformaci
oddenku kmene smrku ztepilého (Picea abies), napadeného vaclavkou obecnou
(Armillaria mellea). Otazkou tedy bylo, jestli je neuronova sit PointNet, vytvorena pro
klasifikaci 3D dat, schopna rozlisit stromy s hnilobou od stromt bez hniloby a to nejen
v pripadé smrku ztepilého, uvedeného vyse.

Referencnimi daty byly tomogramy, vzniklé akustickou tomografii, podavajici
predstavu o skute¢ném stavu uvniti kmene. Naopak testovanymi daty byla 3D bodova
mracna vytvorena pozemni fotogrammetrii (CRP) a skenovanim pomoci LiDAR
senzoru na telefonu iPhone 12 Pro.

Plivodni zdmér byl klasifikovat stromy do étyt tfid, podle miry hniloby. Nakonec byly
ale pro nedostatek vstupnich dat rozliSovany jen kategorie ,,Bez hniloby“/ ,,S hnilobou®.
Sbér dat zahrnoval akustickou tomografii (az ve ctyrech vySkdch na kmeni),
fotografovani stromu pied tomografii, fotografovani stromu s oznacenymi misty
umisténi tomografu a LiDAR skenovani. Cela procedura vyzadovala asi hodinu ¢asu na
jeden strom a bylo vytvofeno 69 modeli zdravych stromt a 111 modeli stromut
s hnilobou kmene. Fotografie, s kifidou oznacenymi vpichy akcelerometrii tomografu,
slouzily ke zpresnéni vysledki tomografie, kdy byly vzdalenosti vpichti vypoditany
z fotogrammetrickych 3D modeld. Ta tak dokéazala poskytnout, v pripadé nékterych
stromi, vyrazné lepsi vysledky nez kruhova reprezentace tvaru kmene.

Samotn4 klasifikace stromi pomoci PointNet vyzadovala specifickou pripravu 3D dat,
jejich roztridéni do trid a pripravu kédu schopného trénovat a validovat klasifikator.
Trénink Kklasifikatoru byl optimalizovan ladénim hyperparametr pristupem ,Grid
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Search®. Ten zkousi jejich vSemozné kombinace a ta kombinace, ktera dosahuje
nejlepsich vysledkt pri validaci, je pouzita k tréninku funkéniho klasifikatoru. Kazda
kombinace hyperparametrii byla ovérena stokrat, aby bylo mozno podlozit, Ze se
skutecné jedna o tu nejvhodné;jsi.

Vysledkem byly tii modely, které se zamétrovaly na klasifikaci bud jehli¢natych,
listnatych nebo smisenych stromti. DosaZzené presnosti modeli pak byly 65 %, 58 % a
58 %.

Tato skutecnost potvrdila, Ze je mozné do urcité miry detekovat hnilobu ve stojicich
stromech, a to jen na zakladé tvaru kmene, daného bezbarvym 3D bodovym mrac¢nem.
Da se predpokladat, ze vysledky by byly uspokojivejsi, kdyby se sbér dat zacilil pouze
na jeden drevinny druh a samoziejmé také, kdyby byla k dispozici vétsi trénovaci
datova sada. Pro jeji vytvoreni by, na zadkladé poznatki z védecké prace, Slo doporudit
efektivnéjsi pracovni metodu. Ta nevyzaduje tomografii ve étyrech vyskach, nybrz jen
ve dvou — ptl metru nad zemi a cca dva metry nad zemi. To dokaze zachytit trend
rozvoje hniloby, tedy jestli postupuje smérem nahoru nebo doli. Dale neni nutné
vytvaret prili§ husta bodova mracna. PointNet je schopen pracovat s omezené velkymi
bodovymi mracny, s jejichZz velikosti se poji i vypocetni narocnost tréninku. Pti tvorbé
fotogrammetrickych hustych bodovych mracen je tak dostatecna jejich nizsi
hustota.Zavéreénym doporucéenim je i moznost vynechéani fotografovani pred aplikaci
tomografu, pokud pro klasifikaci neni vyuzivana barevna informace.

Tato prace tedy dokazala malym dilem prispét k poznani o parametrech odvoditelnych
ze 3D dat a také potvrdit, Ze fotogrammetrie je spolehlivym a presnym nastrojem pro
rekonstrukei statickych objektti.

Celé znéni védecké publikace v anglickém jazyce je ptilozeno nizZe:
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Abstract: The health and stability of trees are essential information for the safety of people and
property in urban greenery, parks or along roads. The stability of the trees is linked to root stability but
essentially also to trunk decay. Currently used internal tree stem decay assessment methods, such as
tomography and penetrometry, are reliable but usually time-consuming and unsuitable for large-scale
surveys. Therefore, a new method based on close-range remotely sensed data, specifically close-range
photogrammetry and iPhone LiDAR, was tested to detect decayed standing tree trunks automatically.
The proposed study used the PointNet deep learning algorithm for 3D data classification. It was
verified in three different datasets consisting of pure coniferous trees, pure deciduous trees, and
mixed data to eliminate the influence of the detectable symptoms for each group and species itself.
The mean achieved validation accuracies of the models were 65.5% for Coniferous trees, 58.4% for
Deciduous trees and 57.7% for Mixed data classification. The accuracies indicate promising data,
which can be either used by practitioners for preliminary surveys or for other researchers to acquire
more input data and create more robust classification models.

Keywords: close-range photogrammetry; mobile laser scanning; deep learning; standing trees;
classification; acoustic tomography

1. Introduction

Detection of decayed trees is a necessary task for urban greenery managers, park
managers and road maintenance personnel. This activity is essential for the early detection
of potentially hazardous trees and for preventing injuries, fatalities, or material damages.
However, the risk assessment requires experience and time-consuming examination of a
tree stem using, e.g., penetrometry, acoustic tomography or electrical impedance tomogra-
phy [1-5]. Methods of tomography may consume around thirty minutes per single tree
and are therefore inappropriate for large-scale investigation and for all the potentially haz-
ardous trees. It is also essential to apply the tomography correctly, especially on unevenly
shaped trees [1], because an incorrect measurement may lead to a wrong conclusion and
unnecessary removal of a highly valued tree in a park, causing a loss of both esthetical
value and shelters for wildlife in an urban area. Even though the tomographic methods
are accurate, the final risk assessment still depends on subjective opinion, producing in-
consistency in the estimation [6]. For these reasons, a faster, easy-to-use, yet reliable and
unbiased method would find utilisation in the aforementioned forest management services.
The other quality that arborists and forest managers seek is non-destructiveness [5,7]. This
feature could be offered by the proposed method in this study. Even though tomography is
considered non-destructive [8], nails are put into the stem during an examination, causing
minor wounds to the bark and wood. The method also consumes much time and requires
manual labour. That should be avoided by the proposed method, allowing even people
without experience in tree risk assessment to estimate tree stem states.

The impact of holes caused by sensors of an acoustic tomograph is not indisputably
considered unharmful [5,8,9]. Therefore, the task at hand is to develop a technique of
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internal tree stem decay detection that definitely is not harmful and produces reliable,
unbiased results.

Over the past years, the development of remote sensing has created a new opportunity
to make accurate representations of 3D objects and to take advantage of having such a
representation for various purposes. In forestry, the most usual utilisation of this data is
tree diameter at breast height (DBH), height, volume, or species estimation by both aerial
and terrestrial approaches [10,11]. While the accuracy of tree DBH estimation has a very
low error (3 to 13 mm) [12-14], the general presumption for this study is that Close Range
Photogrammetry (CRP) can accurately reconstruct tree stem shape with all its details and
may, therefore, be able to provide a good resource for deep learning and internal tree stem
decay detection.

Some studies have examined the possible ways to reconstruct the basal part of a tree
using photogrammetry. A practical and intuitive way of collecting imagery is sequential
imaging while following imaginary circles of 2 and 3 m in diameter, taking images of a tree
stem every few steps [1,15,16]. The number of collected images may vary when using such
an approach, but the best results may be expected when each point of the reconstructed
object is visible in eight pictures [14]. Also, while using CRP, it is necessary to implement
any scale bar to scale the 3D reconstruction correctly [17].

An alternative way of 3D reconstruction is the use of LIDAR. Nowadays, LiDAR sen-
sors are installed in some consumer-grade phones or tablets, which makes the technology
more accessible than it used to be. These small sensors use the Time-of-Flight method
combined with an RGB-D camera and can reconstruct the scene nearly in real time. On
the other hand, its drawbacks are a small reach of 5 to 6 m and a tendency to misalign
repeatedly scanned objects [18]. This method was already successfully used in forestry
research with feasible accuracy for forestry inventory purposes [19,20]. A detailed model of
each tree stem was not the goal of these studies. Therefore, the accuracy of DBH estimation
is not as high as in cited studies using CRP to reconstruct individual trees.

The decay caused by fungi or bacteria is the main reason a tree or its parts fail [4,6,21-24].
There are two main types of decay in tree stems. Heart rot occurs in the centre of a stem,
whereas sap rot starts close to the surface, in the sapwood of a stem [22]; therefore, the
latter may often be identified visually by examining mushroom fruiting bodies on the bark
or underneath it. Regardless of the location in the stem where the mushroom grows, the
types of wood rotting can be further classified by the kind of wood tissue degraded by the
mushroom. It can be either cellulose (Brown rot), lignin (Soft rot), or both (White rot) [25].
The tree’s reaction to this kind of damage can then be specific to the infecting mushroom
species or individual adaptations of a tree to the ongoing wood degradation in the stem
shape and morphology. The shape changes caused by heart rot can be reliably shown
in the example of Picea abies trees infected by Armillaria mushrooms, creating typical
shape changes of the stem base caused by progressive growth of the mushroom from the
stem centre to its sides [26]. Other stem shape changes are associated with the tree’s effort
to support weaker parts of the infected stem by building more wood in these locations
and forming bulges or cancers [27-29]. Since heart rot is often hard to detect visually,
several methods allow the detection of decay based on physical properties, mainly acoustic
response or electrical impedance [4-6]. In this study, only acoustic tomography was used
to detect the actual health state of trees. This method is based on measuring the time of
flight of sound waves [5]. Generally, the stress wave propagates faster in dense and healthy
wood, whereas the decayed wood results in a much slower stress wave propagation, as the
stress wave needs to bypass holes and gaps created by the decay [7]. The time is measured
using a timer and a series of accelerometers placed on a stem at the same height level.
These sensors require metal nails to be knocked into the wood. As soon as a stress wave is
emitted from one accelerometer by a hammer tap, the time of flight is measured for each
of the receiving accelerometers. Afterwards, the same process is done for all the other
accelerometers [5,30]. The alternative methods for tree stem decay detection are electrical
impedance tomography, which measures electrical conductivity in the wood, where healthy
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wood has a higher resistivity than decayed wood due to its wetness [2,5], and resistance
drills, which measure the power needed to drill through a piece of timber, thus indicating
its state [3,5].

In practical use, the stem shape is often simplified and replaced by a circle or cylinder
shape, leading to an incorrect estimation of sensor-to-sensor distances and distortion of the
outcome tomogram. Previous studies verified that sensor locations may be detected on 3D
photogrammetric models with very high precision, and calculation of the exact distances
of sensors from each other for tomography is possible [1,17,31]. A similar procedure of
sensor location estimation will be described in the proposed study as well. Some of these
studies also attempted to overcome a standard limitation of tomography. The method can
only show the status of wood in a 2D cross-section. Multiple sections must be examined to
obtain a more precise representation of the whole stem base, which requires a significant
amount of time. The mentioned studies attempted to reconstruct the state of decay in the
entire stem base using multiple cross-sections of tomography and interpolation between
them, resulting in a complete model of the inner stem state [1,17]. However, the result is
only an estimate based on several 2D cross-sections and might not improve the ability to
perform a correct risk assessment.

A new trend in data evaluation is the use of deep learning. Usually, images or 3D point
clouds are often evaluated by neural networks, and exciting results are reported in object
detection or classification—specifically, in the detection of individual trees or tree species
classification [32-35], but it is appropriate for the detection of any feature with distinctive
patterns [36]. As mentioned before, it is known that some fungi species cause specific
changes to the external shape of a tree stem base, and stem decay is commonly related
to the presence of bulges, cancer, and swelling. These changes are caused by the tree’s
response to the weakening structures in its wood. Therefore, the proposed study presumes
that an AI deep learning model could be utilised for tree stem internal decay detection,
using just the 3D properties of the stem base, potentially detecting the presence of the
decay based on the morphological responses of the tree stem to its infection. Nevertheless,
more data are needed to support this claim, but we believe our results will stimulate other
researchers to follow this direction. For 3D data classification, the PointNet deep learning
algorithm is often used [32,35,37,38], and due to its satisfactory performance, it was also
used in this study to evaluate 3D meshes or point clouds respectively, and classify them
into one of the desired classes, where the input data contain 3D models of standing tree
stems, scanned in urban greenery by both close-range photogrammetry and iPhone LiDAR.
The algorithm used for point cloud classification in the proposed study is PointNet. The
algorithm works directly with unordered 3D point clouds and is invariant to geometric
transformations of the point cloud. It is suitable for object classification, segmentation or
semantic parsing [39].

In some studies, the need to process a point cloud directly was bypassed by using
other interpretations of point clouds, such as images or snapshots from varying views,
which leads to processing 2D data with satisfying results and accuracy higher than that
from processing 3D data [37,40].

By combining terrestrial remote sensing and deep learning, the proposed work aims
to reconstruct basal parts of standing tree stems and classify them based on the decay state
inside the tree stem, which was estimated using acoustic tree stem tomography. This study
should represent a low-cost and well-accessible approach to close-range remote sensing and
object classification problems in arboriculture or forestry. The proposed method introduces
anovel way of tree health evaluation. Therefore, in the future, the methods used should be
accessible to most enterprises potentially interested in this method.

2. Materials and Methods
2.1. Study Site

The data collection was conducted at two locations, shown in Figure 1. The first
location, lying at an altitude around 510 MSL, is the property of the enterprise Lazefiské
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lesy a parky Karlovy Vary PBC and lies in its rope-climbing park Svaty Linhart, on the
southern edge of the city of Karlovy Vary. This area is a mature, managed, even-aged
European Spruce forest with a moderate European Beech understory and stocking density
of 0.9 [41]. The soil type is Dystric Cambisol on primary granite rock [42,43]. The mean
yearly temperature is between 8 and 9 °C, and the mean annual precipitation ranges from
600 to 700 mm [44].
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Figure 1. Locations of study plots south of the city of Karlovy Vary and north of the town of Mastov.

The second study site is related to the town of Mast'ov, 30 km east of Karlovy Vary. The
object of interest was an old and unkept castle park associated with the local palace. The
altitude of the area is around 400 MSL, and the climatological data are the same as in the
first study site [44]. Regarding geology, this site is composed of vulcanite and sedimentary
layers. The soil types present are eutrophic cambisol and gleyic fluvisol [42,43]. Present tree
species are mainly Acer pseudoplatanus, Acer platanoides, Quercus robur, Alnus glutinosa
and Fraxinus excelsior in the main level and understory. The forested area of the park is
fully stocked with a rich understory.

2.2. Data Collection

Fieldwork took place from April 2023 until October 2023. During this time, trees of
varying species were selected, primarily based on large DBH, as thick trees are potentially
the most dangerous and were closely examined. A workflow was conducted on each tree,
providing RGB imagery for further photogrammetric processing, iPhone LiDAR point
cloud (shown in Figure 2) and up to four tomograms from various stem heights obtained
by acoustic tomography. Both CRP and LiDAR data were collected for the trees to make
sure the usage of the trained classifier is possible for both kinds of data. Also, in some

53



Remote Sens. 2023, 15, 5712

50f 18

cases, the iPhone LiDAR cannot reliably reconstruct stems in grown-up parts (low branches
with leaves, neighbouring thickets, etc.) and the photogrammetric data performed better in
these cases.

o ampe s

Figure 2. iPhone Lidar point cloud. Colours depict Verticality: 0 (Blue); 0.3 (Green); 0.6 (Yellow) 1 (Red).

Firstly, images for CRP were collected using an iPhone 12 Pro RGB camera with the
Lens Buddy app [45], allowing users to collect sequential images of predefined quality. In
the case of the proposed study, the interval was set to one second, and the photo output
format was DNG. Other parameters of the app settings are described in Table 1. These
images aimed at getting a clear view of the basal part of a tree stem up to the height of
approximately 3 m and, simultaneously, depiction of printed paper scale bars, exported
from Agisoft Metashape [46], which were placed on certain spots around the stem base.
Photographs were taken on a circular trajectory, which consisted of two circles. The first
circle was approximately 3 m in diameter and aimed at capturing the stem and all paper
scale bars. The second circle was smaller and aimed mainly at capturing the stem itself. In
total, there were about 70 pictures taken for each tree, which is given by the fact that saving
images in the RAW format is slow, and the phone cannot keep up with the one-second
interval per each image taken.

Table 1. Parameters used for scanning with iPhone apps.

Lens Buddy 3D Scanner App
Interval: 1s Resolution: 5 mm
Capture Optimisation: Balanced Range: 5m
Format: RAW (DNG) Confidence: High
Masking: None
Format: LAS
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Secondly, iPhone LiDAR scanning was conducted using the LiDAR sensor of the
iPhone 12 Pro. For this purpose, the 3d Scanner App [47] was used. It was set to the LIDAR
Advanced mode; the further app settings are shown in Table 1. This scanning was made on
a single circular trajectory, very close to the stem. For a good result, the iPhone had to be
held parallel to the ground, display facing up, and follow a wavy trajectory to reconstruct
both the higher and lower parts of the stem. This way, the stem up to the height of 2.5 m
could have been scanned. The created point cloud was exported from the app in LAS
format and at a high density of points.

As the third step, acoustic tomography took place. The device and software ArborSonic
3D [48], produced by Fakopp Enterprise Bt., was used. Each time, ten sensors were put
equally around the tree stem. The first one was placed on the northern side of the stem,
and the following sensors were placed in the counterclockwise direction. Further, the
manufacturer’s instructions were followed. The tomography was conducted at up to four
height levels, from 0.5 m to 2 m, if possible. After the entire procedure, spots where the
sensors were nailed in were marked with white chalk. For simplicity, the stem shape
was considered a circle, but this drawback was resolved in later processing, obtaining an
accurate representation of tree stem shape and sensor distances with the help of marks
made by the chalk and accurate photogrammetric models. An output of the tomography
can be seen in Figure 3.

2070 mfs
1937 mis
1805 mfs

1672mis

1540 mfs

1407 mis

1275 mis

1142ms

1010mjs

s77mls

745 mis

(b)

Figure 3. (a) Acoustic tomograph Arbor Sonic 3D; (b) Tomograms of a healthy and decayed stem.
Numerical values with colour-scale correspond to the speed of sound wave propagation.

The last step was practically the same as the first step, where images for CRP were
collected. This second imaging aimed to obtain a 3D representation of a stem with the
locations of tomograph sensors, now marked by white chalk, which was used to highlight
these locations and, unlike paper markers, does not occlude the actual shape of the stem.
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2.3. Data Processing

The data processing followed several main steps, described in Figure 4. The task was
to create models of scanned tree stems as precisely as possible, without any other objects in
the scan, label the trees according to the state of decay in the stem and use these models as
learning and validation data for PointNet training.

=)
—)

Figure 4. Basic workflow of the data processing. The asterisk indicates steps that had to be done manually.

The images for CRP were processed using Agisoft Metashape software and were
turned into 3D Point Clouds using basic workflow. Scale bars had to be manually added in
the created dense point clouds using the automatically detected markers. Distances among
the detected paper markers were known and could have been defined in the software as
well. As soon as the point clouds were scaled, it was necessary to manually orientate them
correctly to make the Z-axis follow the axis of each stem. This is necessary for further
automated processing of point clouds.

In the point clouds made of images taken after tomography and containing marked
tomograph sensor locations, white chalk points have been manually detected and marked
by markers in the Agisoft Metashape software. As soon as this procedure was done, the
local coordinates of sensors were exported for each tree and used to calculate accurate
distances among sensors. There were ten sensors in each examined cross-section on the
tree stem. If the circumstances did not allow conducting tomography in four levels, a lower
number of levels was measured. Sensor distances were calculated using a Python script
that implemented the formula for calculating distances in 3D space:

(=

11,21 = ((x2 — x1)* + (y2 — y1)* + (22 — z1))"/? )

The distances were later entered manually into the ArborSonic 3D projects, replacing
the distorted values collected in the field when the stem shapes were only considered a
circle, as shown in Figure 5.

Once the tomograms representing decay were more accurate, a file containing infor-
mation about each tree, mainly Tree ID, Genus, Species, Decay Severity, and other less
essential parameters, was created. The Decay Severity was determined based on tomo-
grams subjectively and expresses the amount of decay in the tree stem on a scale from 0 to
3, where 0 corresponds to no decay, 1 to very small decay, 2 to substantial decay and 3 to
massive decay. These values served later as labels for the neural network training.

The following steps are done automatically based on a Python script, which processes
all point clouds of desired tree species into a 3D mesh, filtering out the terrain and other
objects, keeping only the stem of interest.
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Figure 5. (a) Tomogram before adjustment; (b) Tomogram after adjustment by calculating more
accurate sensor distances. Sensor locations are represented by the black dots with numerical values.
Colours are explained in the Figure 3b.

For this purpose, the Verticality feature is calculated based on the normals of the
point cloud, allowing for accurate distinction between terrain and stem, as horizontal
surfaces have the Verticality value equal to zero and a vertical equal to 1. This feature is
shown in Figure 2. In case normals were absent, which was the case with iPhone LiDAR
data, these had to be estimated using the Octree Normals function in CloudCompare
Command Line mode. Trees usually can be separated from terrain by keeping points
with Verticality between approximately 0.6 and 1.0. Another step is necessary, as the
filtering based on Verticality does not remove all unwanted points from the original point
cloud. This procedure makes use of the CloudCompare function named Label Connected
Components, which detects clusters of points at a defined level of rigour. Usually, small
features are parts of terrain or noise, whereas the most extensive feature is mostly the
woody part of a stem and is separated from all the other points, resulting in a separated
stem and terrain.

The filtered stem point cloud is then turned into a 3D mesh using Poisson Surface
Reconstruction, which solves the reconstruction as a spatial Poisson problem, considering
all present points simultaneously, unlike other methods. This surface reconstruction method
allows for robust reconstruction of real-world objects from a point cloud into a 3D mesh,
even if the input point cloud is highly noisy. However, the input point cloud must contain
normals; otherwise, the algorithm would not work. The normals are used for the so-called
Indicator Function and its Gradient, which detects points belonging to the object, its surface
and noise [49]. A brief overview of the point cloud processing is shown in Figure 6.

The meshes serve as input data for the PointNet neural network, which firstly plots
a certain amount of points onto the mesh and creates a new point cloud this way. The
original point clouds from iPhone LiDAR and close-range photogrammetry cannot be used,
as all input point clouds must have the exact same number of points.

PointNet trains a classifier based on labelled 3D meshes and predefined hyperparam-
eters: the number of points sampled on the 3D mesh, batch size, number of epochs and
learning rate. The selection of proper hyperparameters is a crucial part of deep learning
classifier training and is described further in the text.
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@ (b)

Figure 6. (a) Original CRP Point Cloud (b) Automatically separated stem (c) 3D Mesh of the stem.

Filtering a tree stem was done using the Command line mode of the CloudCom-
pare software [50]. Its functions, namely the Verticality feature and the Label Connected
Components function, were embedded in the mentioned Python code.

The other parts of the Python code were done using freely accessible libraries such as
open3D, tensorflow, keras, numpy, os, shutil and others. Poisson surface reconstruction
was conducted using the open3d library, providing quick and satisfactory data processing.

The final step is PointNet processing, which requires the determination of well-
performing hyperparameters, which is done iteratively by the Grid Search method [36],
described in the following section.

2.4. Data Analysis

Analysis of tree stem models was done by a slightly updated version of the PointNet
algorithm [39], trying to classify trees into either the Healthy class or Decayed class, substi-
tuted by the dummy values 0 or 1. This was done due to insufficient samples for training
a four-class classifier. Due to the algorithm’s invariance to geometric transformations, it
is not possible to synthetically extend the dataset by simply rotating, resizing or moving
the input point clouds, and for that reason, the dataset could not have been extended in
this manner. Therefore, Point clouds were slightly modified during the PointNet algorithm
processing, moving each point slightly by a randomly selected value equal to up to 5 mm
in any direction.

There were three kinds of classifiers created. One is for the Coniferous trees decay
classification, which consists only of European spruce models. The second one is for the
Deciduous tree species decay classification, containing Fagus sylvatica, Fraxinus excelsior,
Acer platanoides, Acer pseudoplatanus and Quercus robur, and the third one is for a mix of
all the aforementioned tree species with other tree species which were marginally examined
during the fieldwork.

For proper training, optimal hyperparameters had to be chosen. The hyperparameter
values change based on the dataset size and the complexity of the task an Al classifier has
to conduct [36]. It is impossible to train a classifier well without properly examining and
adjusting the hyperparameter. Therefore, the hyperparameters in this study were examined
by an iterative approach of Grid Search. This approach requires a user-defined set of
values that shall be examined. As all possible preset hyperparameter values are processed,
this approach is only suitable for examining cases with approximately three or fewer
hyperparameters. The input values have to be set based on prior experience and respecting
results of previous stages of the Grid Search to save computational resources, as these
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are already heavily exploited with the iterative approach and may grow exponentially by
adding new examined hyperparameters to the search [36]. Therefore, a matrix of potential
hyperparameters, which are closely described further, was made, and the training was run
with every possible combination of these. As the variation of validation accuracy varied
significantly, even if the same input parameters were used, each combination was run one
hundred times to confidently state a mean performance of the validation. The modified
hyperparameters were Batch Size, Point Number, Epochs and Learning Rate, and most of
the time was spent tweaking the number of epochs, which defines how many times the
data will be seen by the PointNet algorithm before the training finishes. The batch size, on
the other hand, defines how many point clouds from the overall dataset will be used by the
algorithm for training at one time. This number cannot be too high, as the computational
resources of a PC may not suffice, but it also needs to be as high as possible, as it improves
the final classifier’s accuracy. It is a common practice to use batch size values with the
power of 2 for better performance on GPUs. In this study, the difference between batch size
values 32 and 64 was not proven, and the value 32 was used in further processing, allowing
the algorithm to work at a relatively higher speed and with better performance than if a
smaller value was selected. The batch size 128 was not used in this study, as it exceeded
the computer’s computational capacity. In certain situations, a minimal batch size equal to
1 can be reasonable for the models’ better generalisation [36], but this was not the case in
the proposed study.

The number of points defines how many points will be plotted on a 3D mesh, creating
a point cloud. PointNet does not seem to perform differently when exceeding 2048 points,
so this value was used even in this study [34,39].

The number of epochs has to follow specific rules as well when the datasets are of
smaller extent, as in the proposed study. The number of epochs should be relatively higher
to achieve better model accuracy. However, at the same time, the risk of overfitting should
be avoided in order to get a more generalised model. The examination of training accuracy
and validation accuracy can do this. If the validation accuracy becomes significantly lower
than the training accuracy at a particular epoch, overfitting may have happened, and the
number of epochs should be reduced appropriately [36].

Lastly, the learning rate, which determines the size of the steps taken during the
optimisation process, requires a fair amount of attention. It is a critical parameter because
it influences how quickly or slowly a neural network learns. A very high learning rate
causes faster training but with a risk of missing the best solution to its large modifications
in the model’s parameters. In contrast, a very low learning rate causes slow training, and
optimisation may get stuck at the local minimum, preventing it from reaching the total
minimum, i.e., the optimal solution [36,51].

In order to verify that the PointNet training program itself works well, the training and
validation were also conducted on the ModelNet10 benchmark dataset with appropriate
hyperparameters and a validation accuracy of 90%.

3. Results

The performance of the PointNet classifier for decayed tree detection was demon-
strated on a validation set extracted from the original dataset. However, it has been
demonstrated that the accuracy of the best classifiers in mean reaches approximately 65%
for Coniferous, 58% for Deciduous, and 58% for Mixed data, as shown in Figure 7. There-
fore, it was verified that the internal state of a tree stem could be, to some extent, deduced by
deep learning methods, and this approach may be helpful later in practical use. However,
as this application is in the initiation phase, more similar experiments are necessary. As
of the proposed study, the classification can, at this point, only help with investigating
whether the tree is healthy or has a probability of internal decay presence, but without
specifying any of the decay properties or its shape, since the input data include only the 3D
shape of the stem.
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Figure 7. The representation of validation accuracy changes with the type of data used. Other
parameters are kept as described in the text.

Table 2 represents varying results of Coniferous stem classifiers, which were trained
and tested on a dataset consisting of 180 3D meshes, out of which 69 represented healthy
trees with no decay and 111 with varying states of decay from slight to massive rot. Out
of the total, 35 meshes were used for validation. The best performance was shown using
the following hyperparameters for the PointNet function: number of points = 2048, batch
size = 32, learning rate = 0.001 and number of epochs = 30 or 70. For each combination
of hyperparameters, 100 iterations were made to eliminate speculation that the positive
results were obtained by chance. The course of validation accuracy and its dependence on
the number of epochs is shown in Figure 8.

Table 2. Properties of validation accuracy of Coniferous model with batch size equal to 32, obtained
based on 100 iterations of the classifier training. The best results are highlighted in bold.

Epochs Mean St. Dev. Mode Min Max

il 55.2 74 54 34 71
10 59.1 72 63 40 74
20 63.5 7:5 60 40 T
30 65.5 6.2 66 49 80
40 60.3 6.8 60 46 80
50 63.5 6.5 63 46 77
60 59.1 6.4 60 43 74
70 65.4 7.1 66 51 83
80 62.2 6.0 60 46 77
90 59.3 6.9 60 40 71
100 58.6 5:7 57 49 74

Table 3 describes the results of Deciduous tree stem classifiers, which worked with a
dataset of 355 3D meshes. Of them, 205 represented healthy trees with no decay and 150
with varying decay from slight to massive rot. For validation, 71 meshes were used. The
best performance was shown while using the following hyperparameters for the PointNet
function: number of points = 2048, batch size = 32, learning rate = 0.001 and number of
epochs =40, which is also indicated by Figure 9.
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Figure 8. The representation of validation accuracy changes with the number of epochs on the

Coniferous dataset. Other parameters are kept as described in the text.

Table 3. Properties of validation accuracy of Deciduous model with batch size equal to 32, obtained
based on 100 iterations of the classifier training. The best results are highlighted in bold.

Epochs Mean St. Dev. Mode Min Max
1 56.1 5.1 59 B 68
10 58.4 4.4 61 46 69
20 55.1 5:2 55 44 68
30 56.8 45 58 41 68
40 58.4 3.6 58 51 68
50 58.4 3.8 56 49 68
60 54.9 3.6 56 44 62
70 57.3 4.1 58 42 69
80 58.5 4.0 56 46 66
90 543 44 54 42 66
100 57.5 a3 55 45 66
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Figure 9. Representation of the validation accuracy change with changing number of epochs on the

Deciduous dataset. Other parameters are kept as described in the text.
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Table 4 presents the accuracies of Mixed stem classifiers, consisting of merged datasets
of Coniferous, Deciduous and other tree species that were marginally examined during
the fieldwork, consisting of 15 tree species and 649 3D meshes. One hundred twenty-
nine meshes were used for the validation. As shown in Table 4 and Figure 10, the best-
performing training hyperparameters for this case were the number of points = 2048, batch
size = 32, learning rate = 0.001 and number of epochs = 70.

Table 4. Properties of validation accuracy of Mixed model with batch size equal to 32, obtained based
on 100 iterations of the classifier training. The best results are highlighted in bold.

Epochs Mean St. Dewv. Mode Min Max
1 52.6 4.0 53 40 60
10 54.1 3.5 53 44 65
20 55.3 31 53 49 64
30 552 3.7 57 43 62
40 55.5 2.9 57 50 64
50 54.8 32 53 47 62
60 56.9 3.0 57 49 63
70 57.7 34 57 50 64
80 56.2 3.0 57 49 64
90 57.8 29 60 51 67
100 56.1 29 57 46 63
[e]
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Figure 10. Representation of the validation accuracy change with changing number of epochs on the
Mixed dataset. Other parameters are kept as described in the text.

The results are of promise that further work may reveal the higher potential of this
method and make the predictions more reliable.

4. Discussion

Deep learning algorithms are increasingly used in many fields of human activities,
such as medicine, the automotive industry, and even forestry [52,53]. In the latter men-
tioned field, the method is used mainly to identify tree species or tree damage in aerial
images [38,54,55]. In some studies from the field of forest inventory, even terrestrial photog-
raphy is used for tree species determination or pest detection, but no studies were found ex-
amining the relationship between internal tree stem decay and its shape in 3D space [56,57].
Nevertheless, the task of object classification is common. It is applied to many more or less
complicated objects in various fields of research, including forestry [38,39,51-53], providing
92.5% accuracy in the task of tree segmentation from a complex scene [35] or tree species
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classification from 3D point clouds with more than 90% accuracy [34]. For this reason, the
proposed study correctly assumed that deep learning classification of decayed or healthy
tree stems is possible.

In some studies, it was recommended to use images of point clouds instead of actual
point clouds for deep learning, as it seems to be a robust approach with lesser computing
capacity required [37,40]. On the other hand, it does not work with the entire contin-
uous shape of the object or an entire point cloud, but with only discrete views of it,
potentially omitting some features of the original shape, missing small objects or rarely
present classes [40,58]. This study did not work with the described approach, as nowadays,
acquiring and processing a 3D point cloud has become more accessible, thanks to the
implementation of LiDAR scanners on consumer-grade cell phones and the increasing
performance of computers.

In the results of this study, a significant standard deviation in the validation accuracy
of identically adjusted training attempts was observed. In this case, it is caused by the small
size of the processed dataset, which is supported by the fact that the observed deviation
decreased in larger datasets, such as Mixed or Deciduous. It is usually better to collect more
data to increase performance, not only in the matter of standard deviation but also in the
question of overall model accuracies [36]. In the case of this study, collecting more data was
not affordable. Therefore, much time was given to tuning the hyperparameters by the Grid
Search approach [36]. This step had a significant impact on the accuracy of the validation
that was achieved. As Figure 7 shows, the dependence of Data Type on Validation Accuracy
was significant on the confidence level « = 0. Assuming that the dataset Coniferous only
contained European Spruce models, it seems that single tree species classifiers may be
performing better than general classifiers. The relationship between the number of Epochs
and Validation Accuracy was not very strong, yet it was significant. A linear regression
model with « = 0.05 proved to be a positive effect of this feature. A graphical representation
of the Epochs impact can be seen in Figures 8-10, whereas the effect of examined tree
species can be seen in Figure 7.

The combined impact of epochs and tree species explained 16.63% of the variability in
the validation accuracy. It could be further improved by a more precise examination of the
learning rate and its relationship to the number of epochs, as the learning rate is considered
a very important hyperparameter that may prevent training error from decreasing and
affects how many epochs need to be carried out for training, therefore influencing the
training duration. All these steps must be made carefully, observing the risk of overfitting.
This phenomenon can be further controlled by modifying the number of layers and hidden
features in the neural network [36].

From the extent of the learning rate examination done during the study, a conclusion
can be made, confirming a significant impact of this hyperparameter on the validation
accuracy, as shown in Figure 11.

Expectedly, during the training and validation process, it was observed that the
standard deviation correlated negatively with the number of training epochs. However,
this standard deviation was not the smallest in the most accurate hyperparameters, as
described in Tables 2—4 and Figures 8-10. This effect is caused by the gradual generalisation
of the trained models, leading to more stable performance and converging to a possible
solution to the classification problem. However, the risk of using a larger number of
training epochs is still related to the potential overfitting. It should, therefore, be adjusted
temperately, considering the size of the training dataset. A larger dataset allows for more
epochs and a potentially improved validation or testing accuracy, as the model can learn
from a more extensive variety of objects [36]. Nevertheless, studies confirm that the training
and classification work well even when using small datasets [59,60]. Mentioning the dataset
size, it is necessary to mention that in this study, no test set was created, as it would be
too small and imply statistical uncertainty, but it should be considered in future works,
allowing for independent testing of trained classifiers.
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As the classification of point clouds by the PointNet algorithm is not dependent on
the orientation of the data or its resizing [39], the dataset cannot be extended synthetically
in a simple manner. Still, a slight randomisation or augmentation of the Point Cloud data
was conducted even in the case of this study, allowing points to be slightly moved, by up
to 5 mm, around their original position in the space. This may have caused changes in the
accuracy of classifiers but may have also helped to generalise the model.

Some tree species may have similar properties of shape change after decaying, and
combining such data into a single category might be helpful, as it could provide more
training data for each classifier and potentially improve classification accuracy. Unfortu-
nately, in many cases, this is not true. The proposed study used three datasets containing
various 3D meshes and tree species. The larger datasets in this study resulted in smaller
validation accuracy, as they were made only by sorting the data by tree type: broadleaved
or coniferous, respectively. The results confirm the presumption that creating a single
classifier for each tree species is justifiable and results in more satisfying classification vali-
dation accuracy. Regarding the dataset and its size, it is necessary to note that the trained
classifiers may only be successfully used for the tree species used in the training phase. As
shown in the proposed study, the best accuracy may be obtained using a species-specific
classifier instead of a general one. The proposed study only used 3D models of Central
European tree species, and its outcome may be only successfully used in this location.

Overall, the idea of allowing the use of the proposed method in the future seems
to be possible with a further improved version of the proposed method. As cell phones
allow the direct creation of a 3D mesh, developing a mobile app for pre-processing the
mesh and evaluating the created point cloud using one of the pre-trained classifiers may
be possible for any personnel that need to quickly evaluate the potential risk of tree
failure at frequented communication routes, such as parks, parkways, roads, and others.
This proposed approach requires no special knowledge associated with tree failure risk
assessment and could be used by less educated staff, pointing out trees that require more
attention and closer examination.

5. Conclusions

This study tested the potential use of deep learning to classify decayed or healthy
stems of standing urban trees based on CRP, iPhone LiDAR and tomography data. The
method’s ability for the task was indicated by the validation results performed on classifiers
made for three data types: Coniferous stems, Deciduous tree stems and Mixed data. The
validation was performed with an accuracy of 65.5% for Coniferous, 58.4% for Deciduous
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and 57.7% for Mixed data and should motivate future research into this method in the
field of tree failure risk assessment, enabling non-professional staff to evaluate the internal
state of a standing tree stem quickly and without manual labour. As the proposed research
project was not able to obtain testing datasets for testing the classifiers” applicability in
different conditions, the future research should aim at having this possibility. Future
research should aim to create deep learning classifiers for individual tree species, as the
general models seem to perform worse, and the type of used data was proven statistically
significant (p = 2 x 1071°) for the final validation accuracy. Classification into more than
two classes based on the severity of the tree stem decay would also be beneficial in the
potential practical use of the method and should be considered in future research. During
the classifier training, attention should be paid to the correct hyperparameters of the
training algorithm, mainly the learning rate.
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B) Popis detailni architektury stromu

Tato studie ma navaznost na predchozi popisovanou praci. Opét bylo snahou odvodit
slozitéjsi parametry stromi, tentokrat se v§ak jednalo o architekturu stromu. Tim se
v ramci popisované studie rozumi tloustka stromu ve vysce 30 cm nad zemi, vyska
stromu, pocet vétvi, celkova délka vétvi, objem vétvi a objem kmene. Studie nese nazev
sDiscovering Tree Architecture: A Comparison of the Performance of 3D Digitizing
and Close-Range Photogrammetry“. Ten napovida, Ze k vytvoreni 3D bodovych
mracen se pouzivala opét fotogrammetrie a jako referencni data poslouzily modely
z magnetického digitizéru Polhemus Fastrak. Tento digitizér vyZaduje po operatorovi
dikladné a kontaktni zaznamenani vSech ¢asti stromu, a poskytuje tak velice presné
udaje o jeho architektuie. Jelikoz jsou ale obé pouZité metody vhodné jen pro
rekonstrukci mensich objektti, byly tvoireny modely 30 stromkii s maximalni vyskou do
necelych ¢tyr metrii, z toho 15 stromkt bylo listnatych a 15 jehli¢natych. Snahou bylo
zachytit stromky vdobé, kdy jsou listnace bez olisténi, aby byla rekonstrukce
architektury fotogrammetrii co moznd nejpresnéjsi a porovnat tyto vysledky
s jehlicnany, které v bodovych mraénech obsahuji i asimila¢ni organy. Jehliéi bylo do
jisté miry z bodovych mracen odstranéno, za vyuziti barevné informace, ktera pro tento
ucel do omezené miry fungovala. Piesto v bodovych mracnech ziistalo po filtrovani
jehli¢i stalle mnoho Sumu. Ten byl zptisoben také pohybem stromk ve vanku a bodova
mracna tak obsahovala nejen mnoho Sumu, ale i artefaktii, jako napt. zdvojené vétve,
nerealné tlusté (,,rozmazané®) vétve apod. Odstranéni artefakti nebylo mozné, tak se
provedlo pouze filtrovani Sumu. Teoreticky by bylo mozné ruén€ odstranovat i nékteré
artefakty, metoda by pak ale pro svou c¢asovou naro¢nost nebyla vyhodna a jeji
relevance by se vytratila. Takto zpracovana bodova mrac¢na byla déale analyzovana
pomoci diive popsaného programu TreeQSM.

Vysledky porovnani ukézaly, Ze modely se shodovaly pievazné jen v pripadé
jednodussich, dvourozmérnych, parametrii, kterymi je tloustka ve vysce 30 cm nad
zemi, vyska stromu a délka vétvi v rtiznych rfadech vétveni. Objemové parametry jako
celkovy objem dfevni hmoty a objem riiznych radt vétveni se shodovaly jen nékdy, jak
je detailnéji popsano v prilozené studii. Neshoda panovala také pri porovnani délky
kmene, coz je dano rozdilnou metodikou, kterou tento parametr odhadoval program
TreeQSM a kterou pouzil operator magnetického digitizéru.

Prace tedy potvrdila, ze pozemni fotogrammetrie je vhodna k uréeni jen nékterych
parametri architektury stromu. Lze se domnivat, Ze pti zkoumani Ghlt nasazeni vétvi,
by se také dosahlo pomérné presnych vysledki. Ze zavéra studie totiz vyplyva, zZe
predevS§im objemové parametry vykazuji nejvétsi rozdily. Tyto rozdily zpiisobil
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pravdépodobné pohyb vétvi ve vétru a vznik artefaktti v bodovém mracnu. Navzdory
tomu vsak byly délky stale uréeny spravne.

Publikovana studie do jisté miry vypovida i o potencidlu vzdusné fotogrammetrie z
dronu, aplikované na vzrostlé solitérni stromy. Trajektorie sbéru fotografii u malych
stromi se totiz velmi podob4 trajektorii, z niz lze sbirat data dronem a byla popsana
v drivéjsich pracich [118].

V navaznosti na studii stanovujici detekci hniloby kmenti, byly touto praci doplnény
dalsi aspekty potencialu pozemni fotogrammetrie. Tu Ize doporucit pro rekonstrukci
jednoduchych scén u nichz nehrozi pohyb objekt ve vétru nebo zjinych dtvodi.
Prekvapivé i za zdanlivého bezvétii se totiz drobné struktury stromt@ pohybuji, ¢imz
vznikaji chyby vrekonstrukci. Déle je fotogrammetrie velice nachylnd na kvalitu
sbiranych dat, jejichZ sbér mize byt proto pomérné ¢asové narocny a nezarucujici
kvalitni vystupy. Z tohoto diivodu je pro velké mnozstvi lesnickych aplikaci vhodné;jsi
pouzit metody laserového skenovani, uvadéné v dalsich dvou prezentovanych studiich.

Celé znéni studie ,Discovering Tree Architecture: A Comparison of the Performance
of 3D Digitizing and Close-Range Photogrammetry®, publikované v zurnalu MDPI
Remote Sensing, v roce 2025, se nachazi nize:
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Abstract: Accurate measurement of tree architecture is vital for understanding forest dy-
namics and supporting effective forest management. This study evaluates close-range
photogrammetry (CRP) using TreeQSM (v2.4.1) software, reconstructing 3D tree structures
in both deciduous and coniferous species and comparing its performance to the Fastrak 3D
digitizing method. CRP proved less labor-intensive and effective for estimating parameters
like tree height, stem diameter, and volume of thicker branches in small trees. However, it
struggled with capturing intricate structures, overestimating volumetric values and under-
estimating branch lengths and counts. Mean relative root mean square errors for height,
diameter at 0.3 m height, volume, and branch count were 34.19%, 69.9%, 107.87%, and
142.03%, respectively. These discrepancies stem from challenges in reconstructing moving
objects and filtering non-woody elements. While CRP shows potential as a complementary
method, further advancements are necessary to improve 3D tree model reconstruction,
emphasizing the need for ongoing research in this domain.

Keywords: Fastrak Polhemus; close-range photogrammetry; crown architecture; 3D reconstruction;
tree morphology

1. Introduction

Measuring forest attributes using laser scanning, unpiloted aerial vehicles, and other
remote sensing techniques has recently become a trend. These methods allow researchers
to detect, for example, dead trees, bark beetle infestations, or to perform forest inventory
on large scales in a very short time [1]. However, to understand the forest as a whole
superorganism, it is essential to understand each tree and its individual architecture [2].
To accurately assess tree growth, it is possible to understand and define growth as the
net production of foliage, the increment in branch thickness or length, and the export of
photosynthates to the trunk. Growth is understood as a result of five interacting processes:
leaf development, branching, the production of new woody tissue, branch elongation, and
gradual dieback [3]. The morphology of tree branches can be described by the spatial
distribution of branch segments or the curvature of the entire branch profile under its own
weight, and these processes together create the tree’s architecture, where the partitioning of
biomass between branch growth and export to the trunk is controlled by the phenology of
shoot (branch) growth [4]. One of the new approaches to measuring three-dimensional tree
architecture at the branch level is the use of a 3D digitizer (3SPACE FASTRAK, Polhemus
(Company: NEUROSPEC AG, Stans, Switzerland Version: 1.0)) in combination with custom
DiplAmi software for data control and acquisition [5]. This method was successfully
applied by Sinoquet and Rivet for the architectural description of young walnut trees with
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satisfactory visual comparisons to photographs [6]. Here, the authors investigated the
relationship between topological and geometric variables in individual trees. The study
found a correlation mainly with the characteristics of the parent shoot from the previous
year, though it focused on adult walnut trees using 3D digitization technology rather than
smaller plants [6]. The digitization of smaller plants has been addressed in several other
studies, which generally concluded that 3D models can reveal differences in structure and
development between individuals under varying environmental conditions [7,8]. The data
can provide important information on branch morphology, the spatial distribution of leaf
area, and fruits, which is consistent with previously obtained results in other studies [9].
In 2005, research by Cardillo (2005) [10] focused on the response of cork oak seedlings
to a light gradient during their first growing season. The seedlings were grown with
different mesh filters and watered to full soil capacity. The response to different light
levels was assessed in terms of morphology and growth, measuring heights, diameters,
photosynthetic apparatus dimensions, and biomass both above and below ground. The
greatest morphological plasticity was observed in leaf size, which increased to 5.8 cm? in
shade compared to 1.8 cm? in full sunlight [11].

A key trend in current research is tracking carbon fixation by individual trees, as this
measurement accurately captures not only crown growth but also its spatial distribution.
This can reveal whether more carbon is sequestered on the southern or northern side of the
tree and whether the tree stores more carbon in its canopy at a younger or older age. To
obtain such data, describing the architecture of a tree at a fine level, several methods may
be considered appropriate [12,13].

In the proposed study, the Fastrak Polhemus Magnetic Digitizer and digital pho-
togrammetry will be used. Both methods can provide the 3D structure of trees at a certain
accuracy level, which will further be evaluated [14].

The Magnetic Digitizer directly provides 3D coordinates of manually detected fea-
tures, making it a very precise measuring tool [15]. The manufacturer of the Fastrak reports
an error of 0.7 cm for XYZ positions depending on the distance from the magnetic field
source [16]. However, the accuracy of the measurement is primarily affected by the method-
ology and errors caused during manipulation with the device. The errors that may cause
larger errors in the outcome appear due to human error, unwanted metal objects in the
vicinity of the Fastrak Digitizer or weather conditions, mainly rain or wind.

Compared to the Fastrak Digitizer, close-range photogrammetry will be evaluated as
an alternative to the method. Photogrammetry has emerged as a compelling alternative
for reconstructing tree structures [17]. By utilizing stereo photography and algorithms like
Structure from Motion (SfM) and Multi-View Stereo (MVS), photogrammetry leverages
information from one or more 2D images to create virtual 3D point clouds. This technique
allows for the efficient capture of complex scenes or tree architectures, providing precise
measurements of parameters such as diameter at breast height (DBH) and height, often
with accuracy comparable to manual methods [9,18,19]. Furthermore, in comparison to
the Fastrak Digitizer, photogrammetry is generally less influenced by weather conditions,
making it a cost-effective option for faster and larger-scale assessments. However, the
impact of wind-caused movement of the scanned trees is an important obstacle in the
precise close-range photogrammetric reconstruction, as the SfM algorithm expects the
objects to be static. A study by Yun et al. [20] demonstrates how this issue with tree
movement could be handled in the case that LIDAR data are used, highlighting the usage
of wood-leaf classification algorithms, space colonization algorithms and others, leading
to digital models of tree volume and leaf area even in the case of wind-suppressed trees.
However, the algorithm might not be appropriate for the detailed reconstruction of tree
architecture at a fine level, as it was primarily used for another reason in the cited study.
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Also, it needs to be verified in some future work whether the used algorithms are able
to work properly in the case of photogrammetric data, in case the tree point cloud is
too incomplete.

The photogrammetric data in this study are evaluated using TreeQSM software, which
offers automated ways for creating Quantitative Structure Models (QSMs) of trees based on
point clouds and delivers a wide range of tree parameters in a single processing run [21,22].
Originally, the software was intended to be used for LIDAR data evaluation, but in the proposed
study, photogrammetric point clouds of small trees will be used, as it may be possible to
reconstruct small trees well. The QSM creation relies on fitting 3D cylinders into the point
cloud, trying to copy the structure of a tree as well as possible while coping with noise and
gaps in the point cloud [23]. Alternatives to the TreeQSM method include the SimpleTree [24]
and AdQSM [25] programs, which claim to incorporate certain improvements over TreeQSM.
All these software tools employ similar Quantitative Structure Modelling algorithms; however,
TreeQSM is frequently used as a benchmarking method, and its code appears to be actively
maintained. For these reasons, TreeQSM will be utilized in the present study. For estimating
less detailed parameters, such as lengths or angles, skeletonization algorithms may also be
employed [26]. However, compared to TreeQSM, these algorithms provide only a fraction of
the detailed information that TreeQSM is capable of delivering.

The proposed study aims to build upon the above-mentioned findings by comparing
the accuracy of measurements obtained from the Fastrak Polhemus system and close-
range photogrammetry. The strengths and limitations of each method will be investigated,
particularly regarding user-induced errors and external factors like wind and rain that may
affect measurement accuracy, as well as the properties of the scanned features, namely
small trees.

The results of our study could enhance the existing knowledge of forest ecosystem
dynamics and architecture, providing valuable insights for future research and detailed
tree reconstruction practices. By emphasizing the potential of both photogrammetry and
the Fastrak Polhemus system, we aim to contribute to the development of more efficient
and precise methodologies for analyzing tree architecture.

2. Materials and Methods
2.1. Study Area

The study area, an ornamental garden called “Libosad”, is located in the “Suchdol”
region of Prague city in the Czech Republic at coordinates 50°8'25""N, 14°22'25"W, within
the campus of the Czech University of Life Sciences in Prague (Figure 1).
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Figure 1. Research area within the Czech University of Life Sciences.
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2.2. Data Collection

For this study, a total of 30 trees were selected, consisting of 15 deciduous and
15 coniferous species, with a maximum height of approximately 2.5 m. The trees were
selected to represent a variety of growth forms, ranging from simple structures with only a
few main branches to complex structures characterized by numerous small, intertwined
branches or even additional vegetation. This diversity was chosen to ensure that the
algorithms used in the study were tested against a wide range of structural scenarios.

2.2.1. Fastrak Digitizer Data Collection

The selected sample trees were processed using the Fastrak Polhemus magnetic dig-
itizer (NEUROSPEC AG, Stans, Switzerland, software version 1.0) to generate detailed
3D models of the trees. This device is renowned for its precision in capturing the overall
architecture of trees, especially in instances where parts of the tree overlap. The Digitizer
records point positions with a manufacturer-stated accuracy of 0.08 cm and branching
angles with a precision of 0.15° across the X, Y, and Z coordinates, making it one of the most
reliable methods for such measurements [16,27]. However, the method may be limited
by the reach of the magnetic field, whose source needs to be less than three meters from
the recorded object, making it hard to collect information about higher spots, although it
is theoretically possible after replacing the magnetic field source. Similarly, the method
requires the operator to touch the object with a stylus. These aspects exclude the practical
and rational use of this method for large trees.

The output models are provided in a Cartesian coordinate system, with the origin
located at the source of the magnetic field. To ensure precise and comprehensive mea-
surements of the crown architecture, it is crucial to position the tree within the magnetic
field generated by a designated generator during the measurement process. The first
measurement is taken at the base of the trunk, followed by a point at the start of the first
branches, capturing a segment or section of the trunk. This process continues sequentially
up to the tree’s apex. The same method is applied to first-order branches, with subsequent
measurements taken for all higher-order branches. In this study, particular focus was
placed on measuring these branches to achieve a detailed and accurate representation of
the tree’s structure (see Figure 2).

| Polhemus
FASTRAK System

Notebook with Software [ charger |
FastrakDigitizer
(b) (9

Figure 2. Fastrak Polhemus usage: (a) thickness measurement, (b) stylus and (c) whole device.

2.2.2. Photogrammetric Data Collection

In order to reconstruct selected trees, smartphone (iPhone 12 Pro or iPhone 14 Pro)
images had to be acquired. Both smartphones were used to acquire 12 Mpx images, which is
possible on iPhone 14 Pro, thanks to pixel binning in its quad-pixel sensor [28]. The imagery
was mostly obtained in the morning times or during cloudy days in winter months, in
leaf-off conditions for the deciduous tree species. The photoshoot times had to be selected
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with consideration of the windy conditions in the study area, as the object’s movement in
the wind causes significant issues with photogrammetric 3D reconstruction later [29]. The
time periods were also chosen to avoid direct sunlight on the target trees. These factors help
to reduce the undesirable effects of sharp lighting, strong shadows, and branch occlusions.

However, despite these precautions, the lighting conditions during data acquisition
were not optimal in some cases, where the photos were taken while a nearby building
cast shadows over the examined trees, simulating diffused light conditions. However, this
was not equivalent to the true diffused light seen on cloudy days. As a result, the optimal
lighting conditions were not achieved in these cases, and the ISO and shutter speed settings
may have been negatively impacted. Although most of the collected JPEG images were
captured at the lowest possible ISO of 32 and a relatively fast shutter speed of around
1/215 s, suggesting generally good lighting during the shoot, some adverse effects may
still have occurred. The process itself was conducted using the LensBuddy (v60) app [30],
which allows the user to preset parameters for sequential imaging.

In the case of this study, the image was taken approximately every second, and the
number of images per tree ranged from 349 to 909, depending on tree size, complexity, and
light conditions.

Before images of every tree were taken, paper markers for scaling and referencing,
exported from Agisoft Metashape software (v2.0.4) [31], had to be placed around each tree,
as depicted in Figure 3. Most of the markers were placed vertically or horizontally on the
ground around a tree, but there were also smaller markers placed on some of the tree’s
branches, especially in cases where multiple tree crowns touched. Afterwards, each tree
was captured in photos while the camera copied a circular trajectory consisting of four or
five circles, depending on the complexity of the examined tree. The first circle provides
information on the general habitus of the tree and the location of the markers, while the
remaining parts of the trajectory aim to get a closer view of the parts of the tree, such as
the bottom, central, and terminal parts of its stem. If possible, closer details were captured
along the main branches or inside the crown.

Figure 3. Paper markers used for photogrammetry in simple and complex conditions.
2.3. Data Analysis
2.3.1. Fastrak Digitizer Tree Reconstruction

To accurately assess the structural characteristics of each branch segment, a specific
mathematical expression was developed to enable the summation of lengths for each
branch and order separately. This detailed approach is crucial for generating precise three-
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dimensional models of tree architecture, which in turn enhances our understanding of tree
health, growth patterns, and responses to environmental changes.
The formula used to calculate the length L of a branch segment is expressed as:

L= Z<\/(x2—x1)2+(yz—y1)2+(22—21)2) M
n=i

In this equation, L represents the total length of the branch, n denotes the number
of segments within the branch, and i corresponds to the rank order of the branch. The
coordinates [x1,y1,z1] and [x2,2,22] define the starting and ending points of each segment.
This formulation enables a comprehensive evaluation of the geometric structure of the
branches, contributing to a deeper understanding of how tree morphology affects light
capture and carbon sequestration.

To further assess the volume of these branch segments, an additional mathematical
expression was employed, which is critical for estimating biomass and assessing structural
integrity. The volume V of each segment is calculated using:

df +dn?
v=Z S e

=z~ 2 * @

Here, V indicates the volume of the segment, with dy representing the diameter of
the initial segment and d, reflecting the diameter of the subsequent segment. Once again,
parameter L denotes the length of the segment. This method provides valuable insights into
the physical dimensions of tree branches, supporting the modelling of canopy structure
and enhancing the accuracy of biomass estimates, particularly through the application of
remote sensing techniques.

By using this approach, researchers can gain a deeper understanding of the relation-
ships between tree structure, light interception, and carbon storage, which is critical for
ecological and environmental studies.

2.3.2. Photogrammetric Tree Reconstruction

The processing of collected images was conducted in Agisoft Metashape software
(v2.0.4) [31] and followed the basic steps, such as marker detection, visual control of
detected markers, camera alignment, its optimization, dense cloud generation, color cali-
bration and dense point cloud filtering.

The settings for camera alignment were set for the highest possible accuracy. Generic
preselection and adaptive camera model fitting were disabled. The Reference preselection
option was set to Estimated. Also, the dense point cloud was created using ultra-high
quality with no filtering. The setting for point confidence calculation was enabled, as point
confidence values are very valuable features for further point cloud editing and filtering.

Filtering of the dense point cloud was necessary, as the original data were excessively
noisy and unsuitable for analysis in their initial form. Therefore, filtering based on point
confidence, color, or shape was performed using CloudCompare software (v2.13.2) [32]. In
most cases, the removal of outlying points or point clusters was successfully done using
the Connected Components function. For evergreen tree species, attempts were made to
remove the organs of the assimilation apparatus from the scans, primarily using HSV color
composition or geometrical features, as described by Hackel et al. [33]. The geometrical
features described in the latter study were also used for the semi-automatic segmentation
of trees from the terrain. In many cases, the shapes of tree branches were clearly incorrect,
with diameters often overestimated. Additionally, some branches may have appeared
multiple times in the scan, likely due to tree movement caused by wind, leading to co-
registration errors. Automated filtering of these points proved to be impossible, so they
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were either slightly filtered using the Connected Components function or left unfiltered for
rationalization of the process. The results of this filtering can be seen in Figure 4.

Figure 4. Unfiltered and filtered CRP point cloud of a small tree.

The filtered dense point clouds were subsequently imported into TreeQSM (v2.4.1)
software, which is utilized in the following steps of the workflow. TreeQSM is capable of
generating Quantitative Structure Models (QSMs) of individual trees based on their point
clouds. The resulting models provide information on diameters, volumes, branch counts,
branch angles, stem taper curves, and various other aspects of tree architecture. For this
study, each tree was evaluated ten times by the program, as the process has stochastic
elements, and outputs can vary even with the same input. Repeating the procedure multiple
times increases the reliability of the final mean values, as recommended by the software’s
authors [21].

2.3.3. Comparison of Both Methods

Statistical evaluation was conducted using R software (v1.0) and Python (v3.10) [34,35].
Scatterplots were used to visually represent the data obtained by both methods, as shown
in the results section. A more detailed analysis was conducted using paired t-tests and
effect size (Cohen’s d) computations. The paired t-test was applied to paired observations
of each parameter obtained from photogrammetry and Fastrak measurements. While this
test determines whether any observed discrepancies are statistically significant, it does not
primarily quantify the magnitude of these discrepancies. Therefore, Cohen’s d was also
calculated to assess the effect size and provide a measure of the practical significance of
the differences.

These graphs and statistical parameters effectively highlight the differences between
the two measurement methods. The RMSE and rRMSE were calculated for each parameter,
including height, DBH, volume, and total branch count, to assess accuracy. To ensure
transparency, all results were analyzed without the removal of extreme values.

The structural comparison of the two types of 3D models was conducted using the
Cloud-to-Cloud Distance function in CloudCompare software (v2.13.2) [26], following the
methodology used by Jafari et al. [36].

3. Results

In the final analysis, data obtained through close-range photogrammetry (CRP) were
compared with those from the precise Fastrak Digitizer method. A visual representation
can be seen in Figure 5. Table 1 presents the modelling accuracies for several parameters
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of deciduous and coniferous trees, evaluated using mean absolute error (MAE) and rela-
tive root mean square error (rRMSE) values. The results highlight notable differences in
photogrammetric performance between the two tree types, capturing the limitations of the
photogrammetric workflow.

Figure 5. Visual tree structure comparison. Red color: CRP point cloud. Yellow color: Fastrak 3D model.

Table 1. Mean absolute error and rRMSE of CRP in the estimation of studied parameters.

Deciduous Trees Coniferous Trees

MAE rRMSE [%] MAE rRMSE [%]
Height [m] 0.48 34.19 0.49 37.19
Do3 [em] 1.38 87.00 1.79 58.81
Length [m] 21.56 123.47 32.79 102.27
Volume [dm?] 1158 7391 20.07 115.39
Nymbex of 109.18 145.87 147.27 131.40
branches

Tree height for both deciduous and coniferous trees was measured with similar error
levels despite photogrammetric structure-from-motion (SfM) reconstructions encountering
challenges with the finer, more mobile structures of deciduous trees compared to conifers.
This was surprising, as the quality of deciduous-tree point clouds was subjectively worse
than the quality of conifer-tree point clouds. The mean absolute errors for stem diameter
at 0.3 m above ground reflect issues related to stem occlusion from dense needle-covered
branches, which also contributes to inaccuracies in the estimated volume, total length
of woody components, and the number of branches. These parameters appear to be
reconstructed with higher accuracy for deciduous trees in leaf-off conditions.

The proposed study examined not only the parameters shown in Table 1 but also more
detailed parameters related to the finer structures of tree architecture. General results for these
additional parameters are presented in Table 2. As indicated, certain parameters, particularly
those involving small structures, were not accurately reconstructed using photogrammetry.

77



Remote Sens. 2025, 17, 202 9of 18

Table 2. Results of paired t-tests (p-value) and the measure of effect size for deciduous, coniferous and all
species together. Bold p-values refer to the non-rejected null hypothesis. Single-underlined effect size values
refer to underestimation (d < —0.2), and double-underlined values refer to overestimation (d > 0.2).

Paired t-Test (p-Value) Effect Size (Cohen’s d)
Parameter
All Deciduous Coniferous All Deciduous Coniferous
Dos 0.332 0.234 0.853 0.180 0.321 0.049
H max 0.756 0.754 0.511 —0.057 0.083 —0.174
L branches 0.395 0.043 0.494 0.158 0.574 —0.181
L total 0.741 0.369 0.003 0.065 0.539 —0.234
L branch. 1st 0.187 0.511 0.049 —0.246 —0.555
L branch. 2nd 0.828 0.105 0.581 0.040 —0.146
L branch. 3rd 0.002 0.015 0.048 0.629 0.558
L branch. 4th 0.652 0.032 0.386 0.083 —0.231
L trunk 0.028 0.369 0.003 —1.090 —11.369
N branch. 1st 0.000 0.050 0.001 —0.780 —1.068
N branch. 2nd 0.180 0.546 0.148 —0.251 —0.396
N branch. 3rd 0.004 0.002 0.312 0.565 0.271
N branch. 4th 0.000 0.007 0.004 0.771 0.877
N branch. total 0.826 0.011 0.316 0.040 —0.268
V branch. 1st 0.018 0.030 0.270 —0.458 —0.296
V branch. 2nd 0.103 0.846 0.106 0.308 0.446
V branch. 3rd 0.004 0.075 0.025 0.566 0.649
V branch. 4th 0.007 0.102 0.008 0.536 0.806
V branches 0.423 0.307 0.278 0.148 0.291
V total 0.448 0.021 0.956 —0.141 0.015

3.1. Comparison of Tree Heights
Estimates of tree height using the Fastrak system and photogrammetry were compared
for deciduous and coniferous trees separately (Figure 6).

N

.‘\

Height by Fastrak [m]
: »
.

@ Declouous
A Coniterous

Eg 30 s a0
Height by CRP [m]

Figure 6. Comparison of tree heights measured by Fastrak and CRP on two tree types.
For all species studied, photogrammetry demonstrated success in estimating tree
heights comparable to those measured by the Fastrak method. However, the effect size

analysis in Table 2 reveals a slight underestimation of coniferous tree heights, which is also
evident in the basic statistical summary of the selected trees shown in Table 3.

Table 3. Description of tree heights observed by Fastrak and CRP methods.

Deciduous Trees Coniferous Trees
CRP Fastrak CRP Fastrak
Mean height 1.84 1.79 1.85 2.08
Standard deviation 0.63 0.51 0.71 0.69
Minimum height 0.82 0.80 0.83 112
Maximum height 2.75 2.59. 3.26 3.61
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3.2. Comparison of Dy3

Estimates of tree diameter at 0.3 m above ground obtained through the Fastrak system
and close-range photogrammetry (CRP) were compared for both deciduous and coniferous
trees, as shown in Figure 7. Consistent with the findings presented in Table 2, CRP successfully
estimated diameters at this height; however, the scatterplot in Figure 7 reveals some visible
discrepancies between the two methods. For deciduous trees, the effect size (d = 0.32) and
sample means (Lcrp = 3.59 cm; pFastrak = 2.82 cm) suggest a tendency for CRP to slightly
overestimate diameter compared to the Fastrak system. Despite this observed difference, the
paired t-test (p = 0.23) indicates that the difference is not statistically significant.

Diameter by Fastrak in D 0.3 m [cm)

Diameter by CRPin D 0.3 m [cm]

Figure 7. Comparison of stem diameters at 0.3 m height (Dg3) measured by Fastrak and CRP.

Additionally, the basic descriptive statistics for the sample are presented in Table 4,
providing a broader context for understanding the sample variation and distribution of
measurements across the observed trees.

Table 4. Overall description of the diameter at 0.3 m height observed by both compared methods.

Deciduous Trees Coniferous Trees
CRP Fastrak CRP Fastrak
Mean D3 3.59 2.82 448 4.35
Standard deviation 2.44 129 2.28 2.38
Minimum Dg3 0.76 1.00 1.59 2.00
Maximum Dgs 9.06 5.50 8.27 12.00

3.3. Comparison of Tree Volume

Figure 8 provides a comparison of the estimated volumes for deciduous and coniferous
trees. The CRP method demonstrated a high level of accuracy in estimating the volume
of coniferous trees, with a p-value of 0.96, supporting the null hypothesis that there is
no significant difference between CRP and the reference measurements. However, for
deciduous trees, the null hypothesis was rejected (p = 0.021), indicating a significant
underestimation by the CRP method, with an effect size of —0.67. This suggests a moderate
discrepancy in the volumetric assessment of deciduous trees when using photogrammetry.

These results pertain to the overall volume estimation of all woody components. A
more detailed analysis focusing on the thinner, more intricate structures of the trees will be
discussed in the subsequent sections, providing further insights into the limitations and
accuracy of the CRP method for these finer architectural details.
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Tree Volume by Fastrak [dm’]

@ Desicuoss
A Coniterous

E C) 7

E W
Tree Volume by CRP [dm’]

Figure 8. Comparison of total tree volumes measured by Fastrak and CRP.

3.4. The Detailed Volume of Each Branching Order Comparison

The volumetric estimates of branches across hierarchical levels (1st to 4th order) offer
valuable insights into the accuracy of photogrammetry when applied to complex tree
structures. Notably, for the thickest branches (1st order), the CRP method demonstrated
accurate reconstruction primarily for coniferous trees (p = 0.27), while overall, the volumes
of 1st-order branches tended to be underestimated, as indicated by the negative effect size
values and as illustrated in Figure 9a.
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Figure 9. Difference in branch volume based on branching order. (a) shows the case of 1st branching

order, (b) depicts 2nd branching order, (c) shows the 3rd order and (d) views the case of 4th branching
order. Positive difference values suggest overestimation of the CRP method.

2 3 4 5 6
Volume of branches by CRP

Conversely, an overestimation trend was observed for both 3rd- and 4th-order
branches. However, a statistically significant similarity between CRP and Fastrak esti-
mates was only achieved for deciduous trees at these branching levels. This disparity may
be attributed to the challenges of detecting and filtering coniferous branches in point clouds,
where dense foliage and needle structures complicate accurate volume estimation.
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For 2nd-order branches, the CRP method performed consistently well across both tree
types, with p-values exceeding the significance threshold of & = 0.05, suggesting that these
mid-sized branches were reconstructed accurately by photogrammetry.

These results may also be influenced by inaccuracies in branch lengths and counts, as
detailed in Table 2, which will be discussed further in the next section.

3.5. Comparison of the Length and the Number of Branches

The error in branch volume estimation could, among other factors, be influenced by
the number of detected branches and their actual lengths. Similar to the volume results,
these parameters were assessed through hypothesis testing using paired f-tests.

Encouragingly, for 2nd-order branches, the CRP method yielded satisfactory results,
successfully detecting branches whose counts and lengths closely matched those measured
by the Fastrak method. However, for other branching orders, the results showed statistical
significance in some instances, though no consistent pattern emerged across either decidu-
ous or coniferous trees. A detailed summary of the paired t-test outcomes is provided in
Table 2, whereas the comparison of the observed values is provided in Figures 10 and 11.
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Figure 10. Comparison of the estimated total numbers of branches.
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Figure 11. Difference in branch counts based on branching order. (a) shows the case of 1st branching
order, (b) depicts 2nd branching order, (c) shows the 3rd order and (d) views the case of 4th branching
order. Positive difference values suggest an overestimation of the CRP method.
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Effect size analysis indicates that the CRP method generally overestimates both the
number of detected branches and their lengths. This tendency toward overestimation high-
lights potential limitations in CRP accuracy, particularly as branch complexity increases.

3.6. Comparative Analysis of Structural Variability in 3D Models

Visual comparison of the produced models lacks the objectivity needed to assess model
accuracy accurately. Human perception readily distinguishes tree parts, often leading to an
overestimation of similarity among 3D models (see Figure 5). To provide a more objective
analysis, a cloud-to-cloud distance comparison was conducted, yielding insights into the
structural variability and complexity of deciduous and coniferous trees. These findings
have valuable implications for ecological modelling and structural analysis of tree crowns.

A comparative analysis of 3D models generated for deciduous and coniferous trees
revealed significant differences in spatial parameters between models produced by the
Fastrak Digitizer and photogrammetric methods. For deciduous trees (Table 5), maximum
distances of points to the reference model ranged from 1.54 cm to 79.86 cm, with average
point distances spanning 1.43 to 21.26 cm. In contrast, coniferous trees showed greater
variability, with maximum distances reaching up to 115.23 cm and average distances from
5.30 to 25.23 ¢m, indicating a more complex crown structure that poses challenges in
reconstruction. Standard deviations for coniferous trees (Table 6) ranged from 1.73 to 22.55,
suggesting a larger dispersion in point distances. These values indicate how much the
parameters of branch length, tree height and others were influenced by the limitations of
close-range photogrammetry, leading to over- or underestimation of volume calculations.

Table 5. Comparison of cloud-to-cloud distances in centimeters between 3D models of deciduous
trees. The maximal error indicates the maximal possible systematical error.

Deciduous
" " . Standard .
No. Maximal Distance ~ Average Distance 3 Maximal Error
Deviation
1 36.32 3.02 3.67 0.84
2 22.10 143 2.25 0.82
3 28.46 3.03 3.34 0.83
4 16.10 2.58 1.99 0.93
5 78.40 21.26 15.13 0.76
6 59.63 11.62 12.12 0.89
7 79.86 11.98 12.56 0.85
8 13.41 2.09 1.44 0.73
9 2230 4.93 3.78 0.43
10 1.54 151 1.61 0.27
11 14.07 220 221 0.42
12 14.24 1.79 1.64 0.62
13 3298 5.36 4.79 0.45
14 35.96 6.45 5.40 0.69
15 28.95 499 3.94 0.94

Table 6. Comparison of cloud-to-cloud distances in centimeters between 3D models of coniferous
trees. The maximal error indicates the maximal possible systematical error.

Coniferous
No. Maximal Distance  Average Distance Standard Deviation Maximal Error
1 28.35 5.30 3.82 0.85
2 16.26 3.68 2.59 1.06
3 3220 6.77 4.23 0.89
4 13.29 2.58 173 0.65
5 49.51 1044 6.82 0.90
6 55.68 12.88 9.56 0.69
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Table 6. Cont.
Coniferous
No. Maximal Distance  Average Distance Standard Deviation Maximal Error
7 115:23 2523 22.55 1.10
8 59.66 10.21 9.42 0.99
9 14.71 3.87 2.66 0.32
10 21.36 523 3.40 0.62
11 60.67 19.03 12.15 0.59
12 46.59 10.21 7.43 0.92
13 4292 8.23 72 0.58
14 38.36 747 6.11 0.38
15 34.60 6.99 6.15 0.55

4. Discussion

Nowadays, studying the architecture of woody plants, especially in young specimens,
is becoming increasingly important because of the desire to understand tree growth [37].
This raises the question of whether photogrammetry can achieve the same level of accu-
racy as Fastrak Polhemus technology. While Fastrak Polhemus is known for its minimal
measurement errors when assessing young trees, its time requirements in the field may
not always be optimal [38,39] and the average time required during this study was approx-
imately 45 min for field data collection and 30 min for data evaluation per 1-m-tall tree.
However, the time consumption increases with the complexity of the crown or branching
structure. Consequently, close-range photogrammetry emerges as a promising alternative.
Its use demonstrated a significant reduction in human time consumption. Image acqui-
sition requires approximately five minutes, and manual processing of the point cloud in
the computer circa 20 min. However, the computer processing time for photogrammetric
reconstruction could extend up to three hours, in complex scenes, while the Quantitative
Structure Modelling (QSM) calculation requires about 15 min of time, depending on the
number of iterations performed in order to improve the statistical reliability of the final
QSM. The image-processing time could however be further reduced by implementing
novel algorithms as improved Harris+SURF described by Zhu et al. [40].

The analysis focused on the results of paired t-tests and effect size values for four key
measurement accuracy indicators: tree height, Doz (Diameter at 0.3 m height), volume, and
number of branches.

Height and tree stem diameter measurements showed the greatest consistency be-
tween the two methods, while the largest discrepancies were observed in the estimation
of individual branching order parameters, such as volume or count of branches. These
significant errors likely appeared due to branch occlusion caused by the tree’s assimilation
apparatus, making it challenging to capture accurate photographs of the thin tree structures
and inner parts of the tree crown. Additionally, the removal of assimilation organs in the
3D models led to the loss of some woody parts, as illustrated in Figure 12 or Figure 4. The
complexity of effectively removing surrounding cloud points, especially in conifers, further
impacts measurement accuracy. Deciduous trees present challenges, too, as their greater
movement in wind conditions complicates the photogrammetric reconstruction of top
shoots. This movement not only decreases confidence in the 3D point cloud data but also
generates substantial noise, leading to the loss of thin branches during filtering due to their
already low reconstruction confidence. These and some more factors are also mentioned in
other studies and are a common issue with photogrammetry [21,34,35], and the impacts
were numerically summarized in the comparative analysis of the proposed study. The
presence of persistent noise introduces errors in branch count and length estimations, as the
TreeQSM program interprets this noise as actual data [41]. Tt is very likely that the reduction
in these impacts would dramatically improve the performance of the photogrammetry.
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Practically, in outdoor conditions of a forest or park, these influences might only be reduced
by the acquisition of a larger number of images in better light conditions, especially from
angles revealing the inner architecture of a tree crown. Nonetheless, a proper workflow
needs to be used to successfully use the Structure-from-Motion algorithm for point cloud
creation. Some co-registration issues of the photogrammetric point clouds might be success-
fully solved by using other algorithms, less prone to errors due to object movement, such
as Non-Rigid Structure from Motion (NRSfM) or Optical Flow [42,43]. These algorithms
have not yet been tested for estimating parameters in forest environments or individual
tree measurements.

Figure 12. Visualization of Fastrak (left) and CRP (right) 3D models for coniferous (a,b) and deciduous
trees (c,d).

Studies comparing remote sensing methods for tree architecture reconstruction are
rare nowadays, and compared to the few available studies, e.g., Miller et al., the relative
performance can be observed. Miller et al. manually measured 30 potted trees and com-
pared the data to photogrammetric 3D reconstructions. The 3D model dimensions were
also measured manually using Agisoft PhotoScan (v2.0.4.) software. Using these methods,
height was measured with an rRMSE of 3.74%, DBH with an rRMSE of 9.6%, branch volume
with an rRMSE of 47.53% and total volume with an rRMSE of 18.53% [17]. Very similar
results were also shown in a study by Morgenroth and Gomez [44]. These results show
significantly better performance than those of the proposed study. On the other hand, the
methodology of the two latter studies required a large amount of manual labor, and the
photoshoot conditions were more convenient. In the proposed study, the workflow con-
sisted of automatically performing dimension estimations provided by TreeQSM software,
and the trees were grown naturally in the soil without the possibility of being replaced with
a more appropriate space with less wind and fewer obstacles. The main source of error in
the presented study is likely the fact that during manual measurement of tree dimensions
in a 3D model, a person can accurately estimate where branches begin and end, even in a
very sparse point cloud. In contrast, when using software, this ability is lost, and the result
depends on the density of the point cloud, which is negatively affected by the previously
mentioned phenomena.

Similarly, tiny structures, as in the proposed study, were also examined in a study
by Koeser et al. [45]. This study computed the volume of tree roots and also used CRP
for this purpose. The rRMSE in the estimates was 12.3%, and the results suggested that
photogrammetry is suitable for these purposes.
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Other published studies usually aim to estimate forest inventory attributes of mature trees,
mostly DBH and height of mature trees. Comparing these results with the results achieved
in the proposed study should justify the methods used, even though the results indicated
improvements are necessary. In a study by Surovy et al. [27], data from 20 mature trees
were evaluated using CRP, and the final RMSE for the trunk DBH was 1.87 cm. Similarly,
Mokros et al. [18] achieved DBH estimates with an rRMSE of less than 2%.

In contrast, our study found an RMSE for the diameter of deciduous trees at
1.38 cm and coniferous trees at 1.79 cm, corresponding to relative errors of 87% and
58.8%, respectively. Although these results are worse than those in the mentioned studies, it
is important to consider that our study focused on small trees, with often strongly occluded
stems and more complex architecture, and the overall task was more demanding. A view
of the results achieved on small trees in contrast to mature trees implies that the larger the
objects are, the better the obtained results.

Ground-based photogrammetry is potentially highly accurate for measuring trunk
diameter and tree height. However, this method tends to be less precise for volume mea-
surements. The type of tree also plays a significant role in measurement accuracy. The
results of this study indicate that the reconstruction of deciduous and coniferous trees en-
counters distinct challenges, each specific to the tree type. For deciduous trees, lengths and
volumes were estimated more accurately, likely due to their simpler branching patterns and
crown structure. In contrast, coniferous trees, despite their more complex branching and
denser crowns, exhibited higher accuracy in branch count estimates using photogrammetry.
However, these structural complexities in conifers made it more challenging to accurately
measure other parameters, such as volume.

It is strongly advised to pay attention to the aspects that decrease the quality of
photogrammetry, as these are likely the main issues in this topic, as mentioned earlier in
the text. Possibly, different scanning methods, like TLS or MLS, with sufficient resolution
may be appropriate for this task but have not been sufficiently tested in this field so far [20].

Authors of the proposed study believe that these results may bring more awareness to
the topic of tree architecture reconstruction, and further research on the 3D data analysis
will be performed with a particular aim on easy-to-use and more automated processing.

5. Conclusions

The comparison of close-range photogrammetry (CRP) with the precise Fastrak digi-
tizing method for measuring various tree parameters reveals that photogrammetry faces
notable challenges in accurately estimating parameters of smaller, intricate tree structures.
These challenges likely stem from difficulties in photogrammetrically reconstructing mov-
ing objects and effectively filtering out non-woody elements. Fastrak has proven to be a
reliable tool for complex and detailed measurements, while CRP, despite its limitations,
has demonstrated success in reconstructing certain parameters for small trees, such as tree
height, stem diameter, and the length and volume of thicker branches.

Photogrammetry shows a tendency to overestimate volumetric values while generally
underestimating branch lengths and counts, particularly for coniferous trees. The overall
mean relative root mean square errors (rRMSEs) observed for height, diameter of stem
(Dg3), volume, and branch count were 34.19%, 69.9%, 107.87%, and 142.03%, respectively.
These findings suggest that current photogrammetry-based modelling methods for trees
lack precision in certain areas, highlighting the need for further algorithmic improvements
to enhance 3D model reconstruction and estimation accuracy.

As a result, Fastrak remains the preferred method for detailed and highly accurate
tree parameter measurements, especially where fine structural details are essential.
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C) Vyuziti low-cost skenert

Laserové skenovani je skvélou alternativou fotogrammetrie. Jeho pribéh je podstatné
intuitivnéjsi, spolehlivéjsi, pti velkoplosnych aplikacich i detailnéjsi, pricemz ¢asova
naroc¢nost je podobna ¢&i spise dokonce nizsi nez pti sbéru fotografii. Casto uvadénou
nevyhodou TLS a MLS je ale velmi vysoka porizovaci cena skeneri. Z tohoto diivodu
byla provedena studie nazvana ,Obtaining the Highest Quality from a Low-Cost
Mobile Scanner: A Comparison of Several Pipelines with a New Scanning Device®.
Jejim cilem bylo porovnani étyr laserovych skenerti, z nichz dva pochézi od prednich
vyrobcil téchto zarizeni (TLS— Trimble TX8 a MLS— GeoSLAM ZEB Horizon) a dva
jsou levné€jsimi alternativami (MLS— mapry LA0o3 a MLS— iPhone 14 Pro). Skenovani
se vSemi zafizenimi probihalo ze stejné trajektorie, pficemz TLS Trimble TX8 byl
pouzivan ze stanovisek, nachazejicich se na téze trajektorii.

Porovnani skenert bylo provedeno jednak pomoci plo$né pokryvnosti, jednak pomoci
vysledkit odhadu DBH a poctu detekovanych stromti. Posledni dvé vlastnosti byly
vypofteny analyzou bodovych mracen za vyuziti péti rozdilnych algoritmi,
tzv. ,pipelines“. Z nich ¢tyfi programy zpracovavaji bodové mra¢no automaticky a
jedna metoda se zaklddd na rucni segmentaci kment. Vysledky zpracovani se
porovnavaly s idaji z manuilniho méreni lesa primérkovanim naplno. Tloustkova
struktura zkoumaného lesa byla pomérné rozmanita, s velmi bohatym zmlazenim
dubu éerveného (Quercus rubra). Rozpéti mérenych vycetnich tlousték tak saha od 4
cm do 68 cm, coz klade vysoké naroky na presnost skenert i softwarti pri detekci
stromi.

Vysledky komparativni analyzy parametrt skent dokazaly, ze levné skenery zachycuji
mensi izemi a se znatelné nizsi hustotou bodii na metr ¢tvere¢ni nez skenery prednich
znacek. To se samoziejmé promitlo i do vysledkt uréeni DBH a detekce stromd.

Ctyfi automatizované algoritmy, které byly pro zminény tikol pouzity, se svymi
vysledky navzajem vyrazné lisily, a to i v pfipadé, ze analyzovaly totéz bodové mracno.
Z automatickych analyz bylo nejhorsich vysledkii dosazeno skenovanim na iPhone
14 Pro. To je zptisobeno tim, Ze dosah skeneru je velmi kratky v porovnani s ostatnimi
zafizenimi. V nejlepsim pripadé se tak podarilo detekovat pouze okolo 20 % jedinct a
priameérna absolutni chyba (MAE; ,Mean Absolute Error“) urceni DBH byla 9.5 cm.
Hlavni porovnavany low-cost skener snazvem mapry LLAo3 dokazal v nejlepsich
pripadech poskytnout informace asi o 77 % jedinci a to s chybou MAE 3.6 cm.
V porovnani s TLS Trimble TX8 a MLS GeoSLAM ZEB Horizon jsou tyto vysledky
pomérné slabé, nebot uvedena zarizeni byla v nejlepsich pripadech schopna detekovat
taktka 99 % jedincii s chybou MAE pod 1 cm. Nejlepsi vysledky analyzy byly
konzistentné ziskavany algoritmem SAMICE (,Search And Measure In Complex
Environment®), ktery svymi vystupy v nékolika pripadech dokonce predcil manualni
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metodu zpracovani bodového mracna. Ta slouzila jako etalon toho, jak presné vysledky
lze z vytvorenych bodovych mracen ziskat.

Na zakladé vysledkt uvedenych vyse, a detailn€ rozvedenych piimo v priloZené studii,
byly odvozeny zavéry, ze vyuziti skeneru mapry LA03 je zfejmé€ vhodné pouze ke
skenovani mensich ploch. Ty by svou rozlohou nemély prresahovat cca 15 art. Jednak
je to kvili omezenému dosahu jeho LiDAR senzoru, jednak kvili chybam ve SLAM,
vznikajicim zfejmé v diisledku skenovani velkého tizemi. Tento maloplo$ny pristup by
pravdépodobné mohl byt velmi efektivni pti vyuZiti vétsiho poctu skenertt mapry LA0o3
zaroven. ProtoZe je cena skeneru asi 10-krat niz$§i nez cena MLS FARO Orbis
(soucasného naslednika skeneru GeoSLAM ZEB Horizon), provadéni skenovani na
vice mistech zaroven by mohlo vést k efektivnimu sbéru dat. Tato hypotéza si vSak
zakladd na nepotvrzeném predpokladu, Ze by skenovani malych ploch nevedlo
k chybam ve SLAM a podatilo by se rekonstruovat vertikalni strukturu v podobné mire,
jako to dokazi predni MLS skenery. Proto je potieba tuto problematiku dale provérit
v dalSich védeckych pracich.

Vyse popisovany védecky clanek je v celém znéni prilozen zde:
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Abstract

The accurate measurement of the tree diameter is vital for forest inventories, urban tree
quality assessments, the management of roadside and railway vegetation, and various
other applications. It also plays a crucial role in evaluating tree growth dynamics, which
are closely linked to tree health, structural stability, and vulnerability. Although a range of
devices and methodologies are currently under investigation, the widespread adoption
of laser scanners remains constrained by their high cost. This study therefore aimed to
compare high-end laser scanners (Trimble TX8 and GeoSLAM ZEB Horizon) with cost-
effective alternatives, represented by the Apple iPhone 14 Pro and the LA03 scanner
developed by mapry Co., Ltd. (Tamba, Japan). It further sought to evaluate the feasibility
of employing these more affordable devices, even for small-scale forest owners or managers.
Given the growing availability of 3D-based forest inventory algorithms, a selection of such
processing pipelines was used to assess the practical potential of the scanning devices. The
tested low-cost device produced moderate results, achieving a tree detection rate of up to
78% and a relative root mean square error (rRMSE) of 19.7% in diameter at breast height
(DBH) estimation. However, performance varied depending on the algorithms applied.
In contrast, the high-end mobile laser scanning (MLS) and terrestrial laser scanning (TLS)
systems outperformed the low-cost alternative across all metrics, with tree detection rates
reaching up to 99% and DBH estimation rRMSEs as low as 5%. Nevertheless, the low-cost
device may still be suitable for scanning small sample plots at a reduced cost and could
potentially be deployed in larger quantities to support broader forest inventory initiatives.

Keywords: low-cost LIDAR; tree stem; forest structure; diameter at breast height (DBH)

1. Introduction

The mapping and monitoring of trees on a global scale are becoming increasingly
critical, particularly in light of the growing need to address climate change and rapid
ecosystem transformations. This heightened awareness has catalysed the development of
innovative strategies, such as climate-smart forestry [1]. In this context, managed forests
are expected to become more resilient to climate change by adopting more structured
and diverse compositions. However, these changes present new challenges for forest
inventories, which must adapt to increasingly complex forest structures.
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The integration of advanced technologies into forest inventory practices is thus
essential—not only due to their growing availability but also because of their capacity to
enhance efficiency, improve accuracy, and facilitate more frequent and extensive data acqui-
sition [2]. At present, national forest inventories (NFIs) serve as the primary mechanism for
the monitoring of forests, typically employing statistical sampling frameworks [3]. NFIs
generate substantial datasets that are indispensable for policymaking and forest manage-
ment at national and broader scales [4,5]. However, these inventories suffer from limited
spatial coverage relative to the total forested area. Standard NFI protocols employ grid
sampling at 1 x 1 km or, in some instances, 2 x 2 km intervals, with each plot representing
between 0.05 and 0.2 hectares. Consequently, NFIs cover less than one per cent of the total
forest area. Remote sensing technologies offer a promising solution to this limitation by sig-
nificantly expanding the spatial extent of forest monitoring. As a result, current research is
increasingly focused on developing cost-effective and operationally viable remote sensing
methodologies. For instance, Ceriiava et al. [6] demonstrated the feasibility of mounting
mobile LiDAR scanners on forest tractors, enabling efficient scanning along forest roads
and skidding trails. Similarly, wearable scanning devices have been recognised as practical
tools for the collection of data over broader areas with minimal logistical constraints [7,8].

Among the tree attributes that are commonly assessed, the most fundamental include
the diameter at breast height (DBH), tree height, tree volume, and species. These parame-
ters form the basis for the estimation of additional characteristics through the application
of allometric models [9] or other methods. The DBH, measured at 1.3 m above ground
level, is widely used due to its ease of acquisition and its reduced susceptibility to variation
caused by root flare [10]. While calliper-based DBH measurement is technically straight-
forward, it is labour-intensive and time-consuming. Moreover, this method captures only
the partial stem geometry, introducing a risk of measurement bias—an issue noted by
Shangyang et al. [11]. Similarly, tree height measurements in traditional forestry practices
are frequently hampered by visual obstructions in dense, closed-canopy stands. This pa-
rameter, although critical, is often subject to significant errors due to limited visibility and
operator subjectivity [12]. In contrast, other tree parameters, such as the crown architecture
and volume, are generally more challenging to quantify in the field. As a result, most
well-established allometric models primarily rely on the DBH and tree height as key input
variables [13,14]. Over time, various tools have been developed to improve the speed,
precision, and cost-effectiveness of DBH measurement, ranging from traditional callipers
to modern LiDAR-based systems [3,4]. Over the past two decades, significant progress has
been made in the application of ground-based remote sensing technologies, particularly
those employing laser scanning (LiDAR) and photogrammetric techniques. Among these,
LiDAR has demonstrated notable operational potential for forest inventory purposes [15].
The introduction of close-range laser scanning devices has led to new possibilities for
forestry measurements, contributing to both forest inventory enhancement [16] and forest
ecology research [17]. Nonetheless, the effective operational integration of these devices
necessitates further research to establish practical workflows and tools tailored to routine
use in forestry applications [15].

Terrestrial laser scanners (TLS) were among the first close-range devices adapted for
forest measurement. These instruments typically offer high precision but are limited by their
requirement for stationary operation during scanning. This constraint leads to occlusions—
particularly behind tree stems—that complicate data processing and interpretation [18,19].
A common mitigation strategy involves employing a multi-scan approach, whereby data
from multiple vantage points are merged to reduce occlusion. However, this method
significantly increases both the data volume and acquisition time [20].
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Mobile laser scanning (MLS) offers a compelling alternative to TLS. MLS systems
have been extensively studied for forest applications and can be mounted on various
carriers, such as all-terrain vehicles (ATVs) or tractors, or operated in handheld config-
urations [21,22]. When carried by an operator, MLS devices may be either handheld or
backpack-mounted [23,24]. Despite the operational advantages of MLS—particularly its
mobility and reduced occlusion—the high cost of most commercial systems remains a
substantial barrier to widespread adoption. This has prompted growing interest in the
development of low-cost MLS alternatives [18].

One such alternative is smartphone-based laser scanning, particularly using LIiDAR-
equipped iPhones or iPads [25,26]. These devices offer immediate visual feedback, enabling
real-time verification and rescanning if necessary. Additionally, they serve as valuable
educational tools, allowing students to perform and interpret field scans interactively [26].

Studies have demonstrated the potential of these devices for DBH estimation, achiev-
ing root mean square errors (RMSEs) as low as 2.27 cm [23] and up to 4.51 cm [26] in
applications using LiDAR-equipped iPhones. Gollob et al. [27] evaluated five DBH estima-
tion approaches using iPad LIDAR, with the best-performing model yielding an RMSE of
3.13 cm. Similarly, Cakir et al. [23] achieved an RMSE of 1.9 cm in managed forests using
iPad LiDAR, while Mokros et al. reported an RMSE of 3.14 cm [28], and Tatsumi et al.
achieved 2.32 cm [25]. These results are generally considered acceptable for operational
use. However, the primary limitation of this approach lies in its scanning range, which
necessitates close proximity to each tree, raising questions about its efficiency for large-scale
data collection.

Beyond Apple devices, Android smartphones equipped with the ARTree-Watch appli-
cation have also demonstrated promising performance. This application generates point
clouds by fusing RGB imagery with inertial measurement unit (IMU) data, achieving DBH
estimation RMSEs as low as 1.14 cm [29]. Likewise, Hyyppi et al. [30] derived point clouds
from range images using the Microsoft Azure Kinect and Google Tango, attaining DBH
estimation errors of 1.9 cm and 0.73 cm, respectively. Tomastik et al. [31] also reported
RMSEs ranging from 1.61 to 2.10 cm using the Google Tango.

As highlighted in the aforementioned studies, the equipment cost remains one of
the primary constraints to the broader adoption of advanced forest scanning technolo-
gies [32]. Addressing this issue, the present study introduces a new handheld, low-cost
MLS prototype, developed with an estimated production cost of approximately EUR 2000.
This prototype has the potential to be mass-produced, offering an accessible solution for
small-scale forest owners, researchers, and institutions with limited budgets.

This study evaluates the performance of the proposed low-cost MLS device in compari-
son with another affordable alternative—an iPhone LiDAR sensor—and two state-of-the-art
systems: the Trimble TLS and the Geoslam ZEB Horizon handheld MLS. Both are widely
recognised for their precision and reliability but are associated with significantly higher
costs. The comparison focuses on the tree detection capabilities and DBH measurement
accuracy, with results from the other devices included to provide insights into the per-
formance achievable across different cost categories. The prototype is described in detail
in the following sections, including its hardware specifications and operational features.
Furthermore, the study examines the prototype’s performance across various open-source
data processing pipelines to assess the practical value of the resulting point clouds for
forest inventory applications.
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2. Materials and Methods
2.1. Study Area

This study was conducted in a forested area on the outskirts of Prague, Czech Republic,
within the boundaries of the Roztocky hdj-Tiché tdoli nature reserve.

The research plot covers an area of approximately 0.4 hectares and comprises a two-
storey forest structure dominated by Sessile Oak (Quercus petraea) and Northern Red Oak
(Quercus rubra). The lower storey primarily consists of dense regeneration of Northern Red
Oak and Common Hornbeam (Carpinus betulus).

The terrain across the entire plot is flat and easily accessible through many pathways,
which also determined the shape of the sample plot.

The geographical location of the plot, as well as the positions of 236 individual mea-
sured trees, is illustrated in Figure 1.

Legend
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Sources: OpenStreetMap; NaturalEarth (2025)

Figure 1. Testing area map showing actual locations of trees.

2.2. The LiDAR Scanner Prototype

The prototype scanning device, designated as LAO3 (illustrated in Figure 2a), was
developed to provide a compact, cost-effective solution for terrestrial forest data acquisition.
At the core of the system is the Livox MID-360 LiDAR sensor (Livox Technology Company
Ltd., Wan Chai, Hong Kong) [33], which is capable of detecting objects at distances of up to
40 m. The sensor offers a comprehensive 360° horizontal field of view (FoV), accompanied
by a vertical FoV ranging from —7° to 52°, allowing for extensive spatial coverage with
a single pass. This wide-angle sensing capability is particularly advantageous for forest
applications, where complex canopy structures and understory vegetation necessitate
broad and detailed scanning perspectives.
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@) (b)
Figure 2. The mapry scanning device LA03 (a) and the “mapry” application interface (b).

The Livox MID-360 sensor operates by collecting 200,000 first-return points per second,
ensuring a dense and continuous stream of three-dimensional data. However, a multi-
return scanning mode is not supported. The manufacturer specifies measurement precision
of less than 2 cm at a target distance of 10 m, which is suitable for estimating tree attributes
such as the diameter at breast height (DBH), stem form, and canopy structure. Addition-
ally, the sensor is produced with an integrated inertial measurement unit (IMU, model
1CM40609-D produced by TDK Electronics Ltd (Shanghai, China) [34]), which records orien-
tation and movement data during operation. This information is crucial for post-processing
tasks such as trajectory estimation and point cloud registration. Weighing only 265 g,
the sensor is compact and lightweight, making it suitable for mobile, backpack-mounted
configurations that do not impede operator mobility in forested environments.

The full LAO3 system includes several auxiliary components that support its func-
tionality and ensure independent field operation. Power is supplied by an external power
bank, allowing for extended use without reliance on fixed infrastructure. Data captured
by the sensor are stored locally on a USB flash drive, ensuring robustness and portability
in field conditions. A Bluetooth low energy (BLE) module is integrated into the system to
enable wireless communication with a dedicated smartphone application, which provides a
user-friendly interface for the management of the scanning process. In addition, the device
includes a compact RGB camera for the capture of supplementary visual data, which can
assist in ground truthing and further documentation.

Control of the scanner is facilitated through the mapry mobile application (Figure 2b),
which was developed by one of the study’s authors (Keiji Yamaguchi, mapry Co., Ltd.,
Tamba, Japan) and is currently available for download on the Google Play platform. The
primary function of the application is to establish and maintain communication with the
LiDAR sensor, enabling real-time monitoring of the system status and sensor diagnostics.
Upon confirming that all components are functioning correctly, users can initiate the
scanning process directly from the mobile interface. The application allows for the seamless
transfer and saving of collected data to a USB storage device in the widely used point cloud
data (.pcd) file format, ensuring compatibility with various open-source and commercial
point cloud processing tools.
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Overall, the LAO3 prototype represents a promising advancement in the development
of lightweight and affordable mobile laser scanning systems for forestry applications.
Its modular design, reliance on off-the-shelf components, and ease of operation make
it particularly suitable for fieldwork conducted by smaller research teams, educational
institutions, or forest managers operating with limited financial resources.

2.3. Data Collection

As indicated in Figure 3, the data collection process involved terrestrial and mobile
LiDAR scanning using four different devices, each representing a distinct category of forest
measurement technology.
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Figure 3. A simple workflow diagram, showing all main steps of the study.

Ground truth reference data were collected in accordance with standard forest inven-
tory methodologies. These included the manual measurement of the diameter at breast
height (DBH) at 1.3 m above ground level for each tree (DBH > 4 cm) within the study
plot. This was achieved using an electronical calliper, the Haglof Mantax Digitech (Haglof,
Léngsele, Sweden), which was applied to the trees from a random direction to eliminate the
possible impact of systematic stem shape irregularities throughout the forest stand. Along
with the DBH, the precise geolocation of tree positions using a Sokkia GRX3 (TOPCON
EUROPE POSITIONING BV, Zoetermeer, The Netherlands) global navigation satellite
system (GNSS) receiver was conducted. The high-accuracy GNSS device ensured reliable
spatial reference data, which served as a benchmark in evaluating the geometric accuracy
of the point cloud data generated by each scanning system. In such a manner, 236 trees
in both the upper and lower storeys were measured, and the overall properties of the
measured trees are presented in Figure 4.
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Figure 4. (a) The measured DBH values sorted into 8 cm intervals, depicting the distribution of the
DBH throughout the whole sample plot, indicating a two-storey forest stand. (b) The distribution of
tree heights in relation to the DBH.

95



Remote Sens. 2025, 17, 2564

7 of 20

a3

0 10 20 30 40
[ . .|

All scanning procedures followed a predefined trajectory through the plot (Figure 5),

designed to maintain consistency across devices and facilitate the direct comparison of the
resulting datasets. The trajectory was established by following distinct pathways within
the forest, thereby ensuring consistency across all scanners. The common scanning path
ensured that variations in data quality and completeness could be attributed primarily to
the characteristics of the scanning systems themselves, rather than differences in spatial
coverage or operator behaviour. Although this approach may not be ideal for certain
scanner types, particularly those with limited LiDAR beam reach, this study focused on
evaluating the potential of the 3D outputs that could be obtained within a comparable
time frame. This was performed with consideration of the device cost, which does not
necessarily scale proportionally with the scanning performance.
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Figure 5. Common trajectory for all scanner types. TLS stations were placed on the trajectory as well.

The LiDAR devices used in this study were as follows.

Trimble TX8 (TLS)

The Trimble TX8 (Trible Inc., Westminster, CA, USA) is a high-end terrestrial laser
scanner that employs a multi-scan acquisition strategy. This approach, widely recog-
nised as the most established and conventional LIDAR scanning method in forestry
applications, offers the highest spatial resolution and geometric accuracy. In this study,
scanning was performed from 13 individual, georeferenced stations strategically dis-
tributed along the predefined trajectory to ensure maximum visibility and coverage.
The multi-scan technique mitigates occlusion effects by capturing the forest structure
from multiple angles, making it the most precise reference system in the comparison.
The raw scan data must be processed using the dedicated software Trimble RealWorks
(v11.1), which also provides a registration workflow for the processing and merging
of multi-scan missions [35]. In this study, cloud-Based registration was employed.
GeoSLAM ZEB Horizon (MLS)

The GeoSLAM ZEB Horizon (GeoSLAM Ltd., Ruddington, UK) is a handheld mobile
laser scanner that collects data through a single-pass scan along the designated trajec-
tory. Scanning began and ended at the same location to form a closed-loop trajectory,
which supports improved SLAM (Simultaneous Localisation And Mapping) correc-
tion [36]. During scanning, the operator maintained a consistent orientation towards
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the centre of the plot to ensure optimal coverage of the forest structure. The ZEB
Horizon is a commercial-grade mobile laser scanning (MLS) system, recognised for
its robustness and reliability in forest environments. Similarly to the Trimble TX8, this
device also relies on dedicated commercial software, namely GeoSLAM Hub v6.1.0,
for the processing of raw data into point clouds.

3.  iPhone (MLS)
A modern Apple iPhone 14 Pro (Apple Inc., Cupertino, CA, USA), equipped with
an integrated LiDAR sensor, was used to perform mobile scanning along the same
trajectory. Data collection was carried out using the 3D Scanner App [37], which
enables the real-time acquisition and export of point cloud data. The same scanning
principles were applied as with the ZEB Horizon and LA0Q3, including consistent de-
vice orientation and a closed-loop trajectory, to maintain uniform scanning conditions.
However, in the case of this device, suboptimal results can be expected due to the
limited 5-metre reach of its LIDAR sensor [38].

4. mapry LA0O3 (MLS)
The custom-developed LAO3 prototype was evaluated using the same scanning pro-
tocol as the ZEB Horizon to ensure comparability. The device was carried along the
predefined trajectory, with the operator consistently orienting the sensor towards
the plot centre. This ensured consistent scanning geometry and data acquisition
conditions, enabling a direct assessment of the prototype’s performance relative to
more established devices. The device operates via the dedicated Android application
mapry, which provides a user interface for the control of the scanner. The collected
data are output directly to a USB drive.

This comparative study design enabled a systematic evaluation of each device’s
capabilities in terms of tree detection, DBH estimation, and overall point cloud quality. By
adhering to a consistent scanning strategy and integrating high-accuracy reference data,
the methodology provides a robust framework for the assessment of the feasibility and
performance of low-cost mobile scanning solutions in forest inventory applications.

2.4. Data Processing and Evaluation

The primary objective of this study is to evaluate the performance of a low-cost
mobile laser scanning (MLS) device—specifically, the mapry LA03—by comparing it with
other established LiDAR scanning tools. This analysis is conducted under the premise
that scanning devices with differing technical specifications—such as point cloud density,
spatial resolution, and effective scanning range—may produce varied outputs, which in
turn can affect the accuracy of forest inventory metrics, most notably tree detection and
diameter at breast height (DBH) estimation.

Recognising that the quality and structure of input 3D data can significantly influence
analytical outcomes, this study also investigates how various forest inventory algorithms
respond to data from different scanning sources. In particular, it explores whether the data
collected by the low-cost mapry device are robust and versatile enough to yield reliable
results across a range of analytical approaches. This dual focus enables a comprehensive
assessment of both the hardware’s capabilities and the practical usability of its output data
within common forest inventory workflows.

To this end, five algorithmic pipelines are employed to assess the influence of method-
ological variations on tree detection and DBH estimation. The intention is not to conduct
a comparative evaluation of the algorithms themselves or to identify the “best” pipeline.
Rather, the aim is to evaluate the extent to which the data captured by the mapry scanner
can support different approaches to automated tree measurement. This approach allows
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for a broader understanding of the scanner’s practical applicability in diverse analytical
contexts and enhances the reproducibility of the results.

Each of the tested pipelines relies on the Random Sample Consensus (RANSAC)
algorithm for DBH estimation, using a circle-fitting approach to approximate tree stem
cross-sections. This method is commonly used for its robustness against incomplete scans
or outliers, as illustrated in Figure 6. While the circle-fitting component remains consistent
across all methods, the pipelines differ significantly in their strategies of detecting tree
cross-sections within the point cloud. These detection techniques vary in their sensitivity to
point cloud properties such as density, completeness, and noise, all of which are influenced
by the characteristics of the scanning device and scanning conditions.

o ©

Figure 6. Examples illustrating the circle fitting (red colour) application of the RANSAC algorithm
in various scenarios. (a)—A nearly complete scan from terrestrial static scanning (TLS). (b)—A
complete scan from MLS scanning with higher variability. (c)—An incomplete scan captured by the
mapry device.

Among the factors influencing the DBH estimation accuracy, tree detection plays the
most critical role. Incomplete or inaccurate detection of tree stems can lead to substantial
errors in DBH values, regardless of the precision of the circle-fitting algorithm. For this
reason, this study places particular emphasis on comparing how effectively each pipeline
identifies tree stems across the datasets generated by the various scanners. By doing so, it
offers insight into the strengths and limitations of the mapry device, not only in terms of
raw data capture but also in its integration with existing data processing methodologies
commonly used in forest inventory analysis.

As mentioned before, five pipelines are used within this study to assess the reliability
of the mapry scanner. These will be described below.

e  Manual Approach—This method is designed to provide the most accurate informa-
tion obtainable from LiDAR scans, relying on the manual identification and extraction
of stem cross-sections from the data. In contrast, the other methods—3DFIn, FORTLS,
SAMICE, and DendRobot—perform fully automated data processing, as detailed in
the following sections. While these automated approaches offer greater efficiency, they
may introduce potential errors. Such discrepancies can be assessed by comparing their
outputs to those obtained through manual processing, which serves as the benchmark
for accuracy.

For the purpose of this method, point clouds from all devices were normalised to
a digital terrain model (DTM), created through the rasterisation of the point cloud,
detecting the lowest points within 1 m grid cells. Afterwards, a 10-cm-thick horizontal
slice at 1.3 m above ground level was extracted. Tree-specific segments were then
isolated from these slices using the CloudCompare (v2.13.2) software by combining
the Label Connected Components tool [39], with ambiguous segments manually ex-
cluded, resulting in a total of up to hundreds of usable cross-sections. Due to the
computational limitations of the custom RANSAC algorithm used in this method,
the number of points in each section was reduced to a maximum of 600 via random
subsampling and further optimised by voxelisation with 1 cm steps. This process
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takes less than one minute per tree and its duration increases approximately linearly
with larger DBHs.

The RANSAC algorithm in general identifies the most common radius within a dataset
by analysing randomly sampled subsets of points. This sampling may be either purely
random or exhaustive, testing all possible point combinations. In this study, the latter,
known as the brute-force method, was employed. To mitigate its computational de-
mands, the algorithm was optimised for datasets containing fewer than 600 points,
thereby avoiding the need for billions of iterations and the substantial storage and
processing resources required. For most trees, a sample size of 600 points was found
to be sufficient.

The algorithm determines the size and position of a circle for each triplet of points, and
the most frequently occurring circle is identified as the correct one. Figure 6 illustrates
examples of the outputs generated using this approach.

e  FORTLS—AII aforementioned point cloud data were analysed using the R package
FORTLS (v1.2.0) [40]. This package provides an automated workflow for the process-
ing of terrestrial and mobile laser scanning data and is designed to minimise manual
intervention while maintaining flexibility through user-defined parameter settings.
FORTLS generates key forest inventory outputs, including the diameter at breast
height (DBH) and tree spatial location, and is particularly suitable for large-scale or
repeatable forest structure assessments.

During processing, ground points are classified using the Cloth Simulation Filter, and
a digital terrain model is generated by spatial interpolation with a k-nearest neighbour
approach using inverse distance weighting at a resolution of 0.2 m. The DTM is
then used to normalise the point clouds by adjusting point elevations relative to the
ground level.

Tree detection in FORTLS is based on the identification of multiple horizontal cross-
sections that are vertically aligned and located above the same ground point. This
vertical consistency in cross-section positioning is used to infer the presence of a tree
stem [41]. The algorithm searches for such cross-sections at various height intervals
above ground level, allowing it to capture trees with varying structures and under-
storey interference.

Once a stem is detected, FORTLS employs two distinct methodologies for the estima-
tion of the DBH, both of which are applied to the extracted cross-sections.

RANSAC-Based Approach: This method employs a RANSAC algorithm to fit a circle to
the stem cross-section, identifying the most consistent subset of points that conform to a
circular shape. The RANSAC function used is natively implemented within the FORTLS
package and has been adapted for use with noisy or incomplete data, which are common
in forest point clouds.

Grid-Based Approach: In this alternative method, a square grid is overlaid on the cross-
section of the tree stem. The algorithm identifies the grid point that minimises the variance
in the distances between itself and all other points in the detected cluster. This point is
considered the centre of the cross-section, and the mean of the radial distances from this
centre to the surrounding points is used to estimate the stem radius.

Both approaches produce an estimate of the DBH; however, the algorithm selects the final
value based on the variance in the calculated radii. When both methods produce similar
results, the RANSAC-based estimate is preferred due to its robustness in fitting circular
geometries to natural stem profiles.

FORTLS thus offers a balanced combination of automation and analytical rigour, making it
a valuable tool to assess the utility of point clouds generated by both high-end and low-cost
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scanning devices. Its implementation within the R environment also facilitates integration
with broader data analysis workflows, including statistical modelling and spatial analysis.

DendRobot—Another pipeline used for mapry-provided point cloud quality esti-
mation was the DendRobot (v0.3) software [42]. This program integrates a suite of
established algorithms for point cloud and raster data processing, combining both
conventional methods and custom-designed procedures for effective tree detection
and measurement. DendRobot incorporates elements commonly used in spatial
data analysis, such as geographic information system (GIS) spatial queries, reverse
watershed-based tree crown delineation, and the RANSAC circle-fitting algorithm.
These are integrated within a cohesive workflow specifically tailored to forest inven-
tory applications.

The tree detection procedure within DendRobot follows a distinctive methodology.
Initially, the 3D point cloud is projected into 2D space, where a point neighbourhood
density analysis is performed. This approach identifies areas of high local point
density, which are assumed to correspond to the bases of tree stems. By retaining
only these densely populated regions and subsequently reprojecting them into 3D
space, the software effectively isolates individual trees. Once tree locations have been
identified, the program locates multiple cross-sections along the height of each stem
and calculates their diameters, enabling the estimation of key parameters such as the
DBH, total tree height, and tree position. The above-terrain height was determined
using a 3D mesh DTM, generated through rasterisation and local minima detection
within each grid cell.

For DBH estimation, DendRobot employs the RANSAC algorithm to fit circles to
automatically extracted cross-sections of the tree stems. In this study, the number of
RANSAC iterations was fixed at 1000 to ensure robust fitting, and the thickness of
the DBH sampling disc was set at 7 cm. This parameter choice was based on findings
from previous research, which demonstrated that a disc thickness of 7 cm yields opti-
mal accuracy in DBH estimation [43]. The DendRobot software supports automated
processing while allowing users to define input parameters if desired.

3DFIn (Cloud Compare Plugin)—This pipeline comes as a plugin for the CloudCom-

pare (v2.13.2) [39] software, making it widely accessible to researchers, practitioners,
and forest managers, with minimal barriers to entry. The availability of this tool
within a well-established platform significantly enhances its usability and potential
for integration into existing workflows.

The pipeline’s tree detection algorithm operates on a normalised point cloud, where
normalisation is performed using a digital terrain model (DTM) generated by the
Cloth Simulation Filter. From this normalised cloud, the algorithm extracts a horizon-
tal “slice” of a predefined thickness, typically intersecting the lower portion of the
forest stand, where tree stems are more distinct and less affected by canopy occlusion.
Within this extracted section, the algorithm applies a geometric feature descriptor
known as “Verticality” [44], which quantifies the alignment of points with respect to
the vertical axis. This feature is used to differentiate tree stems—typically exhibiting
strong verticality—from other structures such as branches, undergrowth, and noise,
which tend to have more irregular or non-vertical geometries. Once high-verticality
regions are identified, they are treated as initial seed points for further stem detection.
The algorithm then expands from these seed locations using a spatial clustering ap-
proach to identify and segment complete individual tree stems. Each detected stem is
assigned a unique label, allowing for further morphological analysis at the tree level.
To quantify stem dimensions, the pipeline performs cross-sectional diameter mea-
surements at regular vertical intervals along the length of each identified stem. At
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each interval, a RANSAC-based circle-fitting algorithm is applied to estimate the local
diameter. This procedure yields detailed information about stem tapering, in addition
to key metrics such as the diameter at breast height (DBH), total tree height, and tree
position [45].

e  SAMICE—The workflow referred to as Search And Measure In Complex Environ-
ments (SAMICE) was developed as a fully automated pipeline for the segmentation
and measurement of trees within structurally complex forest environments, such as
those found in selection forests and close-to-nature silvicultural systems. It is specifi-
cally designed to handle noisy point clouds generated by SLAM-based mobile laser
scanning (MLS) devices.

The SAMICE(v0.1) workflow employs a multi-layered approach, analysing vertical
projections of seven horizontal slices extracted from the normalised point cloud, cov-
ering a height range between 0.8 and 1.8 m above the detected ground level. Ground
elevation is estimated by computing the first percentile of Z-values within 0.2 m grid
cells. The resulting raster is then smoothed using a local quantile filter to reduce the
influence of noise and outliers. Height anomalies are removed based on their statistical
deviation from the median of elevation differences between the raw and smoothed
surfaces. Any missing ground values are interpolated using a nearest neighbour
approach. A local slope correction is subsequently applied to mitigate systematic
underestimation of the ground elevation. The final digital terrain model (DTM) is
used to normalise the original point cloud by subtracting the ground elevation from
each Z-value.

Each extracted slice is then processed using the mean shift clustering algorithm [46],
followed by a RANSAC-based circle-fitting procedure. To improve the robustness
of the fitting, additional filtering conditions are applied, including thresholds for the
circle radius, completeness, the ratio of inliers to total points, and the homogeneity
of the point distribution along the stem perimeter. Candidate trees are identified and
their DBH is estimated based on a consensus of radius and centre position values
derived across the set of horizontal slices.

For further details of the workflow design and parameterisation, please refer to the
work by Kuzelka et al. [46].

2.5. Statistical Metrics

To evaluate the accuracy of individual scanners and processing algorithms, several
key metrics were considered. These metrics were used to characterise the accuracy of
the scanners and the quality of their resulting point clouds by assessing the observed
diameter at breast height (DBH) and the number of detected trees—parameters of particular
relevance in forest inventory. However, the number of detected trees typically depends
on the evaluation algorithm used; therefore, multiple software tools were employed, as
described previously. This approach facilitates a more comprehensive assessment of the
true potential of the 3D data.

To assess the tree detection performance, the detection rate parameter was calculated.
This is defined as the ratio of the number of trees identified in the point cloud by the
algorithm (11445) to the number of trees measured in the field inventory (71exp):

. Tobs
Detection Rate = 2% 1)
Hexp

Metrics related to the DBH accuracy were used to evaluate the capacity of the scanners
and algorithms to generate complete, noise-free, and sufficiently dense point clouds without
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SLAM-related alignment issues. For this purpose, the root mean square error (RMSE) and
the relative RMSE (rRMSE) were calculated using Formulas (2) and (3):

RMSE = \/ %ZL] (yi _gi)z @

where 1 is the number of observations, y; is the true value of the ith data point, and yj; is
the corresponding observed value.

The relative RMSE (rRMSE) provides a normalised measure of error, facilitating
comparison with other studies or methods. It is computed as

rRMSE = %SE x 100 @3)

where ¥ denotes the mean of the observed DBH values in this study.

In addition to the RMSE, the mean absolute error (MAE) was calculated. While the
RMSE squares the residuals and may exaggerate larger errors, the MAE offers a more
intuitive indication of the average error magnitude, thus providing clearer insights into the
actual performance of scanners or algorithms in DBH estimation. The MAE is calculated
using the same variables as the RMSE, according to Formula (4):

1 n ye
MAE = ;):_]w,- — i )

Together, these parameters offer a comprehensive set of evaluation metrics that can
be consistently applied when assessing forest inventory algorithms across data derived
from different 3D scanners. Such analysis supports the identification of each scanner’s
performance potential and facilitates meaningful comparisons between devices.

3. Results

The results obtained from the aforementioned scanners and algorithms were compared
to ground truth data, and several metrics (MAE, RMSE, rRMSE, and detection rate) were
computed to describe the quality and potential of the datasets. Alignment between the
ground truth data and point cloud processing results was performed manually within the
GIS software (QGIS v3.40.1). Consequently, the results may contain a degree of subjective
bias arising from the incorrect linkage of a ground truth tree to a 3D-detected tree.

The key performance metrics considered in this study were the mean absolute error
(MAE), root mean square error (RMSE), relative RMSE (rRMSE), and detection rate. The
detection rate represents the proportion of ground truth trees correctly identified within
the point clouds by each algorithm and scanner type. Given that LiDAR scanning typically
captures a spatial extent larger than that of the manually delineated reference sample plots,
the actual area scanned by each sensor was also assessed. This information is summarised in
Table 1 and illustrated in Figure 7. The scanned area was determined by creating a rasterised
version of the point cloud and calculating the sum of 10 x 10 cm pixels containing at least
one point. In addition to the total area covered by the scans, the point density for both
vegetation and terrain was calculated, based on the total number of points within the plot
and the actual area of the sample plot. These evaluations provide insight into the relative
performance of the mapry scanner compared to other devices, particularly in terms of their
capacity to operate effectively in complex environments under uniform testing conditions.
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Table 1. Spatial coverage of the scanners based on the rasterisation of the point clouds, along with
point density statistics for vegetation and terrain. Vegetation and terrain points were separated using
a height threshold of 0.2 m above the ground surface. “Plot” method describes actual extent of the
sample plot examined during field inventory.

Method Total Data Points Within Points/m? Points/m?
Extent [m?] Plot (Height >0.2m)  (Height < 0.2 m)
TLS 30,158.3 176,492,535 33,122.2 11,546.5
ZEB 14,027.6 116,743,698 19,487.7 10,059.1
iPhone 1101.3 1,744,170 53.6 387.9
LAO3 7601.9 24,644,001 4026.0 2211:2
Plot 3951.1 N/A N/A N/A

Figure 7. Visualisation of scanning methods’ spatial coverage across the sample plot area delineated
by the red outline.

Table 2 presents the evaluation metrics for tree detection and diameter at breast height
(DBH) estimation across various combinations of scanners and algorithms. The “manual
approach” method, employed here as a manual reference approach, consistently achieved
some of the highest performance levels across all devices. This result is expected, as this
approach relies on manual intervention, which helps to minimise processing errors during
point cloud filtering and evaluation.
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Table 2. Comparison of errors for individual scanning methods and analysis methods. Only 95% of
the best results were used for the MAE, RMSE, and rRMSE statistics’ computation.

Scanner TLS ZEB
Algorithm Manual 3DFIn FORTLS DendRobot SAMICE Manual 3DFIn FORTLS DendRobot SAMICE
MAE [cm] 0.8 14 4.7 2T 0.8 0.9 1.6 4.2 1.8 1.3
RMSE [em] 1.0 2.2 7.9 48 1.0 1.2 24 74 25 1.6
rRMSE [%] 47 8.4 249 18.8 46 5.4 9.4 221 10.8 7.3
Detection Rate [%] 99.6 72.0 53.4 71.2 98.7 99.2 77.1 44.5 86.0 97.0
Scanner iPhone LA03
Algorithm Manual 3DFIn FORTLS DendRobot SAMICE Manual 3DFIn FORTLS DendRobot SAMICE
MAE [cm] 10.0 15.1 117 13.1 95 37 13.6 58 6.7 3.6
RMSE [cm] 13.6 23.0 183 22.2 13.0 6.0 20.3 8.2 10.5 44
rRMSE [%] 443 55.0 445 57.5 438 24.8 66.5 22.3 37.1 19.7
Detection Rate [%] 22.5 8.1 72 14.0 21.6 78.0 30.5 16.5 47.0 76.7

For the high-end scanners—specifically the terrestrial laser scanner (TLS) and the hand-
held ZEB device—the manual approach yielded excellent outcomes, with very low mean
absolute error (MAE) values ranging from 0.8 to 0.9 cm and root mean square error (RMSE)
values between 1.0 and 1.2 cm. These corresponded to relative RMSE (rRMSE) values below
6%, along with tree detection rates exceeding 99%. Among the fully automated methods,
SAMICE demonstrated performance comparable to that of the manual approach for both
scanners, achieving MAE and RMSE values of 0.8-1.3 cm, rRMSE values of 4.6% to 7.3%,
and detection rates as high as 98.7%. These results underscore its potential as a robust and
fully automated alternative to manual approaches. The 3DFIn algorithm also performed
reasonably well, with moderate MAE values (1.4-1.6 cm) and RMSE values (2.2-2.4 cm),
although its detection rates were notably lower, ranging from 72.0% to 77.1%. In contrast,
FORTLS exhibited the highest RMSE values (7.4-7.9 cm) and the lowest detection rates,
particularly when applied to data from the ZEB scanner (44.5%).

The low-cost devices—the iPhone and the LA03 scanner—exhibited considerably
lower accuracy. The iPhone, in particular, produced high MAE values (9.5-15.1 cm) and
RMSE values (13.0-23.0 cm) across all methods, with rRMSE values exceeding 43% and
tree detection rates generally falling below 22%. Nevertheless, SAMICE marginally outper-
formed the other automated methods on this device, achieving the lowest MAE (9.5 cm),
the lowest RMSE (13.0 cm), and a detection rate of 21.6%, which was close to the result
obtained using the manual approach (22.5%). Both 3DFIn and FORTLS showed the poor-
est detection rates on the iPhone, at just 8.1% and 7.2%, respectively, highlighting the
limitations of the sensor rather than deficiencies in the processing algorithms.

The LAO3 scanner demonstrated improved performance relative to the iPhone, with
MAE values ranging from 3.6 to 13.6 cm and RMSE values between 4.4 and 20.3 cm. Notably,
SAMICE again achieved the best results among the automated methods, recording the
lowest MAE (3.6 cm), RMSE (4.4 cm), and rRMSE (19.7%), as well as a high detection rate
of 76.7%, second only to the manual approach benchmark (78.0%). These results highlight
the critical role of algorithm selection in determining the overall performance, particularly
when using lower-cost sensors.

In summary, the findings reaffirm the superior performance of high-end TLS and ZEB
scanners across all evaluated metrics. However, the LA03 scanner, when combined with
effective processing algorithms such as SAMICE, presents a promising low-cost alternative
for broader operational use. It is important to note that the manual approach serves as an
idealised benchmark and, in practice, scalable deployment will require the adoption of
automated methods to ensure both efficiency and feasibility in large-scale applications.
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4. Discussion

This study evaluates the potential of a low-cost, novel LIDAR system for the estimation
of the tree diameter at breast height (DBH) in a large-scale forest sample plot. Accurate
DBH estimation is critical for a wide range of applications, from traditional forestry [47] to
urban tree management [23], roadside and railway vegetation maintenance, and beyond.
Furthermore, detailed information about forest structures, including tree diameters and the
spatial distribution, is vital not only for ecological assessments but also in supporting the
movement and operation of forestry machinery in complex environments [48].

To benchmark the performance of the prototype, high-end mobile and terrestrial laser
scanning (MLS and TLS) systems were selected, given their established reputations in terms
of accuracy, albeit at significantly higher costs [49]. As a low-cost comparator, the iPhone
LiDAR sensor was used, representing a device of a similar cost to the prototype mapry
LAO03 scanner. While photogrammetry is another potential benchmarking method, having
demonstrated high precision in close-range DBH estimation in previous studies [50-52],
it is more sensitive to data quality and less practical for broader forest applications. To
maintain the focus on LiDAR technologies, photogrammetry was excluded from this
comparison. Unlike photogrammetry, LIDAR provides a more intuitive workflow and
increased robustness when scanning objects at greater distances, making it a promising
tool for future forest inventory applications [18,53]. For these reasons, it remains a point of
interest even within this study.

Although different LIDAR scanners, generally used in scientific studies, exhibit com-
parable performance in terms of raw data acquisition [54], TLS remains the benchmark
for DBH estimation due to its superior data quality and reliability [55]. Consistent with
these findings, the TLS-based results in this study demonstrated the highest precision.
In comparison, the low-cost mapry scanner exhibited significantly lower performance,
underscoring the trade-offs between affordability and accuracy. A comparison between the
ZEB Horizon MLS and the mapry LA03—both handheld systems—revealed notable differ-
ences in scan quality and result reliability, despite the manufacturers’ claims of comparable
performance. The most substantial difference relates to the SLAM algorithms employed:
the mapry device experienced difficulties over larger areas and, in certain cases, failed to
align terrain or vegetation accurately. Consequently, the mapry scanner may be suitable
only for sample plot-level scanning rather than for stand-level forest assessments, given
the limitations of its current SLAM algorithm version.

A further comparison between the iPhone 14 Pro LIDAR and the mapry LA03 showed
that, despite being in the same price range, the LA03 outperformed the iPhone. This is
not unexpected, as the iPhone’s sensor is not primarily designed for scanning large envi-
ronments and has a limited reach of approximately 5 m. Conversely, these results suggest
that smartphone-based forest inventory may prove neither cost-effective nor sufficiently
accurate for practical forestry applications.

Importantly, this study also investigated the influence of data processing algorithms.
Semi-automatic measurements using the manual approach were compared with fully
automated methods, including the FORTLS package [41], SAMICE algorithm [46], 3DFIn
(v 0.5.0a0) software [45], and DendRobot software [42]. As expected, the manual approach,
which involved the manual selection of tree sections, outperformed the fully automated
approaches. However, the SAMICE algorithm emerged as a significant exception, matching
and, in several scenarios, even surpassing the performance of the manual approach in both
its accuracy and detection rate. SAMICE consistently produced results that were more
closely aligned with manual measurements, particularly when applied to point clouds
with higher noise levels. The manual intervention in the manual approach enabled the
exclusion of complex features such as branches and leaves, thereby reducing errors that
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automated pipelines were required to address. This advantage was particularly evident
when processing point clouds from the mapry scanner, which exhibited higher noise
levels due to SLAM matching errors—an issue previously reported in studies involving
MLS data [6].

Among the automated methods, 3DFIn and DendRobot achieved relatively high
tree detection rates but suffered from higher RMSE values compared to the other results.
This outcome underscores the ongoing challenge in automated LiDAR data processing:
the need for improved techniques to filter out non-trunk elements such as branches and
understorey vegetation.

The performance metrics obtained in this study showed that the RMSE values ranged
from 1.0 cm to 23.0 cm, depending on the scanner and algorithm used. The relative RMSE
(rRMSE) varied accordingly, with the TLS and ZEB scanners achieving rRMSE values
below 10% for most algorithms (except FORTLS), whereas the iPhone and mapry LA03
devices exhibited substantially higher error rates, often exceeding 20%. Importantly, both
the manual approach and SAMICE consistently yielded the lowest error values across all
devices, supporting their roles as high-accuracy references for DBH estimation. However,
it should be noted that, while the manual approach serves as a near-ideal benchmark,
SAMICE represents a promising, fully automated solution with practical applicability in
operational settings.

The results from the TLS and high-end MLS systems were in line with outcomes
reported in previous studies [6,21,23,26], whereas the low-cost mapry device demonstrated
higher error levels. Nonetheless, considering its affordability and portability, the mapry
scanner may still serve as a viable option for specific applications where ultra-high precision
is not essential. In this study, the prototype was able to provide DBH information for up
to 78% of individual trees within the large-scale sample plot. As the majority of trees
on the research plot had DBH values below 12 cm, the device showed promising results
even in such an unevenly aged forest stand. However, scanning trajectories must be
carefully adjusted to mitigate the effects of laser beam divergence and reduced accuracy
over greater distances.

High-end systems such as the GeoSLAM ZEB Horizon may maintain better detec-
tion rates over longer scanning ranges, likely due to more advanced SLAM algorithms.
Although both the ZEB and mapry devices have similar beam divergence, the qualitative
difference in performance likely stems from broader system optimisation—reflected in their
price difference.

It is worth noting that the mapry LA03 scanner is available for under EUR 1800, which
is approximately one-tenth of the cost of a newer MLS device not used in this study, the Faro
Orbis. Deploying ten LAO3 units instead of a single high-end device could be advantageous
for rapid surveys of standard sample plots (approximately 15 ares in size). On plots of
this scale, the SLAM performance may remain reliable, scanning can be completed within
minutes, and sufficient information about the tree height and stem diameter distribution
can be effectively collected. However, further research is needed to evaluate this approach.
Future studies, therefore, should focus on optimising the deployment of such low-cost
devices, refining data processing workflows, and aligning technological choices with the
intended application’s accuracy requirements and budget constraints.

5. Conclusions

In summary, this study demonstrates that, while high-end terrestrial laser scanning
(TLS) and mobile laser scanning (MLS) systems continue to serve as the benchmarks for
DBH estimation—achieving relative RMSE (rRMSE) values as low as 4.7% and tree detec-
tion rates exceeding 99%—low-cost alternatives, such as the mapry LA03 device, exhibit
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promising potential for cost-sensitive applications. Under optimal conditions, the mapry
scanner achieved tree detection rates of up to 78% and rRMSE values of approximately 20%.
However, its performance was found to vary considerably depending on the processing
algorithm applied. Although the accuracy of low-cost systems currently does not meet the
standards required for high-precision forest inventories, their affordability, portability, and
ease of deployment present clear advantages for applications where moderate precision
is acceptable. Notably, the robust performance of the SAMICE algorithm suggests that
algorithmic advancements can partially compensate for limitations in data quality, helping
to narrow the gap between low- and high-end scanning systems.

Future research should prioritise the optimisation of data acquisition protocols, the
development of advanced noise filtering techniques, and the refinement of automated tree
detection algorithms. These improvements are essential to fully realise the potential of
emerging low-cost LIDAR technologies, particularly in the context of scalable and frequent
forest monitoring initiatives.
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D) Automatizace odvozeni dendrometrickych veli¢in

V ramci predchozi popsané studie byl vyuzivan i autorsky program DendRobot [56].
Ten si v predchozim porovnani algoritmi vedl pomérné dobie, a tak lze usuzovat, ze
program ma potencial pro skutecné pouziti, ale i pro zlepseni.

Tvorbou programu a metodami, které pouziva pro inventarizaci lesa, se zabyva clanek
"DendRobot: 2D Based Tree-Detection from LiDAR and Photogrammetric Point
Clouds of Forest Environments". Ten v dobé odevzdani této disertacni prace prochazi
druhym kolem recenzniho rizeni v zurnalu ,,Forestry: An International Journal of
Forest Research®.

Jak jiz bylo drive uvedeno, prvotni verze programu vyuzivala ,,Command Line Mode“
programu CloudCompare. Novéjsi verze vSak jiz pracuje Cisté v jazyce Python a je
nezavisla na instalacich jinych pocitacovych programi.

Algoritmus v sobé zahrnuje dva originalni pristupy k extrakci dat o individuéalnich
stromech. Prvni souvisi se segmentaci stromt, druhy s uréenim jejich vysek a budou
popsany v nasledujicim textu.

Cely pribéh analyzy bodového mrac¢na programem DendRobot zac¢ind odstranénim
Sumu a sniZenim hustoty vloZzeného bodového mracna. Jednak se tak déje kviili zvySeni
efektivity vypoctli, jednak kviili snaze o odstranéni vlivu nerovnomérné hustoty
bodového mracna. Typicky se totiz pti skenovani stava, ze hustota naskenovanych
bodi je vyssi v mistech, ktera jsou bliZze senzoru. To je nezadouci pro dalsi kroky
zpracovani v programu DendRobot.

Druhym krokem analyzy je tvorba digitalniho modelu terénu (DTM), ktera probih&
detekei bodi s nejnizsi vertikalni soutadnici (,,z“) v pravidelné ¢tvercové mrizce. Aby
byly odstranény chybné body, provadi se odstranéni Sumu. Je totiz mozné, zZe
v nékterych ctvercich pravidelné sité se jako nejnizsi bod objevuje napt. vétev stromu,
a to pak vytvari chyby v DTM. Typicky se tento jev objevuje na okrajich bodového
mracna, kde uz neni zachycen terén, ale jen nékteré vyssi objekty. Bodova reprezentace
DTM je na zavér prevedena do 3D polygonového modelu (,,mesh®).

Filtrovanim Sumu z DTM se vsak tento model, v porovnani s rozsahem vstupniho
bodového mraéna, mirné zmensil. Aby se tedy predeslo nezddoucimu chovéani
algoritmu v dalSich krocich, provede se oriznuti bodového mrac¢na podle tvaru DTM.
Poté je vytvoren digitalni model vysky povrchu (,DSM*) a z DSM a DTM odvozen
model vysky korunového zapoje (,CHM®). Tento vysledny model, ve formé rasteru, je
pouzit k pribliZznému vypoctu rozloh korun stromii za vyuZziti ,reverse-watershed”
algoritmu. Tvorba CHM a vypocet ploch korunovych projekei je nicméné slepou vétvi
algoritmu, ktera zde kondi.
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Hlavni analyza bodového mrac¢na vSak pokracuje dal, a to prvnim ze dvou, drive
uvedenych, novych pristupi. Tim je detekce individualnich kment. Pro tento acel je
bodové mracno pievedeno do 2D formy. Jinymi slovy — je ignorovana ,,z“ souiradnice.

JelikoZ bylo upravené 3D bodové mra¢no rovnomérné husté, ve 2D projekci se projevi
mista, ktera byla vertikalné clenita. To jsou v lesnim prostiedi predevsim stromy.
Vypoctem poctu sousednich bodt v okoli kazdého bodu je mozné tato nahusténa mista
nalézt. Odfiltrovanim mist s nizkou hustotou bodid nastane to, Ze ve 2D bodovém
mracnu zbydou pouze husté oblasti, tj. stromy.

Vyhledanim shlukd, v tomto filtrovaném bodovém mrac¢nu, jsou nalezeny jednotlivé
stromy, resp. kandidati na stromy, je jim prirazeno ID a mohou byt pfevedeni zpét do
3D.

Protoze hledani shluki probiha ve 2D, casto je mensi strom v podrostu ,zastinén®
vétvemi vétSiho stromu. Nalezeny shluk tak nékdy obsahuje oba tyto objekty. Jejich
oddéleni probih4 opét pomoci hledani shluki, které maji vzajemny rozestup mensi nez
40 cm. Po tomto oddéleni miize byt identifikovano nékolik shlukii, znich je ale
ponechan vzdy jen ten nejnizsi. Rozdil ve vysce jeho nejnizsiho a nejvyssiho bodu je
pak roven vysce stromu.

Nésledujici krok vyuziva praveé popsané shluky bodti a DTM. Pro kazdy bod kazdého
shluku je vypoctena jeho vyska nad DTM. To slouZi pro nalezeni a vyjmuti vyseci
z kmeni v prednastavenych vyskovych hladinach. Vzdy je nalezena vysec ve vysce 1.3
metrl nad zemi. Ostatni vytezy jsou pak tvoreny podle kritérii nastavenych uzivatelem.
Ten si mtize navolit v jakém intervalu se vysece budou tvorit a jak budou Siroké. Pokud
je néktery z nalezenych objektli nizsi nez 1.3 metry, je automaticky vynechan, nebot pro
néj neexistuje vysec ve vysce 1.3 metrii a nevznikne o ném zaznam ve vysledcich.

Aby byla zajisténa maximalni piresnost vypoctu tlousték, provadi se pro kazdou vysec
zhusténi bodid. To probiha tak, Ze na zakladé polohy vysece z fedéného mracna je
z originélniho, hustého, mra¢na vyjmuta prislusné cast.

Na kazdou takovou vysec je provedeno fitovani kruhu pomoci RANSAC algoritmu,
pri¢emz neni uvazovana ,.z“ souradnice a vysece jsou tak ve 2D. Tento krok poskytuje
tloustky stromi a jejich polohy. Zaroven jsou ale ziskany informace i o dalsich vysecich,
které byly eventualné vytvoreny a lze tak ¢astecné rekonstruovat napt. morfologickou
krivku kmene stromu.

V tuto chvili jsou tedy jiz znamy vSechny zakladni informace o stromech, a tak mohou
byt data vyfiltrovana a prevedena do formatu ESRI Shapefile, ktery obsahuje definici
soutradnicového systému, predem navolenou uzivatelem pomoci EPSG kodu. To
zajistuje hladkou navaznost analyzy bodového mracna a zobrazeni vysledki v GIS
softwarech.

Zminéné filtrovani vysledkt si klade za cil odstranit objekty, které nejspise nejsou
stromy nebo obsahuji chybu. Filtrovani se provadi prostym vyirazenim stromi s DBH
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vys$i nez uzivatelem preddefinovana hranice. Jinou moznosti je filtrovani pomoci
»,h/d“ indexu, ktery dokaze efektivné vyradit napr. jehli¢naté zmlazeni, jehoz tloustka
byla nadhodnocena kviili pritomnosti hustého vétvovi v prsni vysce.

V ramci tvorby a testovani algoritmu programu DendRobot byla primarné vyuzivana
data ze 14 zkusnych ploch natzemi Finska. Manualnim prifazovanim skute¢né
pozorovanych stromi a stromt nalezenych programem DendRobot byly zjistény chyby
v ur¢eni DBH a vysek stromii. Obdobné byla odvozena i presnost detekce strom, tedy
pomér skutec¢né pozorovanych stromi vii¢i poc¢tu stromt nalezenych algoritmem. Tato
analyza byla provadéna v prostredi GIS programu a vysledky vykazuji 93 % tspésnost
nalezeni stromd, chybu MAE v uréeni DBH = 3.4 cm a chybu MAE urceni vysky = 0.7
m.

Podobné jako v ramci predchozi kapitoly o vyuziti low-cost scannerti 1ze proto odvodit
zaver, ze algoritmus programu DendRobot je funkéni a pouZitelny i v redlnych
aplikacich. Existuje vSak stile mnoho potencialu pro jeho zdokonaleni a vytvoreni
funkei, urcéujicich dalsi zajimavé stromové parametry.

Cela publikace popisujici program DendRobot, zahrnujici vysvétlujici ilustrace, je
prilozena dale:
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Accurate and efficient forest structure assessment is important for
ecological research and forest management. This paper introduces
DendRobot, an innovative software pipeline developed to automate the
inventory of forest sample plots or entire forest stands using terrestrial
LiDAR scans or ground-based photogrammetric point clouds. DendRobot
incorporates a novel tree-detection algorithm based on point cloud density
in a two-dimensional space (Detection Rate = 93 %) alongside a new vertical-
clustering based tree height estimation approach. Both methods are
implemented together with established and widely trusted methods to
process three-dimensional data. By leveraging these algorithms, DendRobot
derives key forest inventory metrics of individual trees, including diameter
at breast height (DBH; Mean Absolute Error = 3.4 cm), tree height (Mean
Absolute Error = 0.7 m), tree locations, and crown projection areas at a fine
spatial scale. Additionally, it produces Digital Terrain Models (DTMs), Digital
Surface Models (DSMs), and Canopy Height Models (CHMs) with user-
defined resolution, facilitating more advanced spatial analyses of forest
environments providing information for forest management planning.
Designed as a comprehensive tool for forest researchers, managers, and
students, DendRobot supports efficient, data-driven decision-making with
minimal manual intervention. Initial tests conducted in complex forest
environments demonstrate its capacity to streamline workflows and
generate forest-stand-scale forest inventory data with accuracy comparable
to state-of-the-art methods and software. DendRobot is a user-friendly
solution for the practical application of terrestrial LIDAR scanning in real-
world forestry challenges.
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Introduction

Remote and proximal sensing has significant potential for developing new and highly efficient
methods of obtaining detailed tree information in forest environments [1]. Imaging across both the
visible and invisible light spectra, along with Light Detection and Ranging (LiDAR), provides essential
data for monitoring forest health, assessing species composition, and estimating timber volume [2,3].
These methods now deliver rapid and precise results, with the field work often being more efficient
than traditional field-based approaches that depend on labour-intensive manual measurements [4].
The use of ground-based LiDAR, the method mainly used in this study, not only potentially reduces
the time required for manual fieldwork but also may enable more frequent and detailed forest
monitoring, thereby supporting forest management that could adapt to rapidly changing conditions,
such as changes related to insect outbreaks and natural disturbances [3].

Despite its advantages, the use of remote sensing in practical forestry remains limited, likely due to
the complex processing of digital data, which requires advanced data processing skills as well as the
higher equipment costs associated with data collection [5]. The development of the software
application DendRobot aims to simplify data processing and enhance the accessibility of laser scanning
(LIDAR) and close-range-photogrammetry (CRP) products, thereby promoting the broader adoption of
remotely sensed data in practical forestry applications.

Although several solutions already exist for forest inventory data processing, DendRobot introduces a
set of novel algorithms for tree identification and tree-height estimation within point cloud data which
have so far not been used in any of the existing software which includes:

e 3DFin: 3D Forest Inventory — This solution offers a highly user-friendly and stable tool for
computing forest parameters, while leveraging the potential of terrestrial LiDAR data for
precise results acquisition. Available as both a plugin for CloudCompare and a standalone
software, it presents an attractive choice for users [6].

e 3DForest — This software enables the acquisition of both basic and advanced tree parameters,
making it suitable for applications in forest inventory and forest ecology [7]. The software,
however, requires a lot of interaction with the user [5] and is unfortunately unstable and no

longer receives updates.

e Computree — The authors of this standalone software have integrated forestry-specific
algorithms based on research findings to provide an alternative solution for LiDAR-based
forest inventory. The software is actively maintained and updated [5,8].

e forTLS—ForTLSis an R package that also enables the evaluation of TLS data and the generation
of forest inventory parameters, similar to other existing solutions [9]. However, the absence
of a user interface makes it less accessible to users with limited technical background.

e Treeiso—This solution enables the segmentation of individual trees from complex point clouds
and demonstrates robustness against variations in point cloud density, making it a valuable
tool for the primary processing of raw LiDAR scans. Although this algorithm does not directly
provide forest inventory parameters, it has the potential to contribute to fine-scale inventory
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[10], similarly like the TreeQSM software. Treelso is available as a plugin for CloudCompare,
ensuring accessibility for a wide range of users.

e TreeQSM — Unlike the previously mentioned algorithms, TreeQSM does not provide large-
scale information about forest stands. However, it is a sophisticated tool for highly accurate
and detailed analysis of individual trees, offering extensive information about tree structure
[11]. Similarly to Treelso, and potentially in combination with it, TreeQSM enables precise
computation of individual tree parameters and Above-Ground Biomass at the highest level of
detail achievable with TLS data aiming to estimate morphology and structure of the tree.

e (CloudCompare [12] — This software integrates two of the previously mentioned tools and also
serves as a reliable solution for general analyses of 3D data, catering to specific needs in forest
inventory [5] and applications beyond the forest environment scope. It provides a
comprehensive pipeline for computing valuable geometric features [13], fitting algorithms, as
well as algorithms for terrain model generation, rasterization, and more.

Although many researchers developed algorithms to facilitate the analysis of 3D point cloud data of
forests, each employs a different approach and may perform differently depending on variations in
input data. However, such comparative analyses are rarely available in current research. Such
comparison is presented in the original paper introducing the 3DFin software, demonstrating the
superiority of this method in evaluating terrestrial remote sensing techniques, including close-range
photogrammetry, TLS, and MLS [6]. Another study, which also includes the introduced DendRobot
software, provides insight on the capabilities of several algorithms in processing LiDAR data from low-
cost or high-end devices [14]. Nevertheless, a more comprehensive comparison of existing processing
pipelines remains unavailable, although some large future benchmarking is announced in study of
Murtiyioso et al [15]. This study now offers a large overview of existing software solutions and calls
for larger attention being given to make the software usable for non-professionals, improve the ability
to utilise potential of 3D point clouds and aim for performance improvements in the context of
computer resources used during processing.

Based on the original papers related to the aforementioned algorithms, it remains unclear to what
extent the density of the input point cloud influences processing results, particularly in determining
the suitability of these algorithms for data sources beyond TLS or MLS. Consequently, the choice of an
appropriate algorithm is left to the potential user. This issue is closely linked to the technical challenge
of scaling published algorithms to larger datasets, whether in terms of spatial extent or point cloud
density, which directly impacts computational requirements. Authors developing forest inventory-
focused algorithms often test them on relatively small sample plots, comparable in size to traditional
manual inventory plots [1,6,16]. This may limit the perceived potential of terrestrial remote sensing
data, which frequently covers areas far larger than these small-scale plots [1].

For these reasons, the present study focuses on developing an easy-to-use pipeline for LiDAR data
processing, incorporating a novel approach to point cloud segmentation. The proposed method is
designed to handle large point cloud datasets in any format, while remaining robust to variations in
point cloud density. Additionally, it generates basic forest variables in practical formats, including
shapefiles, GeoTIFFs, and point clouds, all within a single processing workflow. This ensures that the
algorithm is accessible even to practitioners with limited computational expertise, while the outputs
can be directly analysed in GIS or 3D data processing software.
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116  Method description

117  The main DendRobot function, implemented in Python 3.10 [17] and as an standalone PC software
118  (available at https://dendrobot.czu.cz/), executes multiple processing steps within a single run, as
119  illustrated in Figure 1. All processing occurs in-memory, with minimal creation of temporary files.
120 However, if the debugging option is enabled, intermediate results can be retrieved from nearly all

121 processing steps.

Main Processing - ?' In-loop processing

Step of 3D objects

Process starts

Subsample to Uniform | Find Lowest Points per. Reverse Watershed

Input Point Cloud > >

Crop Point Cloud by , Find Highest Points per,
L DTM 1

Density Square Area Square Area Crown Delineation
C Compute Number of  jjter Qut Low Density,  Detect and Label Detect and Label
Flatten Point Cloud » Neighbors (Density in > Poits > Clistars > Unflatten Cluste& > Subtlisters O

2D) i

C Compute Point to DTM> Segment Cross > Repopulate and Filter
Distances O Sections O Cross Sectlonso

Process and Filter
Results

Process ends

> Fit Circles (RANSAC) >

Figure 1 — Schematic representation of the DendRobot processing workflow. Dark grey cells indicate the
main processing steps, intermediate grey cells represent key results from each step, and light grey cells
describe user outputs generated during processing. The black loop symbol denotes functions that
iterate through a set of segmented features.

122 While the in-memory approach increases RAM usage and imposes limitations on the size of datasets
123 that can be processed in a single run, it offers advantages such as reduced hard drive space

124  requirements and lower overhead time associated with writing and reading temporary files. Given
125  that processing time is a critical factor for users, this solution was selected as it still enables the

126  efficient handling of large point cloud files if a suitable computer is available. The processing time
127  however is dependent on the parameters of used CPU, number of its cores and preset variables of
128  the algorithm. Therefore, a closer look at this issue is described further in the Results and Discussion
129  section.

130  Input data and preprocessing

131  Input point clouds, can be provided in any common format, supported by Open3D [18], laspy [19]
132 and laszip [20] libraries — las, laz, txt, ply, pcd, e57 etc. In the initial processing steps, the input point
133 cloud undergoes a minor reformatting to mitigate the so-called "large coordinates problem". This is
134  achieved by translating the entire point cloud closer to the origin of the coordinate system. The issue
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arises from the limitations of data types and RAM usage, as original point clouds typically store
numerical values using 64-bit floating-point precision. By shifting the data towards the origin, it
becomes feasible to convert these values to 32-bit floating-point precision, theoretically halving
memory usage at the cost of sub-millimetre accuracy.

Subsequently, outlier removal is performed based on the spatial separation of detected clusters.
Clusters are identified according to their connectivity to neighbouring points. If a gap greater than
0.5 metres is present and no smaller gap can be identified between clusters, a distinct cluster is
recognised.

Important step for reducing computational demands is the point cloud subsampling. This process
involves removing duplicate points with similar coordinates, where similarity is determined based on
a user-defined step (see “Subsampling Step” parameter in Appendix 1), retaining only the first point
from each set of duplicates.

This approach is comparable to the commonly used voxel-grid-based subsampling [21], however,
unlike voxel-based methods, the resulting subsampled point cloud does not replace points by their
voxel’s centroid but instead retains actual points from the original dataset. The result is a uniformly
sampled point cloud across its entire extent, except in areas where the original density is already too
low, as illustrated in Figure 2a. This uniformity eliminates the uneven density of point clouds, that
otherwise interfere with the subsequent tree extraction method. Typically, regions of the MLS scan
that were revisited multiple times, were exposed for longer durations, or located closer to the
scanner contain significantly more points than more distant areas (Figure 2b). Without subsampling,
this variability in point density could lead to issues in further processing using the proposed method.

a)

Figure 2 —a) The left side shows a tree stem in the original high-density point cloud, while the right

side presents the subsampled point cloud with equalised density.
b) Illustration of the uneven point cloud density across sample plot A (view from bird-
perception) in the original input from MLS. Point density is higher along the trajectory
and lowers further from the scanner. Yellow colour shows terrain; grey colour represents
trees.
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156  After subsampling, the next steps involve detecting terrain and surface heights by identifying the
157  lowest or highest points within a predefined grid. As outliers from the main area of the point cloud
158  are removed during the initial processing steps, the remaining data likely represent true

159 measurements. Consequently, identifying the lowest and highest points can provide meaningful
160 information about the terrain and canopy. However, the edges of the point cloud may still include
161  areas where the ground surface was not scanned and the lowest detected points may actually

162  belong to higher features than ground. To address this, it is important to filter outliers among the
163  detected lowest points based on the characteristics of their nearest neighbours. This step helps to
164  prevent the generation of terrain models with steep or irregular boundaries. Subsequently, reverse
165  watershed segmentation is applied to delineate individual tree crowns using the generated terrain
166  and surface models in conjunction with the Canopy Height Model (CHM). This method is widely used
167  inforestry applications and yields valuable information about the spatial extent of each identified
168  tree crown [22,23]. However, it is limited to two-dimensional CHM data and cannot detect objects
169  beneath the main canopy, often failing to identify understorey trees. The technique operates by
170 inverting the CHM, effectively transforming tree crowns into conceptual depressions. The highest
171 points surrounding each depression are then identified, and water flow from these elevated points
172 into the depressions is simulated. Based on the simulated water accumulation and overflow across
173  the edges, the boundaries between adjacent tree crowns are detected and delineated [23].

174  2D-Based Tree Identification

175  Acrucial aspect of the processing pipeline is the novel, yet simple approach to tree detection within
176  the point cloud. This begins by flattening the point cloud, effectively ignoring the vertical Z-axis. As a
177 result, points accumulate in close proximity in 2D space. Since the subsampling step has already

178  equalised point density across the scanned area, close-to-vertical objects, such as trees, rocks, or
179 human-made structures, exhibit a higher concentration of accumulated points, as illustrated in

180 Figure 3a. To leverage this characteristic, the number of neighbouring points for each data point is
181  computed using KD-Tree spatial indexing in combination with the Query Ball Point method [24,25].
182  This approach enables efficient calculation of the number of neighbours within a 10-centimetre

183 radius around each point, facilitating the identification and removal of sparsely populated regions, as
184  illustrated in Figure 3b. However, empirical experiments revealed that applying this filter to the

185  entire sample plot at once results in the successful detection of mature trees only.
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Figure 3 —a) Neighbourhood density calculated on a 2D point cloud of sample plot A, enabling tree
segmentation. Red and green colours indicate high density, blue colour low density.
b) Objects segmented based on neighbour density, representing potential tree candidates.
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To address this limitation, the study implements a strategy of dividing the area into smaller, equal-
sized grids and applying the filtering process individually to each grid cell with the same intensity of
12.5 %. This approach retains a relative proportion of the densest points within each chunk, with the
comparison confined to points within the same chunk. As a result, it mitigates the influence of
uneven point cloud density across the dataset, evident in Figure 3a—where the central region of the
scanned plot exhibits higher point density, while the outer areas are more sparsely populated. This
approach improves the detection of undergrowth, young stands, and shrubs notably and is set by
the “Filter-Chunk Size” parameter, described in Appendix 1.

Although the method does not always detect small trees with precise DBH values, due to the often
notable branching of these trees, it still provides valuable information that can be incorporated into
the output maps. This allows forest managers to assess the presence of regeneration. However,
splitting the filtered areas introduces a drawback: regions with little to no vegetation tend to retain
many terrain points (Figure 4a). While this does not impact DBH estimation accuracy, it does
generate numerous false tree candidates, which can significantly slow down the overall dataset
evaluation. For this reason it is necessary to correctly set the “Filter-Chunk Size” parameter, based
on the extent of data or required details (see Figure 4b).

Following this step, a clustering algorithm for detecting connected components in 3D [26] is applied.
This method identifies gaps larger than 5 cm and assigns labels to individual tree candidates
accordingly. The final step involves restoring the original Z-axis values to each point, reconstructing
the full 3D scene back and enabling further spatial calculations.
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Figure 4 —a) Improper removal of terrain in chunk-based density filtering applied to UAV LiDAR
data, caused by the use of excessively small chunk size. Numerous terrain points
were retained within the 20 x 20 m chunks due to the absence of significantly
denser regions within them.

b) Correct removal of terrain using chunk-based density filtering with a larger chunk
size (100 x 100 m), resulting in the successful retention of many understorey trees.
Colour legend: Green — Mature forest; Blue — Young forest; Yellow — Terrain;
Magenta — Man-made features
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Vertical clustering — Tree height estimation

During the initial 2D segmentation a flattened version of the point cloud was used. This
2D representation projects all objects into a single plane, disregarding the vertical
structure. Consequently, if a taller tree overlaps a smaller one, both may be represented
as a single cluster. Similarly, if branches from a mature tree are located above a smaller
tree, the resulting cluster may include both the understorey tree and the overhanging
branches. To address such cases, a 3D clustering algorithm is reapplied, this time using a
gap threshold of 40 cm to identify and separate vertically distinct features that were

incorrectly grouped during the initial 2D segmentation. A common example of this issue,
where a seedling is clustered together with the lower branches of a mature tree, is shown
in Figure 5. During this segmentation process, the lower feature (the small tree) is

retained for further analysis, while the upper feature (the overhanging branches) is
discarded. This approach effectively removes outlier points from the tree height
estimation and enables more accurate measurement of this parameter.

Cross-section extraction— DBH estimation

Finally the extraction of cross-sections for diameter estimation is performed by
calculating point-to-DTM distances of all desired points. The terrain is represented as a

3D mesh [27], based on lowest points, detected within grid cells, whereas the cross-
sections of a stem are extracted at any number of predefined heights. Based on previous
research, the default thickness of cross-sections is set to 7 cm [28], though this value

should be adjusted by the user according to the original density of the input point cloud
and selected subsampling step. The cross-section is defined by the above-ground height
and its limits, set by adding and subtracting half of the section’s thickness from the
specified height. Once the cross-sections are extracted, they are repopulated using the

original point cloud, based on the bounding box extents and rotation parameters. At this
stage, slight noise filtering is performed through the application of outlier removal,

verticality computation [13] and connected component clustering. This process removes
horizontal objects, which are typically represented by branches or assimilation Figure 5 Vertical '
organs. This procedure ensures that the RANSAC circle-fitting algorithm [29] is segmentation of obscured

applied to the original high-density point cloud segments, preventing any loss of trees (Blue and Red) by

accuracy due to subsampling—except in cases where a sufficiently dense cross- applying Connected
section was not generated during processing and was removed together with Components Clustering
noise. The repopulation step is very important, as the spatially subsampled point (Clusters shown in
cloud cross-section may contain only a few individual points, particularly in the Magenta boxes)

case of thin trees. [13]As mentioned before, cross-sections are generated at

predefined intervals above the terrain and can be made along the whole tree(Figure 6a; “Cross
Sections Count” and “Cross Sections Interval” parameters in Appendix 1). However, this feature is
primarily intended for DBH estimation rather than detailed stem taper analysis, as the quality of
LiDAR point clouds usually deteriorates in the upper parts of tree crowns and the noise removal in
these parts becomes too unreliable. However, it still might serve the stem taper creation purpose, if
the non-branched portion of the tree is of interest for any kind of standing-tree auction or research.
In some cases breast height may not be captured in the scan due to occlusion or other factors. In
these situations, DBH is estimated through linear extrapolation using the available stem cross-
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sections above breast height, provided that at least two such sections are present, and their
diameters do not increase with height (Figure 6b). This remains a suboptimal solution, which will be
addressed in future development, as the application of specific taper functions is closely related to
species classification. Nevertheless, species classification is a challenging yet essential task, which
requires both extensive research and computationally efficient methods.

Figure 6 —a) Point-to-Mesh vertical distance calculation and extraction of cross sections at predefined

heights. In this example cross sections at 1.3 m, 2 m and 3 m are shown in white colour.
Blue colour shows detected mature trees; orange colour shows understory; red colour is
regeneration smaller than 1.3 m.

b) Green ellipse illustrates successfully estimated DBH using extrapolation. Red ellipse
shows situation when extrapolation would lead to DBH smaller than diameter in higher
cross sections.

Output files

Finally, the results of the analysis are converted into ESRI shapefiles, containing i.e. Tree ID, DBH,
Height or Plot size extent. Also GeoTIFF files with digital elevation models are produced and saved to
disk using Python libraries such as Fiona, GeoPandas, Rasterio, and others [27,30-32].

DendRobot enables users to automatically analyse their own 3D data and extract detailed forest
information at the resolution of individual trees within a stand. To enhance usability, DendRobot
features an intuitive graphical interface, allowing users to input their data and obtain results without
necessity to manually adjust function parameters. The latter are listed in Appendix 1.

In addition to tree-level metrics, DendRobot generates digital terrain models (DTM) and forest
canopy height models (CHM), supporting various applications such as assessing terrain accessibility
for forestry machinery. These results assist forest managers and enterprises in conducting forest
inventories, planning harvest operations, and analysing forest ecosystems using modern remote
sensing techniques. Currently, DendRobot is best suited for processing data acquired through
terrestrial laser scanning (TLS), mobile laser scanning (MLS), and smartphone-based laser scans,
which represent some of the most accessible and cost-effective scanning options for many
organisations and individuals [14]. However preliminary results have also shown its potential in UAV
LiDAR data processing as shown in Figure 4.
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Experimental materials

For the purpose of the software testing and algorithm tuning a set of 14 sample plots in the vicinity
of Turku city, Finland (Figure 7), were selected and scanned using the Faro Orbis MLS. The selection
of plots was made to represent complex forest conditions with presence of understory to put the
potential of the scanning device and the processing algorithm to test. During the scanning a common
trajectory pattern was used in all plots: The operator walked a route of two concentric circles, with
the scanner aiming to the approximate centre of the plot all the time. However, the plots are of
nonregular, polygonal shapes with areas ranging from 1135 m? to 2551 m? therefore the scanning

trajectories usually differed from ideal circles.

Figure 7 — Locations of sampl plots near the city of Turku, Finland.
Right part of the image shows the irregular shapes of sample plots.

Ground truth data were obtained from a private collaborator engaged into Finland’s forest inventory
and were collected with traditional forest mensuration methods and tools like callipers and
hypsometers. The resulting data consisted of RTK-rover-measured geolocation and diameter at
breast height of each included tree (DBH > 7 cm), whereas tree heights were measured at subset of
these trees (291 trees). A more detailed overview of these parameters is shown in figure 8.

To potentially observe the impact of sample plot DBH structure on the processing performance,
detailed information about DBH distribution within each sample plot is described in Table 1.
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Figure 8 - Distribution of Diameter at Breast Height (left) and Tree Height (right) among the trees within
sample plots.
287  Table 1 - The distribution of tree DBH across diameter intervals presented for individual
288  sample plots. Each interval is defined by its lower and upper boundary values shown in
289  column names.
DBH
" 7 9 11 | 13 (15 (17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 | 45 G
Plot 9 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47
A 1 2 5 14 | 14 | 17 | 25 6 4 7 1 2 1 1 100
B 2 1 2 5 2 6 6 4 9 5 4 6 5 2 il 60
C 3 8 15 | 14 | 26 | 24 | 15 8 1 1 1 116
D [3 |22 |2 |3[2|7]12]7|3[7|7]e6]1]3]1 1| | e
E 1 2 2 1 1 2 6 2 5 13 4 5 11 5 2 1 63
F |1[1]5[7|23][3[19]14a]e6 ] 1]2 1 110
G 1/ 3|6|4|5]8|6]|4a]7 2 | 3] 2 q 52
H 3 2 4 1 1 4 4 7 9 10 | 12 8 74 6 1 2 1 82
| 1 5 6 11- | 15 8 8 10 7 7 4 2 1 1 86
J 1 5 14 | 16 | 11 | 11 12 | 15 74 6 2 2 1 103
K |13 [12]11]18[5 |17]10]6 |12]3[1]1 99
L 1 1 1 3 2 9 3 7 7 9 5 3 3 5 1 60
M 1 3 4 5 6 6 5 4 6 4 3 3 2 1 53
N |[5|1]4]2]3[10]w6]|]16]/16]5 ][9] 2]1 1 91
290  Verification of the proposed algorithms accuracy was done through a manual linkage of ground truth
291  and DendRobot-produced data , made in a GIS software. Similarly, the outputs generated by the
292 3DFIn software, employed for benchmarking, were assessed using the same methodology..
293 Dataset pairing was based on the spatial proximity and DBH of corresponding trees in the map view,
294  arobust approach that minimises misalignments arising from errors in point-cloud georeferencing or
295 in RTK-determined tree positions. The linked data were afterwards compared and used for Mean
296  Absolute Error (MAE) and Root Mean Square Error (RMSE) calculation.
297  Results and Discussion
298 Based on a set of 14 complex sample plots measured both manually through a traditional field
299 inventory and via MLS scanning, DendRobot successfully identified 1,139 out of 1,222 recorded trees,
300 achieving a tree detection rate of 93 %. The detection rate was calculated as the ratio of trees
301 identified in both the field inventory and the 3D scan processing outputs. Notably, DendRobot
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302  detected 1,834 objects in total; 695 of these were trees omitted from the field inventory on the basis
303  of having a DBH smaller than 7 cm. Consequently, the parameters of these additional trees could not
304  be directly compared with those measured in the field. However, for such small coniferous trees, DBH
305 is difficult to estimate due to dense and low branching at breast height, which subsequently
306  constitutes a significant potential source of error. On the other hand, in combination with the novel
307  tree height approach described in this study it is simple to identify such cases through the h/d ratio
308  [33] and remove them from further analysis if required. The performance of DBH and tree height
309  estimation, compared to manually measured field plot data, is presented in Table 2 and Figure 9.
310 Figure 9 illustrates how large errors can occur when processing richly branched trees or stems, that
311  are within a dense thicket. In such cases the used filtering algorithms fail to adequately remove
312 unwanted features from some stems. However, after filtering out these DBH estimate outliers, the
313 Mean Absolute Error and Root Mean Square Error indicate deviations of less than 3 cm. These results
314  are comparable to limits set by a comparative study by Liang et al. [34] and performance of other
315  software, presented in a study by Hrdina et al. [14]. Further benchmarking of DendRobot was
316  undertaken by comparing its outputs with those generated by the 3DFIn software (see Table 3), which
317  operates as a plugin for CloudCompare. The same input point-cloud datasets were processed by both
318  algorithms to evaluate their performance on MLS data and to quantify processing-efficiency metrics—
319  specifically, execution time and memory utilisation. Benchmarks were carried out on two workstations
320  with different CPU configurations and RAM capacities (32 GB and 64 GB); the results are summarised
321 in Table 4.

DBH Estimation Accuracy (All Data) Height Estimation Accuraccy (All Data)
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a) DBH (DendRobot) [cm] b) Tree Height (DendRobot) [m]

Figure 9 — Comparison of manually measured observations and MLS based estimations produced by
DendRobot software. Red line indicates ideal case.
a) Comparison of DBH estimates, indicating large errors in estimating DBH of strongly branched trees.
b) Comparison of Tree Height estimates
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328
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330
337
332
333
334
335
336
337
338
339
340
341
342
343

Table 2 — Accuracy of DendRobot software in estimating DBH, tree height and detection rate,
as quantified by mean absolute error (MAE), root mean square error (RMSE) and relative
RMSE (rRMSE). Percentages in parentheses indicate the proportion of the best-performing
result used in the calculation of each metric.

DBH | DBH | DBH | Height | Height | Height | Detection
DendRobot
(100%) | (90%) | (80%) | (100%) | (90%) | (80%) | Rate
AR 6.3 3.4 i35 0.9 0.7 05
[em] [m]
gie 155 | 79 18 17 0.8 0.6 03%
[em] [m]
rRMSE
o 69.5 | 354 7.9 9.3 45 33

Table 3 — Accuracy of 3DFIn software in estimating DBH, tree height and detection rate, as
quantified by mean absolute error (MAE), root mean square error (RMSE) and relative RMSE
(rRMSE). Percentages in parentheses indicate the proportion of the best-performing result
used in the calculation of each metric.

STrI DBH DBH DBH Height | Height | Height | Detection
(100%) | (90%) | (80%) | (100%) | (90%) | (80%) | Rate
MAE 14 0.86 0.7 2.5 13 0.8
[cm] [m]
R 2o 14 0.8 4.9 2.2 12 89%
[em] [m]
rRMSE
132 48 38 263 | 117 6.7
[%]

The performance of tree height estimation, as shown in Figure 9b, demonstrates the effectiveness of
the described algorithm, with an error of less than 1 meter. This suggests a reliability comparable to
that of manual measurements using hypsometers [35] and relates very well to limits set by Liang et
al. in their extensive comparative study [34]. Most interestingly, the height estimation based on
vertical clustering of trees offers an accurate solution even for two-storey forests, not overestimating
height of understorey trees.

To benchmark the performance of DendRobot, its outputs were directly compared with those
obtained using the 3DFIn plugin for CloudCompare (Table 3). From these data, insights can be drawn
for all three observed parameters—DBH, tree height and detection rate.

Firstly, there is a discrepancy in DBH estimation: 3DFIn delivers substantially more accurate DBH
values than DendRobot. This advantage is, however, partly explained by differences in detection
criteria. Although 3DFIn’s overall detection rate (89 %) is slightly lower than DendRobot’s (93 %), 3DFIn
marks a number of potential stems as “Not Reliable”. These stems are automatically assigned a DBH
of zero and were excluded from our analysis. Excluding thickly branched or understory trees in this
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344
345
346
347
348
349

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

way reduces the detection rate but improves the MAE and RMSE metrics for DBH, since fewer
challenging cases are retained.

By contrast, DendRobot exhibits superior tree-height accuracy (MAE = 0.9 m) compared with 3DFIn
(MAE = 2.5 m). This strong performance is particularly notable given that DendRobot’s height
estimation relies on a 2D segmentation of the point cloud—a method that evidently yields precise
height estimates even for understory trees, as these results confirm.

A further comparison focused on processing time and resource efficiency (Table 4), using two
workstations dating from 2017 (PC-1) and 2018 (PC-2), equipped with 32 GB and 64 GB of RAM,
respectively. While DendRobot successfully processed most MLS point clouds within the 32 GB RAM
constraint, 3DFIn consistently outpaced it in speed. In some instances—particularly for point clouds
exceeding 360 million points—DendRobot’s processing time was over five-times longer. This disparity
stems mainly from several unoptimised preprocessing stages within DendRobot (subsampling, outlier
removal, cropping, above-terrain height computation and point-cloud repopulation), which become
significant bottlenecks as point counts grow. Addressing these bottlenecks is a priority for future
development, though it should be noted that processing times would also substantially decrease with
more powerful CPUs used.

Finally, the processing times presented in Table 4 and Figure 10 do not display a clear trend with
respect to point-cloud size: on PC-2, times increase steeply with dataset volume, whereas on PC-1
they paradoxically decrease. This inconsistency complicates attribution of processing delays to either
software inefficiencies or hardware limitations and suggests that further targeted benchmarking will
be necessary.

Processing times relation to point cloud size
400
350 e o
300 @® DR PC1
250 i
500 ® ® DR PC2

150
3DFIn PC2

Processing time [minutes]

100

50

0
100 000 000 150 000 000 200 000 000 250 000 000 300 000 000 350 000 000

Points in Point Cloud

Figure 10 — Comparison of processing times for DendRobot on PC-1 (blue) and PC-2
(orange), and for 3DFIn on PC-2 (grey). Results for 3DFIn on PC-1 were omitted owing to
processing failures.
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Even though some limitations of the DendRobot software are obvious when evaluating heavily
undergrown forests, this is a common issue of LiDAR data processing, which is usually faced within
similar studies, and the proposed pipeline seems to still be suitable for complex conditions of forest
environments. This is supported by the good tree detection rate obtained by implementing the
described 2D density filtering algorithm, which can detect both mature and young trees. On the other
hand, the 2D density approach fails to detect trees, that have fallen or been windthrown and which
lean at a angle against standing trees. Nonetheless, as mentioned in the Method description section,
there may occur issues with excessive processing times, if the evaluated area contains very sparsely
forested environment and the processing parameters were not set accordingly. This issue was
observed within preliminary tests on UAV high-density LiDAR, visualized in Figure 4 and can be
resolved by indirectly adjusting the object detection sensitivity via “Filter-Chunk Size” parameter. To
handle this possible issue, input parameters are automatically preset based on the selected Data Type
(Appendix 1) and should help new users to use the software efficiently. The processing time reduction,
however, remains one of the main interests in developing the software further as shorter processing
times would allow for more complex analyses of 3D data and potentially enable improvements in the
obtained accuracy of forest inventory results. Apart of that, faster processing would also allow for
more-efficient processing of massive datasets on large forest enterprises level, which can be
represented e.g. by large scale UAV LiDAR data or MLS data as the proposed tree detection algorithm
appears to be sensor independent. This is crucial as the adoption of LiDAR into practice would lead to
the production of extensive amount of point cloud data to be processed fast. This goal should be
addressed in further research just like providing a seamless continuity of results into other software,
maps or enterprise-specific pipelines.

The DendRobot software's distribution with a user-friendly graphical interface and support for widely
used GIS formats is a first step to enhance the accessibility of ground-based LiDAR approaches for
forest inventories to a broad audience. Also, due to the ability to process relatively large point clouds
without running into premature memory issues, the proposed software may be able to adjust to the
specific needs of forest environment analysis. This improved accessibility is expected to promote the
adoption of both the software and remote sensing methods by a diverse community, including
researchers, students, forest enterprises, and forest owners. Consequently, it may encourage the
transition towards modern, precise, and efficient remote sensing techniques which would improve
forest inventory quality and forest management planning.

Conclusion

The proposed software and the contained algorithms introduce two novel approaches for tree
detection and tree height estimation using 3D point cloud data in forest environments. In the
presented case study, the workflow successfully detected 93 % of trees across 14 large, densely
vegetated sample plots and achieved a mean absolute error of 0.7 m in tree height estimation. In
addition, other essential forest inventory attributes—such as diameter at breast height (DBH; Mean
Absolute Error = 3.4 cm), crown area, and terrain models—can also be derived using the proposed
software. This enables the complex and seamless integration of remotely sensed data into practical
forestry, GIS analyses, and forestry education, thereby supporting the broader adoption of remote

sensing technologies in forest management.
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407  Supplementary Materials

408  Appendix 1 - Description of input parameters to the main DendRobot function.

Parameter name

Type

Recommended Range

Default value*

Meaning

Point Cloud Data Path

String

N/A

None

Path of a point cloud file to be
processed.

Debug

Boolean

True / False

False

If setto True, intermediate files at
each processing step will be
generated and saved to the
computer.

EPSG Code

Integer

Projected Coordinate Systems
only

32633

If the point cloud is georeferenced,
the processing outputs will be
assigned the specified EPSG code.

Data Type

String

‘MLS Raw'; 'MLS Cropped';
'iPhone LiDAR'; 'CRP'; 'UAV
LiDAR'

MLS Raw'

The source of the point cloud. Based
on the selected option, other
parameters will be adjusted to more
appropriate default values, and the
processing algorithm will vary
accordingly.

Subsampling Step

Float

0.00t0 0.2

0.05

The minimum step size between
points in the subsampled point
cloud.

Cross Section Thickness

Float

0.01to 1.0

0.07

The size of the cross-section, which
will later be used for RANSAC Circle
Fitting.

Cross Sections Count

Integer

1 to Unlimited

The number of cross-sections
extracted for each tree, which will
be used for RANSAC Circle Fitting.

Cross Section Step

Float

0.1to5

Interval at which the cross sections
will be made along the stem height.
First sections is always at1.3m
above ground.

DTM Resolution

Float

0.5t05

The grid step for detecting minima
within each grid cell. The DSM is
generated at four times finer
resolution.
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The sensitivity of density filtering to
smaller objects. Higher values result
Filter-Chunk Size Float 1to 100 10 in detecting only larger trees,
whereas excessively low values may
lead to improper terrain removal.
X Athreshold for filtering out trees
Maximal DBH Float 0.1to5 1.5 ) e )
with unrealistic DBH estimate.
) Athreshold for eliminating crown
Watershed Min. Tree o .
. Float 0.1to 40 5 detection in trees below a certain
Height g
size.
The number of attempts to find the
Ransac Iterations Integer 100 to 10000 1000 best-fitting DBH for a given cross-
section.
The outlier threshold, specifying
o how far from the currently fitted
Outlier Distance Threshold Float 0.01t00.1 0.01 ) )
circle a point must be to be
considered an outlier.
Defines the number of CPU cores
allocated to reduce processing
Used CPU cores Integer 1to All All-4 time. Excessively high values may
lead to RAM overuse and processing
failure.
409  *Default values differ based on selected Data Type. Values for 'MLS Raw' are shown.
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The executable file of DendRobot or the raw Python code can be freely downloaded from
https://dendrobot.czu.cz/ or https://github.com/marekhrdina/DendRobot.
Some of the point cloud data shown in the figures are not publicly available, however similar sample

dataset can be downloaded from https://dendrobot.czu.cz/download. The numerical and statistical

results of the study are available upon request.
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5.Diskuse

Tato disertacni préce si polozila tfi vyzkumné cile, jichZ bylo formou ¢étyr diléich studii
postupné dosazeno. Aby byla nasledujici diskuse 1épe prehledné, budou nazvy dvou
studii, popisovanych drive v této disertacni praci, nahrazeny zastupnymi nazvy. To
pfispéje k prehlednosti diskuse. Clanek popisujici vykon low-cost scannerti
v porovnani s prednimi skenery proto bude nazyvan jako ,studie mapry“. Studie
predstavujici program DendRobot a vysledky jeho prvotniho testovani bude uvadéna
jako ,,studie DendRobot*®.

Disertacni prace a s ni spjaté védecké publikace se zabyvaji vyuzitim pozemnich metod
dalkového prizkumu Zemé a potencialem, ktery v sobé ukryvaji data, porizena témito
pristupy. Otazka potencialu a presnosti takovych dat je predmétem zajmu velkého
poctu védeckych publikaci, které cili na zjistovani vlastnosti lesniho prostiredi novymi
zpusoby. S jistotu lze fici, Ze moderni metody dalkového priizkumu Zemé snizuji
casovou naroc¢nost terénniho sbéru dat a poskytuji presnost vysledkii, srovnatelnou
s tradiénimi postupy méreni lesa [27,51]. Potencial 3D dat je vsak stale do velké miry
nevyuzity, nebot jen mala ¢ast studii, resp. algoritmu pro zpracovani 3D dat, se zabyva
jinymi parametry, nez je tloustka stromu ve vycetni vysce (DBH) s vyskou stromu. V
ramci této disertacni prace proto byla projevena snaha o vétsi vyuziti potencialu 3D dat
nékolika zptisoby.

Prace, zabyvajici se detekcei hniloby ve stojicich kmenech, je jednim z takovych pripadt.
Svym pristupem k feSeni problému s klasifikaci shnilych a zdravych stromt je prace
originalni. Jako prvni se totiz zabyva uréenim pritomnosti hniloby ve stromech pomoci
strojového uceni, vyuzivajictho pozemni fotogrammetrickd 3D data. Studii, které
vyuzivaly bodova mraéna z CRP pro zpresnéni vysledkii tomografie, uz ale v drivejsi
dobé vzniklo vice [119,120]. Ty se sice nezabyvaly automatickou klasifikaci stromi, ale
spolu s prezentovanou autorskou studii se shoduji na tom, Ze fotogrammetrie je
vhodnym nastrojem pro zptesnéni vysledkti tomografie.

Vysledky klasifikace shnilych a zdravych stromi lze nicméné porovnat alespon se
studiemi, které se zabyvaji klasifikaci druhti dfevin pomoci metod strojového uceni.
Takovéto studie se zabyvaji napft. klasifikaci 3D dat do sedmi kategorii, danych
direvinnymi druhy a dosahuji presnosti klasifikace 95 % a 86 % [121,122]. To miize
poukazovat na to, Ze potencial detekce shnilych stromi je daleko vétsi, nez jakého se
doséhlo v této disertaéni praci.

Vysledky klasifikace by bylo zirejmé mozné zlepSit poskytnutim vétsi datové sady [123],
coz uz je ale otazkou navazujicich projekti. Na zakladé vysledki studie je kazdopadné
mozné TFici, ze klasifikatory, zamérené na jednotlivé druhy drevin, dokazou klasifikaci
provadét presnéji (65.5 %), zatimco univerzalni modely presnost vysledki
snizuji (57.7 %).
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Dalsimi parametry stromi, odvozovanymi ze 3D dat, byly vlastnosti stromové
architektury. Otazkou bylo, do jaké miry je pozemni fotogrammetrie schopna zachytit
jemné struktury stromkd a zdali je mozné tyto informace spolehlivé kvantifikovat
vyuzitim QSM. Studie potvrdila, Ze spolehlivé 1ze rekonstruovat pouze nékteré
parametry, a to zejména délky — tj. vysky stromi, délky vétvi v riznych radech vétveni
a také primér kmene. Parametry jako je pocet vétvi, objem vétvi nebo celkovy objem
direvni hmoty stromt, byly tspésné zjistény jen v nékolika pripadech, coz neposkytuje
vystupy, které by konzistentné podporovaly uzitecnost fotogrammetrie pro tento tkol.
Celkové chyby RMSE pak nabyvaly hodnot 34.2 % pro urceni vysky kmene, 69.9 % pro
urceni tloustky kmene, 107.9 % pro objemové parametry a 142 % pro pocty vétvi. Z toho
je patrné, Ze fotogrammetrie nebo pouzity zptisob sbéru fotografii, pro tyto ticely neni
nejvhodnéjsi volbou.

Zaroven je ale nutno podotknout, Ze referencni metoda magnetického digitalizovani
poskytuje velice presné kontrolni udaje a studie s podobnym zamérenim casto takto
presna referenéni data neanalyzuji a nejsou schopny tak diikladné posoudit skutecné
rozdily. Napi. studie rekonstruujici solitérni stromy z letecké fotogrammetrie z dronu
popisuje, Ze analyza podhodnocovala délky vétvi dospélych stromi o vice nez 50 cm a
jejich tloustky nadhodnocovala o vice nez 3 cm. Porovnani v§ak probihalo vici ru¢nim
méfenim, délanym na nahodné vybranych céastech 3D modelu [118]. Vysledek je
v ¢astecéné shodé s tvrzenimi plynoucimi z predkladané disertacni prace, ktera tvrdi, ze
objemy vétvi jsou nadhodnocovany. To souvisi stim, Ze jsou nadhodnocovany i
tloustky vétvi, pohybujicich se ve vétru. Podobné jako v citované studii. Naopak délky
se podartilo v diserta¢ni praci rekonstruovat pomérné presné.

Jako jiné porovnani lze prezentovat jesté vysledky zaloZené na TLS skenovani.
Prislu$né studie se opét zabyvaly stojicimi dospélymi stromy a porovnavaly se vysledky
riznych algoritmi, kvantifikujicich stromové parametry. Rozdily mezi metodami
vykazovaly pomérné malé odchylky, asi do 20 % pro objem kmene, vétvi a veskeré
dievni hmoty. Referen¢nimi daty v této studii jsou ale opét vysledky z manualni
segmentace bodového mracna, nikoliv z ruénich meéreni v terénu [124] a nelze tak
uplné dokazat porovnani s realitou. NejrelevantnéjSim porovnanim je tak studie
vyuZivajici program TreeQSM na bodova mrac¢na zTLS, pricemz vysledky jsou
porovnany s destruktivnim méfenim. Studie se ale zabyva pouze vétvemi s prameéry
pres 20 cm. Ty byly pomoci dat z TLS rekonstruovany presné, s chybami uréeni délek
pod 1 %. Podhodnoceni tloustky vétvi nabyvalo jen 8% rozdilu a chyba urceni celkového
objemu drevni hmoty nabyvala hodnoty 3 %. Vysledky tak ukazuji, Ze pro rekonstrukei
hrubé architektury stromu je postup vyuzivajici QSM vhodny [125].

Pro budouci studie, snazici se rekonstruovat detailni architekturu stromti pomoci
fotogrammetrie, 1ze doporucit, aby byl kladen velky diiraz na povétrnostni podminky
béhem sbéru dat. Diilezita je eliminace pohybu vétvi ve vétru a také spravné svételné
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podminky, coz je potvrzeno ve vice studiich [40,118]. Ke sniZeni Sumu a poc¢tu artefakt
by ztejmé prospélo i fotografovani v co nejkratsim casovém okné, aby se minimalizoval
pocet fotografii, které zachycuji vétve posunuté vétrem. Alternativni moznosti je
samoziejmé vyuziti laserového skenovani. I to v§ak musi byt pouzivano s ohledem na
pocasi, nebot i u néj ma vliv vétru neptiznivy dopad. Laserové skenovani ale nabizi
rychlé vytvoreni skenu s potencialné vysokou presnosti, zejména pii skenovani na
kratkou vzdalenost. Proto by mohlo byt dostateéné detailni i pro uvadéné ucely.

V lesnictvi je vSak LiDAR vyuzivan piedevsim pro sbér zakladnich tidajt inventarizace
lesa, coz je vyska stromu a jeho vycetni tloustka. Studiem téchto parametrt z MLS a
TLS se zabyvala treti studie, zkracené ,studie mapry“, prezentovana v této disertacni
préaci. Jejim cilem bylo stanovit presnost levné alternativy znackovych TLS a MLS
systémi. K tomuto tcelu byla pozorovana zjisténa DBH a pocet ispésné detekovanych
stromi. V ptipadé hlavniho testovaného zarizeni ,mapry LAo3“ byla nejlepsi dosazena
presnost detekce stromi rovna asi 77 % a chyba RMSE urceni DBH 19.7 %. Téchto
vysledkil bylo dosazeno automatizovanou analyzou bodovych mracen. V porovnani s
citovanou studii, zkoumajici potencial dvou jinych low-cost zarizeni, je tento vysledek
pomérné slaby, nebot uvedena studie dosahla chyby RMSE uréeni DBH 6 % pro obé
testovana zarizeni [126]. Je v§ak nutno podotknout, Ze citovana studie probihala na
zkusnych plochéch o rozloze 900 m2 a s mensim podilem zmlazeni. To, v porovnani s
takika 4.5nasobné velkou plochou s bohatym zmlazenim, ziejmé zpisobilo tento
znacny rozdil, ktery by ale snad bylo mozné zmensit Gpravou trajektorie skenovani v
ramci ,studie mapry“. To ostatné plati i pro druhy low-cost scanner, iPhone 14 Pro,
taktéz pouzity ve ,studii mapry“. Ten dosahoval v nejlepsim pripadé RMSE uréeni
DBH asi 44 %. To je dvojnasobna chyba, nez jakou doséhla jina studie, porovnavajici
tentyz senzor [127]. Opét je rozdil pravdépodobné dany volbou trajektorie, ktera v
pripadé disertac¢ni prace nemohla byt upravena kviili zachovani objektivity porovnani
skenert. Nicméné, tato skutecnost stavi skenovani pomoci mobilniho telefonu do velké
nevyhody. Je nutno vSak podotknout, Ze toto porovnani ticelné zavadi stejné podminky
pro vSechna MLS zatizeni, aby bylo mozné objektivné posoudit jejich vykon pfi
sjednocené ¢asové naroc¢nosti, vénované skenovani zajjmového tizemi.

Porovnani vysledkl referenc¢nich zatizeni, tedy TLS Trimble TX8 a MLS GeoSLAM
ZEB Horizon, se s vysledky jinych studii shodovalo. Tato zarizeni jsou velmi presna a
chyby dosahované napric¢ studiemi se pohybuji v rozsahu do RMSE priblizné 2 cm
[27,30,53], coz odpovida i vysledktim disertacni prace.

Dtlezitym vysledkem studie je potvrzeni skutecnosti, Ze dosaZena piesnost,
resp. Uplnost vysledki, se miize vyrazné lisit v zavislosti na pouzitém algoritmu pro
zpracovani bodového mraéna. Z porovnani vyplyva, Ze pouzity algoritmus ma zasadni
vliv na pocet aspésné detekovanych stromt. Ten je tudiz zfejmé hlavnim kritériem pro
uspésné odvozeni DBH vSech stromii po celém naskenovaném tzemi. Rozdily ve
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vypoctenych tloustkach nalezenych stromd, jiz totiZ nejsou tak vyrazné, jako rozdily
v poc¢tu stromti nalezenych v bodovém mracnu a je proto dtlezité vénovat dostatek
pozornosti algoritmtim pro detekei stromii a odstranéni Sumu v okoli kmene.

Této problematice se vénuje posledni studie (,,studie DendRobot*“) prezentovana jako
soucast disertacni prace. V ni byl navrZzen novy zptsob detekce stromt v bodovém
mracnu, ktery si v porovnani sjinymi publikovanymi algoritmy, vramci ,studie
mapry“, vedl stejné ¢i dokonce 1épe, a to az o necelych 17 % v porovnani s programem
3DFIn a az o 42 % lépe v porovnani s programem FORTLS. Nutno je ale zminit, Ze
v porovnani s manualné segmentovanym poctem kment, ¢i s vysledky algoritmu
SAMICE ma program DendRobot stale rezervu, v né€kterych pripadech az 30 %. Ve
~studii DendRobot“ byl v§ak podil nalezenych stromt velmi vysoky a to 93 %. Rozdil
vpoctu detekovanych stromii miize byt dan predevsim tloustkovou strukturou
zkoumanych porostii, ktera se mezi obéma studiemi zasadnim zpiisobem lisi. ,,Studie
mapry“ totiz pracovala na zkusné plose s velkym podilem tenkych stromti. Z nich se 44
nachazelo v tloustkovych stupnich do 12 cm, zatimco ve zbylych, vyssich, tloustkovych
stupnich bylo 54 stromti. ,,Studie DendRobot*“ ale pracovala pouze se stromy nad 7 cm
tloustky, tudizZ podminky pro detekci byly pravdépodobné priznivéjsi. Tato studie ale
zaroven porovnavala i vysky stromi, ¢imz se publikace o low-cost skenerech viibec
nezabyva. Vysledky porovnani DBH (RMSE = 3.4 cm) a vysky (RMSE = 0.7 m) tak
vykazuji uspokojivé vystupy v porovnani s tradi¢ni inventarizaci lesa. Tyto vysledky
byly dosazeny pozorovanim rozsahlych a ¢lenitych zkusnych ploch, které zahrnovaly
celkem 1222 stromfi.

V porovnani s jinymi studiemi zamérenymi na MLS jsou dosaZené chyby srovnatelné,
DBH je vSak uréeno s mirné vétsi chybou. Citované studie dosahly napt. chyby jen
1.47 cm [27,126]. Pfi porovnani vySek stromt ale naopak DendRobot poskytl lepsi
vysledky, pii¢emz citované studie vykazuji chyby vétsi nez cca 1.5 m [27,126]. Opét je
ale rozdil ve vlastnostech skenovanych tizemi. V ramci diserta¢ni prace byla vyvijena
snaha o provadéni studii v podminkach komplexnich lesnich porostt, které stavi
metody pozemniho DPZ pred vyzvu a lze tak 1épe odvozovat zavéry relevantni pro
praktické pouziti.

V souvislosti s tim, vyvstava dutlezita otazka, jestli je béhem vyuzivani TLS a MLS stéle
potteba dodrzovat parametry zkusnych ploch pouzivanych pti tradiénim mérteni lesa,
nebo zdali velikost zkoumaného Gzemi nemitize byt zvétSena. Laserové skenovani
poskytuje totiz informace nejen z prostiedi uvnitt zkusnych ploch, ale i z okoli. Pri
vyuziti veskerych naskenovanych dat tak lze analyzovat nasobné vétsi plochu
s minimalnim nartdstem spotfeby casu. Védecké studie se casto soustiedi na malé
zkusné plochy, s rozsahem mensim nez 10 art [14,27,126]. Ze ,studie mapry” je ale
patrné, Ze pri skenovani zkusné plochy o rozloze asi 0.4 hektaru, nékteré metody
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dokazaly zachytit prostredi o rozsahu 1.4 hektary (MLS) nebo dokonce 3 hektary (TLS),
coZ je nasobné vic, nez kolik bylo ve vysledku vyuzito k samotné analyze.

Pri¢ina volby malych zkoumanych Gzemi tak pravdépodobné spociva v komplikacich,
vzniklych pii zpracovani velkého objemu 3D dat. Ty souvisi s nutnosti, aby pocita¢, na
kterém maji byt data zpracovana, disponoval dostate¢nou operac¢ni paméti (,RAM®),
ktera casto presahuje parametry béznych pocitac¢ti. Jako minimalni dostupna kapacita
RAM je proto zapotriebi alesponn 32 GB, 1épe vSak 64 GB nebo 128 GB. Pri takto
objemné operacni pameéti Ize nacist a zpracovavat bodova mrac¢na o velikosti casto
presahujici rozméry porostnich skupin, typickjch pro Ceskou republiku.
Z nepublikovanych vysledkti vlastnich analyz vsak vyplyva, Ze prakticky vSechny
programy poskytnuté jako vysledky védeckého badani nenakladaji efektivné prave
s operacni paméti systému. To vede k tomu, Ze na béznych pocitacich algoritmy
predcasné selhavaji pro nedostatek dostupné paméti, a to vsamém diisledku vede
k tomu, Ze lze analyzovat pouze mala Gzemi. Z tohoto diivodu se pti tvorbé programu
DendRobot kladla za cil diisledna optimalizace algoritmu, ktera bude maximalné Settit
RAM, pripadné zkrati i ¢as zpracovani dat. Pii zpracovani analyz pro tuto disertacni
praci tak bylo ¢asto pozorovano, Ze si program DendRobot jako jediny dokaze poradit
s rozsahlejsimi bodovymi mracny, zatimco pro funkénost jinych programi musela byt
bodovia mra¢na zmensSovana. Optimalizace programi je tim padem dulezity aspekt,
ktery je nutno zohlednit, maji-li byt algoritmy pro automatické zpracovani dat
pristupné i Sirsi odborné verejnosti. Jak jiz bylo diive uvedeno, laserové skenery jsou
cenové nakladni zatizeni. Obdobné to vSak plati i o pocitaéovém vybaveni, které je
nutno pro rychlé a spolehlivé zpracovani velkych dat pofizovat. SniZovani narokt
pocitacovych programt tak muZe uSetfit mnoho finanénich nakladd pii zpracovani
velkoplosnych dat a prispét k vétSimu vyuzivani dalkového prizkumu Zemé i
v realnych, provoznich aplikacich.

Zavérem diskuse k tématiim disertacni prace si autor pokorné troufa tvrdit, Ze cile
disertacni prace byly naplnény a svymi vysledky prispély malym dilem k problematice
dalkového priizkumu Zeme v lesnictvi. Ten stale skyta velky, dosud nevyuzity potencial
a je potteba provést jesté mnoho krokti, smérujicich ke stale dokonalejsimu vyuzivani
detailnich dat, ktera metody pozemniho skenovani nabizeji.

6.Zavér

Metody pozemniho skenovani lesniho prostredi nabizi moznosti, jak velmi detailné
analyzovat parametry jednotlivych stromti. Potencial téchto metod je obrovsky a neni
dosud uplné vyuzivan, protoze se mnoho védeckych praci zaméruje predevsim na
tradi¢né sbirané parametry, jako je tloustka v prsni vysSce a celkova vyska stromd.
Existuje vSak uz i nékolik nastrojii a metod, jak efektivné ziskavat idaje nejen o kmeni,
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ale i o vétvich stromu, potazmo o celé jeho architekture. Takovychto samostatnych a
dobfte pouzitelnych néastroji je ale mélo. Proto se tato diserta¢ni prace snazi o rozsireni
souboru parametrii, odvozovanych z pozemni fotogrammetrie ¢i LIDAR.

V ramci prace je proto provadéna detekce hniloby uvnitt zZivych, stojicich kmenii nebo
popis detailni architektury malych stromkd, ve smyslu zjiSténi objemu a délek kmene
i vétvovi. Oba tyto tkoly byly aspésné splnény za vyuziti pozemni fotogrammetrie a byl
tak podlozen predpoklad, zZe zjistit vyskyt hniloby uvnitt kmene je za pouziti strojového
uéeni a 3D dat zpozemni fotogrammetrie mozné. Zaroven bylo ovéreno, zZe
architekturu malych stromi je mozné zfotogrammetrie automatizované
rekonstruovat, ale jen do omezené miry, ktera vyplyva z kvality vytvorenych bodovych
mracen. Presné se tak podarilo odvodit jenom tdaje o délkach, zatimco volumetrické
udaje se podatilo rekonstruovat jen v nékterych pripadech a z vysledki nelze odvodit
presny a konzistentni zavér. Nicméné, kviili obtizim, souvisejicim s aplikaci pozemni
fotogrammetrie, nelze tuto metodu doporudit pro velkoplo$né analyzy, nebot ma
metoda tendenci selhavat i pri rekonstrukci mensich objekti, které se ale vlivem
okolniho prostiedi, byt jen neznatelné, pohybuji.

Proto byl v dalsich studiich, spadajicich pod predkladanou diserta¢ni praci, zkouman
predevsim potencial pozemniho laserového skenovani. Jednim z ciléi diserta¢ni prace
je analyzovat vyuzitelnost pozemniho laserového skenovani. Proto probéhla studie,
porovnavajici vykon rtizné cenové dostupnych LiDAR senzorii. Studie probihala na
relativné velké zkusné plose a prokazala, Ze v takto slozitych podminkach dominuji
predevsim senzory od véhlasnéjsich spole¢nosti, které maji vyss$i potrizovaci cenu.
Levnéjsi senzory pak ukézaly potencial pro provadéni Setfeni na mensich tizemich.
Diky nizké cené téchto LiDAR skenerti je totiZ mozné jich nasadit vice soucasné a sbirat
tak informace z mensich ploch, rozmisténych po $ir§im tGzemi. To by teoreticky mohlo
nahradit manualni inventarizaci lesa, pti zachovani tradi¢né vyuzivanych velikosti
zkusnych ploch.

Pro efektivnéjsi zpracovani dat z pozemnich senzorti tato diserta¢ni prace predklada
novy autorsky software DendRobot. Ten je schopny presné analyzovat velkd bodova
mracna lesniho prostiedi, k ¢emuz vyuziva novy zpisob detekce stromi a vypoctu
jejich vysek. Pritom oba zptisoby dosahuji prokazatelné lepsich vysledki nez jiné, volné
dostupné programy, urcené pro obdobnou analyzu 3D dat lesniho prostredi. Presto je
vSak dals$i zdokonalovani programu DendRobot dilezZité, protoZze dosud existuji
rezervy v poctech uspésné detekovanych stromi. Také program dosud nezjiStuje
podrobnéjsi informace o stromech, coz znamen4, Ze potencial poskytovanych 3D dat
neni zcela vyuzit.

V budoucim vyzkumu je proto dilezitd orientace na identifikaci druht drevin
zobrazenych v bezbarvych bodovych mrac¢nech. To je zdkladni parametr, nezbytny pro
prakticky aplikovatelnou analyzu lesa. Dale bude kladen diiraz na efektivni, piesné a
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pokud mozno rychlé zpracovani 3D dat velkého rozsahu, s ¢imz souvisi i zajem o
vyuzitelnost tlousték, zmérenych v jinych vyskach, nez pouze v 1.3 metrech nad zemi.
Zde se vychazi z predpokladu, ze pokud skenovani poskytuje informace o vyssich
¢astech kmene, je mozna nevhodné se zamérovat na tloustku v 1.3 metrech, ktera je
Casto zastinéna a pirekryta jinymi objekty, zejména zmlazenim.

Zavérem lze konstatovat, ze potencial vyuziti 3D dat je veliky a dosud je efektivné
vyuzivan pouze jeho zlomek. Soucasné studie vsak udavaji sméry, kterymi se lze vydat
a dovést tak analyzu prostorovych dat zase o kus dal.
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