CESKA ZEMEDELSKA UNIVERZITA V PRAZE
FAKULTA LESNICKA A ENVIRONMENTALNI{

KATEDRA HOSPODARSKE UPRAVY LESU

Filip Hajek

AUTOMATED CLASSIFICATION OF TREE SPECIES
COMPOSITION FROM REMOTE SENSING DATA

PhD Thesis

Praha 2007



CESKA ZEMEDELSKA UNIVERZITA V PRAZE
FAKULTA LESNICKA A ENVIRONMENTALNT{

KATEDRA HOSPODARSKE UPRAVY LESU

Filip Hajek

AUTOMATED CLASSIFICATION OF TREE SPECIES
COMPOSITION FROM REMOTE SENSING DATA

AUTOMATIZOVANA KLASIFIKACE LESNI DRUHOVE SKLADBY
Z OBRAZOVYCH DAT DPZ

DISERTACNI PRACE

Praha 2007



Preface

This PhD thesis is about automated classification of tree species composition from remotely
sensed imagery. As the entire field of geoinformatics has been rapidly enhancing during the
last decade, new digital sensors collecting images of very high spatial resolution were
introduced, demanding modern processing approaches. Classification techniques based on
analysis of individual pixels are no longer suitable for VHR imagery such as from IKONOS,
QuickBird, or OrbView-3. However, there is an evident need for more accurate and more

effective methods of forest inventory data collection.

The study was initiated Doc. Lena Halounovéa from Remote Sensing Lab, Czech Technical
University Prague, who kindly suggested such interesting and relevant forestry topic. Her
previous work about the object-oriented classification of black&white aerial photographs
served as a key inspiration to determine the main principles of developed methodology. The
study would not have been possible without the financial support of the National Agency for
Agricultural Research (project code QG50097). Besides, the IKONOS imagery and digital
aerial photos were provided for purpose of the dissertation by companies GISAT s. r.o. and
GEODIS Brno free of charge. Moreover, I would like to thank to my supervisor Prof. Jan

Kouba who widely assisted with many valuable opinions and ideas.

Many thanks to all of you. Your faith and support are most appreciated.

In Prague, March 2007  Filip Hadjek
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2 Introduction

Monitoring of forest environment has the fundamental meaning for sustainable resource
management. The increasing demands on the level of inventory precision, information
resolution and repeatability involve new methods to the forestry management. For several
decades, various remote sensing (RS) techniques and instruments has been utilised for
purposes of forest inventories, forest mapping, as well as acquisition of some quantitative

stand and tree estimates.

The first aerial image ever was acquired from an air-balloon in Paris in 1856 by F.
TOURNACHON (Flygbildsteknik och Fjarranalys, 1993). Then beginnings of research in
field of forestry remote sensing go back in 1920s, when the aerial photographs were
integrated into forest inventory in Canada and the first photogrammetric methods were
utilised. Since 1950s, a number of authors from Western Europe (BAUMANN 1958), Russia
(SAMOILOVIC 1953, BELOV 1959), USA (SPURR 1960) and later also Czechoslovakia
(CTHAL 1969) dedicated their work to photo interpretation techniques for forestry. Besides
traditional panchromatic (B&W) aerial photo interpretation, infrared and multispectral
photography were being tested for qualitative assessment. Although aerial photos continue to
be important to forest monitoring and management, the rapid pace of sensor development and
information needs in the past three decades has led in to an explosion of forestry remote
sensing research and multispectral satellite imagery, radar data hyperspectral images and laser
scanning forestry applications have been intensely examined. So far, the satellite data have
been used mainly for global forest monitoring and inventories of broader extent. However, the
increasing improvement in spatial resolution will soon allow estimation of stand and tree

characteristics as well (ZIHLAVNIK and SCHEER 2000).

The significant fields of forestry remote sensing application include forest management, forest
protection, forest ecosystem biodiversity assessment, forest planting and silviculture, biology,
game management etc. Specifically working at a tree scale has a potential to extend digital
remote sensing into many new areas (HILL and LECKIE 1999) such as detailed assessments
of forest stands, forest regeneration (GOUGEON 1997), logging practices, forest health
(LECKIE et al. 1992) and susceptibility to invasive pests.

When evaluating potential of RS for intensive forest management, it is rather adequate to
mention that such methods are meant to facilitate the assessment of forest state using

appropriate combination with ground measurements, not to replace it completely.



3 Aim of thesis

The aim of this dissertation was to utilize the entire knowledge gained through the process of
studying various forestry remote sensing aspects in order to create an automated technique of
tree species estimation from the remotely sensed (RS) images. The process involved literature
survey, field investigations, skills of working with image analysis software and practical
experience with various types of the remote sensing images. The resulting study then covers

several topics for which partial objectives were formulated:
1. utilization of very high resolution (VHR) aerial and satellite images in forestry
2. benefits of image pre-processing and GIS data fusion
3. aspects of object-based image analysis and the result interpretation
4. acquisition of field reference data

Ad 1) The three different types of RS images were involved in the research — IKONOS-2
satellite images, color and infrared film aerial photos and aerial images acquired by medium-
format digital camera. These represent the accessible alternatives of VHSR data sources,
which were considered suitable for the intended methodology. However, each data type
differs in spectral, radiometric and temporal resolution, as well as the availability and cost.
The objective was to apply the method consistently to such different images, so the individual

results could be obtained and discussed.

Ad 2) Various image channels were calculated from the original datasets to enlarge the
classification feature space. These involved spectral ratios and vegetation indices (NDVI),
Tasseled cap and IHS transformation layers, low-pass filters, Sobel edge detection and GLCM
texture measures calculated in pre-processing phase. In order to use proper features, the
contribution of different layers to class separability was then evaluated by means of graphical
and statistical methods. The objective was to study an impact the various image channels to
the classification feature space enlargement. Besides, the contribution of some existing GIS

layers (DEM, forest management database) to classification result was also to be examined.

Ad 3) The main study objective was to create a classification rule base, which could be
transferred and applied over the series of images to automatically obtain the tree species
estimates. The concept is based on object-oriented classification presented in the commercial
image analysis software Definiens Professional (a.k.a. eCognition, Definiens Imaging

Germany). The aspects of using algorithms for multi-resolution image segmentation, complex



object description (spectral, geometric, textural and contextual), relations within hierarchical
image object network and classification procedures based on fuzzy rule sets were to be
explored and demonstrated. Furthermore, the issues of accuracy assessment and the result
interpretation within object-oriented analysis environment emerged. There statistical measures
commonly used in pixel-based techniques e. g. Producer, Accuracy, User Accuracy, or Kappa
Index of Agreement (KIA) can be applied also to evaluate object classification, however, the
interpretation of the result may be problematic. Some of the issues were intended to be

covered.

Ad 4) Apart from the main topic of forest image classification, the problem of reference
(ground truth) data acquisition was also examined. Since the only data source available to
evaluate the classification results may be the forest management planning GIS database
LHPO (UHUL, Czech Republic), there is often a need to obtain more accurate and updated
information by own field-work measurements. The objective was to develop a simple and
cost-effective method based on mobile GIS mapping, which would suit the requirements for

reference sampling and accuracy assessment.

Structure and sections of thesis

The presented thesis is divided into 10 chapters (see index). The chapter Results consists of
four research papers and one technical article. The individual papers are indicated by roman
numerals (I — V) in further text. For purpose of proper grasp, the references are listed at the
end of Literature survey chapter, as well as at the end of each publication. The final chapter

References (chapter 10) lists all references and literature sources included in the dissertation.

Note:
By the time of the thesis printout, the three research papers were already reviewed and

approved for publishing (I, IT published, IV in print), the paper V was positively reviewed

and returned for the minor corrections.



4 Literature survey

Selected applications of remote sensing in forestry management

Extraction of height information

Various tree and stand characteristics can be interpreted from a single image, stereo-pair of
large scale aerial photography, or VHR satellite imagery respectively. For detailed extraction
of 3D information, the stereogram needs to be obtained either from imagery with sufficient
continuous overlay (one metric camera), or it can be derived from the synchronized
photography using two metric cameras. Then the standard stereo-photogrammetry procedures
are applied to calculate estimates such as tree height, canopy width, tree count, in-between
distance, canopy closure, or a stand density. Due to poor visibility of the stem at a breast-
height, the measurements of stem volume are extremely difficult and therefore rather
experimental within condition of very low-stocking broadleaved forests during season of

vegetation calm (SCHEER and RACKO 1987).

Height approximation from the length of cast shadow
The shape of shadows is important attribute for the tree species identification, but shadow
length can be also used for tree height assessment (MURDYCH 1976). In the flat terrain, the

height is calculated as

h =s*tga

where s is length of the shadow (Figure 1a, b)
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Figure 1. Shape of self and cast shadows for different types of bushes and trees (a). Scheme of tree height
assessment from the shape length feature (b) (from MURDYCH 1976)

However, the practical assessment of tree height from the cast shadow is complicated due to
shadow length variability associated with season and the day time. Very course estimates can

be made at the forest boundaries and open spaces.

Parallax measurements from stereoscopic imagery
Based on the measurements of horizontal parallaxes between the tree foot and top in image

stereo-pair, the tree height can be calculated:

H
p=prtl
Py

where p - difference of horizontal parallaxes between the tree foot and top
H - height of the aeroplane

b - stereoscopic base

Although the most widespread, this method is has also a number of constraints mainly
associated with the poor bottom visibility in the high canopy closure stands. The
measurements of few heights can be acquired at the forest boundaries and gaps. These are not
representative for heights of individual trees, but often sufficient to estimate mean stand
height. ZIHLAVNIK and SCHEER (2000) suggested a method of height profiles, where the

mean stand height is calculated from the profile of forest stand and terrain profile
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measurements. Such approach enables measuring of relatively high number of trees within

selected row, but requires enough flat terrain between the positions of measurements.

Airborne laser scanning

The advanced and extremely relevant might be the extraction of height information from the
airborne laser scanning (ALS) so-called LiDAR. The system originally designed for
topographical mapping provides a dense 3D point cloud of the forest structure at the very high
resolution and hence can provide accurate estimates of stem density and tree crown density.
The main task is classification of the individual pulses into different object classes. For
example, laser pulses (Figure 2) reflected by the ground must be distinguished from non-
terrain points to derive digital terrain model (DTM). This is by using filtering algorithms,
which highlight spatial distribution and geometric characteristics of points relatively to their
neighbourhood. Besides the height and location measurements, accurate species
discrimination can be achieved by combination of co-registered laser data and VHR optical

imagery.

Legend
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Figure 2. Distribution of first and last LiDAR pulses (from DONOGHUE et al. 2006)

In connection to topic of 3D information extraction, it is rather adequate to mention the step
of orthorectification - connection of image to the specific coordinate system. As noted by
WARNER et al. (1998), any image data must be georeferenced and directly applicable in GIS
to be most useful for forestry users. The digital orthorectification requires a high resolution
digital terrain model. The DTM can be produced either from an existing cartographic
information, or also derived from a stereo-pair of aerial photos by semi-automated or

automated correlation procedure. These methods are still rare in practical forestry and remain
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in the domain of research (ZIHLAVNIK 1998). However, such data are then suitable for

vectorisation in the range of mapping and registration tasks.

Identification of tree species composition

The correct identification of basic landuse /landcover types (forest, grass, agriculture, urban)
from both aerial and satellite images is usually an easy task, but is necessary for the further
detailed classification of forest tree species composition. Various interpretation characteristics
can be used for visual or digital automated recognition methods. The canopy shape is one
significant feature often associated with bio-sociologic location in the stand, density of
canopy closure, differences in the canopy growth space, etc. Two types of shape are common
in Czech condition - round shape represents coniferous and irregular shape represents
broadleaved tree species. In aerial photos, these basic canopy shapes are often modified by the
position of projection centre and the sun angle at the moment of exposition (Figure 3). The
very recent technique of crown shape recognition is based on canopy modelling from raw

LiDAR point data (DONOGHUE et al. 2006).

A
Ssaslorsnlie s s

Figure 3: Canopy shape in connection to position in the image and the sunlight direction (ZIHLAVNIK and
SCHEER, 2000)

Among the other characteristics to recognize forest type is texture, where broadleaves have
coarser and conifers have smoother appearance. Looking at the individual trees, some species
have also specific canopy texture (spotted beech, radial texture for fir). However, only large

scale aerial photos allow observing such details.

Much better results can be obtained by the interpretation of imagery with infrared band, such
as colour infrared (CIR) aerial photos, or multispectral satellite imagery. IR images make use
of the reflectance attributes of different tree species associated with the chlorophyll content in

leaves and needles. Whereas in panchromatic image conifers and broadleaves appear similar,
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there is huge increase in their reflectance in the near infrared band (Figures 4 and 5). Further,
colour composites derived from multispectral images are especially useful to distinguish
different tree species within the stand structures. The proper band combination is chosen
based on the optimal grey level differentiation for individual species. The common band

combinations used for both visual and automated interpretation are true color (true RGB

representation) and false color (NIR band represented by red) composites.

Figure 4. Spectral reflectance of mixed forest stands in green (left) and NIR (right) band

In the automated analysis of species distribution, the most important is to determine the
correct spectral signature for individual species. However, the differentiation itself can be
problematic as their spectral curves sometimes overlap. Moreover, the crown reflectance is
always a complex interaction of foliage spectral properties with other sources of variability
including atmospheric effects, shadow pattern, back ground composition and instrument noise

(STONE and COOPS 2004).

In cases of small scale projects, where accurate the information for individual trees is not
required, the forest classification focuses rather on the estimation of area occupied by the
species. The assessment of prevailing forest type (conifer, broadleaved, mixed) from remotely
sensed data can be also used for the effective methods of forest stratification (ZIHLAVNIK
and SCHEER 2000).

13
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Figure 5. Spectral reflectance curves of different forest species (Shornik prednasek CVST - FEL 1977)

Lately, the methods of tree species identification from satellite imagery have been widely
explored. Some studies (BUCHA 1998) aimed to estimate forest species composition using
moderate resolution data, such as Landsat TM, Spot HRV. MALENOVSKY (2001) tested
satellite images from Spot 4-Xi and found that spatial resolution of 4 m could be sufficient for
forest vegetation mapping. The relevant studies on VHR satellite imagery (Ikonos,
QuickBird) seem promising for the species identification at the individual tree level. The
recent advances in image processing allow delineation of individual tree crowns and enable
extraction of crown reflectance for both modelling and classification (CULVENOR 2002).
Besides, spectral analysis combined with the additional information from e.g. terrestrial
measurements or laser scanning, and the integration of GIS within the automated
classification procedures has been characteristic up-to-date approaches for the species

identification.

Monitoring of forest change
Besides estimating forest stand parameters, an evaluation of structural characteristics of
forested landscapes is also considered an important application of remote sensing data. The

influence of forest management on forest landscapes requires evaluating changes to landscape
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patterns, since these changes can have also impacts on wildlife habitats and forest-dwelling

species (ELKIE and REMPEL 2000).

Observation of forest health and detection of logging and regeneration are of the most
important application in change detection methods. Changes are generally expressed as a
large spectral contrast in a multi-temporal image dataset. For the monitoring of environmental
change, moderate resolution imagery e. g. Landsat and Spot were found sufficient by most
authors (STOKLASA 1995, WOODCOCK et al. 2001). Also clearcut logging can be readily
detected using Landsat data. Fore example, SADER and WINNE (1992) analysed multiple
dates of Landsat TM imagery using RGB-NDVI classification methods to identify clearcuts
and partial cuts with the high efficiency results. Some studies in change monitoring were
based on visual image interpretation using one, or a pair of images. The recent computer-
based methods (OLSON et al. 2004) involve texture analysis, image transforms, tasselled cap

analysis and/or vegetation indexing (NDVI) within the fully digital image analysis workflow.

Assessment of forest health condition is probably the most significant remote sensing
application in forestry. As explained by ZIHLAVNIK and SCHEER (2000), the reason is the
increasing damage of forest ecosystems and also interpretation of qualitative forest
characteristics is easier and less complex then quantitative tree and stand estimation. The
advantage of RS methods is the ability to asses the current extent of damage, but also to detect
its latent initial phases. In this aspect, infra red images are especially useful to expose so-
called extravisual changes of forest diseases. MURTHA and MCLEAN (1981) used CIR
aerial photos to monitor coniferous forests damaged by SO, SCHEER (2000) developed
method to classify degree of forest damage using channels of PCA, IHS transformation and
R-G band subtraction derived from digitized aerial photos. However, satellite images are
currently considered the main source of forest state information, due to their better
radiometric, spectral and temporal resolution. Also, the greater scene coverage allows health

monitoring of areas of global extent.

Some studies (KIRBY 1980, GOUGEON and LECKIE 1999) also explored methods of
evaluation of forest regeneration using RS images. The optimal data for regeneration
assessment (both natural and plantations) should be CIR aerial photos acquired with
consideration to vegetation season and seedling phenology. KIRBY (1980) found that images
from early spring and late autumn season allow high level of contrast to distinguish between

conifers seedlings and the ground cover by dead grass.
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Utilisation of forestry remote sensing in Czech Republic

Estimation of tree and stand characteristic

Methods of forest state assessment using remotely sensed data have been utilised for several
decades in Czech Republic. Considering the traditionally high level of forest inventories,
studies of Scandinavian and central-european authors (ARDO 1992, STOKLASA 1995,
SCHEER 1996, REESE and NILSSON 2000, BUCHA 2004) were the most relevant sources
of inspiration for Czech forestry remote sensing. The extensive research focused mainly at the
assessment of location, but also other attributes, such as volume, height, age, structure and

health condition using remotely sensed data (aerial, satellite).

From the beginning, mainly visual interpretation of aerial photos was found useful in forestry.
The typical application represented a drawing of basic map elements in Forest Management
maps 1:5000 over aerial photos, lately transformed into production of overview management
maps using simple overlay with LHP raster layers within the geographic information systems

(Figure 6).

Figure 6. Panchromatic aerial photograph overlaid by raster GIS layer from Forest management planning LHP
database (UHUL Map Server 2005)

Another application of exceptional significance is the use of traditional photogrammetric
methods for purposes of forest mapping. TICHY (1949) worked on the task of “how well to
utilise aerial photogrammetry in forest practice” to acquire fast and cost effective forest
inventories already in the late 1940s. The proposed method was considered an efficient
alternative to creation of the management plans and maps, but also the elevation contour

maps. He also set a number of screening conditions and calculated costs at the half of the
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geodetic terrestrial measurements. ZIHLAVNIK (1998) refers that demands on mapping
extent, maximal rationalization and difficult conditions for terrestrial works in mountainous
areas cased the photogrammetric assessment prevailing method of forestry mapping in
Slovakia. Nevertheless, the b&w photos successfully used for acquisition of basic location

and height attributes are less suitable for forestry mapping of specific thematic content.

Valuable information for vegetation mapping can be acquired from multispectral aerial
images. The first forestry oriented experiments with MS material were done within the
international cooperation program Interkosmos in 1978. TOLLINGER and HUSAK (1982)
aimed to evaluate multispectral images for purpose of forest health assessment and tree
species identification, but also explored different band combinations suitable for thematic
interpretation. The multispectral satellite images of moderate resolution (Landsat, Spot) were
found too coarse for Czech forestry. Such data might be suitable for mapping of extensive
areas in countries such as USA, Canada and Scandinavia, but the operational use in the Czech
environment is rather complicated, as the level of forest information is typically very high
here. Unfortunately, neither the aerial photo interpretation was not applied in broader extend
as a technology of production of forest management plans in Czech Republic (FRYML, 2005

pers. communication).

The advanced techniques of the tree top detection and crown delineation are not very often
used in Czech forestry research. Still, some activities occurred recently in this field.
Following approaches of different authors (GOUGEON 1995, DRALLE and RUDEMO
1997, LARSEN and RUDEMO 1998, BRANDTBERG 1999), SUMBERA and ZIDEK
(2003) aimed to locate individual trees from scanned multispectral aerial photos. The
algorithms e.g. finding local maxima, template matching and edge detection were tested and
implemented into a special program to automatically create maps to be used in a range of

forestry applications.

Assessment of forest health

Assessment of forest health condition using remote sensing data was one broadly studied
application in Czech forest sector. The research cooperation program between Czechoslovakia
and NDR (since late 1970s) utilised infrared aerial images to locate trees damaged by smog
emissions in Kruné Hory Mts. (VINS and PELZ 1981). The level of forest damage was
assessed by combination of terrestrial and aerial survey and then profiles of selected trees
were analysed in the age ring analysis. VINS and PELZ (1981) deduced that infrared aerial

photos are suitable to expose different levels of forest damage and consequently perspective
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method to assess yield losses in polluted forest areas. Their report extended results of
evaluation of various aerial photo materials in Krusné Hory studied by HAUTKE in 1978.
Besides, multispectral aerial images were studied with the objective to identify trees damaged

by frost, dry rot, or bark insects (TOLLINGER and HUSAK 1982).

Since 1984, series of satellite imagery from Landsat TM and ETM+ sensors have been
continuously analysed to obtain evaluation of forest damages. The 30-m multispectral data
allow extraction of mixed information about the amount of needles (leaves) and its condition
in terms of water content and withering level. Based on this information, two different

classification scales of forest mortality and defoliation can be acquired (STOKLASA 1995):

A. “Level of damage and forest stand mortality” is connected to classification of
coniferous forest damage caused air pollution (O, O/I, 1, II, Illa, IIIb, IVa, IVD).
Mainly decrease in leave amount with its condition as secondary factor are represented

by this scale.

B. “Defoliation and mortality of coniferous forests” evaluates mean defoliation of
coniferous species within forest stand in 10% steps. Such finer scale provides higher
agreement of the image classification with terrestrial data, basically due to better

correlation of spectral information and the defoliation attribute.

Maps of actual forest health condition and maps of long-term development are then
processed. Consequently, maps of endangered coniferous forests representing areas of the

poor actual condition and unsatisfying development are produced.

The image analysis methodology itself has some application constraints. The most important
are the minimum canopy closure of 70% and homogeneity in tree species composition (higher
than 80%). This is mainly due to the spectral influence of understorey and the problematic
classification of mixed pixels in the heterogeneous stands. Considering the image spatial
resolution of 30m, the similar problems may also occur at the forest boundaries. The
maximum quadratic errors of 10% of the terrestrially acquired classification scale are
achieved for the standard conditions (VULHM 2004). The classifier is trained separately for

homogenous spruce stands and general broadleaved forests.

Assessment of forest health condition by remote sensing is the joint project of Forest
Management Institute, Help Service Group and STOKLASA Tech. The produced satellite
maps are incorporated into forest health condition information system to enable operational

evaluation and support decision process of the Ministry of Agriculture of the Czech Republic.
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Besides, the database is used by institutions such as Forest Management Institute (UHUL),
Forestry and Game Management Research Institute (VULHM) and State Forests of Czech
Republic (LCR, s.p.)

Image interpretation

Each pixel in the satellite data has a DN (digital number) specifying a spectral reflection of
the sensed object in a specific spectral band. Different feature types manifest different
combinations of DNs based on their inherent spectral reflectance and emmitance properties
(LILLESAND et al. 2004). Spectral pattern refers to the set of radiance measurements
obtained by the various wavelength bands for each pixel. We can also recognize the spatial
pattern of objects when trying to interpret remotely sensed data. That typically involves the
categorization of image pixels on the basis of their spatial relationship with pixels surrounding
them. Spatial classifiers consider aspects such as texture, feature size, shape directionality and

content.

Digital image processing is an extremely broad subject and it often involves procedures that
can be mathematically complex. The idea behind the subject is that digital image, fed into
computer on the pixel basis, enters an equation or a series of equations and the changes are
stored to be used for the analysis or may itself be further manipulated by additional programs
(LILLESAND et al. 2004). These procedures typically involve image rectification and
restoration (radiometric and geometric correction), image enhancement, image transforms and

filtering techniques. Methods of image enhancement can be divided into 3 main groups:

1. Radiometric enhancement — enhancing images based on the values of individual

pixels

2. Spatial enhancement — enhancing images based on the values of individual and

neighboring pixels

3. Spectral enhancement — enhancing images by transforming the values of each pixel

on a multiband basis

Spectral analysis

Since there is a relationship between forest stand parameters and the particular spectral bands,
the analysis of multispectral imagery such as Landsat TM requires selection of an appropriate
band according to the intended forestry application. The near-infrared band is usually

preferred for generic forest inventory (although the green band can also work effectively),

19



while the blue band may be more appropriate for defoliation assessment. From five Landsat
TM bands studied by BROCKHAUS and KHORRAM (1992), TM5 and TM7 were found
significantly correlated with age class and basal area. According to ARDO (1992), there is a
strong negative correlation between the stem volume of the forest compartments and the
spectral radiance in all bands except TM4. The shortwave infrared spectral region (SWIR)
seems to be particularly sensitive to forest vegetation density, especially in the early stages of

clearcut regeneration (HORLER and AHERN 1986).

Apart from the direct application of certain bands, it is also possible to generate an
illumination image from various band combinations and different image transform processes -
arithmetic operations such as addition, subtraction, multiplication and division. These
enhancements derived from multispectral and multi-temporal imagery should ideally utilize
multi-resolution image data to reduce acquisition costs, manage computational expense,
narrow the spatial extent of areas in consideration, and provide a manageable workflow

(OLSON et al. 2004).

Band rationing and vegetation indices

Ratio images are enhancement resulting from division of DN values in one spectral band by
the corresponding values in another band. Derived images clearly portray variations in the
slopes of the spectral reflectance curves between the two bands involved, regardless of the
absolute reflectance observed in the bands. In other words, spectral characteristics of image
objects are preserved and represented without respect to variations in scene illumination
conditions (LILLESAND et al. 2004). Indices can be used to minimize shadow effects in
satellite and aircraft multispectral images. Further, as ratio images are derived from the
absorption/reflection spectra of the material of interest, the ratio often gives information on
the chemical composition of the target. This is useful in vegetation analyses to bring out small

differences between various vegetation classes.

Since the concept of between-bands differences and ratios was broadly accepted by the image
interpretation community, numerous forms of linear data transformation have been developed
for vegetation monitoring. In many cases, reasonably chosen indices can highlight and
enhance differences which cannot be observed in the display of the original color bands. The
differential reflectance in these bands provides a means of monitoring density and vigour of
green vegetation growth using the spectral reflectivity of solar radiation. This can utilize in

many tasks such as classification of land cover or detection of vegetation stress
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Normalized difference vegetation index (NDVI) is a frequently used index that provides a
standardized method of comparing vegetation greenness between satellite images. While most
authors (BOONE et al. 2000, CHEN 1998) studied NDVI as an indicator of relative biomass
and greenness, other studies used indexes to derive further transforms. TUOMINEN and
PEKKARINEN (2004) extracted NDVI and three channel ratios NIR/R, NIR/G, and R/G to
calculate different texture features from digital aerial images. SOUZA et al. (2005) proposed a
new Normalized Difference Fraction Index (NDFI) spectral index for enhanced detection of

forest canopy damage caused by selective logging activities and associated forest fires.

Principal component analysis

Problems of extensive interband correlation in the multispectral imagery often cause that
individual wavelength bands appear similar and convey essentially the same information.
Principal components analysis (PCA) is used as a method of data compression allowing to
reduce such redundancy in multispectral data. The bands of PCA data are non-correlated and
independent, and are often more interpretable than the source data (JENSEN 1996). As stated
in LILLESAND et al. (2004), the first principal component describes majority of the variance
in the original dataset, for example 98% for Landsat imagery. If used for purpose of
automated analysis, the reduction of data dimensionality can generally increase the

computational efficiency of the classification process.

IHS transformation

The color monitors used for image display on image processing systems have three color guns
corresponding to additive primary colors of red, green, and blue (R, G, B). When displaying
three bands of mulispectral imagery, the viewed image is said to be in RGB space. However,
it is possible to define an alternate color space that uses Intensity (I), Hue (H), and Saturation

(S) as the three positioned parameters.

[HS enhancement operations benefit from the ability to vary each IHS component
independently. After the conversion from RGB to IHS, a contrast stretch can be applied to the
intensity component without affecting hue and saturation of the image pixels (FOLEY et al.
1990). The other way of using IHS transform is combining co-registered images of different
resolutions (sources). For example, Ikonos 1-m panchromatic data (used in the intensity
component) can be merged with 4-m multispectral (hue and saturation components) to get

pan-sharpened multispectral imagery.
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Tasseled cap analysis

Tasseled Cap transformation offers a way to optimize data viewing for vegetation studies.
These transformations were originally derived for Landsat images to highlight differences in
vegetation and soil. As shown by COHEN and SPIES (1992) who used a combination of
Tasseled Cap spectral indices and textural features of Landsat TM and SPOT HRV imagery,
the transform can be well utilised also for estimating of forest attributes. HORNE (2003)
suggested the method of tasseled cap calculation for multitemporal analysis of Ikonos data.
Tasseled Cap transform was calculated as an average of principal components (used as a new

orthonormal basis for the four bands) across a large number of Ikonos images in his study.

Texture analysis

Texture is one of the most important defining characteristics of an image. It is characterized
by the spatial distribution of gray levels in a neighborhood (JAIN et al., 1995). Many studies
proved that RS classification methods based solely on spectral classification are insufficient
for mapping of complex forest structures from high resolution digital imagery (ZHANG 2001,
WACK and STELZL 2005). Particularly young succession stages and heterogeneous mature
stands are characterised not only by the spectral but also their textural (spatial) properties.
Similarly non-forested areas and regenerating areas be eliminated based on their different
texture characteristics. However, automated recognition of objects based on these
characteristics is still difficult. Various methods have been employed for automated extraction
of texture information in forestry. This includes local statistical measures (HSU 1978), grey
level co-occurrence matrix (ANYS et al. 1994), semivariogram (ST-ONGE and CAVAYAS
1997), and neural network approaches (DREYER 1993).

ZHANG (2001) tested several texture algorithms and found that local variance extraction,
edge detection and some co-occurrence matrix texture measures can well separate trees from
lawn and other objects with similar spectral properties. The result of texture integrated
classification gained almost 30% of agreement over the multispectral only method. The use of
textural and spectral features of SPOT HRV imagery in classifying forest and other vegetation
types has been studied by PEDDLE and FRANKLIN (1991). TUOMINEN and
PEKKARINEN (2005) assessed performance of selected textural features derived form digital
aerial photos and stated that optimal image spatial resolution is dependent on the object size.
HAUTA-KASARI et al. (1999) applied different HARALICK features on the multispectral
images to perform texture segmentation. Another evaluation of spatial information

(semivariance range and sill, co-occurrence texture) in spectrally unmixed image fractions of
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vegetation, shadow and wood was done by Le’VESQUE and KING (2003) who found it
useful in forest structure and health modelling. NARASIMHA et al. (2002) found textural
features GLCM Entropy and Correlation optimal for Landover classes discrimination from

IRS-1D pan data with achieved accuracies over 80%.

Automated classification methods

The methods with some degree of automation that use the existing knowledge to increase the
practical efficiency (benefit/cost ratio) were the important topic lately. The main goal is to
fully or partly replace the human image interpreter by a seeing computer, capable of making
many decisions on its own, with a minimum of human intervention during the image
processing and analysis. As stated by COHEN et al. (1998), automated classification methods
provide sufficient accuracies when mapping forestry harvest activities. Further, methods
based on generalization require less time and effort than conventional methods and as a result
may allow monitoring of larger areas or more frequent monitoring at reduced cost
(WOODCOCK et al. 2001). BALTSAVIAS (2004) clarifies the term automated and semi-
automated methods. As these always involve some kind of interactions, either during
preprocessing or postprocessing stage, should be viewed as knowledge-based methods. In
BENZ at al. (2004), the four main requirements for successful knowledge-based object

extraction were highlighted:
¢ understanding of the sensor characteristics
e understanding of appropriate analysis scales and their combination
¢ identification of typical context and hierarchical dependencies

e consideration of the inherent uncertainties of the whole information extraction system,

starting with the sensor, up to fuzzy concepts for the requested information.

The commercial systems that allow to use our knowledge to extract desired objects from
aerial and satellite imagery include photogrammetric, GIS and remote sensing software.
Typically, the different programs are usually designed for particular tasks, which leads to the
complex software workflow - one program is used for data preparation and image pre-
processing (PCI Geomatica, Erdas Imagine), followed by the classification procedures
(eCognition, ENVI) and then result is exported for the final post-classification improvement

and accuracy assessment to the GIS (ArcGIS, Geomedia).
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The automated classification procedures, as stated in LILLESAND et al. (2004), can be
basically divided to supervised and unsupervised classification. In supervised classification,
an image analyst specifies various land cover types for the computer in a categorization
process. Training areas (sample sites of known cover type) are used to compile a numerical
“interpretation key” that describes the spectral attributes for each feature type of interest. Each
pixel in the data set is then compared numerically to each category in the interpretation key
and labelled with the name of category it “looks most like” (LILLESAND et al. 2004).
Unsupervised classification involves data aggregation into natural spectral groupings
(clusters) in the first step, while the image analyst identifies these spectral groups as certain

land cover types using ground reference data in the second step.

Feature selection

Considering the supervised classification, success of classification stage is determined by the
quality of the training process. This is often done by selecting training pixels or training areas,
which well represent desired cover classes. LILLESAND et al. (2004) suggest to involve
several training sites in the analysis, which increases the change of having representative
sample of each cover type. In the training set refinement process, quality of candidate training
areas and their spectral separability is assessed. The gaps and redundancies (overlap regions)
in signature distributions are identified. Further, areas that include more than one spectral
class are identified and recompiled, extraneous samples may be deleted from the selection.
Definition of representative training set is normally an iterative process with the revision of
class statistical description until they are sufficiently spectrally separable. Hence, the class
separability is logically associated with the class spectral signatures. The inherently similar
spectral response patterns often need the ancillary information from GIS layers, visual
interpretation or the field check, as well as multitemporal and spatial pattern recognition

procedures to be discriminated.

Graphical representation of class separation

The nature of classified objects can be very heterogeneous, so various types of features must
be integrated into feature space to achieve a good recognition rate. The relevant features may
include many such as color, texture or context, and then their selection for optimal and

efficient class separation is needed.

The distribution of training area response patterns can be graphically displayed by means of

histograms and two-dimensional scatterograms. Histograms well illustrate distribution of one
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class, but do not provide comparisons between different cover types. The scatter plots indicate
response in various bands (features) with distribution overlaps for several categories. Based
on such feature space representation, the least correlated features can be selected for improved

class separation.

Besides the scatterogram visualisation, some commercial image analysis software also allows
computing divergence for every class pair within each feature, or band. The separability
listing contains every divergence value for the bands studied for every possible pair of
signatures. The separability listing also contains the average divergence and the minimum

divergence for the band set. (Erdas FieldGuide).

Quantitative expressions of class separation

Two measurements are basically used for a quantitative estimation of class separation.
Transformed divergence is a measure of statistical separation between category response
patterns. This measure evaluates the difference between all pairs of classes and can be
presented in the form of matrix. The technique requires that the measurements on samples of

classes are distributed in multivariate normal form (MATHER, 2004).

Discriminant Analysis was found a simple and powerful technique to project data into a
reduced dimensional space in which the data are optimally separated given a set of labelled
images. The implicit effect of the transformation is to assign various weights to each feature
dimension depending on their relevance to discriminate each class (FAUQUEUR et al. 2005).
Discriminant Analysis is generally used as a description of group (class) separation with
linear functions of variables used to describe or elucidate the differences between two or more
groups. The goal is to identify relative contribution of the p variables to separation of the
groups and finding the optimal plane on which the points can be projected to best illustrate the

configuration of the groups (Rencher 2002).

BUCHA (2004) successfully applied discriminant analysis to find optimal variables and
derived discriminant model for distinction of different stand structures. The contribution of
variables was assessed (F-test) and the best feature combination was found using Wilks
Lambda statistics in stepwise procedure. Hotelling’s T*-tests and MANOVA test are other
commonly used multivariate tools. Some authors (FAUQUEUR et al. 2005) suggest
projection the data with Principal Component Analysis before discriminant projection to
avoid matrix singularity problem in cases, when the number of samples is lower than the

feature dimension.
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Accuracy assessment

Maps derived from remotely sensed data are often judged to be of insufficient quality for
operational applications. In order to derive quality of a classifier and to evaluate classification
with respect to their suitability for specific application, results are compared on the basis of
other classification. This data can be obtained with different methods, e. g. in-situ ground
measurements and is considered as a reference data set. Disagreements between the two data

sets are typically interpreted as errors in the land cover map (CONGALTON, 1991).

The most commonly used method of representing the degree of classification accuracy is to
build a k& x k confusion matrix. Such table is derived by counting how many of the pixels
assigned to a class A in the result classification are of the corresponding class in the reference
classification. As a simple cross-tabulation of the mapped class label against that observed in
the ground or reference data for a sample of cases at specified locations, it provides an
obvious foundation for accuracy assessment (CAMPBELL 1996; CANTERS 1997). The
confusion matrix provides the basis on which to both describe classification accuracy and
characterize errors, which may help refine the classification or estimates derived from it

(FOODY 2002).

Sample areas

The test areas are representative and uniform plots with distinctive characteristics for specific
class. Beside the typical use during the training stage of supervised classification, the plots
can serve the post-classification accuracy assessment. The important aspect is the definition of
an appropriate sample size and sampling design as well as specification and use of a measure

of accuracy appropriate to the specific application.

The sample size must be selected with care and be sufficient to provide a representative and
meaningful basis for accuracy assessment (FOODY, 2002). The size recommendations went
through a complex development and several researchers proposed approaches to determine
appropriate sample size. To fill an error matrix, some broad guidelines suggested that a
minimum of 50 samples of each vegetation or land cover category are to be included.
According to CONGALTON and GREEN (1999), the minimum number of samples should be
increased to 75 or 100 per class, “if the area is especially large (more than a thousand
hectares), or the classification has a large number LULC classes (i.e. more than 12 classes).
The number of samples should also be adjusted based on relative importance of certain class
for particular application, and the sampling allocated with respect to the variability within

each class (LILLESAND et al. 2004).
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The issue of sampling design and appropriate sample unit are also broadly discussed, as it
maybe individual pixels, clusters of pixels, or polygons. As stated by some authors
(LILLESAND et al. 2004, MATHER 2004), homogenous test areas might not provide a valid
indication of accuracy at the individual pixel level of land cover variability. Basic random
sampling can be appropriate if the sample size is large enough to ensure that all classes are
adequately represented. However, it may be extremely difficult to use randomly located sites
to assess the accuracy of a map covering a very large area. The ground data collection is
frequently constrained by a problematic physical access and consequently, selection of a

sampling design is influenced by budget or other practical reasons.

Methods of automated forest information extraction on stand and tree level

The increasing demands on the level of accuracy, timeliness, completeness, and cost-
effectiveness of forest information extraction cause that traditional methods of visual image
interpretation are being gradually replaced by the semi-automated and automated techniques.
This fact is further supported by the improved computing power together with the availability
of high spatial resolution (10-100 cm/pixel) multispectral aerial or satellite images, allowing

the digital analysis on the stand and individual tree crown level.

GOUGEON and LECKIE (2003) recognise three different streams in field of individual tree
crown (ITC) analysis, tree location, tree location and crown dimension parametrization, and
full crown delineation. According to BRANDTBERG (1999b), tree delineation approaches

can be categorized into three classes:
a. detection of a local intensity maximum assumed to represent the apex of the tree
b. contour based methods that find edges of objects

c. template-based matching methods that match generalized shapes of trees to the image

patterns.

However, the results promising for forestry practice were rather obtained when combining the
individual approaches. Various geometric-optical models and the template matching
algorithms to locate tree tops of individual trees from aerial photographs were presented in
DRALLE and RUDEMO (1997). Detection of image local maxima for coniferous stands
using smoothing filters of scales appropriate for the tree sizes and the image resolution were
proposed by GOUGEON and Moore (1989). Similarly, SUMBERA and ZIDEK (2003) used
Gaussian smoothing to delimit number of detected trees followed by the tracing spectral

minima algorithm to segment individual crowns. WALSWORTH and KING (1998) declared
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the peak-shadow combination "fundamental" in recognizing individual trees and
CULVENOR et al. (1998) found that the combination of local maxima and minima,
representing respectively crowns centres and boundaries, was particularly effective in
delineating individual Eucalyptus trees. KORPELA (2000) determined tree tops using 3D
matching from an aerial image stereopair. As a method of crown delineation, GOUGEON
(1995) suggested a system based on following valleys of shade (Figure 7) and contouring
rules to automatically delineate individual tree crowns from high spatial resolution aerial
photographs. A rule based system following the tree edges was then used in order to outline
and further refine the tree isolation (GOUGEON 1995, 1999). The developed method was

locally adaptive, so it can switch from open to dense stand procedures.

Figure 7. 3D view of image subset showing the brighter tree crowns as mountains often separated by valleys of
shade (from GOUGEON 1999).

BRANDTBERG (1999) studied dependence of two-dimension variograms for detection of
texture features. The presented algorithm followed edges created by the gradient operator and
the edge curvatures were analyzed. The crown delineation based on edge detection was also
examined by SUMBERA and ZIDEK (2003). Besides, method so-called Cost surface
generation, where the primarily located tree tops serve as a starting point to crown filling and

delineation was tested.

Automated methods of tree crown delineation have been successfully applied to coniferous
plantations using high resolution imagery (GOUGEON 1993, 1995, 1997a), but deciduous
forests appear to be a greater challenge. COOPS et al. (1998) suggested that the terms
"canopy object" or "tree cluster" are preferable to "tree crowns" for this work, because few
sub-dominant trees are visible from above, and the boundaries of trees in natural

environments can be so complex (BRANDTBERG 1999a).
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Recently, a number of researchers aimed to delineate tree crowns using various segmentation
algorithms. The one considered useful was developed by BAATZ and SCHAPE (1999) and

introduced in the first commercial object-oriented analysis software eCognition (Definiens

1 R Inc. 2000). The segmentation studies
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Figure 8. Chessboard segmentation with tree tops detected by local maxima (TIEDE and HOFFMANN 2006)

Object-oriented analysis of VHR image data

The automated classification of highly textured image data such as aerial photos and VHR
satellite imagery is a complicate task (HALOUNOVA 2003). The extreme image
heterogeneity cause the objects representing one thematic class (tree crown) are actually
consisted of number of pixels with diverse digital values. The traditional pixel-based
classification procedures (supervised and unsupervised) consider the DNs of the individual
pixels, but not their spatial distribution so called image texture. The different approaches can

be applied to solve this problem:

a) Enlarging the classification signature space by the calculation of additional channels

(e.g. texture)
b) Image segmentation followed by object classification of the original dataset

c) Object-oriented image analysis using enlarged signature space (combination of the

two former)

The topic of signature space enlargement is connected to the multiple image matching and

contribution of various image transforms and derivatives to classification result, and was
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already covered in chapters Image pre-processing and Feature selection. The problematic of
image segmentation and classification of meaningful objects refers to term Object-oriented
image analysis. According to BALTSAVIAS (2004), the methods for extraction of image

objects show some typical tendencies in the recent years:

e increasing number and variety of sensor data such as laser scanners, digital

cameras and high-resolution satellites an their combinations are used

e semantic and Bayesian nets, artificial neural networks (ANNSs), evidence

theory and fuzzy logic are frequently employed
e increased use of a priori knowledge

e object-oriented, hierarchical and multiscale approaches are often used in both

processing and object modelling
e more use of context and the relations between neighbouring objects
e small steps towards semi-automation and generation of operational systems

e reliability and completeness of automated results together with their automatic

evaluation remain the major problem

The object-oriented image analysis is considered revolutionary in viewing content of the
digital dataset. The idea behind object classification approach is to employ multi-scale object
relations typically observed in form of the real world dependencies. Similarly, the concrete
local relation of different data types might be of use when dealing with the multi source data
fusion. Such relations can be preserved only for meaningful image objects and thus image
segmentation must be done. The increased uncorrelated feature space using shape (e.g. length,
number of edges, etc.) and topological features (neighbour, super-object, etc.) improves the
value of final classification (BENZ et al. 2004). BURNETT and BLASCHKE (2003)
concluded that the multi-scale segmentation/object relationship modelling can be a vehicle for
a theory driven exploration of different types of landscape heterogeneity. Delineation of
objects of high heterogeneity and complex structure represents the other motivation to

perform segmentation.

Also many forest researchers agreed that the segmentation of the individual tree crowns is
required to estimate the tree species composition from high spatial resolution images and it

has been an ongoing research field for several years. The techniques employ template
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matching, valley following, local maximum filtering, edge detection, spatial clustering. Many
algorithms utilize combinations of these (BRANDTBERG & WALTER 1998, CULVENOR
2002, GOUGEON 1995, PINZ 1989, POLLOCK 1996). The results from many of these
methods are rather good, although more research can probably improve the result. When it
comes to classification of the tree crowns into species, less research has been done.
BRANDTBERG (2002) developed a method for classification of the tree crowns using fuzzy
sets and GOUGEON et al. (1998) a method using spectral signatures. LECKIE et al. (2003)

have developed a method for classification at stand level.

Image segmentation

The task of creating meaningful objects equates to searching for changes in image object
heterogeneity/homogeneity. The number of segmentation techniques were developed e.g.
HARALICK and SHAPIRO (1985), RYHERD and WOODCOCK (1996) and BAATZ and
SCHAPE (2000). The common approaches use thresholding or region growing algorithms
and different types of texture segmentation algorithms and knowledge-based approaches are

also used in operational applications.

Multi-scale analysis

Same type of object appears differently at different scales and thus definition of scale of
interest is crucial. Studying the scene in different levels of scale enables to understand
relations within the image and its better interpretation. Consequently, employing these
hierarchical scale dependencies enhance the automated classification methods (BENZ et al.
2004). The purpose of a hierarchical structure is to reduce redundancy and complexity in the
class descriptions (BAATZ et al. 2003). Practically classifying the upper level, each object
e.g. forest stand can be analyzed based on the composition of its classified sub-objects (tree
species). The context information and semantics can be used to distinguish between trees

within a forest or within an urban area and more.

Fuzzy classification

Besides the hard classifiers commonly used in automated techniques (maximum likelihood),
fuzzy logic together with neural networks (GOPAL and WOODCOCK 1996) present soft
classifiers. The soft classification allows for data ambiguity being especially useful when

describing transition properties and variations in boundary sharpness.

As JENSEN (1996) notes, there needs to be a way to make the classification algorithms more

sensitive to the imprecise (fuzzy) nature of the real world. Instead of being assigned to on
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specific class, the pixels can have a multiple and (or) partial class membership (FOODY
1996). Fuzzy classification takes into account the existence of mixed pixels that doesn’t
belong strictly to one class, allowing creation of inhomogeneous spectral response patterns
with relation to other objects. The method determines wherein a pixel’s value is closer to one
class than another using a membership function. The classification result ten does not have

definite boundaries and each pixel can belong to several different classes (JENSEN 1996).

The basic idea behind Fuzzy logic is to quantify uncertain statements. The two boolean
logical statements “true‘ and “false” are replaced by the continuous range of [0,. . .,1], where
0 means ‘‘false’” and 1 means ‘‘true’’ and all values between 0 and 1 represent a transition
between true and false. Avoiding arbitrary sharp thresholds, fuzzy logic is able to approximate
real world in its complexity much better than the simplifying boolean systems (BENZ et al.,
2004). Moreover, the fuzzy classification systems can handle significant problems of remote
sensing expert analysis, such as uncertainty in sensor measurements, parameter variations due
to limited sensor calibration, vague (linguistic) class descriptions and class mixtures due to
limited resolution (TSATSOULIS 1993). Working in a high-dimensional feature space with
different feature value ranges and features of various types, e.g., backscatter from different
sensors, geographic information, texture information and hierarchical relations is also easier.
Finally, the important advantage of fuzzy logic compared e.g., to neural networks is a
transparent and adaptable set of classification rules that can be applied on other datasets for a

high level of automation.
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5 Main methodical principals

In this chapter, important features of the intended methodology are overall reviewed. The

actual procedures are further described in the publications in chapter Results (I - V).

The methodology pay interest on the most up-to-date and promising approaches in the image
analysis and remote sensing data interpretation. Firstly, the very high resolution digital
multispetral imagery are only involved and processed. The IKONOS satellite images and
color infra-red (CIR) aerial images were considered to fulfill the needs of the detailed forest
assessment at reasonable cost. Secondly, the methodology put emphasis on the initial
enlargement of classification signature space during the pre-processing phase. Thus, many
additional channels such as spectral ratios and vegetation indices (NDVI), Tasseled cap and
IHS transformation, low-pass filters, Sobel edge detection and GLCM texture measures are
calculated from the original dataset. The whole concept is then integrated into process of the
object-oriented classification presented in the commercial image analysis software Definiens
Professional (a.k.a. eCognition, Definiens Imaging Germany). Nowadays, it is the only
program on the market, that implements object analysis with enhanced algorithms for multi-
resolution image segmentation, complex capability in object description (spectral, geometric,
textural and contextual), relations within hierarchical image object network and fuzzy rule-
based classification. In such manner, the knowledge of either forestry or RS interpretation
experts may be employed. The effort was utilize the features to create a powerful tool for

automated forest management applications.

Material — very high resolution (VHR) digital imagery
The advantage of VHR images (with pixel size less than one meter) is that individual trees are

often visible, especially when the forest is mature and not too dense. Such imagery can
potentially be used for individual tree-based forest inventory and planning. Features of
particular interest include the tree crown size, and spectral characteristics, stem position, and
stem number per hectare. The tree species estimates are also important, both for the species

area distribution and timber volume calculations.

Lately, a number of new sensors and systems were developed and introduced to remote
sensing experts and the potential is gradually approaching operational applications. The very
high resolution (VHR) digital images acquired by spaceborn sensors such as IKONOS, and

QuickBird fulfil much of demands on large scale multitemporal analysis. Also digital aerial
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cameras for photogrammetry have developed significantly since they were first introduced in
2000 and today, frame based as well as linear array cameras are available on the market (e.g.
Leica Geosystems, Z/I Imaging, DIMAC systems, Vexcel Imaging). Their main advantages
over traditional aerial photos are a completely digital data flow, a significantly improved
radiometric image quality, together with the possibility to simultaneously acquire
panchromatic, colour and near infrared (NIR) imagery. In addition to aerial photography, very
high spatial resolution aerial data are available from airborne imaging spectrometers (e.g.
AISA, CASI, DAIS 7915, ROSIS and HyMap), active sensors such as airborne laser scanners
(e.g. TopoSys, Optech ALTM and Leica ALS50) and airborne radars (e.g. CARABAS and
GEOSAR). This implies a situation, when the technology and research with applications have

to be well coordinated.

In this study, the three different types of remotely sensed images were selected for further
analysis: IKONOS-2 satellite images, color and infrared film aerial photos and aerial images

acquired by medium-format digital camera.

IKONOS-2 satellite data

The IKONOS satellite was launched in September 1999 as the first commercial high
resolution imaging satellite. The high geometric accuracy, stable radiometry, and 11-bit
dynamic range of IKONOS images make them an excellent mapping tool and enable
significant automated feature extraction. The panchromatic sensor with 82-centimeter
imagery provides imagery for civilian applications such as urban planning and mapping. The
3.28-meter multispectral sensor provides spectral-radiometric measurements for the scientific
community with promising applications in land-use classification, environmental monitoring
and resource development (DIAL and GRODECKI 2003). Moreover, stereo imagery enabling

terrain and 3-D feature extraction is available for operational use.

Sensor Characteristics

The IKONOS satellite orbits the Earth every 98 minutes at an altitude of approximately 680
kilometers. IKONOS was launched into a sun-synchronous orbit, passing a given longitude at
about the same local time daily. IKONOS can produce 1-meter imagery of the same
geography every 3 days. IKONOS images data are available in 8-bit radiometry, or full
dynamic range 11-bit format. The Blue, Green, Red, and NIR bands approximate Landsat TM
1-4 bands (Figure 9):
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=  blue: 0.45 - 0.52 mm
= green: 0.51 - 0.60 mm
= red: 0.63 - 0.70mm

= pear IR: 0.76 - 0.85 mm
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Figure 9. The relative radiometric response of the IKONOS multispectral imagery

Standard products include 1-meter panchromatic, 4-meter multispectral (all bands), 1-meter
color (true color, false color, or 4-band), and a 1-meter and 4-meter data bundle. All products
are radiometrically corrected by rescaling the raw digital data transmitted from the satellite.
The product range includes IKONOS Geo, Geo Ortho Kit, Reference, Pro, Pro plus, Precision
and Precision plus positional accuracy image levels. Besides, IKONOS Stereo images

distributed in epipolar projection are available for 3-D applications.

The actual imagery used in the study was delivered in a geo-registered UTM projection (zone
N33) with 11-bit radiometric resolution at Standard Geometrically Corrected processing level
- IKONOS Geo. Geo images are rectified to a map projection at a constant height without the
use of a Digital Elevation Model (DEM). Such product is suitable for image analysis where a

high degree of positional accuracy is less important than correct radiometry.

Medium—format digital aerial photos

Aerial images from medium-format camera Hasselblad H1 with lens of 50.4 mm focal length
and PhaseOne P25 (Figure 10) digital back were another image format analyzed in this study.
Hasselblad H1 is a medium format SLR camera with a number of unique features that support
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digital backs and provide similar handling and functionality as an integrated digital camera.
Image format is 6 x 4.5 cm (actual size 56 x 41.5 mm). Phase One P25 digital back
incorporates 22 megapixel CCD chip with size of 48.9 x 36.7 mm, 9 x 9 pm pixel pitch, 4:3
ratio and 16 bits per pixel ADC.

Figure 10. Hasselblad H1 medium- format camera with PhaseOne P25 digital back

The images were sensed using custom-made optical filters to obtain three multispectral bands

with spectral properties similar to Landsat TM bands (Figures 11a, 11b).
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Figures 1la, 11b. Transmitance custom-made optical filters: Landsat type B3 and B4 and B60 (Wraten 12)
(Optical research workshop AV Turnov 2002)

The analyzed images acquired as testing material by company GEODIS™ Brno were
delivered as a raw data in with radiometry restricted to 8-bit per pixel. The imagery was geo-
registered to the reference GIS in UTM projection (WGS 1984 zone 33N) using a rational
polynomial function model with the total RMSE 2.3 m and pixel size resampled to 0.5 m,

before further pre-processing and classification.

Color and infrared film aerial photos

Aerial imagery acquired on color and infrared film material by aerial camera ZEISS LMK
2015 (Figure 12) and delivered by different companies were the third data source analyzed in
this study. The camera produces images in format 23x23 and features an anti-erase

technology, built-in exposure meter and gyroscopic suspension.

Figure 12. Aerial camera ZEISS LMK 2015
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Color aerial photographs were acquired in three visible spectral bands with 8-bit depth.
Infrared (a. k. a. color IR) images were acquired on IR sensitive film Kodak AEROCHROME
2443. In this film, the dye-forming layers are sensitive to green, red, or near-infrared
wavelengths. It must be used with a yellow or minus-blue filter (e. g. Wratten. 12) to
eliminate the blue light. After reversal development, three dyes are formed (yellow, magenta
and cyan). When viewed with transmitted light, the dyes act to subtract light and consequently

show images in false colours.

The actual photographs used in the study were delivered both as orthophoto, and scanned
unprocessed raw data. These were geo-registered to the reference projection (WGS 1984 zone

33N) and then all images resampled to spatial resolution of 0.42 m/pixel.

Sighature space enlargement
Many studies (HALOUNOVA 2003, OLSON et al. 2004, DeKOK 2006) showed that image

classification may greatly benefit of using various channels and illumination layers calculated
from the original image datasets. These derivatives are often represented by different band
combinations and image arithmetic operations such as addition, subtraction, multiplication
and division. The objective is to find information not much correlated to the original bands —
channels that are highly enlarging signature space of intended classes. There are many of the
image transforms proposed in RS literature, only the channels tested for purpose of forest

classifications in this study are further described.

NDVI

Normalized difference vegetation index (NDVI) is a frequently used index that provides a
standardized method of comparing vegetation greenness between satellite images. The
formula to calculate NDVI is:

npyr = R=R)
(IR+R)

Vegetation NDVI typically ranges from 0.1 up to 0.6, with higher values associated with
greater density and greenness of the vegetation canopy. Surrounding soil and rock values are
close to zero while the differential for water bodies have the opposite trend to vegetation and

the index is negative. A range of errors such as scattering by dust and aerosols, Rayleigh
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scattering, subpixel-sized clouds, plus large solar zenith angles and large scan angles all act to

increase channel 1 with respect to channel 2 and reduce the computed index.

In this study, NDVI calculated from Ikonos and medium-format digital images were

examined in ability to distinguish between different LULC and vegetation classes.

PCA

The principal components analysis (PCA) is often used to reduce unnecessary dimensionality
of multispetral images. To perform PCA, the axes of the n-dimensional spectral space are
rotated, changing the coordinates of each pixel in spectral space, and the data file values as
well. The new axes are parallel to the axes of the ellipse. The first principal component shows
the direction and length of the widest transect of the ellipse (Figure 13). The direction of the
first principal component is the first eigenvector, and its length is the first eigenvalue

(TAYLOR 1977).
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Figure 13. First principal component

If used for purpose of automated analysis, the reduction of data dimensionality can generally
increase the computational efficiency of the classification process. In this study, first PCA
component derived from multispectral Ikonos images served as a basis for further texture

calculations.

IHS transforms

When displaying three bands of mulispectral imagery, the viewed image is said to be in RGB
space. However, it is possible to define an alternate color space that uses Intensity (I), Hue
(H), and Saturation (S) as the three positioned parameters. This system is advantageous to
present colors more nearly as perceived by the human eye. The three components of the IHS
transform are:
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o [ntensity is the overall brightness of the scene (like PC-1) and varies from 0 (black) to
1 (white).

e Saturation represents the purity of color and also varies linearly from O to 1.

e Hue is representative of the color or dominant wavelength of the pixel. It varies from 0
at the red midpoint through green and blue back to the red midpoint at 360 to define
the entire sphere (BUCHANAN 1979).

[HS enhancement operations allow analyzing each IHS component independently. In this
study, IHS components derived from Ikonos XS and Pan data were assessed for the

contribution to forest classes separation.

Tasseled cap analysis

Tasseled Cap transformation offers a way to optimize data viewing for vegetation studies. It is
considered to rotate the image data space to obtain its “invariant transformation” that does not
change from one image to another. These rotations are sensor-dependent, but once defined for
a particular sensor (e.g. Landsat 4 TM), the same rotation will work for any scene taken by
that sensor. Research has produced three data structure axes which define the vegetation

information content (CRIST and KAUTH 1986):

e Brightness — a weighted sum of all bands, defined in the direction of the principal

variation in soil reflectance.

e Greenness — orthogonal to brightness, a contrast between the near-infrared and

visible bands. Strongly related to the amount of green vegetation in the scene.
o Wetness — relates to canopy and soil moisture (LILLESAND et al. 2004).

Tasseled Cap transformations were originally derived for Landsat images to highlight
differences in vegetation and soil. The method was later suggested also for Ikonos data
(HORNE 2003). In this study, Tasseled Cap axes derived from Ikonos data were tested for the

contribution to separation of forest classes.

GLCM texture measures

Gray-level co-occurrence matrix (GLCM) is the two dimensional matrix of joint probabilities
between pairs of pixels, separated by a distance in a given direction. It is popular in texture
description and based on the repeated occurrence of some gray level configuration in the

texture; this configuration varies rapidly with distance in fine textures, slowly in coarse
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textures (HARALICK et al. 1973). Most of the texture measures are computed from GLCM
directly. In addition, some texture measures are computed from a grey level difference vector

(GLDV) which itself is derived from a GLCM.

Various texture features are calculated from the gray-level co-occurrence matrix based upon
the grey values of one selected layer (eCognition UserGuide, 2004). Hence, every GLCM

needs to be normalised according to following operation:

where 1 - row number and j is the column number
1,j - value in the cell i,j of the matrix
Pi,j - normalized value in the cell i,j

N - number of rows or columns

Homogeneity
Homogeneity, also known as the Inverse Difference Moment, measures image homogeneity

as it assumes larger values for smaller grey tone differences in pair elements. Hence

homogeneity is very sensitive to the presence of near diagonal elements in the GLCM.

N-1 P
L]
D2 .

Contrast
Contrast is a measure of spatial frequency, the difference between the highest and the lowest

values of a contiguous set of pixels. A low contrast image presents a GLCM concentrated

around the principal diagonal. This means that high contrast values imply high coarse texture.
N-1

| El/(i_j)z

ij=0

Dissimilarity
Dissimilarity, akin to contrast, tells about the heterogeneity of the grey levels. Higher values

of dissimilarity in GLCM indicate coarser textures.
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Mean
Mean is an indicator of the distribution of grey levels with respect to the central position.

Interpretation of this feature in association with variance will provide textural information.
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ZP,

Standard Deviation
Standard deviation or variance of GLCM denotes dispersion of the grey levels as defined by

the sum of the squares. Generally, coarse textured features associate with higher standard

deviations. It is similar to contrast or dissimilarity.

N-1

Ufj = ZPz‘,j (iJ _:“i.j)

i,j=0

Entropy
Entropy measures the disorder of an image. When the image is not texturally uniform, many

GLCM elements have very low values implying that entropy is very large. Conceptually,
homogeneity and entropy are inversely correlated.
N-1

sz‘,j(_lan‘,j)

ij=0

Correlation
Correlation is a measure of grey tone linear dependencies in the image. High correlation

values imply a linear relationship between the grey levels of pixel pairs.

S ﬂ)(] ﬂ)
Zn) o))
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Angular Second Moment
Angular Second Moment is also called Energy and Uniformity and is a measure of textural

uniformity, i.e., pixel pair repetition. High ASM values occur when the grey level distribution

has either a contrast or a periodic form.

Edge detection

Edge detection techniques determine pixels in the image with correspondence to the object
boundaries in the scene. The method commonly used for edge detection produce also
excellent texture features similar to those of local variance (ZHANG 2001). The commonly
used Sobel operator performs a 2-D spatial gradient measurement on an image and so
emphasizes regions of high spatial frequency that correspond to edges. Typically it is used to
find the approximate absolute gradient magnitude at each point in an input grayscale image.
The operator consists of a pair of 3x3 convolution kernels designed to respond maximally to
edges running vertically and horizontally relative to the pixel grid, one kernel for each of the

two perpendicular orientations:

-1 0| +1 +1 | +2 | +1

-2 0 [+2 0| 0|0

-1 0 [ +1 -1 ]-2 |1
Gx Gy

The magnitude of the gradient is then calculated using the formula:
‘G‘ =./Gs +4/Gj

Utilization of the texture features for differentiation between vegetation classes in addition to
their spectral properties was already proposed by several authors (ZHANG 2001,
NARASIMHA et al. 2002, HALOUNOVA 2003). In this study, selected GLCM features and
edge layers were tested and found useful to distinguish between young succession stages,

heterogeneous mature stands and other vegetation classes.
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Feature selection
Due to increasing volume and dimensionality of datasets being used in image classification,

methods of the dimensionality reduction for are required. The relevant features may include
those of the original image bands, but also number of layers calculated during the image pre-
processing. Thus, proper feature selection for the optimal and efficient class separation is

needed.

The objective is to find set of statistics (features) that describe the patterns of individual
objects to be classified. Firstly, the sets of samples are assigned to the corresponding class
based on the reference data (manual classification). The quality of the sample objects and
their spectral separability are assessed in this step. The term separability usually stands for a
statistical distance between two class signatures. It can be calculated for any combination of
bands used in the analysis, allowing to rule out any bands not contributing to class-by-class
separation. In this study, the feature contribution was evaluated by a combination of two
techniques. Various characteristics (e.g. spectral, textural, and geometrical) of the sample

objects were compared using graphical statistical methods.

Graphical representation of class separation

The distribution of sample response patterns within the classification feature space can be
graphically displayed by means of histograms and two-dimensional scatter diagrams (Figures
14a and 14b). Based on such feature space representation, the least correlated features can be

selected and used in order to improve the class separation.
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Figure 14a, 14b. Two-dimensional scatter diagram plotting Sobel Edge (horizontal axis) versus NIR band
(vertical axis) Histogram representation of two different classes for various classification features.
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Discriminant Analysis

Discriminant Analysis is generally used as a description of class separation with linear
functions of variables used to describe or elucidate the differences between two or more
groups. The goal is to identify relative contribution of the p variables to separation of the
groups. The method used in this study was based on comparison of coefficients a, , r =1, 2,

..., p, in the discriminant function

— 'y —
z=a'y=a,y,+a,y,+..+a,y,

Mean observation vectors y for 15 selected variables were calculated and the discriminant

function coefficient vectors a were derived from variance-covariance matrix Sy as
a=S"' (7 —y )
- Ml y 1 y 2

Since the y’s were not commensurate, coefficients applicable to standardised variables a* had
to be calculated. The relative contribution to separation of the analysed classes was then
assessed by comparison of absolute values of coefficients standardized by square roots of the

diagonal elements of Sp;:

a = (diag Spl)'/za

The output of the statistical method was always compared with the results of visual
interpretation (“Feature View” in Definiens Professional software) and graphical methods,
where histograms of the candidate features for every two competing classes were compared

(Figure 14b).

Object-based image analysis
The key point of the proposed methodology is to analyse the entire image layer stack (various

features selected out of original bands and the derived channels) using the object-oriented
classification approach. Therefore, the main principals of the object-based analysis will be

described further in this chapter.

The idea behind object classification approach is to employ multi-scale object relations
typically observed in form of the real world dependencies. Similarly, the concrete local

relation of different data types might be of use when dealing with the multi source data fusion.
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Such relations can be preserved only for meaningful image objects and thus initial image
segmentation must be done. Besides, the objects of high heterogeneity and complex structure
can be delineated using proper segmentation technique. As the term indicates, the object

classification involves two elemental steps:

I. Image segmentation into several hierarchical object levels based on spectral and

textural properties

II. Classification of the objects according to their characteristics (spectral, textural,
contextual...). These typical features are defined by mathematical functions and stored

in the classification rule-base.

Image segmentation at multiple levels

Generally, the task of creating meaningful objects equates to searching for changes in image
object heterogeneity/homogeneity. The segmentation algorithm developed by BAATZ and
SCHAPE (1999) considers object spectral and textural properties, but also their size and
behaviour on the different level of scale. The underlying idea is the minimization of the
weighted heterogeneity of image objects. In each step adjacent objects that define the smallest
growth in heterogeneity are merged, but only if the heterogeneity growth is smaller than a

user-defined scale parameter. The increase of heterogeneity f'is defined as:

f=w_ 4h _, +w, Ah

color color shape shape

Where Weolor E[0> 1], Wshape E[O, 1]5 Weolor + Wshape = 1

By mixing the spectral heterogeneity criterion weolor With a spatial criterion Wehape, ON€ can
actually smooth the resultant object, thereby eliminating branched segments or fractal shaped
borderlines. The user defines the scale parameter (heterogeneity criterion), single layer
weights, and mixing of spectral and shape criteria. This process is simultaneously applied
across the whole image to obtain objects of comparable size and quality (BAATZ and

SCHAPE 2000, WILLHAUCK et al. 2000, SCHIEWE 2002).

As already mentioned, the objective is to perform such segmentation on several hierarchical
levels, so the multi-scale relations can be used to improve the classification result. The multi-
scale concept is represented by Multiresolution segmentation procedure implemented into

Definiens Professional software package (Definiens Germany). In this approach, objects
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created on different scales - segmentation levels - can be linked together to a hierarchical

object network (Figure 15) introducing several advantages:

e Structures of different scales can be represented simultaneously and thus classified in

relation to each other
¢ Different hierarchical levels can be segmented based on different data

e Object shape correction based on regrouping of sub-objects is possible

[ L5yn. | =0T ]
| o S SR SLE o e 00 . 090 B | | ‘
geaAAMSBRARLASEAARE A ERS0S -1

Figure 15. Four-level hierarchical network of image objects in abstract illustration (BENZ et al. 2004)

In the hierarchical image object network, class descriptions are being passed down from
parent classes to their child classes. Child classes can inherit descriptions from more than one

parent class.

Fuzzy rule-based classification

The classification process is controlled by a rule-base that describes the characteristics of
output object classes in the form of fuzzy membership functions. Each class description
consists of a set of fuzzy expressions and their combinations allowing the evaluation of

specific features.

Mathematically, Fuzzy classification consists of an n-dimensional sequence of membership
degrees, which describes the degree of class assignment u of the considered object obj to the n

considered classes:

f\class,obj = [lu class1 (Obj ),/,l class?2 (Ob] )’ . lu classn (Ob] )]
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The basic idea behind Fuzzy logic is to quantify uncertain statements. The two boolean
logical statements “true* and “false” are replaced by the continuous range of [0,. . .,1], where
0 means ‘‘false’” and 1 means ‘‘true’’ and all values between 0 and 1 represent a transition
between true and false. Avoiding arbitrary sharp thresholds, fuzzy logic is able to approximate
real world in its complexity much better than the simplifying boolean systems (BENZ et al.,
2004). Working in a high-dimensional feature space with different feature value ranges and
features of various types, e.g., backscatter from different sensors, geographic information,
texture information and hierarchical relations is also easier. Finally, the important advantage
of fuzzy logic compared e.g., to neural networks is a transparent and adaptable set of

classification rules that can be applied on other datasets for a high level of automation.

The fuzzy sets defined by membership functions will identify those feature values regarded as
typical, less typical, or not typical for a class, according to their high, low, or zero

membership degree (Figure 16).

255

Figure 16. The three fuzzy sets on feature x defined by membership functions as low, medium and high for this
feature (BENZ et al. 2004)

Further, the rules for individual features can be combined by using the logical operators

““and’’, “‘or’’ and ‘‘not’’ (Figure 17).

w | | YON] ] T

AND OR NOT

min(A,B) max(A,B) (1-A)

Figure 17. Logical operators in multi-valued fuzzy sets (MathWorks website 2006)
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Each object in the analysis typically competes to be assigned to a certain class. Equal
membership degrees of an object to several classes indicate an unstable classification. Also,
the threshold for maximum membership degree needs to be set. If the class membership
degree is below this threshold, no classification is performed and the object remains

“unclassified” (eCognition User Guide 2003).

In this study, the workflow of multi-scale segmentation followed by object classification was
consistently applied. The classification rules sets and process sequences often involved
primary classification based on multiple object features (employing original and calculated
channels and their combinations) and followed by relational classification and class border

improvement.

Accu racy assessment
The automated classification output in form of thematic map must be evaluated with respect

to the suitability for specific application. This is usually done by comparing results with the
other classification. The data serving as a reference set can be obtained by terrestrial
measurements, visual image interpretation, or other existing “ground truth” information

(GIS).

In this study, the disagreement between automated analysis result and the reference dataset
was assessed by assembling an error matrix and calculation selected measurements widely
used in pixel-based approaches: Overall accuracy, Producer’s accuracy, User’s accuracy and
COHEN's kappa coefficient (a.k.a. Kappa Index of Agreement KIA). Besides, statistics
specific for fuzzy classification e.g. Classification Stability and Best Classification Result

were used.

Confusion matrix

The most commonly used method of representing the degree of classification accuracy is to
build a k£ x k confusion matrix. Such table is derived by counting how many of the objects
assigned to a class A in the result classification are of the corresponding class in the reference
classification. The confusion matrix provides the basis on which to both describe
classification accuracy and characterize errors, which may help refine the classification or

estimates derived from it (FOODY 2002).
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Class/

A B C D row Y,
Ref
A LYV Nap Nac Nap N+
B Nga Ngg Ngc Ngp Np+
C Nca Ncp Ncc Ncp Nc+
D Npa Npg Npc Npp Np+
column )’ Nia nig Nic nip n

Table 1. Five class confusion matrix for data obtained by simple random sampling. The highlighted elements
represent the main diagonal of the matrix that contains the cases where the class labels depicted in the image
classification and ground data set agree, whereas the off-diagonal elements contain those cases where there is a
disagreement in the labels.

Derived statistics

Although all information about relations between classification and reference classification is
stored in the error matrix, various measures are often calculated to simplify the output of the

accuracy assessment:

Overall accuracy is the proportion of all reference pixels which are classified correctly (the
percentage of cases correctly allocated). It may be derived from the confusion matrix by
relating the number of pixels correctly allocated to the class to the total number of pixels of
that class. This measure gives no information on what classes are classified with good

accuracy.

Percentage correct = —— x 100

Producer’s accuracy is calculated by dividing the number of correctly classified pixels in
each class by the number of training set pixels of that class (the column sum). This indicates
how well the training set pixels of the given cover type are classified. It gives, however, no

information about how well the classification predicts a class.

r]ii

Producer’s accuracy =
+i

User’s accuracy is computed by dividing the number of correctly classified pixels in each

class by the total number of pixels that were classified in that class (the row sum).This figure
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is a measure of commission error and indicates the probability that the pixel classified into a

given class actually represents that class on the ground (LILLESAND et al. 2004).

n..
, i
User's accuracy = A
i+

COHEN's kappa coefficient has often been used and adopted as a standard measure of
classification accuracy (SMITS et al. 1999). Considering compensation for chance agreement
and variance, it enables the statistical testing of the significance of the difference between two

coefficients and to compare different classifications or matrices.

q q
nyn,- 2n n
- el Sl S
Kappa coefficient =

q

2

n® - 2n.n
Kt k+ +k

Whereas overall accuracy checks count of all pixels correctly classified (assuming that the
reference classification is true), here it is assumed that both classification and reference
classification are independent class assignments of equal reliability. The actual agreement is
what is measured. The big advantage of the kappa coefficient over overall accuracy is that it
takes chance agreement into account and corrects for it. Chance agreement means here the
probability that classification and reference classification agree by mere chance (eCognition

User guide 2004).

Fuzzy classification assessment

In the process of definition complex hierarchies of many classes, the class descriptions often
do overlap. The fuzzy concept of class description cause that objects can belong to several
classes but with different degrees of membership. Thus, to evaluate the reliability and stability

of classes it is necessary to survey the different membership degrees of the classified objects.

Classification Stability
The measure of classification stability can be described as difference between the best and the
second best class membership of specific object. Such analysis of class assignments gave

evidence about the ambiguity of an object’s classification. The value evaluated for each image
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object ranged from 1.0 (non-ambiguous) 0.0 (absolutely ambiguous). In other words, the

higher value the more stable was the classification.

Best Classification Result

The classification with the highest assignment value was taken as the best classification result
while the statistical output of the best classification result was evaluated per class. The value
evaluated for each image object ranged from 1.0 (maximum degree of membership) 0.0 (no
membership). Thus it was possible to evaluate how the objects of a class fulfil the class

description.

Acquisition of reference data
An important task connected to the automated image analysis is to obtain reference

information also known as “ground truth” data. These are often representative and uniform
plots with distinctive characteristics for specific class to be used during the training stage of
supervised classification. Besides, the plots can serve the post-classification accuracy
assessment. The right choice of an appropriate sample size and sampling design are therefore
substantial. Moreover, the ground data collection is frequently constrained by a problematic
physical access. Selection of a sampling design is often influenced by budget or other

practical reasons.

For purposes of this study, the custom technique of ground truth data acquisition was
developed. The method was based on the application of the field GIS software by ESRI™
(Environmental Systems Research Institute), where spatial data from the analysed imagery
and vector information available from the forest management planning GIS database LHPO
(UHUL, Czech Republic) were stored in. From this existing forest database, twenty 400m’
plots covering areas with 100% species composition were located as reference sample plots.
The sample plots were selected according to the size and species distribution to provide a
representative basis for the accuracy assessment. The boundaries of each plot were then

determined in the field by mobile GIS procedure.

The main objective was to develop a simple and straightforward method using available
technology and digital data to substitute the outdated “paper and pen” inventory approaches.

Further details on the processing workflow are given in chapter Results, publication III.
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6 Results

The chapter consists of four reviewed research papers a one un-reviewed technical article.

The individual papers are indicated by roman numerals (I — V) in further text.

Besides the presented papers, the results of the proposed methodology were also published in

form of the following papers and conference contributions:

HAJEK, F., 2004. Zkusenosti s programem eCognition pro identifikaci lesni druhové skladby z obrazovych
dat DPZ. Sbornik z konference COYOUS 2004, December 3th 2004, Praha: pp. 11

HAIJEK, F., 2004. Object-oriented classification of remote sensing data for the identification of tree species
composition — eCognition software skills. Sbornik seminaie Aktudlni problémy fotogrammetrie a DPZ,

December 12th 2004, Praha

HAJEK, F., 2005. Object-oriented classification of remote sensing data for the identification of tree species
composition. Proceedings of ForestSat 2005 conference, May 31 - June 3th 2005, Boras, Sweden: pp. 16 -
20

HAIJEK, F., 2005. Lesnické mapovani a evidence porostnich veli¢in v ArcPad 6.0.3.
ArcRevue 3/2005, Praha: s. 13 - 15

HAJEK, F., 2005. Automated classification of tree species composition from VHR satellite data.
Proceedings of JRC Workshop at Climate Change conference, October 19 — 20th 2005, Silenica, Slovakia:
pp. 136

HAIJEK, F., 2006. Prospect of automated classification of tree species composition from IKONOS satellite

imagery. Proceedings of international workshop 3D Remote sensing in Forestry, , Feb 14 - 15 2006, Vienna

HAIJEK, F., 2006. Automaticka extrakce porostnich tidajii z obrazovych dat DPZ. Lesnicka prace 85, 4: 22 -
23

HAJEK, F., 2006. Object-oriented classification of Ikonos satellite data for the identification of tree species

composition. Journal of Forest Science 52, 4: 181 — 187
HAJEK, F., 2006. Object analysis of Ikonos XS and pan-sharpened imagery in comparison for purpose of

tree species estimation. In: S. Lang, T. Blaschke and E. Schopfer (eds.): Proceedings of the 1st International

Conference on Object-based Image Analysis, July 4-5, 2006, Salzburg (pages pending).
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HAIJEK, F., 2006. Comparison of 4-m and pan-sharpened Ikonos satellite imagery for purpose of automated

tree species composition. Scientia Agritulturac Bohemica 37, 3: 122 — 127

HAJEK, F. Vyhodnoceni odumirani horského smrkového lesa na Trojmezné (NP Sumava) metodou

automatické klasifikace leteckych snimki. 02/2007 accepted in print in Silva Gabreta (Czech Republic)
HAJEK, F. Process-based approach to automated classification of forest structures using medium format

digital aerial photos and ancillary GIS information. 10/2006 submitted in European Journal of Forest

Science (Germany), (03/2007 returned for corrections)

60



OBJECT-ORIENTED CLASSIFICATION OF IKONOS SATELLITE
DATA FOR THE IDENTIFICATION OF TREE SPECIES
COMPOSITION

F. Hajek

61



OBJECT-ORIENTED CLASSIFICATION OF IKONOS SATELLITE
DATA FOR THE IDENTIFICATION OF TREE SPECIES
COMPOSITION

ABSTRACT

This paper describes the automated classification of tree species composition from Ikonos 4-
meter imagery using object-oriented approach. The image was acquired over a man-planted
forest area with proportion of various forest types (conifers, broadleaved, mixed) in the
Kru$né Hory Mts., Czech Republic. In order to enlarge class signature space, additional
channels were calculated by low-pass filtering, IHS transformation and Haralick texture
measures. Employing these layers, image segmentation and classification were conducted on
several levels to create hierarchical image object network. The higher level separated image
into smaller parts regarding the stand maturity and structure, the lower (detailed) level
assigned individual tree clusters into classes for the main forest species. The classification
accuracy was assessed by comparing automated technique with the field inventory using
Kappa coefficient. The study aimed to create a rule-base transferable to other datasets.
Moreover, appropriate scale of common image data and the utilisation in forestry

management are evaluated.

Keywords: Automated image analysis, eCognition, median filters, texture, forestry

management

INTRODUCTION

Remote sensing and image interpretation have been utilized in forestry management for many
years. These methods can be applied in various tasks ranging from forest thematic mapping to
the detailed tree or stand characteristics survey. Besides the advancement in digital aerial
methods, high-resolution satellite sensors (e.g. Ikonos, QuickBird) are now available for
operational use. However, the automated classification of such data is still problematic due to

greater spectral variation within one class (Halounova 2003).

Previous studies on high-resolution data (Blaschke & Strobl, 2001) proved that traditional
spectral-based methods result in rather poor or incorrect classification. Much information is
contained in spatial relations of pixels and a few studies already showed the object oriented
approach promising when classifying VHR data (Baatz & Schipe, 1999, Leckie et al. 2003).

The contribution of textural and structural information was also examined (Haralick &

62



Shapiro 1992, Brandtberg 1999) and various algorithms, such as co-occurrence matrix were
applied to extract texture characteristics of trees (Zhang 2001). Neural networks (Gopal &
Woodcock 1996) and fuzzy classification improved modelling of real-world dependencies
(Benz et al., 2004). Furthermore, increased use of a priori knowledge and information

extraction become important with the rapid development of GIS.

This paper explores and demonstrates capability of object-oriented image analysis software
eCognition (Definiens Imaging, Germany) for the tree species classification from 4-meter
Ikonos imagery. Combination of complex object description, hierarchical image object
network and fuzzy system makes eCognition a challenge to knowledge-based image
interpretation in a range of forestry management applications. Next project objective is to
determine appropriate scale and accuracy of species composition estimation using common
image data. The prospect of rule-base creation for the high level automation in operational

forestry is also discussed.

SITE AND FIELD DATA COLLECTION

The research was conducted in man-planted forests nearby the town Hrob (50°40°N, 13°43°E)
in the Krusné Hory Mts., Czech Republic. This submontane area consists of patches of mature
Spruce (Picea Abies L.) and Beech (Fagus Silvatica L.) forest, with the substantial proportion
of Larch (Larix deciduas Mill.) and also young plantations of Beech, Birch (Betula pendula
L.) and Picea pungens often mixed with Larix and Betula Pubescens. The planted mature
stands are mostly of the same age, but very heterogeneous in species composition, stocking
density and canopy structure. The natural regeneration in addition to the planted trees
sometimes occurs. Silviculture practices range from clear cutting to seed felling with heavy

thinning on some spots.

Based on the previous information from LHPO forest inventory, twenty 400m” plots covering
areas with 100% species composition were located as a reference data. Sample plot selection
put emphasis on size and class purity to provide representative basis for accuracy assessment.
The boundaries of each plot were determined with differential GPS SX Blue™ and PDA with
ESRI ArcPad™ mobile GIS.

IMAGERY PREPROCESSING

The Ikonos (Space Imaging, USA) image was acquired on 17th September 2003. Except for
some hardwood species, most vegetation was still green and fully foliaged. Data were

delivered in a geo-registered UTM projection (zone N33) with 11-bit radiometric resolution.
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The image contained significant amount of clouds and atmospheric haze, so a 3x3 km subset
of forested area with clear sky conditions was chosen for the analysis. There is also important
amount of shadow fraction throughout the scene associated with solar and observation angles

(Table 1)

View Azimuth View Elevation Sun Angle Azimuth Sun Angle Elevation

330.30 degrees 71.78 degrees 170.58 degrees 41.51 degrees

Table 1. Ikonos viewing and illumination geometry

In the next step, class signature space was enlarged by the calculation of additional channels.
Foremost the single principal component from original bands was derived and then Median
filter (kernel sizes 3x3 and 5x5) was applied in order to suppress spatial frequency. Several
Haralick (GLCM) texture measures were calculated and the contribution to class separability
was tested. Measures Mean, Variance and Homogeneity with window sizes of 3x3 and 5x5
were chosen. Further, layers calculated by IHS transformation and edge detection (Sobel

operator) were also applied in the classification.

OBJECT ORIENTED ANALYSIS

After the signature space enlargement, image segmentation was performed to further handle
high spectral variation and overlapping values of classes. In this phase, image was split into
smaller regions (object primitives) to simplify thematically complex data content. The

classification was then performed using segments instead of single pixels.

Multiresolution segmentation

In the segmentation process, size and shape of desired objects are defined by the calculation
of heterogeneity between adjacent pixels, where Scale is the main input parameter. Shape
factor (colour/shape ratio) and spatial properties (smoothness/compactness ratio) are other

variables to define homogeneity of object primitives.

Segmentation was conducted stepwise on several levels using different scales to construct the
hierarchical image object network. The primary level was created using Scale parameter of
15. After preliminary classification, objects were merged by classification-based segmentation
and the result (basic landuse classification) was re-imported into eCognition as a thematic
layer. The sublevel was then segmented only within the area of interest (class Forest) using
Scale parameter equal to 5. The finest objects with the Scale value of 3 were calculated at the

third level applying the same approach.
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The Shape factor was set to higher value for the coarse segmentation and lower value at finer
scale (higher influence of spatial properties). The two lower levels were processed using four
Ikonos bands and median filtered channel of kernel size 3x3, the coarse landuse segments
were made based only on thematic layer. Layer weights were set in relation to their standard

deviations.

Class definition

The three level hierarchical image object network was used to delimit classes. Level 3
comprised basic “Landuse” types - Urban, Fields and Forest. This served to mask all non-
forest areas. The lower level 2 “Forest” aimed to separate forest regions into Dense (young
and mature stands with more less closed canopies), Sparse areas and Clearcuts. Sparse forests
mostly consisted of low stocking mature beech trees with presence of visible ground. The
detailed level 1 “Stand” was set to distinguish four main forest species in the area - Fagus,
Picea, Larix and Betula. Further, structures of shadows and bare ground were classified on

this level.

All classes of “Forest” level were also recognised at the lower “Stand” level for purpose of

post classification improvement.

Classification

In order to create distinct and fully transferable rule base, fuzzy logic membership functions
were used to define object features. Fuzzy description enables classes to be assigned
according to membership degree rather than crisp threshold values. Following features were

applied:

a) Object features: mean layer values (blue, red, NIR, brightness, GLCM mean 3x3, IHS,

Sobel NIR), ratio layer values (blue, red), area generic shape feature,

b) Class-related features: relative border to neighbour objects, relative area of sub-

objects, existence of sub-objects (super-objects)
¢) Customised features: NDVI, (red-green) vegetation index, IHS/ brightness index

Besides MF classification, preliminary nearest neighbour classification was done on the
lowest level and features suitable to separate tree species were evaluated using sample editor
(histogram comparison). The masking technique of determining foremost the easy classes
(ground, beech trees) and moving on to more difficult ones was often applied. Then the class
boundaries were improved using class-related features and finally corrected by means of

classification-based segmentation.
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RESULTS

The classification accuracy was evaluated using field reference data. Sample areas were
imported into project by means of TTA mask (Definiens Inc. 2003) and the corresponding
classes were linked to form confusion matrix (Table 2). Several measurements such as
Producer’s, User’s, Overall accuracy and Kappa index of agreement were derived for each
class. Besides, classification reliability (Best classification result) and stability within fuzzy

concept were assessed.

User \ Referer. Class

Larix Betula Fagus Picea sparse  ground shadows fields urban Sum
Larix 211 104 2 5 0 0 0 0 0 322
Betula 25 322 5 0 35 0 0 0 0 387
Fagus 93 14 685 0 2 0 0 0 0 794
Picea 34 0 0 444 0 0 107 0 0 585
sparse 10 0 0 0 317 0 0 0 0 327
ground 0 0 0 2 17 207 0 0 0 226
shadows 0 0 0 37 0 0 216 0 0 253
fields 0 0 0 0 0 0 0 5849 0 5849
urban 0 0 0 0 0 0 0 0 1334 1334
unclassified 17 17 5 3 1 0 17 0 0 60
Sum 390 457 697 491 372 207 340 5849 1334
Producer’s 1 0541 0705 0983 0904  0.852 0.635 1 1
User’s 0916 0655 0832 0863 0759 0969  0.854 1 1
KIA Per Class 1 0526 0693 0981 0898  0.847  0.626 1 1

Table 2. Error matrix of classification accuracy assessment. The Overall Accuracy is 0.945 with the Kappa
index of agreement equal to 0.914
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Figure 2. Higher level classification
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Figure 3. Classification at the lower level

Figure 1 shows the original image, Figure 2 shows classification on higher “Forest” level. The

result of classification at lower “Stand” level is on Figure 3.

As indicated in the confusion matrix, proposed method offered very good overall results. Both
Picea and Larix conifer species were classified with accuracy over 90%. Fagus achieved
accuracy about 70%, which was caused by confusion with class Sparse (high proportion of
beech trees). The most problematic tree class was Betula, not only by means of error matrix,
but also classification reliability and stability. This tool estimating differences in membership
degrees between the best and second best class assignment shows that class Betula and Larix
often act as ambiguous. The two species have similar spectral and textural characteristics,
especially at young age. Besides, shadows are frequently being confused or mixed with Picea

pixels. Best results were obtained for all non-forest classes.

CONCLUSSION AND FINAL DISCUSSION

The results showed that classification of 4-m Ikonos data can be performed with relatively
high accuracy. The image allows to estimate tree species composition at the sufficient scale.

To get satisfying outcome, additional channels must be calculated in the pre-processing phase

68



and then included in segmentation and subsequent object-oriented classification. The object
shape attributes are influenced by the kernel size and layer weight in the process of
segmentation, the contribution of additional layers to classification was high for Sobel Edge
detector, IHS transformation and low-pass filters. Other textures measures had lower impact
using on such spatial resolution data. The classification rules based on fuzzy membership
functions are highly convertible, eCognition protocols developed in this project can be
transferred and applied (with some threshold modification) to other datasets. To normalize
imagery band ratios can be employed, yet data acquired under fixed viewing and solar

geometry is recommended to use for the automated analysis.

Previous studies indicated that variations in image acquisition (different projection centres)
become more problematic when analysing multitemporal aerial photos. Lower spectral,
radiometric and temporal resolutions are also a drawback comparing to VHR satellite data.
However, the current lower price at higher spatial resolution still account for aerial
photography when developing knowledge base for the method utilization in forestry
management. The necessary conditions to obtain good results are standardised screening plan
and introduction of photography on IR material. The object-oriented analysis of aerial photos

will be examined in the further research.
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Objektové orientovana klasifikace satelithich snimku Ikonos pro
ucely identifikace lesni druhové skladby

Abstrakt: Studie popisuje automatizovanou metodu klasifikace dfevinné skladby ze
satelitnich snimki Ikonos s prostorovym rozliSenim 4 metry za pouziti objektove
orientovan¢ho pfistupu. Snimek zobrazuje oblast hospodaiského lesa s podilem raznych
porostnich typi (jehli¢nany, listnade, smiSené) v Kruinych horach, CR. Z divodu
problematické klasifikace dat s velmi vysokym rozliSenim (VHR) bylo tfeba nejdiive zvétsit
ptiznakovy prostor jednotlivych tfid vypoctenim dodateénych kandli pomoci medidnové
filtrace, transformace IHS a Haralickovych texturdlnich mér. Tyto vrstvy byly poté pouZzity
k segmentaci obrazu a nasledné klasifikaci na nékolika urovnich hierarchické sit¢ objekti.
Vyssi uroven méla za cil rozclenéni obrazu na mensi casti podle vékové a prostorové
hlavnich lesnich dfevin. Ptesnost klasifikace byla stanovena porovnanim vysledka
s referenénimi udaji z terénnich Setfeni a vypoctem Kappa koeficientu. Studie méla za cil
vytvoieni prenositelné znalostni baze, kterou bude mozné vyuzit pro automatizovanou
klasifikaci snimkt Ikonos 4-m. Déle bylo posouzeno rozliSeni a méfitko vhodné k analyze
dostupnych typti obrazovych dat DPZ a jejich pouziti v praxi Hospodatské upravy lesa.

Kli¢ova slova: Objektové orientovana analyza obrazu, eCognition, medianova filtrace,

textura, Hospodarska uprava lesa

Interpretace obrazovych dat dalkového prizkumu zemé slouzi jiz fadu let jako cenny néstroj v
Hospodatské upravé lesa. Vyuziti zahrnuje zejména lesni inventarizace, lesni tematickeé
mapovani, zjistovani stromovych a porostnich charakteristik, zdravotniho stavu apod. Vedle

rozvoje na poli digitalni fotogrammetrie se do poptedi dostavaji také VHR satelitni snimky
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s velmi vysokym rozliSenim (Ikonos, QuickBird). Automatizovana klasifikace téchto dat je

vSak z divodu vysoké heterogenity v rdmci zvolené tfidy stale problematicka.

Tradi¢ni metody zalozené na analyze jednotlivych pixelti ignoruji texturu a prostorové vztahy
v obrazu. Pfitom dilezitou sémantickou informaci neptedstavuji pixely, ale smysluplné
objekty s jejich vzajemnymi vztahy a tudiz segmentace a nasledna klasifikace obrazovych
objektli mize byt kli¢em k uspésné interpretaci. Prace navrhuje vyuziti objektové orientované
analyzy ke klasifikaci vysoce texturovanych obrazovych dat (Ikonos 4-m) pro ucely
identifikace lesni druhové skladby. Pfedstaveny software eCognition umoziuje komplexni
popis vlastnosti objektti (spektralni, geometrické, texturdlni a kontextudlni), tvorbu
klasifikacniho schématu pro segmentaci obrazu a klasifikaci na néckolika twrovnich

hierarchické sit€ objektt a definici ptiznakli pomoci ,,fuzzy* pravidel.

Dosazené vysledky ukazuji, Ze uvedend metoda umoznuje klasifikaci snimkti Ikonos 4-m
s relativné vysokou presnosti (Celkova presnost 0.945 a Kappa koeficient 0.914). Data
disponuji dostate¢nym prostorovym rozliSenim k uréeni dievinné skladby lesa ve vhodném
m¢étitku. Pfedpokladem pro uspésnou klasifikaci je vypocet dodatecnych kanala v pfipravné a
fazi a jejich vyuziti v naslednych fazich segmentace a klasifikace obrazovych objektt. Tvar a
velikost objektl pfi segmentaci je ovlivnéna velikosti posuvného filtraéniho okna a
stanovenou vahou, detekce hran (Sobel operator), IHS transformace a medianova filtrace zase
vyrazné prispiva ke zvétSeni priznakového prostoru béhem klasifikace. Texturalni miry lze pfi
tomto rozliSeni vyuzit jen omezené. Klasifika¢ni ,,fuzzy* pravidla vymezena funkcemi
Clenstvi jsou velmi flexibilni, po upravé prahil lze znalostni bazi pfenést a celé klasifikacni
schéma aplikovat na jind data pomoci vytvofenych protokold. Z diivodu normalizace lze
doporucit pouziti pomérti pasem, nicméné pro automatizovanou analyzu je stale dilezité, aby

byly snimky poftizeny za obdobnych akvizi¢nich a svételnych podminek.

Satelitni snimky s velmi vysokym rozliSenim ptedstavuji novy obzor DPZ a oproti leteckym
snimkiim maji fadu vyhod (vys$si spektralni, radiometrické a temporalni rozliSeni) pro vyuziti
v praktickém lesnictvi. Navic odpada problém s odchylkami snimacich center pfi analyze dat
v Casovych fadach. Cena za zobrazené¢ uzemi je vSak pomérné vysoka a proto zlstavaji
barevné letecké snimky 1 nadale nejdostupnéjSim zdrojem obrazovych informaci. Pfedmétem
dalsi ¢innosti bude vytvotfeni objektové orientované metody pro analyzu leteckych snimkd,
konkrétng znalostni baze pro vyuziti v HUL. Nezbytnym piedpokladem k uspokojivych
vysledkii je prechod na snimkovani podle standardizovaného planu a zavedeni

spektrozonalniho materiélu.
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SATELLITE IMAGERY FOR PURPOSE OF AUTOMATED TREE
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COMPARISON OF 4-M AND PANSHARPENED IKONOS SATELLITE
IMAGERY FOR PURPOSE OF AUTOMATED TREE SPECIES
IDENTIFICATION

ABSTRACT

Forest inventories conducted on large areas with laboured manual RS data interpretation
increasingly call for a development of knowledge-based classification methods. Considering
multitemporal image analysis, VHR satellite data have many advantages over traditional
aerial photos for such purposes. This study explores and demonstrates technique of automated
identification of tree species composition from Ikonos imagery using object-oriented
classification approach. Methodology developed to process 4m/pan data emphasizes the pre-
processing phase, when the additional channels are calculated and their contribution to class
separation assessed by Discriminant analysis. Then the image segmentation and classification
is conducted on several levels to create hierarchical image object network, where the higher
level aim to separate image into smaller parts regarding stand maturity and canopy structure
and the lower (detailed) level assign individual tree clusters into classes for the main forest
species. The developed rule-base was applied on datasets of different resolution and the
results were compared by means of classification accuracy (KIA). Further, the utilization of 4-

m and 1-m images in different forestry management tasks is discussed.

Key words: object image classification; VHR satellite data; texture analysis; forest

management

INTRODUCTION

Methods of forest state assessment using remotely sensed data have been tested for several
decades, with the visual aerial photo interpretation as the main tool widely utilised in practical
forestry. Nevertheless, the automated classification of such textured data is still problematic
due to enormous class spectral variation (Halounova 2003). The methods of tree species
identification from satellite imagery have been also explored lately. Some studies aimed at
estimation of forest species composition using moderate resolution data such as Landsat TM,
Spot HRV, while the relevant studies on VHR satellite imagery such as Ikonos (Bucha, 2004)
and QuickBird seem promising for the species identification at the individual tree level. As

demonstrated by several authors (Brandtberg 1999, Leckie et al. 2003), working at a tree scale
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has a potential to extend digital remote sensing into many new areas such as forest stand
extraction, forest regeneration, logging practices, etc. In the same time, however, many
studies proved the RS methods based solely on spectral classification insufficient for detailed
forest mapping (Wack and Stelzl 2005). The enhanced height information from LiDAR and
its integration with the tree species estimates from optical data are nowadays in the main

focus for purpose of detailed 3D stand modelling.

In the environment of the Czech forest sector, the estimation of species distribution is
traditionally based on the area coverage acquired by terrestrial methods. Even manual
interpretation of aerial photos never quite met the needs of forest inventories, as reported by
the official authorities. Nevertheless, the increasing demands on the level of inventory
precision, information resolution and repeatability call for the development of practical
application based on automated image analysis to be utilised in forest management. This
study deals with the automated method of tree species composition estimation from Ikonos
imagery using object-oriented approach. The presented methodology was tested on both 4-
meter and pan-sharpened Ikonos images with the aim to compare and describe the two
datasets to meet the forestry needs. Besides, the prospect of the knowledge-based

classification using VHR data in operational forestry was suggested.

MATERIAL AND METHODS

VHR imagery and additional input data
IKONOS

The proposed methodology was tested on VHR satellite data from sensor Ikonos-2. The
sensor delivers multispectral (XS) images with spatial resolution of 4m and Im images using
panchromatic mode. The imagery acquired on 7th June 2003 was delivered in a geo-registered
UTM projection (zone N33) with 11-bit radiometric resolution at Standard Geometrically
Corrected processing level. The nominal Collection azimuth and elevation were 105.4862°

and 76.79404°, the Sun angle azimuth and elevation were 155.8632° and 61.15952°.

The subset of 4 x 4km representing an industrial forest area close to town Zlutice (50°05°N,
13°12°E), Western Bohemia was selected. The predominantly flat site comprised large
patches of old Norway spruce (Picea abies L.) often mixed with Scots pine (Pinus sylvestris
L.), extensive mature Pedunculate oak (Quercus robur L.) forests and also Birch (Betula

pendula L.), European larch (Larix decidua Mill.) and young plantations of Pine and Oak.
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Besides, smaller proportions of Sycamore maple (Acer pseudoplatanus L.) could be found
inside forest stands and along the margins. In both areas, planted mature stands were mostly
of the same age, but very heterogeneous in species composition, stocking density and canopy

structure. The natural regeneration in addition to the planted trees sometimes occurred.

DTM

The digital contour map from ZABAGED" GIS database produced by the Czech Office for
Surveying, Mapping and Cadastre (COSMC) in scale of 1: 10 000 were used as a source of
height information. Then the DEM was created with resolution 2m/pixel (Figure 1).
Lambertian Reflection Model was initially tested in order to reduce topographic effects.
However, the transformed image was unsuitable to use due rapid radiometric shift and so the
shade layer was instead calculated to normalise the image for varying illumination. Besides,

the height information was used as an additional input during the classification phase.

Figure 1. High resolution digital elevation model (left) calculated from ZABAGED® (COSMC) digital contours
(right)

Field GIS

Based on the previous information from forest management planning database LHPO
provided by the Forest Management Institute (UHUL), twenty 400m” plots covering areas
with 100% species composition were located as a reference data. Sample plot selection put
emphasis on size and class purity to provide representative basis for accuracy assessment. The
boundaries of each plot were determined with differential GPS SX Blue™ and PDA with
ESRI ArcPad™ mobile GIS.
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Image analysis

Object-oriented classification in software eCognition (Definiens Imaging, Germany) was the
main image analysis method. This approach features an enhanced technique of multi-
resolution image segmentation, complex capability in object description (spectral, geometric,

textural and contextual), hierarchical image object network and fuzzy rule base classification.
SEGMENATION

Segmentation was conducted stepwise on three levels using different scales to construct the

hierarchical image object network.

The primary level was created using
large Scale parameter and after
preliminary classification was done
for basic landuse classes. Other two
sublevels were segmented only
within the forested area using smaller

Scale  parameter and  using

classification-based segmentation

I (Table 1)

Figure 2. Detailed segmentation at the lowest level of hierarchical image object network

Color Shape Shape settings (Compact/Smooth)
Level I — Landuse 25760 0.8 0.2 0.5 0.5
Level I — Forest 18 /45SB 0.7 0.3 0.5 0.5
Level III - Stand 5/12SB 0.7 0.3 0.7 0.3

Table 1. Segmentation parameters for analysis of lkonos 4-m and Ikonos pan-sharpened images

SIGNATURE SPACE ENLARGEMENT AND FEATURE SELECTION

In order to enhance class separability, the signature space was enlarged by the calculation of
additional channels in pre-processing phase in Erdas Imagine 8.7. Various spectral features
based on original channels and also derived band rationing were calculated as “Customised
features” in eCognition 4.0.6. Considering all relevant features (color, texture, and context),
the dimensionality of dataset increased and therefore methods of feature selection were

needed. Layers tested for the significant contribution included: spectral ratios and vegetation
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indices (NDVI), Tasseled cap and IHS transformation, low-pass filters, Sobel edge detection
and GLCM texture measures (Haralick and Shapiro, 1992).

In each class, 30 sample objects were manually classified based and the reference field data
and then the visual and statistical techniques of feature contribution were tested. Discriminant
analysis (Rencher, 2002) was used to find optimal variables for distinction of different stand
structures. The assessment was based on comparison of coefficients @, , » =1, 2, ..., p, in the

discriminant function
Z:a'y:a,y1+a2y2+...+apyp (1)

Mean observation vectors y for 15 selected variables were calculated and the discriminant

function coefficient vectors a were derived from variance-covariance matrix Sy as
_Q (v _v
a=8,(y,-v,) @)

Since the y’s were not commensurate, coefficients applicable to standardised variables a* had
to be calculated. The relative contribution to separation of the analysed classes was then
assessed by comparison of absolute values of coefficients standardized by square roots of the

diagonal elements of Sp;:

a” = (diag S ,)a (3)

Further, the result of the statistical analysis was reviewed using the visual assessment of the
feature distribution comparing histograms of two selected classes at the time. The significant

contribution to class separation was found for these features:

- Mean spectral values of visible Green and NIR Ikonos bands together with the
Customized features such as NIR/Red, Green/NIR, NDVI ratios and their derivatives
normalized by Shade layer were predominantly used for the classification of tree

species based on spectral information

- Sobel Edge layer calculated for IR Ikonos band, 2nd (saturation) channel of IHS
transformation and GLCM texture feature Variance of window size 3 x 3 were
applied to separate agriculture and vegetation areas of different textures and to

differentiate forested areas, regenerating areas and clearcuts

- DEM values served to separate forest/agriculture bare soil areas
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Besides the classification stage, channel of Median filter with kernel 3 x 3 was tested and used

during initial segmentation of highly textured pan sharpened data.

FUZZY RULE-BASED CLASSIFICATION

The classification process was controlled by a rule base describing characteristics of
individual classes by means of fuzzy membership functions (Baatz et al., 2003). Each class
description consisted of a set of fuzzy expressions allowing the evaluation of specific features

and their logical operation.

The three levels of hierarchical image object network were used to delimit classes (Figure 3).
Level 3 comprised basic “Landuse” types — Water, Urban, Fields and Forest. This served to
mask all non-forest areas. The lower level 2 “Forest” aimed at separation of forest regions
into areas of bare ground, mature stands and young stands, where classes “plantation
(transition)” and young stages of conifers, broadleaves and other were further distinguished.
“Other” young forests were mostly consisted of Larch and Birch trees. The detailed level 1
“Stand” was set to distinguish four main forest species in the area - Quercus, Acer, Picea,
Larix and Betula. Further, structures of shadows and bare ground were classified on this level.
All classes of “Forest” level were also recognised at the lower “Stand” level for purpose of

post classification improvement.

Lewvel3 - LANDIISE

B0 non water Lewel2 - FOREST
E‘ non urban 3 ground L2 ' Levell - STAND
o = vegetation L2 =+ mon shadaws
----- @ mature forest ----- ) ground
=1+ voung forest =1 vegetation
— ----- @ plantations ----- (2 transition
=l young stages =0 trees
D) broadieaves i Acer
----- @ conifers Betula
() cthers ; Larix
—> ----- @ Ficea
- Quercus
----- @ shadows

Figure 3. Classification rule-base of image analysis at three levels

RESULTS

The knowledge base initially created for 4m image was also applied with minor threshold

modifications to the pan-sharpened data, so the comparative results were achieved. Then 20

78



samples for each class of the “Forest” and “Stand” classification levels were selected in
accordance with the GIS field reference data and the common accuracy statistics were

calculated from the assembled error matrix.

The overall classification results at the lowest “Stand” level were very similar for both tested
datasets. As deduced from the accuracy assessment (Table 2), there is no crucial difference
between 4-meter and pan-sharpened Ikonos imagery in ability of identifying tree species
composition in terms of area coverage. The very good result of more than 90% was obtained
for classes Acer and Picea, and class ground with approx. 80 %. The lower agreement (around
75%) was achieved for Betula and Larix and for the class transition (60%). Besides, some
differences linked the image resolution occurred. This was most evident for shadows, where

pan Ikonos gained nearly 30% in accuracy for over 4-m image.

KIA per class (4m) 0.68 0.85 0.63 0.92 0.92 0.92 0.70 0.77
KIA per class (pan) 0.94 0.78 0.58 1.00 0.77 0.94 0.82 0.61
Overall acc (4m/pan) 0.83/0.83
KIA (4m/pan) 0.80/0.81

Table 2. Selected accuracy measures for “Stand” level of Ikonos 4m / pan classification. The statistics were
derived for each class, Overall Accuracy and the Kappa index of agreement represent aggregated results

%D Quercus
@ Ficea
@ Betula

R

Figure 4. Forest species classification from Ikonos 4m vs. pan-sharpened imagery

The result of classification at the “Forest” level was also evaluated and the datasets of 4m/Im
spatial resolution compared. The statistical measures (Table 3) indicate the overall accuracy

improvement of nearly 10% when analysing pan sharpened lkonos data. This was especially
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evident for delineation of the stand boundaries of young forest stages (conifers, broadleaves,
other). Classes ground and plantation (transition), on the other hand, were better identified in
4-meter data. The fact is possibly connected to the different influence of textural information,

as it was substantial for classification at this level.

KIA per class (4m) 0.63 0.64 0.74 0.36 0.30 0.76
KIA per class (pan) 0.48 0.36 0.87 0.61 0.88 0.82
Overall accuracy (4m/pan) 0.63/0.71
KIA (4m/pan) 0.57/0.66

Table 3. Selected accuracy measures for “Forest” level of Tkonos 4m / pan classification. The statistics were
derived for each class, Overall Accuracy and the Kappa index of agreement represent aggregated results.

DISCUSSION

As showed in several previous studies, the standalone optical RS methods are insufficient for
classification of complex forest structures. This is particularly true for young succession
stages and heterogeneous mature stands. For purpose of tree species identification, however,
very good results can be achieved by the combination of object-oriented approach and the
topo-corrected VHR (both 4m and pan) Ikonos data with derived image transforms. The OO
classification rules based on fuzzy membership functions are highly convertible and the
knowledge-base can be transferred and applied to other data by means of recorded protocols.
Among the calculated layers contributing to the classification, ratios of Green and NIR bands,
Sobel edge and GLCM Variance are the most significant. The spectral signatures normalised
with the high resolution DEM can further enhance the classification. Besides, the
segmentation of pan-sharpened images can benefit from the use of median filtering. The
ability of delineation of young stands is dependent on the amount of texture information, thus
the analysis of 1-m spatial resolution imagery is suggested. Such data require careful
determination of object scale with the perspective of broader context. However, the higher
amount of detail brings the new opportunities in object description, where the multilevel

mutual relations are of special advantage.

CONCLUSIONS

This study aimed at comparing of classification results of 4-m and 1-m resolution Ikonos

imagery. Both data types have their benefits and should be utilised in different forest
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management tasks with respect to the price. As reported by Hajek (2005), the 4-m Ikonos
imagery allows to estimate percentage distribution of the tree species at sufficient scale. The
pan-sharpened data has further potential to expose detailed structures within forest stands but
also canopies of individual trees. Classification of tree species composition with such high
level of detail and accuracy would be suitable to combine with LiDAR data for advanced 3D
stand modelling. Still, the prospect of the method utilisation is dependant on the existence of
capable knowledge-based system, sufficiently robust for high level of automation. The further

research will focus on object analysis of CIR digital aerial photos.
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Srovnani druzicovych snimku lkonos 4-m a pansharpened z
hlediska automatizované klasifikace drevinného slozeni lesa

Lesni inventarizace provadéné na rozsahlych Uzemich tradi¢né terestrickymi metodami s
vysokym podilem manualni prace stale vice vyzaduji usnadnéni v podobé znalostné
orientované aplikace pro automatizovanou klasifikaci obrazovych dat DPZ. S ptfihlédnutim k
analyze Casovych fad maji satelitni data s velmi vysokym rozlisSenim (VHR) pro tento ucel
fadu vyhod oproti klasickym leteckym snimkiim. Tato studie zkoumd moZnost
automatizované klasifikace druzicovych snimkli Ikonos XS (4-m) a pan-sharpened s
rozliSenim 1-m pomoci objektového pfistupu. Metodika klade diraz na piipravnou fazi
obrazov¢ analyzy, kdy jsou z origindlnich dat vypocteny dodate¢né kanaly, které jsou dale
statisticky testovany z hlediska rozsifeni pifiznakového prostoru a pfispéni k separabilité
dil¢ich tfid klasifikace. Mimoto je do analyzy zahrnuta také vyskovéa informace v podobé
vysoce podrobného DMT. V dalsim kroku jsou tyto vrstvy pouzity k segmentaci obrazu a
nasledné klasifikaci na nékolika urovnich hierarchické sité¢ objekt, kdy vySS$i troven
roz€letiuje obraz podle vékové a prostorové struktury porostu, na niz$i urovni jsou pak
klasifikovany skupiny stromt do kategorii podle hlavnich lesnich dievin. Vytvotend znalostni
baze byla aplikovana na data s riznym prostorovym rozliSenim a spravnosti klasifikace
stanoveny vypoctem indexu shody (KIA). Vysledky klasifikace dat Ikonos 4-m a 1-m byly

dale porovnany z hlediska uplatnéni v rozli¢nych alohdch HUL.

Kli¢ova slova: objektové-orientovana analyza, satelitni data VHR, texturalni analyza, HUL

82



LESNICKE MAPOVANI A EVIDENCE POROSTNICH VELICIN V
ARCPAD 6.0.3.

F. Hajek
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LESNICKE MAPOVANI A EVIDENCE POROSTNICH VELICIN
V ARCPAD 6.0.3

ABSTRACT

Geographical Information systems have been utilized in forestry management for several
years. Besides advancement in the desktop GIS, mobile GIS technology is getting more into
the operational use. The methods of GIS based field data acquisition can be applied in various
tasks ranging from forest thematic mapping to the detailed tree or stand characteristics survey.
With the rapid development in fields of mobile computers and GPS, the technology is also
easily accessible to the broad forestry community. This paper aimed to test ESRI ArcPad
mobile GIS software installed onto mobile computer connected to GPS receiver for purposes
of basic forest inventories with the registration of selected stand variables. The proposed
method focused mostly on simplicity of the processing workflow and overall technology

accessibility.

UVOoD

Vedle cetnych GIS aplikaci pro kancelafskou praxi zaznamenavame v poslednich letech
rozvoj také na poli tzv. mobilnich GIS. Tyto systémy lze s vyhodou uplatnit v fad¢ ukola
hospodaiské upravy lest (HUL) jako jsou lesni inventarizace, lesni tématické mapovani,
zjiStovani stromovych a porostnich charakteristik apod. V disledku neustdlého zvySovani
vykonu hardware, zpfistupnéni pozi¢niho systému DGPS a také zdokonalovani samotnych

aplikaci se navic pfistroje stavaji dostupné Siroké lesnické vetejnosti.

Pti tvorbé rozsahlych a komplexnich lesnich evidenci se kladou vysoké naroky na technologii
sbéru terénnich dat. Pfikladem je nastroj Field-Map, ktery byl uplynulych letech pouzivan
Ustavem pro hospodatskou tipravu lesti pfi Narodni inventarizaci lesi CR. Field-Map se
sklada z ptijimace GPS, elektronického kompasu, optického a laserového dalkoméru a
terénniho pocitace se specidlnim software. Vzhledem k rozsahu, pozadované kvalité a
mnozstvi mefenych dat je takova technologie ziejmé nezbytna a také jeji cena je pomérné

vysoka.

V mnoha piipadech vSak chceme ziskat data pouze v omezeném rozsahu (jednorazové terénni
Setfeni, sbér referencnich dat k analyze DPZ) a proto hleddme dostupnéjsi feSeni. Cilem této

prace bylo testovat moznosti vyuziti bézného PDA s aplikaci ArcPad od firmy ESRI pro
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evidenci vybranych tdaji o porostnich skupinach a jednotlivych stromech. Kromé ptiznivé
pofizovaci ceny software je nespornou vyhodou plna kompatibilita se stolnim ArcGIS a také

znacné moznosti rozsifeni a pfizpisobeni konkrétnimu tikonu.

Koncepce programu a pristrojové vybaveni

Software svou koncepci vychazi ze stolnich GIS firmy ESRI, které ucelné rozsifuje o moznost
sbéru venkovnich dat. Nepfedstavuje tudiz software pro samostatné pouziti. Metodicky
postup praci zahrnuje piipravu dat v ArcGIS desktop, terénni Setfeni a zpétny prevod dat do
stolnitho GIS. Nasledné zpracovani mize zahrnovat vse od tvorby porostnich map az po

import namétenych veli¢in do rastového simulatoru typu SILVA.

ArcPad ve verzi 6.0.3. byl nainstalovan do PDA FSC Pocket LOOX 420 se systémem
Windows Mobile 2003. Pocita¢ byl propojen s bluetooth GPS SX Blue a ptes sériovy port
RS232 (je zapotiebi redukce) s laserovym dalkomérem ForestPro a elektronickym kompasem

MapStar od spolec¢nosti LTI.

Obr. 1: Laserovy dalkomér ForestPro

Piiprava dat v ArcGIS

Podkladem pro terénni mapovani byva Casto stavajici projekt ve stolnim pocitaci, ArcPad
tento predpoklad zcela spliuje. Po instalaci programu na desktop i PDA a aktivaci ArcPad
Tools extension v ArcGIS je vSe nastaveno pro vzajemnou synchronizaci dat z obou systémii.

Ptiprava podkladl k terénnimu Setfeni zahrnuje:
1. Extrakce pozadovaného vyiezu dat
2. Ptevod dat do formatu podporovaného programem ArcPad
3. Reprojekce do podporovaného soutradnicového systému

4. Pfiprava tabulek pro atributové informace a posouzeni piesnosti jejich potizeni
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Hlavni operace lze v ArcGIS provézt automaticky pomoci privodce ArcPad Map, ktery
pievede stavajici ArcMap projekt na mapu pro ArcPad (*.apm). Priivodce vyexportuje
soubory typu geodatabase a coverage do shapefile, rastry pfevede na format MrSID, uzpiisobi
symbologii venkovni praci, ptip. vytvoii vyiez cilové oblasti. Dal§i moznosti je manudlni
konverze, kdy provedeme konkrétni operaci pro kazdou zvolenou vrstvu zvlast’ pomoci sady
nastroji ArcToolbox. Timto zptisobem je vhodné provést napt. export obrazového souboru ve

formatu TIFF do komprimovaného souboru MrSID pomoci nastroje Raster to MrSID.

Pro usnadnéni venkovnich praci Ize z webu ESRI stdhnout Tree Inventory Mobile Application
(TIMA) — applet specidlné navrzeny pro lesni inventarizace. RozSifuje bézné zplsoby
potizeni dat o moznost ,,Pfidat strom* bud'to pomoci GPS, nebo pomoci existujici informace
v mapé pokud neni GPS k dispozici. Navic obsahuje jiz pfedpfipravené formulafe pro sbér
atributovych informaci jako druh, vycetni primér DBH (diameter at breast height), Sitka
koruny, stanoviStni podminky a doporucené hospodaiské opatieni. Pro ucely popisu
charakteristik jednotlivych stromi byla tato atributova pole importovana do nové bodové
vrstvy. Polygony porostnich skupin a zkusnych ploch byly nadefinovany vybranymi atributy
z tabulky ZastDRV numerické ¢asti databaze LHPO.

Poznamka:

Vsechny vrstvy v mapovém souboru (*.apm) musi mit stejnou mapovou projekci, vrstvy
v jiné projekci se neoteviou. Co se tyCe rastrovych souborl, ArcPad primarné¢ podporuje
komprimované rastry ve formatu MrSID a dale zobrazuje soubory typu JPEG, Windows
Bitmap a CADRG. V8echny musi mit pfipojen pfislusny lokalizacni soubor formatu (*.jgw

pro JPEG), ptip. soubor kartografického zobrazeni (*.prj).

Komunikace s pridavnymi zafizenimi

ArcPad 6.0.3 pfimo podporuje pouze piipojeni piijimace GPS. V moznostech programu se
nastavi komunika¢ni parametry GPS - typ protokolu, porty, pfenosovou rychlost a paritu
ptipojeni. Z divodu posouzeni vyuziti software ke sbéru stromovych charakteristik na dalku,
byla testovana také moznost propojeni s laserovym dalkomérem a elektronickym kompasem.
Tato funkce neni piimo podporovana, nicméné¢ program ve své architektuie nabizi
komunikacni objekt AUX, ktery lze nakonfigurovat pro pfijem signalu z dalSich pfistroji.
Pozadavek byl konzultovan s lidmi z podpory ESRI (ArcData Praha) a nasledné byl poskytnut
vhodny skript napsany v minulosti jednim z uzivatelti. Zkopirovanim soubord skriptu do

programové slozky Applets umozni software pracovat sinformacemi GPS, ale takeé
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odstupovou (offset) vzdalenosti a azimutem jednotlivych bodi. Jinym feSenim je poftidit

komer¢ni nadstavbu od americké firmy Bradshaw Consulting Services.

Select Feature Type OK|

Safact Fesiure Type
[ Paint Feature Class
[ une Feature lass

Polygon Feature Class

Begin Laser Capture

HELP |=|-8 &I 5 %[-=L 2|
[@HS|-+«|-0]-4 o
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Obr. 2: Nadstavba pro propojeni ArcPad s laserem od BCS, inc.

v v

Piipadné problémy komunikace s nékterymi piijimac¢i GPS lze feSit instalaci rozsifeni

FindGPS (http://arcscripts.esri.com/details.asp?dbid=12637), které automaticky detekuje

NMEA nebo TSIP protokol piijimae GPS, otestuje dostupné porty a nastavi optimalni

parametry pfipojeni.

SBER TERENNICH DAT

Samotné venkovni prace Ize koncipovat v zdsad€é dvéma zplsoby:
A. Mapovani porostu a sbér stromovych atributli popochdzenim k jednotlivym objektiim
B. Nepfimé odecitani stromovych atributli z mista o zndmé zemé&pisné poloze

Prvni zplisob znamend postupny pohyb od jednoho stromu k druhému s tim, Ze u kazdého
zméfime polohu a pfislusné veliCiny pfimo na misté. K méfeni potiebujeme pouze prenosné
zafizeni s GPS pfijimacem, odecet tloustek a vysek se realizuje tradicnimi pomiickami
(Silva, Vertex, mechanické primérka, piip. pasmo). Takovy postup je vSak pomérné narocny

na organizaci a nevyhodou muizZe byt také slaby signdl GPS v mistech se souvislym
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korunovym zapojem. Druhy pfistup z velké Casti fesi zminéné problémy. Jednéd se o metodu,
kdy v porostu vybereme misto s piesné danou zemépisnou polohou a soutradnice a vysky
okolnich stroml stanovime vypocftem (trigonometricky) na zdkladé méfeni horizontdlni
vzdalenosti a pfislusSného uthlu pomoci laserového dalkoméru a elektronického kompasu.
Tloustky zméfime budto elektronickou primérkou, pasmem, pifip. lze vyuzit nitkovy
dalekohled a tloustky odecist také nepfimo. Tento zplsob je piimocary a elegantni,
predstavuje vSak nevyhodou v podobé vysokych ptimych ndkladii na pofizeni pfistroji.

—— spravné méreni
chybné méreni

Obr.3: Trigonometrické méreni vysek stromii

Tvorba bodovych a polygonovych prvkii pomoci GPS

Pro ucely studie byl zvolen postup, kdy sbéru stromovych atributi ptedchdzelo mapovani
hranic porostnich skupin tvorbou polygonii pomoci GPS. Byla vytvofena nova polygonova
vrstva se zakladnimi atributy LHP jako ID porostni skupiny, Etaz, Difevina, Zastoupeni, V¢&k,

pramérnd Vyska a Tloustka. Vlastni mapovani predstavuje sled nékolika krokii:

Po pfipojeni GPS k mobilnimu zafizeni a navazani komunikace, zvolime v menu Polohovaci
okno ,,Aktivovat GPS*, tlac¢itkem Polygon zapneme vrstvu (musi byt v editanim modu),
zvolime moznost GPS ,,Sejmout vrcholy* a vlastni hranice pak vytvotfime prostou obchtizkou
po okraji cilové skupiny. Opétovnym sepnutim tlacitka Polygon ukon¢ime tvorbu prvku, po
némz se automaticky nabidne tabulka k vyplnéni atributi. Po kratkém zauceni se jedna o
rychly a jednouchy postup, vhodny k béZnym samostatnym pochtizkam (analogie terénniho
zapisniku). Pro praci v lese se velmi osvédcil GPS piijimac¢ SX Blue, ktery ve vétsiné ptipada

drzel signal na tirovni 3D DGPS a to 1 v porostech s hustym korunovym zapojem.
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Obr. 4: Jednoduchy pochiizkovy zapasnik pro sbér referencnich dat k analyze obrazu DPZ

Offsetove mereni polohy stromii v porostu

Nésledné byla testovana moznost pfipojeni piistroji pro nepiimé stanoveni nekterych
stromovych veli¢in. V rdmci studie byly méfeny pouze pozice jednotlivych stroml v porostu,
nicméné¢ sestavu Ize pouzit také k méfeni vySek, evidenci korunovych projekei,
resp. mapovani hranic porostli z mista se zndmou GPS polohou. Pro zdznam pozice jednouse
namifime dalkomér na patu stromu a kliknutim na ptistroji sejmeme bod (zdznam odstupové
vzdalenosti). Po pipnuti ptidd kompas MapStar do fetézce azimut a ArcPad zaznamend GPS
pozici. Jedna se opét o rutinni postup, kdy vysledkem je bodovy shapefile. Testovany skript
neumoznuje zdznam liniovych a polygonovych prvki, nicméné vyvojari ESRI slibuji, ze

ArcPad ve verzi 7 bude ptipojeni lasert jiz pln¢ podporovat.
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Obr. 5: Schéma zaznamu zemépisné polohy stromii v porostu

ZAVER

Naplni ¢lanku nebyla tvorba komplexnich lesnickych evidenci. Cilem bylo spiSe testovat
pfimocaré a dostupné feSeni, které bude mize slouzit Siroké Skale uZzivateli pro jednordzova
venkovni Setfeni, sbér referencnich dat pro podporu vyzkumu, pfip. taxaci na malych lesnich
celcich. Zéakladni programové rozhrani nabizi intuitivni ovladani a snadné propojeni s obecné
rozsitenym ArcGIS desktop. V ptipadé specifickych pozadavki lze vyuzit fady hotovych
nastaveb a skriptli vytvorenych pocetnou rodinou uzivateli GIS software od ESRI. Dalsi
moznosti je pak ArcPad Application Builder, ktery nabizi Siroké mozZnosti konfigurace

stavajicich a tvorby novych nastroji.
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IV

VYHODNOCENI ODUMIRANIi HORSKEHO SMRKOVEHO LESA
NA TROJMEZNE (NP SUMAVA) METODOU AUTOMATIZOVANE
KLASIFIKACE LETECKYCH SNIMKU

F. Hajek & M. Svoboda
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VYHODNOCENI ODUMIRANI HORSKEHO SMRKOVEHO LESA NA
TROJMEZNE (NP SUMAVA) METODOU AUTOMATIZOVANE
KLASIFIKACE LETECKYCH SNIMKU

ABSTRAKT

The aims of this paper were: (1) to present preliminary results on bark beetle damage in
Trojmezna old-growth forest (Bohemian Forest NP) and (2) to test possible application of
automated classification of aerial photographs to survey this damage. The extent of
undamaged forest area decreased about 16 % during the analyzed period. Based on our
results, we conclude that methods of automated classification of bark beetle damage from
remotely sensed data are useful and efficient. The problems of using aerial photos in terms of
image quality (geometric properties, spectral and spatial resolution) and data accessibility are
discussed. Moreover, the technological recommendations for practical processing of bark

beetle damage surveys on large areas are presented.

Kli¢ova slova: aerial photos, Ips typograhpus, survey, Norway spruce forest, object-based
analysis
UvVoD

Monitorovani zmén stavu lesa pomoci interpretace obrazovych dat dalkového prazkumu
Zem¢ (DPZ) mé u nas i1 ve svété pomérn€ dlouhou tradici. Jednou z nejvyznamnéjSich
aplikaci DPZ v lesnictvi je analyza zdravotniho stavu (ZIHLAVNIK & SCHEER 2000). Pro tento
ucel jsou nejcastéji vyuzivané zdroje udajii infracervené letecké snimky (MURTHA & MCLEAN
1981), pfipadné¢ multispektralni satelitni data (STOKLASA 1995, WooDcoCK et al. 2001).
Zcela aktudlni jsou pak snahy o vyuziti druzicovych snimki s velmi vysokym prostorovym
rozliSenim (VHR) jako IKONOS a QuickBird. Vyhodnoceni poskozeni lesa podkornim
hmyzem ze snimkiit VHR bylo hojné testovano napiiklad v Kanad¢é. WHITE et al. (2005)
uspésné analyzoval data Ikonos metodou nefizené klasifikace ISODATA za ucelem detekce
stromll napadenych druhem Dendroctonus ponderosa. VyuzZiti snimkil z riznych senzorii k

mapovani poskozeni lesa s ohledem na velikost sledovaného izemi déle rozebirda WULDER et

al. (2006).

V Ceské republice byly od konce 70. let minulého stoleti testovany infradervené letecké
snimky za ucelem hodnoceni poskozeni lesti v Krusnych horach. Jiz HAUTKE (1978) studoval

moznosti vyuziti riznych materidlli leteckého snimkovani. Snimky z druzice Landsat byly
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pouzity pro vyhodnoceni rozsahu odumirani lesa v diisledku ziru lykozrouta smrkového v NP
Sumava (ZEMEK et al. 2001, ZEMEK et al. 2003). Podle ZEMKA et al. 1999 je moZno vyuzit
satelitni snimky tohoto typu k hodnoceni rozsahu kalamity zplsobené Zirem lykoZrouta
smrkového, ale uvedend metoda ma nékteré nevyhody. Jde predev§im o ¢asovou dostupnost
snimkl a jejich prostorové rozliSeni. Z tohoto divodu byly pravdépodobné pii analyze
rozsahu lesa napadeného zirem lykozrouta smrkového v sousednim NP Bavorsky les vyuzity
snimky letecké (HEURICH 2001). V NP Bavorsky les je v soucasnosti tato metoda vyuzivana

jako standardni nastroj pro vyhodnoceni rozsahu a pribéhu odumirani lesa.

S pottebou vyhodnoceni dat v ¢asovych fadach ustupuji techniky zaloZené Cisté na vizualni
interpretaci stale Castéji automatizovanym metoddm. Bohuzel automatizovanéd klasifikace
vysoce texturovanych dat, jakymi jsou letecké a satelitni snimky VHR, zistava stdle pomérné
problematicka. Plochy piedstavujici jednu tématickou tfidu (napf. koruna stromu) jsou ve
skutecnosti tvofeny skupinou vétsiho poctu pixelil se znacnym rozsahem hodnot stupiit Sedi.
Tradi¢ni techniky klasifikace obrazu pracuji pouze s digitdlnimi hodnotami téchto
jednotlivych pixelii a ignoruji jejich prostorové rozmisténi neboli texturu snimku
(HALOUNOVA 2003). Zminéna tuskali 1ze do znané miry feSit klasifikaci zaloZenou na
objektovém ptistupu. Objektova klasifikace se béhem posledni doby stala predmétem celé
fady studii a mnohé z nich potvrzuji, ze lze timto zptisobem dosdhnout zna¢ného zpiesnéni
klasifikace. BENzZ et al. (2004) poukazuje, Ze spravnost klasifikace je podminéna
porozuménim typickému kontextu a hierarchickym vztahii na riznych urovnich méfitka.
Vyuziti téchto vztahit umoziiuje analyzu a hlubsi pochopeni riznych typt krajinnych struktur
(BURNETT & BLASCHKE 2003). Ptinosy objektové klasifikace byly s tispéchem testovany v
rozlicnych ulohach jako mapovani porostnich struktur a druhového =zastoupeni lesa
(HALOUNOVA 2003, HAJEK 2006), identifikace a vymezeni korun jednotlivych stromt
(BRANDTBERG 1999, HAY et al. 2005, TIEDE & HOFFMANN 2006). Diky definované
prostorové navaznosti umozinuje objektova klasifikace také snadné napojeni na geografické
informacni systémy (GIS), naptiklad vyuzitim stavajicich tématickych vrstev pro klasifikaci
lesnich porosti (FORSTER & KLEINSCHMIT 2006), ¢i aktualizaci tdajti o porostnich skupinach
v databazi LHP (HAJEK, in press). TIEDE et al. (2006) uplatnili pfistup sekvencni objektové
analyzy leteckych snimka k identifikaci stromi napadenych lykozroutem smrkovym v NP

Bavorsky les.

Cilem tohoto pfispévku je vyhodnoceni rozsahu odumirani lesa v dasledku ziru lykozrouta

smrkového pomoci metody automatizované klasifikace casové tady leteckych snimkii.
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Casova fada leteckych snimki zoblasti I. zény Trojmezna Narodniho parku Sumava
(Trojmezna, NP Sumava) byla vybrana jako testovaci Gizemi z ndkolika divodd. PiestoZe
v dané oblasti dochazi k odumirani lesa jiz od roku 1996, neexistuje do soucasnosti zadna
objektivni studie feSici tuto problematiku. Existuji pouze odhady rozsahu odumirani
provedené¢ v minulosti pracovniky parku, které ale byly pravdépodobné velmi neptesné
(SvoBoDA 2005a). Tato studie si tedy klade za cil otestovat soucasné moderni pfistupy
automatizované klasifikace obrazu k problému vyhodnoceni odumirdni lesa a zaroveil

prezentovat predbézné vysledky tohoto odumirani.

METODIKA

2. 1 Popis lokality

2.1.1 Historické poméry a soucasna situace

Do soucasné 1. zony Trojmezna (Trojmezensky prales) patii cca 600 ha lesa v rozdilnych
prirodnich podminkach a sriznou minulosti vyuzivani ¢lovékem. Zatimco nckteré casti
pralesa nebyly v minulosti nikdy intenzivné vyuzivany, zbytek uzemi byl v 19. st. ovlivnén
tézbou dreva. Historické prameny zroku 1720 uvadéji lesy této oblasti jako jedny
z nejzachovalej$ich z celé Sumavy (PRUSA 1990). V druhé poloving minulého stoleti doslo
k uzavieni hranice a nésledujicich Ctyficet let se vyvijelo prakticky bez vlivu lidské ¢innosti

(MASKOVA et al. 2003).

Po propuknuti kalamity zptisobené lykozroutem smrkovym v NP Sumava se odumirani a
rozpad lesa nevyhnuly ani oblasti Trojmezné. Vizualni hodnoceni leteckych snimkti z roku
2005 z dané oblasti ukazuje Trojmeznou jako mozaiku odumielych a ptezivajicich skupin
stromll. V soucasné dob€ se aktivné¢ zasahuje proti lykozroutu smrkovému v cca 200 m
Sirokém pasu lesa podél statni hranice s Rakouskem a Némeckem, které ma ochranit tamni
lesy pied $ificim se lykozroutem smrkovym z NP Sumava (SVOBODA 2005b, SVOBODA &
KRENOVA, 2006). Terénni monitoring rozsahu odumirani lesa byl zastaven a v soucasnosti

neexistuji objektivni data o rozsahu odumirani lesa v této prvni zong.

2.1.2 Prirodni podminky

Trojmeznd se rozklada v hlavnim Sumavském hiebenu ve skupiné Tiistoli¢niku. Zahrnuje
puvodni pralesovité zbytky porosti v pasu od Ttistolicniku po Trojmezi, dale oblast od
Trojmezi po Plechy podél hranice s Rakouskem. Uzemi lezi v nadmoiské vysce 970 — 1380 m

n.m. Ro¢ni thrn srazek se pohybuje mezi 1200 mm — 1500 mm, ro¢ni primérna teplota se
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pohybuje od 3,5 do 4 °C (KOPACEK et al. 2002). Pudy jsou hlinitopiscité, pis¢itohlinité,
skeletovité, typu rankru, podzolu a kryptopodzolu (KOPACEK et al. 2002, SVOBODA 2003).

Z lesnich spoleCenstev pievladd piirozenda kyseld smrcina stfedniho vzrstu s pfechodem
k jetdbové smréin€ v hiebenovych polohach. V nizSich polohdch se nachézeji bukové
smréiny, pfipadné¢ smrkové buliny (PRUSA 1990). Vzhledem k heterogennim ptirodnim
podminkach a rozdilné historii vyuzivani se charakter lesa v rdmci celého uzemi Trojmezné

vyrazné li§i. Struktura lesa byla popsana v praci SVOBODA (2005¢) a SVOBODA (2005d).

2.2 Obrazova data a jejich predzpracovani

2.2.1Barevné a barevné infracervené (IC) letecké snimky

Letecké snimky byly v radmci ptipadové studie analyzovany jako archivni data. Vzajemné se
lisili obdobim pofizeni, pouzitym materidlem, v ptipad¢ predzpracovanych dat navic nebyly
k dispozici zddné informace o zplsobu vyhotoveni ortofotosnimkii.. Proto je tfeba zdiraznit,

ze kvalita snimki nebyla pro dany kol optimalni.

Pro klasifikaci byly pouzity snimky ze ¢tyf obdobi - barevné infracervené letecké snimky z let
1995 a 2006, a barevné letecké snimky z let 2001 a 2004 (Tab. 1). Ke snimkovani na bylo
pouzito analogovych kamer ZEISS LMK 15 a 2015. Barevné letecké snimky byly potizené ve
ttech spektralnich péasmech viditelné casti spektra elektromagnetického zéafeni s
radiometrickym rozsahem 8 bitd (256 urovni jasu). Barevné infraervené (color infrared -
CIR) byly pofizené na film Kodak AEROCHROME 2443, ktery ma zvysenou citlivost v IC
pasmu. K eliminaci zafeni v modré casti viditelného spektra byl pouzit filtr Kodak
WRATTEN ¢&. 12. Aplikaci tohoto filtru se jednotlivé vrstvy IC filmu stanou citlivé pouze k
zelené, Cervené a infracervené Casti spektra a snimky se pak zobrazuji v nepravych barvach

(www .kodak.com).

Zdroj Rok Datum snimkovani Typ snimku Kamera Méritko
AOPK 1995 25.10. 1995 infracerveny (IR) LMK 15 1:10000
NP Sumava 2001 04.11. 2001 barevny (RGB) LMK 2015 1:14000
Gefos a.s. 2004 18.6. 2004 barevny (RGB) LMK 2015 1:15000
NP Sumava 2006 17.7 .2006 infracerveny (IR) LMK 2015 1:15000

Tabulka 1. Prehled pouzitych snimkii a jejich zakladni charakteristiky

Letecké snimky z let 2001 a 2004 byly ziskany jiz jako ptipojené do soufadnicového systému
(WGS 84 zoéna 33N) a ortorektifikované; snimky zroku 1995 a 2006 pak pouze jako

skenované a dale nezpracované obrazové soubory. Pfi skenovéani pozitivu infracervenych
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snimki se jednotlivé slozky spektra — zelena, ¢ervend a infracervena — zobrazily do kanali
RGB vnepravém barevném podani. Tyto snimky byly koregistrovany pomoci afinni
transformace a spolecné s ostatnimi snimky resamplovany na prostorové rozliSeni 0,42 m/

pixel pomoci interpolac¢ni metody nejblizsiho souseda (LILLESAND et al. 2004).

2.2.2 Volba zajmového uzemi

Za ucelem Kklasifikace lesa postizeného odumiranim hlavniho stromového patra byla ze
snimkii vybrana ctvercovd oblast cca 600 x 600 metri. Tato plocha splnila poZadavky
definované pro nasledné vyhodnoceni, a to na vSech Ctyfech snimcich: (1) podstatna ¢ést
zabéru uvnitt hranic prvni zéony NP, (2) uzemi s evidentnim vlivem lykoZzrouta smrkového, (3)
uzemi v blizkosti stfedu snimku, (4) tizemi, které je z hlediska stavu porostu charakteristické
pro celou oblast, (5) minimalni podil tzemi, kde byla provadéna imyslna asanace lykoZrouta

smrkového.

Posledni zminéné kriterium bylo dodrzeno jen ¢astecné, protoze v Casti analyzovaného izemi
byly nékteré stromy napadené lykozroutem smrkovym asanovany. Plati to pfedevsim pro levy
dolni roh analyzované oblasti (Obr. 1), kterd lezi na izemi Némecka a ¢astecné také v pasmu

kolem hranice, kde dochézi k asanaci i na ¢eském uzemi uvnitf prvni zony.
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Obr. 1. Lokalizace studované oblasti. Bila ¢dra znaci hranici prvni zény NP Sumava. Ctvercovy polygon
oznacuje testovanou oblast.
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2.3 Objektove-orientovana klasifikace leteckych snimku

Multitemporalni analyza leteckych snimka byla zalozena na objektovém klasifikacnim
ptistupu. Pfi objektové orientované analyze je obraz nejprve rozdélen do tzv. primitiv -
souborl vice pixell, které se co mozna nejvice podobaji smysluplnym objektim. Klasifikace
pak probihad nad témito objekty, a nikoliv nad samotnymi pixely, jako je tomu u béznych
metod automatizované klasifikace. Segmentace originalnich dat mutze byt provedena do
n¢kolika Urovni podle pozadované velikosti cilovych tfid (koruny stromil, porostni skupiny),
¢imz umoznime vyuziti vzajemnych vazeb mezi objekty na jedné nebo vice trovnich. Vhodné
nastavend segmentace navic do jist¢é miry feSi vysokou heterogenitu nékterych tiid ve
snimcich s velmi vysokym prostorovym rozliSenim. V ramci nésledné klasifikace lze pro
jednotlivé tiidy definovat nejriznéjsi klasifikacni pravidla, zalozena na spektralni a texturalni
charakteristice objektd, jejich geometrickém tvaru a kontextu v ramci jedné twrovné
(sousedstvi), ¢i hierarchickém vztahu mezi Urovnémi. Zapojeni multi-urovitovych vztaht
mezi objekty (Obr. 2) pfedstavuje zasadni posun oproti pixelovym automatizovanym

metodam. Analyza tedy zahrnuje dva zakladni kroky:

I. Obrazovd segmentace do nckolika hierarchickych twrovni objektd zaloZend na
spektralnich a texturdlnich znacich. Velikost a tvar segmentti vychazi z vypoctu
maximalni povolené heterogenity (uzivatel definuje velikost méfitka cilovych

segmentl tzv. Scale parameter) (BAATZ & SCHAPE, 1999).

II. Klasifikace objekti podle jejich charakteristickych vlastnosti. Pfiznaky tfid jsou
definovany bud’ funkcemi cClenstvi a na zékladé ¢iselné vymezenych hodnot ptiznakl
se provadi klasifikace, nebo se klasifikuje pomoci klasifikatoru nejblizsiho souseda,
ktery porovnava ptiznaky vybranych vzorkl (segmentl vybranych zpracovatelem) a
priznaky vSech segmentii obrazu a provadi vlastni zatfidéni segmentu do jedné nebo

vétSinou vice tiid.

i hiect _l :
image ohjects : : abject |rr;§ge
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Obr. 2. Multi-uroviiové vztahy objektové hierarchie. Struktury (objekty) riznych meritek mohou byt
reprezentovany simultanné a tudiz klasifikovany pomoci vzajemnych vztahi (DEFINIENS PROFESSIONAL 5 USER
GUIDE. 2006).
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V této studii bylo vyhodnoceni leteckych snimkii bylo provedeno aplikaci sekvence procest
v prosttedi Definiens Professional 5.0.10. (DEFINIENS IMAGING Germany, 2006). Byla
vytvotfena zdkladni zdkonitd posloupnost procesti, kterd zahrnovala segmentaci snimkii do
dvou hierarchickych urovni objektt, klasifikaci podle definovaného souboru ptiznakd, opravy
hranic jednotlivych tfid pomoci kontextualni klasifikace a nakonec export tématické vrstvy do
GIS (Obr 3.). Sekvence procest byla formou znalostni baze (rule-base) pfenesena a postupné
aplikovana na snimky ze vSech ¢tyfech ¢asovych obdobi.
== STAND level
3= 160 [shape:0.1 compct. :0.8] creating 'stand

!_L at stand: les, plocha
2L plocha with Rel, border to les »>=0.98 at stand: les

ch
2= 12 [shape:0.1 compct.:0.8] creating 'stromy’
. Add nearest nghb to:3ivé, les, ptida, plocha, stin
L at stromy: plida, stin, suché, Zivé
%k Zivé with Existence of super objects plocha (1) >=0.5 at stromy: plida
L loop: ptida with rel area puda - rel area stin <= -0.6 at stromy: Zivé
L loop: Zivé with Rel. border to piida >= 0.4 at stromy: piida
!_L loop: plida with Rel. area of suché (0) >= 0.8 at stromy: suché
!_L loop: plda with rel area puda - rel area stin <= -0.2 at stromy: suché
!_L pida with rel area puda - rel area strom <=-0.2 at stromy: suché
!_L suché with Rel. area of Zivé (0) >= 0.8 at stromy: Zivé
L Fivé with Rel., border to suché >=0.4 at stromy: suché
!_L unclassified at stromy: plda
= at stromy: export object shapes to kurovec_2004

Obr. 3. Znalostni baze jako zakonita sekvence procesii obrazové analyzy v Definiens Professional 5.0.10.

Zakladni segmentace na vyssi Urovni rozdelila obraz na velké polygony zapojeného lesa a
polygony bezlesi (s lezicimi suchymi kmeny), piipadné polygony se stojicimi suchymi
stromy. Na niz$i urovni byla provedena detailnéjsi segmentace vesSkerého tizemi mimo plochy
bezlesi, kde byly klasifikovany jednotlivé koruny a skupiny stromtl, a to na stromy zivé a
stromy suché. Dale byly vyliSeny kategorie volna plocha a stin. Pro potieby studie byly tedy
na vybrané lokalit¢ vymezeny Ctyti zékladni kategorie klasifikace: (1) zivy les, (2) suchy les,
(3), volna plocha, (4) stin. Do kategorie zivy les byly zafazeny stromy, které v dobé poiizeni
leteckého snimku mély pfevdznou cCast asimilacnich organti v zelené barvé. Do kategorie
suchy les byly zafazeny: a) stromy u kterych v dobé poftizeni leteckého snimku asimilacni
organy ztratily zelenou barvu, b) stromy bez asimilac¢nich organi s korunou tvoienou suchymi
vétvemi v rizném stadiu rozpadu koruny. V ptipad¢ ze doslo ke zlomeni stromu a prevazna
¢ast suché koruny na stojicim pahylu chybéla, byly tyto stromy klasifikovany jako volna

plocha. Do kategorie volna plocha byly zatazeny plochy bez zjevnych stojicich Zivych nebo

suchych stromt na kterych nové odristajici stromové patro nebylo identifikovatelné.
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Klasifikace byla primarn¢ fizena vybérem vzorkll (segmentil), jejichz ptiznaky byly
porovnavany klasifikatorem nejbliz§iho souseda a ptredstavovaly vzorové plochy pro zatiidéni
segmentl do tfid. Kategorie objekti byla definovany pomoci primérnych hodnot ptiznakt
(typického projevu) v jednotlivych spektralnim pasmech a jejich odvozeninach. Tyto
zahrnovaly ptedevsim rozdily a podily spektralnich pasem u barevnych a infracervenych
snimkii. Vysledky spektralni analyzy byly nasledné pfehodnoceny a zpiesnény zapojenim
(definici) vztaht kategorii na dvou trovnich objektové hierarchie, jakoZzto i v rdmci sousedstvi
(Obr 4). Timto zpGsobem bylo mozné odliSeni spektralné identickych tfid (vzrostlé stromy a

narost v barevnych snimcich), Gpravy plochy korun v zéstinu, pfipadné klasifikaci lezicich a

Obr. 4. Priznak , relativni hranice k* urcuje pomeér délky hranice objektu sdilené se sousednim objektem
konkrétni tridy by k celkové déice hranice objektu (Definiens Professional5 - Reference Book. 2006).

stojicich suchych kment.

Spravnost klasifikaci v jednotlivych letech byla posouzena piedev§im na zdklad€ vizualni
interpretace. Pro roky 2004 a 2006 byly vysledky posouzeny také na zaklad¢ terénnich
Setteni. Pro kazdou kategorii bylo manudlné klasifikovano 45 rovnomérné rozmisténych
referencnich objektd, byla sestavena chybovd matice (CONGALTON & GREEN, 1999) a
vypocten standardni statisticky ukazatel spravnosti klasifikace Index shody Kappa (KIA)
(SMITS et al. 1999). Na zéklad¢ automatizované klasifikace byla vytvofena vrstva tématickych

GIS vystupti (Obr. 5) a plochova tabulka zastoupeni tiid v ¢ase (Tab. 2).

VYSLEDKY A DISKUZE

3.1 Vyhodnoceni rozsahu odumirani automatizovanou klasifikaci

Spravnost klasifikace v jednotlivych letech byla posuzovana ptredev§im na zaklad¢ indexu
KIA. V tomto ukazateli bylo dosazeno hodnot 0,94 (1995), 0,85 (2001), 0,90 (2004), 0,93
(2006) KIA. Vysledky lze povazovat za velmi dobré, mira shody v rozmezi 85 % - 94 %
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odpovida vysledkim analyz leteckych snimkt feSenych objektovym pristupem v dalSich

pracich (HALOUNOVA 2003, TIEDE et al. 2006).

Zména v zastoupeni a rozsahu jednotlivych analyzovanych kategorii béhem let 1995 az 2004
je zndzornéna na Obr. 5. V roce 1995 byl podil jednotlivych kategorii v analyzované oblasti
nasledujici: zivy les 41,0 %, suchy les 3,7 % a stin 54,8 % (Tab. 2). Zjistit, kdy doslo
k odumfeni stromt interpretovanych jako kategorie suchy les na leteckém snimku z roku 1995
neni zatim s pouzitim analyzovanych dat mozné. V Casové tad¢, ktera byla vyhodnocena
zatim chybi kvalitni barevny snimek potfizeny pied rokem 1995. Podle jedné z méla studii,
kterd se zabyvala rozpadem smrkového lesa po odumieni v disledku Zziru lykoZrouta
smrkového se do deseti let od odumieni porostu 75 % stromti zlomi, z toho 50 % stromt se
zlomi ve vySce 0 — 10 m (KUPFERSCHMID et al. 2003). S vyuzitim vysledka této studie je
pravdépodobné, Ze vétSina stromil klasifikovanych vroce 1995 jako suché odumiela
v rozmezi let 1985 — 1995. Jaka byla prvotni pfi¢ina odumfieni téchto stromt, zda to bylo
pouze v dusledku ziru lykozrouta smrkového, nebo kombinaci vice faktord, a co bylo

ptipadné zdrojem lykoZrouta smrkového neni mozné na zakladé soucasnych dat zjistit.

Rozloha v letech/ 1995 2001 2004 2006
Typ tiidy Rozloha Rozloha Rozloha Rozloha

(ha) (%) (ha) (%) (ha) (%) (ha) | (%)
ZiV}'/ les 14,80 41,00 |11,76 32,48 19,83 27,15 9,26 25,41
Suchy les 1,33 3,67 4,13 11,40 [4,74 13,09 [2,88 7,91
Volna plocha 0,00 0,00 1,89 5,21 4,99 13,78 7,99 21,94
Stin 19,77 54,77 18,23 50,36 | 16,45 45,42 16,09 |44,19
Suma 36,10 100,00 |36,20 100,00 |36,21 100,00 |36,42 |100,00

Tabulka 2. Zastoupeni jednotlivych trid klasifikace (v ha a %) z celkové rozlohy analyzované oblasti
v jednotlivych letech casove rady.

Mezi roky 1995 a 2001 doslo k vyraznému nartistu plochy kategorie suché les a ke snizeni
rozlohy kategorie zivy les. Podil kategorie suchy a zivy les v roce 2001 byl 11,4 a 32,5 %, tj.
nariist v pfipadé suchého lesa o 7,7 % a pokles v piipadé¢ zivého lesa o 8,3 %.
Pravdépodobnou pfi¢inou odumieni stromt byl zir lykozrouta smrkového. Zdrojem
lykozrouta smrkového byly pravdépodobné lokality suchého lesa identifikované v roce 1995.
Z Obr. 5 je ziejmé, ze suché stromy v roce 2001 jsou koncentrovany v okoli suchych stromi
z roku 1995. V roce 2001 bylo 5,3 % rozlohy analyzované oblasti zatazeno do kategorie volna
plocha. Nejvétsi podil této kategorie byl zjiStén v levém dolnim rohu analyzované oblasti
(Obr. 5). Tato &ast analyzovaného uzemi jiz neni soudasti Trojmezné (NP Sumava), ale jedna

se o némecky lesni majetek. V téchto porostech dochdzi k asanaci lykozrouta smrkového.
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Proto v této oblasti nedoslo k naristu rozlohy suchého lesa, ale k zvySeni rozlohy kategorie
volna plocha, ktera vznikla jako dusledek asana¢ni tézby. Mezi roky 2001 a 2004 doslo
k dalSimu poklesu rozlohy kategorie Zivy les na 27,2 %. Rozloha kategorie suchy les se
v tomto obdobi zvysila na 13,1 %. Rozloha kategorie volna plocha mezi roky 2001 a 2004
také zvysila na 5,2 %. Rozloha kategorie suchy lesa a volna plocha spolu navzajem souvisi.
Jak dochazi postupné k rozpadu stojicich suchych stromi, dochazi i k naristu plochy, ktera je
klasifikovana jako kategorie volna plocha. Z Obr.5 je opét ziejmad koncentrace suchych
stromi na snimku z roku 2004 v okoli suchych stromi klasifikovanych v roce 2001. Na prvni
pohled je patrny narast kategorie volna plocha ve stfedni a levé horni ¢asti snimku, kde doslo
ke kompletnimu odumfeni horniho stromového patra. Pfi interpretaci vysledku je nutno vzit
v tvahu jeden dulezity fakt. Leva ¢ast snimku spada do cca 200 m Sirokého pasu lesa podél
statni hranice s Rakouskem a Némeckem, kde se i pfestoze se jedna o prvni zénu narodniho
parku provadi asanace lykozrouta smrkového pokacenim a odkornénim napadenych stromd.
Z tohoto diivodu miize byt nardst kategorie volna plocha zptisoben nejen rozpadem stojicich
suchych stromi, ale 1 asanacni tézbou. S pouzitim dostupnych dat neni mozné tyto dva
procesy od sebe zatim pfesné odliit. Mezi roky 2004 a 2006 se rozloha kategorie zivy les
snizila na 25,4 %. NarGst byl mensi néz v ptedchozich obdobich. Rozloha kategorie suchy les
se mezi roky 2004 a 2006 snizila na 8,0 % a rozloha kategorie volna plocha v tomto obdobi
vzrostla na 22,0 %. V obdobi 2004 az 2006 tedy doSlo k mirnému zpomaleni odumirani

horniho stromového patra, naopak pokracoval vyrazny rozpad odumielych suchych strom.

Celkové se tedy v obdobi mezi roky 1995 a 2004 snizila rozloha kategorie zivy les z 14,80 ha
na 9,26 ha. Rozloha kategorie suchy les kolisala mezi jednotlivymi analyzovanymi roky a
rozloha kategorie volna plocha se zvysila z0 ha vroce 1995 na 21,94 ha v roce 2006.
Samostatnou analyzovanou kategorii pii klasifikaci tvofila tfida stin. Rozloha této kategorie
postupné klesala v jednotlivych letech z 19,77 ha na 16,09 ha. Stiny na obrazovych datech
obecné predstavuji jeden z problémii automatizované klasifikace leteckych snimkli. ASNER &
WARNER (2003) poukazuji, ze podil stinti ve snimcich vzrostlé vegetace je vzdy podstatny a
zvysuje se s hustotou porostu. V ptipadé souvislych lesnich oblasti je mnozstvi stinu dale
ovlivnéno velikosti a tvarem korun, hustotou porostu, indexem listové plochy, optickymi
vlastnostmi asimilac¢nich organl, a v neposledni fad¢ také geometrii slunecniho zéfeni a
samotného snimkovani (GERARD & NORTH 1997, GILABERT et al. 2000). Pfi vyhodnoceni
snimkil z riznych obdobi se proto na mnozstvi stinii zasadné projevi riznorodost vegetace,

ale také odliSnosti v technologii leteckého snimkovani. V ptipad€ této studie lze mnoZstvi
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stind v jednotlivych letech interpretovat ze dvou hledisek: (1) Datum snimkovéani. Snimky
z let 1995 a 2001 byly potizené na konci fijna (respektive zacatkem listopadu), podil stint
k celkové plose je tedy ve srovnani s daty z letniho snimkovani (roku 2004 a 2006) vyssi. (2)
Hustota porostu a mnozstvi asimila¢nich organt. Podil stint k celkové ploSe se déle snizuje v
disledku postupného profed’ovani lesa zirem lykozrouta smrkového a chfadnuti napadenych

stromu.

Obr. 5. Zména v rozloze jednotlivych klasifikacni trid na leteckych snimcich v rade let 1995 (2a), 2001 (2b),
2004 (2¢) a 2006 (2d).
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ZAVER
V prubéhu studie byla testovana moznost vyuziti automatizované klasifikace obrazu leteckych
snimki pfi vyhodnoceni odumirani horniho stromového patra smrkového lesa v disledku ziru
Iykozrouta smrkového. Zaroven byly prezentovany predbézné vysledky tohoto odumirdni ve
vybrané ¢asti izemi. Pomoci automatizované klasifikace byla zjist€éna zména v rozloze zivého
lesa v analyzované oblasti, ktera se snizila z 41 % na 25 %. Na zakladé ziskanych zkuSenosti
je mozné konstatovat, ze pfistupem tvorby zakonité sekvence procesii lze klasifikovat
obrazova data s pomérné vysokou mirou automatizace. Nejedna se totiz o jeden konkrétni
algoritmus ¢i pfiznak kategorie, nybrz o posloupnost typizovanych algoritmi pfenositelnou ve
form¢ znalostni baze. Prahové hodnoty jednotlivych procest (ptiznakil) 1ze upravit pro dalsi
snimky v bloku, pfip. pro odlisné podminky snimkovéani. Metoda tudiz pfedstavuje jeden z
potencidlné efektivnich nastroji, ktery bude pravdépodobné mozné po dalSim testovani
prakticky vyuzit pfi opakovaném vyhodnocovani rozsahu odumirani lesa. Posouzeni moznosti
aplikace ziskanym poznatki na celé¢ uzemi Trojmezenského pralesa bude predmétem dalsiho

vyzkumu.
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PROCESS-BASED APROACH TO AUTOMATED CLASSIFICATION
OF FOREST STRUCTURES USING MEDIUM FORMAT DIGITAL
AERIAL PHOTOS AND ANCILLARY GIS INFORMATION

ABSTRACT

The methods of forest inventory data acquisition based on the analysis of remotely sensed
images have been well tested and implemented during the last decade. The predominately
visual interpretation and pixel-based automated techniques are now being gradually replaced
by the object-based image classification at multiple levels. This paper explores and
demonstrates the prospect of using medium-format digital aerial imagery for purpose of
automated updating of the existing GIS forest management database (LHPO). The method put
emphasis on the pre-processing phase, where various image transforms and additional
channels such as spectral ratios and vegetation indices (NDVI), low-pass filters, Sobel edge
and GLCM texture measures are derived from the original dataset. The layer stack is then
imported into the object-oriented classification environment together with the exiting thematic
vector layer and analysed on three hierarchical object levels. The classification involves
recognition of the successional stage of forest compartments and the estimation of tree species
composition in terms of area coverage. Further, age information in the GIS forestry
management map can be updated and the spatial distribution of classes corrected using the
multiscale object relations of the former analysis. The advances of the automated procedure
based on sequential processing of image objects are partially covered. Moreover, aspects of
utilisation of the medium-format CIR images as an alternative to traditional aerial photos and

VHR satellite data, were also discussed.

Keywords: medium format digital images, GLCM texture, object-based image analysis, tree

species

INTRODUCTION

The increasing demands on the level of accuracy, time, completeness, and cost-effectiveness
of forest information extraction are causing traditional methods of visual image interpretation
to be gradually replaced by the semi-automated and automated techniques. This fact is further

supported by the improved computing power together with the availability of very high spatial
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resolution (VHR) multispectral aerial and satellite images. The advantage of VHR imagery is
that individual trees are often visible allowing the forest classification on the stand and also on
individual tree crown level. Such imagery can potentially be used for individual tree-based
forest inventory and planning. Features of particular interest include the tree crown size and
spectral characteristics, stem position, and stem number per hectare. Tree species estimates

are important in forest management and it is also needed to estimate timber volume.

A number of newly developed sensors and systems with the capability of individual tree
crown analysis are now approaching operational applications. VHR satellite data (SPOT 5,
Formosat, IKONOS, QuickBird, OrbView-3) fulfil much of demands on large scale,
multitepmoral LULC analysis. Also digital aerial cameras for photogrammetry have
developed significantly since they were first introduced in 2000 and today, frame based as
well as linear array cameras are available on the market (e.g. Leica Geosystems, Z/I Imaging,
DiMAC systems, Vexcel Imaging). The main advantages over traditional aerial photos are a
completely digital data flow, a significantly improved radiometry, together with the

possibility to simultaneously acquire panchromatic, colour and near-infrared imagery.

Obeying the technological development, various methods of tree species identification from
aerial and satellite imagery have been explored by researchers. Many studies on aerial photos
aimed to delineate and identify individual tree species based on different algorithms e.g.
finding local maxima, template matching and edge detection (Gougeon, 1995; Dralle and
Rudemo, 1997; Larsen and Rudemo, 1998; Brandtberg 1999). Sumbera and Zidek (2003)
followed these authors and implemented selected procedures into a special programmme to
automatically create maps for a range of forestry applications. Other authors (Bucha, 1998)
aimed to estimate forest species composition using moderate resolution data such as Landsat
TM, and Spot HRV. Malenovsky (2001) tested a combination of simulated HQSR (High
Quality Spatial Resolution) and Spot 4-Xi satellite images and found that spatial resolution of
4 m could be sufficient for forest vegetation mapping. The most recent studies based on image
segmentation and multiscale object representation focuses both on stand delineation and area-
based species distribution (Halounova, 2003; Hajek, 2006), as well as delineation of
individual trees (Burnett et al., 2003; Hay et al., 2005). The approach of local maxima
detection followed by simultaneous object-growing was lately proposed by Tiede and
Hoffmann (2006). Besides, spectral analysis, combined with the additional information from

e.g. terrestrial measurements or laser scanning, and the integration of GIS within the
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automated classification procedures, has been characteristic up-to-date approaches for

mapping of forest structures (Forster and Kleinschmit, 2006).

METHODS

Object-based classification

As stated by Hay et al. (2005), the significant cost savings may be realized through an
inclusion of automated processes to an increasingly digital interpretation environment.
Nevertheless, the traditional automated procedures based on the analysis of individual pixels
ignore their spatial distribution (texture) and are often inaccurate (Willhauck et al., 2000).
Similarly to automated classification of other landscape structures, the important point is to
determine spectral, textural and geometric signatures of forest species. The differentiation
itself can be problematic as their spectral curves sometimes overlap. Moreover, the crown
reflectance is always a complex interaction of foliage spectral properties with other sources of
variability including atmospheric effects, shadow pattern, back ground composition and
instrument noise (Stone and Coops, 2004). Besides, the extreme image heterogeneity of VHR
data itself, cause the objects representing one thematic class (e.g. tree crown) consist of a
number of pixels with different digital values. Thus the automated classification of such

highly textured image data still remains a complicated task (Halounova, 2003).

To overcome the problem of high variance, image segments representing meaningful objects
can be calculated out of the pixels and then classified. The initial segmentation based on
automatically extracted spatial measures explicitly related to the varying sized, shape and

spatial distribution of image-objects within a scene, is essential.

Image segmentation
The task of creating meaningful objects equates to searching for changes in image object

heterogeneity/homogeneity. The number of segmentation techniques were developed e.g.
Haralick and Shapiro (1985), Ryherd and Woodcock (1996) and Baatz and Schipe (2000).
The common approaches use thresholding or region growing algorithms and different types of
texture segmentation algorithms and knowledge-based approaches are also used in operational
applications. The algorithm so-called Multiresolution segmentation, was developed by Baatz
and Schipe (1999) and introduced in the first commercial object-oriented image analysis
software eCognition (Definiens Imaging, Germany). The classification procedure considers

not only object spectral and textural properties, but also their size and behaviour on different
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levels of the scale. The underlying idea behind the step of building image objects is the
minimization of their weighted heterogeneity. The process can be simultaneously applied
across the whole image to obtain objects of comparable size and quality (Baatz and Schépe,
2000; Willhauck et al., 2000; Schiewe, 2002). The very late approaches are based on creation
of initial object primitives and their stepped rebuilding using the supervised region-specific

processes at multiple levels (Definiens Professional 5.0).

Multi-scale analysis
Interpretation of earth observation data typically requires determining what greater structures

exist in the landscape and the level of variability within these units (Hay et al., 2005).
According to Benz at al. (2004), also the successful knowledge-based object extraction is
much dependent on understanding of appropriate analysis scales and their combination,
identification of typical context and hierarchical dependencies. Burnett and Blaschke (2003)
concluded that the multi-scale segmentation/object relationship modelling can be a vehicle for

a theory driven exploration of different types of landscape heterogeneity.

There is no single (spatial) scale being optimal for characterizing the multitude of different
scene components (Baatz and Schipe, 2000). The same type of object appears differently at
different scales and thus the definition of the target scale is crucial. Studying the scene at
different levels and consequently employing the multi-scale dependencies enhance the
automated classification (Benz et al., 2004). Objects created on different scales - segmentation
levels - can be linked together to a hierarchical object network (Figure 1). Different
hierarchical levels can be segmented using different data. Further, the initial object borders
can be corrected based on regrouping of their sub-objects. Practically classifying the upper
level, each object e.g. forest stand can be analyzed based on the occurrence of its classified
sub-objects e.g. tree crowns, gaps and shadows. The context information and semantics can be

used to distinguish between trees within a forest or within an urban area etc.

image ijeds_l . imace
B —)> < f- objec
levels .
hierarchy
pixel pixel level

Figure 1: Multi-scale relations. Structures of different scales can be represented simultaneously and thus
classified in relation to each other

Utilisation of existing forest inventory data
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European countries such as Germany or the Czech Republic pursue their forest management
traditionally at a very high level. The forest inventory data and the knowledge about processes
of the forested landscapes are abundantly available and have been recorded for long decades
here. According to Forster and Kleinschmit (2006), the task is to integrate this ancillary data

into the image analysis with certain benefits.

The characteristics of forest types based on remote sensing data interpretation (as texture,
spectral value, and object shape), have typically very broad ranges of occurrence, causing
mixtures in the classification process. Besides, the existing information in the form of maps or
GIS layers is often outdated, not spatially accurate, or missing. The integration of the two data
sources enables enhanced separation of thematic classes (narrowing the possible mixtures)

and consequently updating of the class borders based on RS imagery.

DATA AND STUDY SITE
Digital aerial imagery

Aerial images from medium-format camera Hasselblad H1 with lens of 50.4 mm focal length
and PhaseOne P25 digital back were analysed in this study. Hasselblad H1 is a medium
format SLR camera with a number of unique features that support digital backs and provide
similar handling and functionality as an integrated digital camera. Image format is 6 x 4.5 cm
(actual size 56 x 41.5 mm). Phase One P25 digital back incorporates 22 megapixel CCD chip
with size 0f 48.9 x 36.7 mm, 9 x 9 um pixel pitch, 4:3 ratio and 16 bits per pixel ADC.

The images were sensed using custom-made optical filters to obtain three multispectral bands

with spectral properties similar to Landsat TM bands (Figure 2).

[E4))] Filter B6O (Wraten 12)

T tepissiasiep sty
8000 o

6000 it b

2000

.......................................................................................

o Lrassmittance
Egmaaamsmaaampapasppa_g

—

30000 40000 50000 GOOO0  7DOOD 80000 50000 100000  1100.00 [nm]

Figure 2. Transmitance custom-made optical filters B60 (Wraten 12) and Landsat type B3 and B4 (Optical
research workshop AV Turnov 2002)
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The imagery was experimentally acquired over the lowland flat forested area close to town of
Zidlochovice (49° 0° N, 16° 38’ E) in southern Moravia, Czech Republic. The flat site
comprised regular compartments of even-aged extensive mature Pedunculate oak (Quercus
robur L.), European Ash (Fraxinus excelsior), Poplar (Populus sp.), Willow (Salix sp.),
Norway spruce (Picea abies L.) and young plantations of Pine and Oak. Besides, smaller
proportions of Large-Leaved Lime (7ilia platyphyllos) could be found inside forest stands and
along the margins. The planted mature stands, with poor natural regeneration, had uniform

stocking density and canopy structure.

LHPO vector data

Polygons from the existing forest management planning GIS database so-called LHPO
provided by the Forest Management Institute (UHUL, Czech Republic) were used for the
thematic segmentation on the level of forest stands (Figure 3). Besides the vector layers, the
database contains a detailed description of forest stands which is being continuously updated.
Thematic attributes such as “Age step” were used as additional information for the relational

classification of the forest compartments.

Figure 3. Digital aerial image (false color composite) overlaid with corresponding tile of LHPO vector database
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Field GIS
Based on the previous information from LHPO forest inventory database, twenty 400m” plots

covering areas with 100% species composition were located as reference data. Sample plot
selection put emphasis on size and class purity to provide a representative basis for accuracy
assessment. The boundaries of each plot were determined with differential GPS SX Blue™

and PDA with ESRI ArcPad™ mobile GIS.

Image pre-processing

Some authors such as Zhang (2001) and Wack and Stelzl (2005) stated that image
classification methods based solely on spectral analysis are insufficient for the mapping of
complex forest structures from high resolution digital imagery. Particularly young succession
stages and heterogeneous mature stands are characterised not only by the spectral but also
their textural (spatial) properties. Similarly non-forested areas and regenerating areas should

be eliminated based on their different texture characteristics.

Various methods have been employed for the automated extraction of texture information in
forestry. Zhang (2001) tested several texture algorithms, and found that local variance
extraction, edge detection and some co-occurrence matrix texture measures can well separate
trees from lawn and other objects with similar spectral properties. The result of texture
integrated classification gained almost 30% of agreement over the multispectral only method.
Tuominen and Pekkarinen (2005) assessed the performance of selected textural features
derived from digital aerial photos and stated that optimal image spatial resolution is dependent
on the object size. Hauta-Kasari et al. (1999) applied different Haralick features on the
multispectral images to perform texture segmentation. Another evaluation of spatial
information (GLCM texture measures) in spectrally unmixed image fractions of vegetation,
shadow and wood was done by Le’Vesque and King (2003) who found it useful in forest

structure and health modelling.

FEATURE SPACE ENLARGEMENT

In this study, the delivered raw image initial was geo-registered to the reference GIS in UTM
projection (WGS 1984 zone 33N) using a rational polynomial function model with the total
RMSE 2.3 m and pixel size resampled to 0.5 m. Afterwards, a number of additional channels
were calculated out of the original data in order to enhance the class-by-class separability. The

image pre-processing was done in external programmes (PCI Geomatica 9.1, Erdas Imagine
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8.7), and involved calculation of first principal component from which the GLCM texture
measures Homogeneity, Mean and Standard Deviation (Haralick et al., 1973), as well as the
Sobel edge layer, were derived. Besides, various spectral features and transforms such as
NDVI and NIR/Green band ratios were calculated as customised features in “Definiens
Professional”. Due to the issue of large data handling, the project was based on 1800 x 1700

pixels data subset.

CLASS SEPARABILITY ASSESSMENT AND FEATURE SELECTION

A frequent task in image analysis is to reduce the number of features utilized for classification
to the essential ones. In this project, the in-between correlation of pre-processed layers was
visually assessed using 2D features space plot (Figure 4). From each pair of highly correlated

features, one was deselected and omitted in the classification.

2435

Mean Red channel

0.00

GLCM Homageneity 5x3

Figure 4. 2D Feature space plot. Correlation analysis of two image channels - Mean Red and GLCM
Homogeneity

Furthermore, the 30 sample objects in each class were manually classified based and the
reference field data and the class-by-class separability with the feature contribution, were
tested using the Definiens internal tool called “Feature Space Optimization”. Then histograms

of the candidate features for every two competing classes were compared.

Automated analysis based on sequential processing of image objects

The approach of process-based image analysis as provided by commercial software Definiens
Professional 5.0.10 was tested in this study. The programme enables the building of a rule-

base out of single processes (algorithms), which can be executed on a specific image object
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domain. The resulting rules-set is a sequence of individual processes providing a solution to a
specified image analysis problem in the predefined order (Definiens User Manual, 2005). The
available algorithms are many e.g. Segmentation, Classification, Reshaping operation
algorithms, Vectorization, Export algorithms. Besides, individual objects or object domain
can be assigned to a target thematic class according to description within single or multi-
dimensional feature space. As in the earlier software version, features include various object

characteristics, class related and context related features.

The concept of object domain allows adapting selected algorithms to individual initial regions
and treating the different thematic classes independently. Analyzing VHR data in such
manner is advantageous for instance for the single tree crown delineation as shown in Tiede et
al. (2006). The processes run on target domain enables improved object building (merging,
splitting) as well as advanced classification techniques e.g. searching for objects enclosed by
specific class, searching an extrema of certain feature within this domain and more.
Furthermore, this functionality enables generating complex workflows, restricting child
processes to certain domains or tying child processes to conditions. De Kok (2006) found the

process approach an advance towards the fully automatic classification.

SEGMENTATION OF OBJECT PRIMITIVES

There are many ways to perform multi-level segmentation using different algorithms and
segmentation parameters. The bottom-up approach of building object hierarchy using
multiresolution segmentation with thematic vector layer was tested in this study. Setting the
scale parameter is important to obtain object primitives most suitable for target classes.
According to Radoux and Defourny (2006) the higher scale parameter increases the class-by-
class separation and using of the shape factor improved the overall segmentation quality. Still,
the process of finding optimal segments was a matter of testing. The resulting segmentation
parameters are shown in Table 1. The segmentation process sequence included a calculation
of very fine objects (tree parts), higher level segmentation of forest compartments and vector-
based segments created in between the two levels (Figure 5). The object primitives calculated
by multiresolution algorithm were later refined by multi-level contextual processes. In such
manner, the existing vector border of compartments was updated by the information from the

aerial image.
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image segments on tree crow level

segmenation of forest compartments

stand boundaries derived from LHPO

T

Figure 5. Bottom-up segmentation at three image object levels - tree crowns, GIS-based stands and forest
compartments.

Color Shape Shape settings (Compact/Smooth)
Level 1 — Compartm 130 0.8 0.2 0.9 0.1
Level 2 — LHP 1000 TM 1 0 0 0
Level 3 — Crowns 15 0.7 0.3 0.3 0.7

Table 1. Segmentation parameters for 8-bit digital imagery resampled to pixel size of 0.5 meters.

THEMATIC AND OBJECT-BASED CLASSIFICATION

The idea behind the automated procedure was to formulate the expert knowledge into
processes. The two different algorithms were used to classify objects on the lower (detailed)
and upper GIS-based levels. The polygons of the thematic forest stands were simply assigned
to eight age classes according to definite (Boolean) threshold of LHP attribute. The classes
included: non_forest, plantation (1 to 10 years), young stand (11 — 20 years), young_stand
(20 — 40 years), premature stand (40 — 60 years), premature stand (60 — 80 years),
mature stand (80 - 100 years) and mature stand (over 100 years). The object primitives on
the level of tree parts were organized in a hierarchical structure and analysed by means of
hierarchical classification. The process was controlled by a rule-base describing the class
characteristics in the form of fuzzy membership functions allowing definition by multiple

fuzzy expressions - rules for individual features were combined by using the logical operators
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““and’’, “‘or’’ and ‘‘not’’. The features based on mean spectral values of objects and various

band ratios were mostly applied. The classes differentiated at the tree-crown level were:

(1)shadow, (2)bare soil, (3)grass, (4)planted, (5)spruce, (6)willow, (7)oak, (8)lime and

(9)other broadleaves (Fraxinus, Populus)

Finally, the multiresolution segments of forest compartments were also classified using
hierarchical structure - assigning the easy classes and moving to more difficult ones (so-called
masking technique). In contrast to species identification at the bottom level, the very large
objects allowed to utilise more textural features, so different successional stages could be
recognised. The classes involved: unplanted, plantation, young_conifers, young_broadleaves,

mature conifers, mature broadleaves, sparse stand, and shadowed ground

The analysis workflow

The image classification workflow was defined by a sequence of individual processes as
described by the process tree showed on Figure 6. The analysis started with the segmentation,
where large objects build above the detailed level using the MS algorithm were cracked-down
following the LHPO vector file. Then, the classes could be classified according the thematic
attribute at this level. Another step involved the initial classification of tree species and forest

types based solely on the object features (spectral, geometrical, textural).

In the next phase, the classification was gradually refined using advanced contextual relations
— within one level and between levels. This required several process cycles. The resulting
class distribution was further adjusted by means of border optimisation and objects fused by

the domain-merging algorithms to prepare the thematic map for export into the preferred GIS

= = segment_primitives
3= 15 [shape:0.3 compct.:0.3] creating ‘trees groups’
- at trees groups: 130 [shape:0.2 compct.:0.9] creating ‘stand_primitives’
= ak stand_primitives: 1000 creating LHP"
=~ = initial_classification
& = thematic_LHP
= = object_based
bl 00:06  at trees groups: bare_soll, bare, conifers, grass2, grass, hig
tL 00:01  at stand_primitives: conifers, dense, early_stage, matures,
bl 0.093s  other broadleaves with Length{Width >=5 at stand_primit
- = contextual_refinement
= gt tree_parts
@ = superobject-based
- & neighbour-based
= 00:10 atstand_parts
= 00:10 subobject-based
bl 0.0325  with Rel. area of sub objects shadow (2) >= 0.4 at sta
+ = 0.35 neighbour-based

layer format.

TEL at trees groups: erode low_NIR

~rr gt brees groups: merge region
= at trees groups: export image objects to Tree_Species
= ak brees groups: export image objects to Forest_Types

Figure 6. The image analysis workflow in form of process tree: The initial multi-level segmentation followed by

“crisp” and fuzzy classification algorithms and class-related refinement. The last phase represents improvement
of the object border and conversion into GIS thematic layer.
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RESULTS AND DISCUSSION

The thematic classification was obtained for the two levels of tree-crowns and forest
compartments and the results were evaluated by means of common accuracy measures. 20
samples for each class were selected in accordance with the GIS field reference data and the
accuracy statistics (such as Producer’s, User’s, Overall accuracy, as well as Kappa Index of
Agreement (KIA)) were derived from the assembled error matrix. Selected statistics

calculated per class, and for all assigned classes, are shown in Tables 2a and 2b.

As the statistical measures indicate, the proposed method offered satisfactory results when
applied to medium-format digital aerial images. In both tasks, the recognition of successional
stage of forest compartments as well the ability of identifying tree species composition in
terms of area coverage were fulfilled with the overall accuracy above 75%. The very good
result of more than 90% was obtained for classes of oak, bare soil, shadow and grass and
class planted with approx. 80%. The lower agreement between 66 to 78% was achieved for
willow, lime and other broadleaves (Ash and Poplar). The KIA for spruce was only 33%. The
fact referred to the spectral limitation of the tested imagery. On the other hand, the textural
characteristics represent significant contribution and the analysis of prevailing forest types
was very advantageous at this site. The most of given age classes were assigned with the
agreement over 75%. The classes mature conifers and mature broadleaves were often mixed,

which was also caused by the problematic spectral discrimination.

KIA per class 1.00 0.89 0.90 0.78 0.33 0.66 0.77 098 0.67
Overall accuracy 0.79
KIA 0.76

KIA per class 1.00 0.89 0.90 0.78 0.33 0.66 0.77

Overall accuracy 0.88

KIA 0.85

Tables 2. Selected accuracy measures evaluating classification at “tree-crown” (2a) and “‘forest compartment
(2b) levels. The statistics were derived for each class, Overall Accuracy and the Kappa index of agreement
represent aggregated results
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Figure 7. Subset of digital aerial imagery in false color composite (a), thematic age classification on the level of
forest compartments (b) and the spatial distribution of main forest species at the tree-crown level (c)

The next part of the result demonstrated the ability of utilisation of the former image analysis
for updating the existing GIS forestry management map. Using the object relations to level
above and under thematic classification, the areas being previously wrongly mapped and areas
with outdated age information were corrected (see Figure 8). The developed logical sequence

can be adopted to apply the workflow onto the other imagery.

I 100 meters 0-10years {20 - 40 years 40 - 60 years 60 - 80 years [ 80 - 100 years

Figure 8. The process of subsequent update of existing GIS layer. Image segmentation and classification based
on thematic input (1.) and the class boundary improvement resulting from the multilevel class relations

The sequential processing of objects derived from VHR aerial imagery using Definiens
Professional version 5.0.10 was the objective of testing in this study. The transferable
protocols from previous eCognition versions were replaced with the rule-set in the form of a
process tree, which alone represents progress towards the automation of the image analysis.

This process can be modified to suit other datasets or tasks. Besides, the concept of algorithms
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targeted to the specific domain (class, scale), improves the capability of hierarchical
classification (De Kok, 2006). The programme also offers advanced segmentation techniques
and procedures based on the creation of object primitives, as well as the stepped region-
specific object rebuilding. However, the setting of important segmentation ‘scale parameter’
still remains a matter of extensive (often, very time consuming) testing. As noted by Hay et al.
(2005), this can represent a serious limitation for some users and thus the problem of
automate selection of the scale parameter needs to be solved. Moreover, interpretation of the
results using site-specific accuracy assessment methods may be problematic when applied to
object-based classification, as already mentioned by Tiede et al. (2006). The topic of the
positional quality of objects derived by segmentation was further discussed by Radoux and
Defourny (2006). Since we deal with spatial objects, the geometrical accuracy of borders
should be taken into account. Therefore object-specific techniques, as proposed by Shopfer

and Lang (2006), must be considered for further evaluation of the results.

CONCLUSIONS

The effort to replace visual methods of remote sensing data interpretation with the automated
techniques has been obvious for several years. As the radiometric and spatial resolution have
improved over the time, the predominately pixel-based automated methods need to be
substituted by object-based image classification. Apart from the application on the highly
textured images from (e.g. IKONOS), the procedures seem well suited also for other less
common image data. The presented methodology proved that images obtained by a medium-
format digital sensor might be an interesting alternative to other Earth observation data such
as traditional aerial photos and VHSR satellite imagery. The results showed the particular
benefit is a very high spatial resolution, which allows for an enhanced utilisation of the
contained textural information. The spectral properties are rather influenced by use of the
optical filters and do not have the quality of multiresolution and CIR images. Also the
radiometry of the 8-bit / pixel can hardly compete with 11-bit Ikonos data, or Digital Mapping
Camera (DMC, Z/I Imaging) with 12-bit per pixel. However, the cost of images with the very
low primary investment should be considered for selected management tasks, especially on
non-extensive forest areas. The one application would be the updating the existing
information about distribution of age classes, where the valuable textural information is very

useful, as demonstrated in this study. Besides, the process design can be applied on
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multispectral Tkonos imagery (4 meters per pixel), which were found sufficient for estimation
of forest species in previous work (Hajek, 2006). Generally, utilisation of remotely sensed
images in similar manner might be the way to preserve long-standing tradition of acquiring

numerous forest parameters in the central Europe.

ACKNOWLEDGEMENTS

This study was supported by Grant Project No. QG50097/2004 funded by the National Agency for
Agricultural Research (NAZV) under the research program MZe 2005-2009.

REFERENCES:

Baatz, M., Schipe, A. (1999). Object—oriented and multi-scale image analysis in semantic network. Proc. Of the
2nd International symposium on operationalization of remote sensing, August 16-20, Enschede ITC.

Baatz, M., Schipe, A. (2000). Multiresolution segmentation — an optimization approach for high quality
multiscale image segmentation. In: STROBL, J. et al. (Hrsg.): Angewandte Geographische
Informationsverarbeitung XII. Beitrdge zum AGIT-Symposium Salzburg, September 2000, Karlsruhe,
Herbert Wichmann Verlag: 12-23.

Brandtberg, T. (1999). Automatic individual tree-based analysis of high spatial resolution aerial images on
naturally regenerated boreal forests. Canadian Journal of Forestry, 29: 1464-1478

Benz, U.C., Hofmann, P., Willhanck, G, Lingenfelder, 1., Heynen, M. (2003). Multiresolution, object oriented
fuzzy analysis of remote sensing data for GIS ready information ISPRS journal of Photogrammetry and
Remote Sensing 58(3-4) pp 239-258

Bucha, T. (2004). Classification of health condition of forests from Ikonos satellite scenes by the methods of
spectral and object-oriented analysis. Lesnicky Casopis, 50: 63-83

Burnett, C., M. Heurich & Tiede, D. (2003). Exploring Segmentation-based Mapping of Tree Crowns:
Experiences with the Bavarian Forest NP Lidar/Digital Image Dataset. Poster presented at ScandLaser 2003
International Conference and Workshop, Umeé , Sweden, September 2-4, 2003.

Dralle, K., Rudemo, M. (1997). Automatic estimation of individual tree positions from aerial photos. Canadian J.
Forest Research 27, 1997: 1728-1736

De Kok, R., (2006). Sequential processing of image objects and its consequences for automatic analysis. In: S.
Lang, T. Blaschke and E. Schopfer (eds.): Proceedings of the 1st International Conference on Object-based
Image Analysis, July 4-5, 2006 Salzburg, Austria (pages pending).

Forster, M., Kleinschmit, B. (2006). Integration of Ancillary Information into Object-based Classification for
Detection of Forest Structures and Habitats. In: Lang, S., Blaschke, T. and Schopfer, E. (Editors): 1st
International Conference on Object-based Image Analysis. ISPRS Vol. XXXVI — 4/C42, Salzburg, Austria:
1-6.

Gougeon, F.A. (1995). A crown-following approach to the automatic delineation of individual tree crowns in
high spatial resolution aerial images. Can. J. Rem. Sens 21(3): 274-284

Hajek, F. (2006). Object analysis of Ikonos XS and pan-sharpened imagery in comparison for purpose of tree

species estimation. In: S. Lang, T. Blaschke and E. Schopfer (eds.): Proceedings of the 1st International
Conference on Object-based Image Analysis, July 4-5, 2006, (pages pending)

121



Halounova, L. (2003). Textural classification of B&W serial photos for the forest classification. In: Proc. of 23rd
symp. of European Association of Remote Sensing Laboratories, Gent, June 2-5, 2003: 173-179

Haralick, R., Shanmugam, K., Dinstein, 1. (1973). Textural features for image classification. IEEE Trans. Syst.,
Man, Cybern., SMC-3, pp. 610-621

Haralick, R., Shapiro, L. (1985). Survey- image segmentation techniques, Computer Vision Graphics and Image
Processing, vol. 29, pp. 100-132

Hauta-Kasari, M.; Parkkinen, J.; Jaaskelainen, T. & Lenz, R. (1999). Multi-spectral texture segmentation based
on the spectral co-occurrence matrix . Pattern Analysis and Applications, Springer-Verlag, 2, 275-84

Hay, G. J., G., Castilla, M. A. Wulder, & Ruiz, J. R. (2005). An automated object-based approach for the
multiscale image segmentation of forest scenes. International Journal of Applied Earth Observation and
Geoinformation, Vol. 7, pp 339-359

Larsen, M., Rudemo, M. (1998). Optimizing templates for finding trees in aerial photographs. Pattern
Recognition Letters, 19, 1153-1162

Le’Vesque, J., King, D. J. (2003). Spatial analysis of radiometric fractions from high-resolution multispectral
imagery for modelling forest structure and health. Remote Sensing of Environment 84: 589-602

Malenovsky, Z. (2001). Possibilities of using satellite data for mapping the vegetation formation types in the
forested area of Mediterranean region. Journal of Forest Science, 47, 2001 (3): 114-123

Radoux, J., Defourny, P. (2006). Influence of image segmentation parameters on positional and spectral quality
of derived objects. In: Lang, S., Blaschke, T. and Schopfer, E. (Editors): Proceedings of the 1st International
Conference on Object-based Image Analysis, July 4-5, 2006 Salzburg, Austria (pages pending)

Ryherd, S., Woodcock, C. E. (1996). Combining spectral and texture data in the segmentation of remotely
sensed images, Photogrammetric Engineering and Remote Sensing, 62(2):181-194

Schiewe, J. (2002). Segmentation of high-resolution remotely sensed data — concepts, applications and problems.
Symposium on Geospatial theory, Processing and Applications, Ottawa

Schopfer, E. & Lang, S. (2006): Object fate analysis - a virtual overlay method for the categorisation of object
transition and object-based accuracy assessment. In: S. Lang, T. Blaschke and E. Schopfer (eds.):
Proceedings of the 1st International Conference on Object-based Image Analysis, July 4-5, 2006 Salzburg,
Austria (pages pending)

Stone, Ch., Coops, N. (2004). Assessment and monitoring of damage from insects in Australian eucalypt forests
and commercial plantations. Australian Journal of Entomology, Volume 43, Number 3, pp. 283-292(10)

Sumbera, S., Zidek, V., 2003. Digital classification of tree species and spatial structure of forest stands from
Remote sensing source. Proceedings of the 22nd EARSeL symposium Geoinformation for European-wide
Integration, 4-6 June 2002, Prague, Czech Republic. pp 439-446

Tiede, D. & Hoffmann, Ch. (2006). Process oriented object-based algorithms for single tree detection using laser
scanning data. EARSeL-Proceedings of the Workshop on 3D Remote Sensing in Forestry, 14th-15th Feb
2006, Vienna, 151-156

Tuominen, S., Pekkarinen, A. (2004). Local radiometric correction of digital aerial photographs for multi source
forest inventory. Remote Sensing of Environment 89: 72-82

Wack, R., Stelzl, H. (2005). Assessment of Forest stand parameters form Laserscanner data in mixed forests. In:
Proc. Conf. ForestSat 2005, Boras, 31. 5. — 3. 6. 2005: 56 — 60

Willhauck, G., Schneider, T., De Kok, R., & Ammer, U. (2000). Comparison of object-oriented classification

techniques and standard image analysis for the use of change detection betweeen SPOT multispectral satellite
images and aerial photos. Proceedings of XIX ISPRS Congress, 16-22 July, Amsterdam

122



Zhang, Y. (2001). A spectral and spatial information integrated approach for tree extraction from high-resolution
digital imagery. Beyond Information Infrastructure, Proceedings of the Digital Earth 2001 Conference,
Fredericton, N.B., 24-28 June, Paper Number de-a-081

Zhang, Y. (2002): Automatic Image Fusion: A new Technique for Effectively Sharpening IKONOS

Multispectral Images. GIM International — The Worldwide Magazine for Geomatics, Vol. 16, No. 5. pp. 54-
57.

123



7 Conclusions

Based on the results of image classifications and the experience with the imagery

interpretation, several conclusions in connection to the key issues of this study were made.

Utilization of very high resolution (VHR) aerial and satellite images in forestry

IKONOS-2 multispectral imagery with 4-meter pixel size: The original image bands are
equivalent Landsat TM (ETM+) bands, so number of common spectral calculations can be
used to extract different vegetation types. In order to enhance the classification of forest
structures, additional channels calculated from the original bands are required. However, the
benefits of involving texture analysis are less significant due to lower spatial resolution
(4m/pixel). The image geometry, radiometric stability, dynamic range were excellent. The
sensor represents a robust source of image data that allows extraction of the tree species

composition at sufficient scale.

IKONOS-2 multispectral images pan-sharpened to I-meter spatial resolution (XS pan
bundle): The imagery features excellent sensor characteristics (as described above). The
improved spatial resolution of 1 meter per pixel enables to expose detailed structures within
forest stands, further, the canopies of individual trees can be analysed. Consequently, the
increased textural content allowed for better discrimination of different vegetation structures
such as young succession stages and heterogeneous mature stands. Due to the higher amount
of detail, the careful determination of object scale with respect context on multiple levels was
required. The classification result may greatly benefit of image analysis within the object-

oriented environment.

Color and infrared film aerial photographs: As a part of the thesis, images acquired by
analog aerial survey camera were tested in ability to distinguish between green living spruce
trees and trees damaged by bark beetle insect. Although the satisfactory results of forest
classification were obtained, several problems of using such data in automated analysis were
recognized. The limited spectral and radiometric resolutions cause the imagery to be unable
for the tree species discrimination. Besides, the differing image geometry caused by non-
consistent acquisition procedures (variations in viewing and solar angles, and screening

centers) determine the data source more suitable for the visual interpretation tasks.

Medium—format digital aerial photographs: The alternative to common RS data takes

advantage of the enormous progress in field of digital imaging. The imagery features
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excellent radiometry of 16-bit per pixel and very good spatial resolution corresponding to 22
megapixel CCD sensor. The spectral properties are dependant on the quality of used optical
filters. In this study, the image did not offer quite the spectral output of the multiresolution, or
CIR aerial photos, which might have been partially caused by the restricted bit depth (to 8-bit
only) of the delivered imagery. However, the contained textural information was considered
very useful in succession stage classification. The geometric problems were in consequence of

principles of the aerial remote sensing.

Benefits of image pre-processing and GIS data fusion

The hypothesis of enlarging class signature space to improve classification results was
positively acknowledged. The most significant contribution was found for channels calculated
from multispectral image bands, where NDVI and ratios of Green and NIR were especially
useful for better forest species recognition. The layers derived based on texture calculations e.
g. GLCM Variance, GLCM Mean, GLCM Entropy, or Sobel edge operator enhanced
separation of forest areas at different succession stages. Besides, the image smoothing filter
(Median) was approved to refine segmentation results of pan-sharpened IKONOS images, as

well as the highly textured digital aerial photos.

Apart from the image derivatives, existing GIS data were also considered to enhance the
classification. The application of DEM and forest management planning GIS database LHPO
were only tested in this study. The DEM raster dataset calculated from map contours was used
to reduce topographic effects of varying image illumination. The “elevation” thematic
attribute allowed separating classes of typically different altitude (pastures vs. mountain
meadows). The GIS attribute “age step” of LHPO was similarly used to classify the age
distribution of forest compartments (PSK), while the existing stand boundaries could be

sequentially updated by the output of image analysis.

In connection to the increased signature space dimensionality, the issues of class feature
selection had to be solved. The two techniques of selection the significant class characteristics
were implemented in this study. Both the graphical and statistical method helped the decision,
however, none of the tested procedures were considered enough sufficient and

straightforward.

Aspects of object-based image analysis and the result interpretation
Results of the thesis showed that analysis of very high spatial resolution (VHSR) imagery

using the object-based classification approach can be performed with relatively high accuracy.
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Depending on the image pixel size and bit depth, proper segmentation parameters to create
meaningful objects of the target class were set. The process of searching and setting the
important ‘scale parameter’ was found quite complex and time consuming task. The idea of
creating different segmentation levels to construct multilevel object hierarchy (landscape /
forest / stand / tree_crown) allows to employ semantic relations between these levels, and

represents a totally new perspective in RS data classification.

The capability of class definition using “fuzzy” descriptions and their combination with
logical operators were found very useful. In such manner, the specific characteristics of
different classes (tree species for instance) were recorded and formed into classification rule-
base. The rule-base can be applied onto different dataset and the image, assuming data from
the identical sensor, classified with the minor modifications of fuzzy function into the same
thematic map. Further enhancement in the analysis automation was recognized when using
the sequence of individual processes as introduced in Definiens Professional 5.0.10. The
logical sequence of algorithms targeted to the specific domain (class, scale) were found easy

to modify to suite other datasets and tasks.

The object classification delivered solid thematic output. Comparing to results of pixel-based
methods (typically salt & pepper appearance), these maps looked very coherent and unbroken,
with no need of post-classification improvement. Further, the software allowed exporting
results into preferred GIS format. The visual map evaluation and accuracy assessment proved
the high level of classification agreement of more than 80% using common accuracy
measures such as Producer Accuracy, User Accuracy, and Kappa Index of Agreement (KIA).
However, the result interpretation became more complex with the object-based image
analysis. The object quality and positional accuracy of object borders were not considered,

since the topic was found beyond the scope of this thesis.

Acquisition of field reference data

In connection to classification data sampling and accuracy assessment, method of field
reference data acquisition to ensure reliable and updated “ground truth” information was
developed. The method focused on simplicity and efficiency utilizing the widely available
equipment (hardware / software present at the department). The system based on mobile GIS
technology was intended for an individual as a modern version of field notepad. In the office,
the field GEO data can be imported and edited within the desktop GIS, or directly used in the

image analysis environment. Apart from the basic system configuration (handheld PC with
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GPS receiver), the capability of extension using laser rangefinder was tested. The technology
allowing measurements of reference points was considered useful for classifications of

individual trees, as well as techniques of sub-pixel image analysis.

8 Final Discussion and outlook

This study demonstrated that the acquisition of selected stand and tree characteristics,
commonly done by terrestrial methods (or visual interpretation of aerial photos respectively),
can be facilitated and gradually replaced by semi-automated and automated classification of
remotely sensed images. When estimating tree species composition, the approach based on
analysis of image objects offers considerably higher level of accuracy and thematic agreement
comparing to pixel-based classification procedures. Nevertheless, there are several problems
of object-oriented image analysis that need to be solved to utilize the method in operational

forest management.

Many questions are connected to accuracy assessment of object classification. The accuracy
measures Producer, Accuracy, User Accuracy, or Kappa Index of Agreement (KIA) widely
used in the RS studies were developed for classification “per pixel”. The application of such
statistics to evaluate objects is problematic, since the object borders created by the
segmentation algorithm may be of different geometric accuracy. Therefore, new methods of

accuracy measures considering the segmentation quality need to be investigated.

Another controversial topic would be the contribution of fuzzy logic to transferability and the
full autonomy of classification system. The definition of classes using “fuzzy” membership of
feature mean and the rule-base building as hierarchy of these classes is enormously
demanding and time consuming process. In the further development, such class hierarchy
might be possibly replaced by a logical sequence of processes, while searching rather for

extremes (minimum / maximum) of class features.

Further, there are significant issues about segmentation procedures as the basis of the object-
oriented classification concept. The algorithm so-called “Multiresolution segmentation”
(DEFINIENS Imaging, Germany) provides very good results in terms of geometric accuracy.
However, the process of setting proper segmentation parameters remains a matter of extensive
testing, which alone represents a limitation for most users. The other segmentation techniques

introduced in the latest version of Definiens Professional software (Chessboard and Quadtree
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segmentation) allow for advanced object creation within the process sequence, still the system

lacks a definite and universal workflow suggestion.

Generally, the study showed that availability of RS image data of consistent quality is the
most important prerequisite to develop the automated classification system. The current price
of the VHR imagery properly pre-processed for further analysis remains the biggest constraint
in the forest management sector in Czech Republic. Besides, the availability of VHR satellite
data is also limited by the sensor acquisition capabilities. The analog film aerial images were
considered less suitable for automated and multitemporal classification due to the variations
in acquisition geometry, and also limited spectral and radiometric resolution. However, there
are several new airborne digital sensors with improved features (radiometry of 12 -16 bit per
pixel, parallel image collection using single perspective center) that should be tested and
utilized in the automated processes. In consequence to rapid technological development on the
field of remote sensing data acquisition and processing, the most of present problems are

assumed to be solved within the next few years.

List of abbreviations

3D Three-dimensional

ADC Analog-to-Digital Converter

AISA Airborne Imaging Spectroradiometer
ANOVA ANalysis Of Variance

ALS Airborne laser scanning aka LiDAR

ASCII American Standard Code for Information Interchange
B&W Black and white (photographic material)
CASI Canadian Aeronautics and Space Institute
CIR Colour infrared (photographic material)
DEM Digital Elevation Model

DTM Digital Terrain Model

ESRI Environmental Systems Research Institute
GIS Geographical Information System

GLCM Grey Level Co-occurrence Matrix

GLDV Grey Level Difference Vector

GPS Global Positioning System

IFER Institute of Forest Ecosystem Research

IFOV Instantaneous Field Of View

ITC Individual Tree Crown

IHS Intensity Hue Saturation (image composition)
ISODATA Iterative Self-Organizing Data Analysis Techniques
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KIA Kappa Index of Agreement

LAI Leaf Area Index

LANDSAT 7 ETM+ Land remote sensing satellite Enhanced Thematic Mapper Plus

LCR State Forests of Czech Republic — Lesy Ceské Republiky (in Czech language)

LHP(O) Forest management planning GIS database (UHUL Czech Republic)

LULC Landuse /Landcover

NDFI Normalized Difference Fraction Index

NDVI Normalized Difference Vegetation Index

NIR Near Infra-Red (part of the electromagnetic spectrum)

NP National Park

PCA Principal Component Analysis

RGB Red Green Blue (colour composition)

RMSE Root Mean Square Error

RS Remote Sensing

SNR Signal to Noise Ratio

SO, Sulphur dioxide

SPOT Systeme pour I'Observation de la Terre satellite with High Resolution
Geometric instruments

SWIR Shortwave Infrared (part of the electromagnetic spectrum)

™ Thematic Mapper

UHUL Forest Management Institute - Ustav pro Hospodaiskou Upravu Lest (in Czech
language)

UTM Universal Transverse Mercator (geographic projection)

VH(S)R Very High (Spatial) Resolution imagery

VNIR Visible and Near Infra-Red (part of the electromagnetic spectrum)

VULHM Forestry and Game Management Research Institute - Vyzkumny Ustav Lesniho

Hospodatstvi a Myslivosti (in Czech language)
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