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Abstract and contributions

This doctoral thesis deals with the utilization of splines for stem curves representation.

In the first part, the thesis deals with possibilities of utilization of splines for modeling stem

curves of individual stems. At first regular stems of coniferous tress are represented by

splines. On the basis of multiple criteria performance of number of spline types is compared

and advantages of individual spline types are discussed. For those splines that show the

best pertinence for stem form modeling optimal distribution of input points is proposed

to maximize the accuracy of the stem curve models simultaneously with minimizing the

number of diameter measures required. Subsequently exploitation of splines for describing

irregular stem curves of broadleaved trees, optimization of input point placement, and

evaluation of suitability of particular spline types for this purpose is solved.

The second part deals with regression models of local typical stem curve. Possibilities

of utilization of regression splines are evaluated. Accuracy of regression spline models is

compared with the accuracy of taper models of polynomial, segmented polynomial and

variable exponent forms. Methodology of utilization of regression splines is summarized.

In particular, the main contributions of the doctoral thesis are as follows:

1. Design of a methodology of a single stem curve representation by splines, readily

feasible for the use in the software DendroScanner.

2. Design of a methodology of a regression model of typical stem using splines, readily

feasible for the use in the software DendroScanner.

Keywords:

Stem curve, taper function, spline, regression, model.
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Chapter 1

Introduction

1.1 Motivation

The research is motivated by an intention of the research project of the Ministry of Agricul-

ture of the Czech Republic No. QI102A079 ”Research on biomass of broadleaved species”.

One of the particular objectives of that research project is to improve software called Den-

droScanner. Dendroscanner is an application analyzing a terrestrial digital photograph of

a tree taken by a common digital camera [Pretzsch et al., 2009]. The aim is to obtain

higher accuracy of field-measured data and simultaneously savings of time spent by field

work. A subsequent processing of the pictures allows obtaining measurational data, e.g.

stem volume or stem profile.

The stem profile is represented by a polynomial curve defined by data points entered

interactively by an user. The polynomials interpolate well the relatively simple stem curve

of coniferous species; however they are not always suitable for a more complicated stem

profile of broadleaved species. Moreover, single-segment polynomial functions are not

convenient for interactive modeling, because position of each individual point influences

the shape of the whole curve [Piegl and Tiller, 1996]. Therefore an appropriate spline

function has been searched in order to replace polynomials in the software.

1
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1.2 Problem Statement

The form and taper of tree stems has been studied for more than a century; the first

attempts to express the stem form in terms of easily measured tree characteristics appear

already in the nineteenth century [Metzger, 1894; Kunze, 1896].

An appropriate function describing the form of the tree stems has been searched for using

various approaches. The objective is to find a mathematical expression of a continuous

curve that predicts diameter of the stem in any height. Using taper functions volume of the

stem can be precisely derived. The taper function is also an important basis of estimation

of sorting of the stem and of optimal utilization of the wood mass.

Although the form of a tree may have a simple appearance, the construction of its math-

ematical model is a demanding task. The main problem is to construct a function of

which only incomplete information is available [Lahtinen, 1988]. The functional values

are known only at a few discrete points. In that case the function cannot be solved exactly

and it must be replaced by a known function which agrees sufficiently with the known facts

of the original function.

With bigger or lesser success many different mathematical functions from a wide range

have been used for stem profile representation. Much work has been done on polynomial

(e.g. Goulding and Murray 1976), logarithmic (e.g. Demaerschalk 1972), trigono-

metric (e.g. Thomas and Parresol 1991), sigmoidal (e.g. Biging 1984), segmented

polynomial (e.g. Max and Burkhart 1976) or variable exponent (e.g. Fonweban

et al. 2011) equations.

Spline is a special curve piecewise defined by mathematical functions that are linked to-

gether in points called knots in order to compose a smooth continual curve. The most

frequently so called polynomial splines are used whose segments are defined by polynomial

or rational functions usually of low degrees. From the polynomial splines mostly the cubic

interpolation spline is used. By the spline approach a high forming ability of a curve is

obtained with preservation of advantages of low degree polynomials at the same time. At

the present time splines are widely used to interpolate or smooth experimental data.

The investigation of possibilities of splines in stem profile representation has been con-

ducted since the beginning of the eighties of the last century [Liu, 1980]. As stated

by Kublin et al. [2008] spline functions have been successfully applied to stem form

modeling for 30 years. Also Kaufmann [2001] considers cubic interpolation spline to
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be very suitable to describe stem profiles. Cubic splines have been used to model the

whole stem profile Figueiredo-Filho et al. [1996a], to calculate volume of logs of

different lengths [Biging, 1988] and also to predict the stem profile from lower-stem mea-

surements[Möttönen and Nummi, 2002]. Cubic splines were also implemented in the

inventory methods of e.g. Swiss National Forest Inventory [Kaufmann, 2001].

Majority of so far published studies concerning splines and stem form modeling exploit

the cubic interpolation spline (mostly the special case of the cubic interpolation spline

currently also called natural cubic spline). Only exceptionally quadratic spline [Lahtinen,

1988] or cubic smoothing splines [Liu, 1980] have been involved. However splines are a

very wide class of functions varying both in origination and properties. Although the

interpolation cubic spline was referred to have some undesirable characteristics, different

spline types have not been involved in the studies. Moreover the past studies concern above

all coniferous species with relatively uncomplicated stem profiles. Stems of broadleaved

species and stems of irregular shape were involved by Lahtinen [1988].

An important factor influencing accuracy of the spline model is the number of input points

(measured diameters) and their distribution along the stem. Smaltschinski [1983] shows

that for interpolation by sufficiently accurate curve it is necessary to involve at least six

input points. Figueiredo-Filho et al. [1996a] express the confidence that at least ten

appropriately placed input points are needed to describe properly the stem profile using

natural cubic spline.

The thesis deals with two major challenges. The first challenge is to find an appropriate

spline function for describing with sufficient accuracy stem curves of individual stems of

both coniferous and broadleaved species using points obtained from a digital photography

interactively by human interpreter.

The study contains a comparison of the performance of natural cubic spline with perfor-

mances of several other spline types. The accuracy of individual curves produced from

several variants with different input point numbers is evaluated. Because the splines used

in the study are different from one another, also the optimal positions of input points will

differ. Therefore optimal positions of input points will be determined for each of the spline

type and each of the input points counts. The main goals of the challenge are:

• To verify possibilities of spline curves utilization for modeling stem curves of indi-

vidual stems of coniferous species and for modeling stem curves of straight parts of

stems of broadleaf species.
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• To compare the behavior of individual spline types and their suitability for stem

curve modeling.

• To determine the optimal number of measured upper stem diameters as input points

for spline computation and their distribution along the stem.

• To explore possibilities of utilization of individual spline types for stem form modeling

of irregular stems of broadleaf species and to determine optimal distribution of input

points in relation to stem irregularities.

The second challenge involves generalized regression model of local stem form. The stem

form is a result of many factors including genetic influences, climatic factors, site quality,

stand density, etc. [Muhairwe et al., 1994]. A huge number of the factors are stand

specific; they influence almost all trees in a stand in the same way. Stem curves in a stand,

or more generalized in a locality, tend to have identical shape and therefore they can be

described by a local tree profile.

From a number of measured profiles a regression spline model is created. It allows to model

a generalized stem form for a new stem of which DBH and height is measured. Applicability

of regression (or smoothing) splines for creating a regression function of local tree profile

is tested. Performance of several regression splines is compared and the optimal amount

of smoothness is determined using several methods. The main goals of the challenge are:

• To verify possibilities of utilization of smoothing splines to generate a regression

model of a local stem curve of coniferous and broadleaved species.

• To compare behavior of individual regression splines and their suitability for local

stem curve modeling.

• To determine optimal values of parameters of regression splines for local stem curve

modeling.

• To determine the optimal number of measured upper stem diameters as input points

for spline computation and their distribution along the stem for creating the regres-

sion model.
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1.3 Contributions of the Thesis

1. Design of a methodology of a single stem curve representation by splines, readily

feasible for the use in the software DendroScanner.

2. Design of a methodology of a regression model of typical stem using splines, readily

feasible for the use in the software DendroScanner.

1.4 Structure of the Thesis

The thesis is organized into chapters as follows:

1. Introduction: Describes the motivation behind our efforts together with our goals.

There is also a list of contributions of this doctoral thesis.

2. Background and Literature Review : Introduces the reader to the necessary theoretical

background and surveys the current state-of-the-art.

3. Methods : Describes data, software and methods used to achieve the goals of the

doctoral thesis.

4. Results and Discussion: Presents the results of the main problems and discusses

them.

5. Conclusions : Summarizes the results of our research and concludes the thesis.



Chapter 2

Background and Literature Review

2.1 Stem form representation and taper models

2.1.1 Basic concepts

Stem form

Stem form refers to the characteristic shape of a stem from ground level to the stem tip

in terms of the dependence of diameter on height [Burkhart and Tomé, 2012]. There

are several ways to describe the stem shape. The stem form can be expressed as a stem

curve, as a stem profile, as form quotients or as form series. The stem form determines

the volume of the stem and is of prime importance for timber quality [Väisänen et al.,

1989].

Taper

Taper is defined as the rate of narrowing in diameter with respect to increase in height

from ground level to the stem tip[Gray, 1956; Burkhart and Tomé, 2012].

Stem curve

Stem curve represents the stem shape in the form of continuous function [Fabrika and

Pretsch, 2011].It is the most frequently utilized way to express the stem form. In fact,

so called taper models most frequently express the stem form as a stem curve. The stem

curve encloses the stem in space and rotation of the stem curve creates the surface of the

6
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stem [Korf et al., 1972]. When the stem form is described using the stem curve, it is

assumed, that the stem is a revolution solid. In fact, that is not always the case, but the

inaccuracy sequent from the assumption is small enough to be neglected [Korf et al.,

1972].

The advantage of stem form representation as a continuous function consists in the possi-

bility to obtain directly the stem volume by integrating a function derived from the stem

curve.

Stem profile

Stem profile expresses the stem form as a set of discrete points on the stem curve. The

stem profile is a set of coordinate pairs, where abscissae are heights of the measurement

points from the ground level and ordinates are appropriate thickness of the stem [Fabrika

and Pretsch, 2011]. Stem curve can be derived from stem profile by fitting a function

or by using interpolation techniques.

Form quotients

Form quotient is the ratio of the stem diameter in a certain relative height of the stem

and the diameter in a defined comparative height [Korf et al., 1972]. The comparative

height can be defined as an absolute height (most frequently the breast height) or as a

relative height.

Form series

Form series are series of form quotients in uniform distances (defined relatively or abso-

lutely) between the ground level and the stem tip [Korf et al., 1972].

2.1.2 Taper models: definition and classification

Many taper models of different forms have been developed for trees of a wide range of

species and geographical areas. Most of them were intended to predict upper stem diame-

ters and estimate the volume of the stem with little input data; usually diameter in breast

height (DBH) and the tree height:

d = f(D,H, h). (2.1.1)
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This approach relies on assumption that taper is in accordance with the fundamental

growth principles and the stem of a forest tree conforms to the dimensions of certain

predesignated geometric solids. Such models provide reasonable estimates of taper and

volume of a ordinary tree from little data.

The second approach doubts, that any preconceived general functional form can represent

the taper properly [Grosenbaugh, 1966]. Stem taper is an unstable factor sensitive to

many interactions in a dynamic forest system and individual trees seem capable to assume

infinite variety of shapes as a consequence of several factors including climatic fluctuations,

site quality, stand age and stand density [Muhairwe et al., 1994]. Such variation in

stem forms makes difficult to formulate general mathematical rules readily applicable to a

single species or even to all trees in a single stand [Larson, 1963; Perez et al., 1990].

Flewelling et al. [2000] proposes utilizing of multi-point profile prediction systems

having as input together with diameter at breast height and total height also one or more

upper stem diameter measurement. Unlike to model based on diameter at breast height

and total height predicting profiles very well on the average throughout the area, multi-

point taper systems providing additional information are more flexible and allow individual

tree profile differences to be recognized. Moreover multi-point systems have the ability to

greatly reduce biases. Liu [1980] supposes that more rational approach than fitting the

taper to any preconceived functional form is to provide numerical technique that is capable

of assuming various functional forms depending on the distribution of data points.

According to Diéguez-Aranda et al. [2006]; Burkhart and Tomé [2012] taper mod-

els can be classified in three groups:

1. Single taper models describe the entire profile of the stem using a single equation.

Preliminary attempts used lower degree polynomials in terms of the relative height

on the stem [Matte, 1949], later also higher polynomial were used [Bruce et al.,

1968; Goulding and Murray, 1976]. Some single taper models use power func-

tions, logarithmic functions or an equation based on trigonometric functions [Alder,

1978; Thomas and Parresol, 1991]. The single taper models can relatively ac-

curate describe the general taper of trees. Although they may provide reasonable

estimates in the mid-portion of the stem, they usually lack the ability to describe

accurately the stem profile in the basal and upper stem segments [Brooks et al.,

2008].

2. Segmented model approach assumes that a tree is made up of two or more segments

with form being constant within a segment and different between segments. It is
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generally assumed that a tree stem can be divided in three geometric shapes. The

butt resembles a frustum of a neiloid, the central section resembles a frustum of

a paraboloid or a cone and the top resembles a cone [Diéguez-Aranda et al.,

2006]. The transition from one segment to the next is gradual and smooth. However,

there are some exceptions. As reported by Valentine and Gregoire [2001] some

species like slash pine (Pinus elliottiii Engelm.), ponderosa pine (Pinus ponderosa

Doug. ex Laws.) and yellow poplar (Liriodendron tulipifera L.) do not conform to

that segment shapes. Segmented taper models describe particular components of the

stem with different equations, which are then mathematically joined to produce an

overall segmented function. Segmented models were first introduced by Max and

Burkhart [1976].

3. Variable form (variable exponent) taper models describe the stem shape with a chang-

ing exponent or variable from ground to top to represent the neiloid, paraboloid,

conic, and several intermediate forms. This approach is based on the assumption

that the stem form varies continuously along the length of a tree [Diéguez-Aranda

et al., 2006]. The tree form varying from one point to another along the stem is

expressed by a single continuous function.

Taper equations are also classified as compatible or non-compatible. Compatible taper

equations, when integrated produce identical estimate of total volume to that given by ex-

isting volume equations [Demaerschalk, 1972; Cao et al., 1980]. Compatibility avoids

discrepancies between volume estimates from a taper equation and those from commonly

used volume equations. Compatible taper equations can be derived from existing volume

equations [Demaerschalk, 1972]. Non-compatible taper equations are defined as taper

equations that are not compatible.

No of the mentioned approaches is perfect in all respects. The models are created to

describe the real taper as close as possible where accuracy and utility are sought at the

expense of characteristics considered less important. As mentioned by Goodwin [2009]

compatible taper models are constrained by entire stem volume at the expense of a diam-

eter constraint, segmented models loose simplicity and constrain flexibility and variable

exponent models sacrifice computational speed.

Accuracy is not the only demanded property of a taper model. Kozak and Smith

[1993] and Goodwin [2009] are concerned with ideal model characteristics. According to

Goodwin [2009], who summarizes the properties of the ideal taper model in ten items,

the model should (briefly):
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1. be accurate for its purpose,

2. be reliant on easily measurable or obtainable variables,

3. be fast algebraically integrable and invertible,

4. have continuity in the whole range of heights and diameters,

5. use inputs as constraints where possible so that the predictions are consistent with

inputs,

6. should allow any pair of diameter and height as input and should not require the

DBH as an input,

7. be regionalisable, i. e. be adaptable to form changes resulting from regional or

genotypic factors,

8. be localisable, i. e. able to model additional between-tree variability,

9. be a single non-segmented equation in order to conveniently accommodate diameter

constraints,

10. be applicable to a wide range of species and sizes.

The enumerated criteria may not be connected with a dispassionate selection of the model

most accurate in diameter prediction. The requirements are related with the effort to

construct a model applicable in practise for a given purpose and therefore are necessarily

subjective.

2.1.3 Single taper models

Polynomial single taper models

In earliest attempts to define taper simple polynomial equation was used: [Matte, 1949]:

y2 = Cxr, (2.1.2)

where the parameter r was known as form exponent. The next attempts brought a little

more complicated rational equation:

y =
x

a+ bx
, (2.1.3)
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where a and b are regression coefficients. In both equations x denotes the distance from

tip to section as a proportion of the length form tip to breast height and y denotes the

corresponding diameter as a proportion of DBH [Matte, 1949].

To describe the stem profile of Loblolly pine (Pinus taeda L.) above breast height Matte

[1949] proposes a polynomial model expressed by equation 2.1.4:

d

D
= x
√
ax2 + bx+ c, (2.1.4)

where x is ratio of distance from tip to measurement point to total height above breast

height:

x =
H − h
H −DD

. (2.1.5)

The coefficients a, b and c are found using least squares regression. Mentioned taper

equation was succesfully applied also on balsam fir (Abies balsamea (L.) Mill.) and white

pine (Pinus strobus L.). The equation should be suitable to describe stem profile of any

coniferous species [Matte, 1949]. The weakness of the low degree polynomial models is

the inability to describe the lower portion of a tree with significant basal swelling.

The polynomial form were further utilized by Bruce et al. [1968]. He described the

stem profile of red alder (Alnus rubra Bong.) using polynomial regression equation with the

square of relative diameter as dependent variable and the independent variable x expressed

as

x =
H − h

H − 4.5ft
, (2.1.6)

where h is the height of the predicted diameter and H is the total height of the stem.

Trials of a range of numerical values of the power exponents led to the exponent values

3/2, 3 and 32 or 40. It is mentioned that the exponents 3/2 and 3 are satisfactory to

describe the upper four fifths of the stem; the high exponents are required to describe the

butt swell. The effect of the exponents 32 and 40 is similar and the exact exponent value

is not critical. Further it is showed that expression of diameter relative to the diameter at

some percentage of total height rather the at breast height simplified the fitting procedure

eliminating a considerable part of the effect of tree size [Bruce et al., 1968]. The taper

model was later used and modified by Hilt [1980] to describe taper of upland oaks.

An interesting functional form of a simple polynomial taper model was proposed by

Laasasenaho [1982]. The model is in the form of polynomial utilizing exponents corre-

sponding with the numbers of Fibbonaci series up to 34.
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Polynomial models of different powers was proved also by Munro [1968], who compared

numbers of different polynomial models where (d2/D2) was predicted using powers of

(h/H). Although he achieved reasonable estimations of upper stem diameters from equa-

tions based on the assumption that the stem form is paraboloid, fifth degree polynomial

taper equation proposed significantly more precise estimations. More complicated functions

incorporating high exponentiation did not significantly improve the precision of estimates

of stem diameters [Munro, 1968]. Goulding and Murray [1976] developed compatible

taper equations using polynomial functions of 5th degree.

A substantial number of new models and modifications of Munro’s equations were tested by

Kozak et al. [1969b] on 19 commercial species and species groups of British Columbia.

The taper models were developed from the relationship of parabolic function. In case of few

large, extremely rapidly tapering trees, the shape was found to be rather neiloidal than

quadratic paraboidal. Bias could be eliminated using empirical percentage corrections.

Instead of using empirical corrections Kozak et al. integrated additional conditions into

the equations. A number of simple yet effective taper functions were derived and least

squares regression constants for individual species were stated. None of the modifications

was significantly better than the functions suggested by Munro [1968].

Although in later 70’s the focus shifted to segmented-polynomial taper models and later

to variable-exponent models, development of single polynomial models continued in that

later time. As an example serves the two-parameter model of Amidon [1984] expressed

by equation

d = β1D(H − h)/(H −HD) + β2(H
2/h2)(h−HD)/H2. (2.1.7)

Model of Amidon [1984] considered only the stem form over breast height (bh). Excluding

the most bottom part of the stem profile was not seldom used for the single models because

consistently with Bruce [1972] excluding the profile below breast height enables to simplify

a taper model and to increase precision of the remainder of the stem. The lower part of the

stem was considered as a cylinder with some loss of accuracy for cubic volume [Amidon,

1984].

A recent single polynomial taper model applicable to a wide range of species proposed by

Goodwin [2009] is derived from a cubic polynomial by adding constraints. The model

can be fit using one or two upper stem diameters. None of them needs to be the DBH.

For the single-diameter constraint the optimum diameter location is said to be at around

centroid height (25-30 %) and the locations of measures for two-diameter constraints is

recommended to be at 10 % and either 30 % or 60 % of the tree height. As reported,
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the second diameter constraint substantially improves the accuracy of the model. The

performance of the model was compared to five other models, among others the segmented

models of Max and Burkhart [1976] and Candy [1989] and variable exponent models

of Bi and Long [2001] and Eerikäinen [2001] and was considered to suit the best the

criteria of ideal taper model stated by Goodwin [2009].

Non-polynomial single taper models

Non-polynomial taper models are based on number of approaches utilizing different non-

polynomial functions. Most often logarithmic, trigonometric and sigmoidal functions have

been used. A simple logarithmic function was developed by Höjer in 1903 [Matte, 1949]:

d

D
= C log

c+ l

C
, (2.1.8)

where d is diameter at distance l expressed as a percentage form the tree top, C and c are

constants varying with form quotient [Wenger, 1984].

A different logarithmic taper equation was developed by Demaerschalk [1972]. A loga-

rithmic volume equation he converted into a logarithmic taper equation

log d = β0 + β1 logD + β2 log (H − h) + β3 logH (2.1.9)

by reasoning process based on premise that total volume estimates, based on integration of

the taper equation, must be identical to those given by the original volume equation. Also a

comparison was made between standard errors obtained by the logarithmic taper equation

and the quadratic polynomial model used by Kozak et al. [1969a]. It was showed, that

the logarithmic equations of Demaerschalk were for most of the species tested (16 out of

23) in closer agreement with the real taper curves than the quadratic taper equations.

It is possible to derive in a similar way compatible taper equation from most commonly

used volume equations. By derivation the best fit is achieved for volume and the fit for

diameters can be optimized by the choice of the optimum values for some parameters

[Demaerschalk, 1972].

An early taper function proposed in 1927 by Behre [Bruce, 1972; Amidon, 1984] utilized

hyperbolical function. This model was later modified and applied by Bruce [1972].

The research on stem taper includes also taper models based on trigonometric functions.

In that area belong the work of Alder [1978], who developed a model characterized by

equation 2.1.10:

gr = hr + β(cos (2πhr) + 1), (2.1.10)
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where gr is the sectional area at measurement point relative to sectional area in breast

height and hr is ratio of distance from tip to measurement point to total height above

breast height. Alder [1978] indicates, that equation 2.1.10 was found to be simpler and

more economical in practice than known polynomials models.

Another taper equation utilizing trigonometric function of the form:

d2

D2
=
(
β1(x− 1) + β2 sin (cπx) + β3 cot

(π
2
x
))

+ ε, (2.1.11)

where d is diameter inside bark a at given height, D is diameter inside bark at breast height,

x is the corresponding relative height, c is a coefficient and β’s are model parameters, was

used to describe the taper of slash pine (Pinus elliottii Engelm. var. elliottii), willow

oak (Quercus phellos L.), and sweet gum (Liquidambar styraciflua L.) [Thomas and

Parresol, 1991; Thomas et al., 1995]. This simply expressible trigonometric model

is flexible enough to fit both conifer and hardwood bole forms. It was also compared

with the segmented polynomial model developed by Max and Burkhart [1976]. The

trigonometric model performs equally well and has real advantages in term of parsimony

[Thomas and Parresol, 1991].

Biging [1984] proposes a sigmoidal taper model to describe the stem form of six conifer

species of Northern California including ponderosa pine (Pinus ponderosa), Douglas-fir

(Pseudotsuga menziesii ( Mirb.) Franco), white fir (Abies concolor (Gord. & Glend.)

Lindl. (Iowiana [Gord.])), red fir (Abies magnifica A. Mutt.), sugar pine (Pinus lambertina

Dougl.) and incense cedar (Libocedrus decurrens Torr.). The taper equation is derived

from Chapman-Richards function and is fit to the stem profiles using nonlinear regression

techniques. The model is proved to be able to fit well the stem form. The comparison

with the Max and Burkhart’s [1976] segmented polynomial model shows both models even

accurate; the aspect of computing simplicity favors the two-parameter sigmoidal model

against the more complicated six-parameter segmented polynomial model [Biging, 1984].

2.1.4 Segmented taper models

Splitting the stem into several parts representing basic geometric figures is not a new idea.

Already in 1837 Smalian compared sections of tree stems to frustums of conoids with vary-

ing powers of exponents [Bruce and Max, 1990]. All that is new is the development of

equations describing continuous curves with continuous derivatives and the use of integrals

on these functions to estimate section volumes.
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Ormerod [1973] developed a generalization of the model used by Bruce et al. [1968].

Using this generalized model upper stem diameters can be estimated by equation 2.1.12:

d = D

[
H − h
H − k

]p
, p > 0, (2.1.12)

where D is the measured diameter at height k and p is the fitted exponent. The model is

conditioned to exactly predict observed DBH [Czaplewski and McClure, 1988]. Due

to changes in the stem form along the length of the stem, the simple model of equation

2.1.12 may not provide an adequate description of the bole. Therefore Ormerod suggests

to modify the equation to a step function and to fit separate exponents for each step:

d = (Di − Ci)
[
Hi − h
Hi − k

]pi
+ Ci, pi > 0, (2.1.13)

where Ci is the section diameter intercept. Ormerod further deals with an assumption based

on an inspection of number of taper curves, that all boles have a single taper inflection

point at 30 % of the total height. Separate exponents are then fitted for both sections

below and above that point by regression of the logarithmic transformation of equation

2.1.13. Estimation of the volume is performed by integration of the equation.

Max and Burkhart [1976] described the taper curve using segmented polynomial regres-

sion models based on statistical methods of Fuller [1969] and Gallant and Fuller

[1973]. The stem was partitioned and a different polynomial submodel was defined on each

section of the partition. By connecting the submodels at the joint points a segmented poly-

nomial model was obtained. The submodels are connected by imposing binding conditions

in such a manner that the functional value is continuous and has continuous first or higher

order derivatives. If compared to the general definition of splines piecewise polynomial

function with continuous functional value and first k derivatives the segmented polyno-

mial models can be considered as spline models although the utilized function is not called

spline by the authors.

Max and Burkhart compared four models. The first model was a simple quadratic model.

The second model a quadratic-quadratic model was composed of two quadratic func-

tions with restrictions that functional value and the first derivative must be continuous.

The quadratic-linear-quadratic model described the taper of the base and the top of the

tree by two quadratic polynomials and the middle section by polynomial of first degree

and has continuous functional value. The fourth model consisted of three quadratic sub-

models grafted together with the restriction of continuous first derivative. The described
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models were tested on natural-stand and plantation loblolly pine trees and it was con-

cluded, that the segmented models were better than the simple quadratic model and the

three-segmented models were preferred over the two-segmented model. The quadratic-

linear-quadratic model and the quadratic-quadratic-quadratic model showed no difference

when applied to the plantation trees, but the quadratic-quadratic-quadratic model was

significantly better when applied to the natural-stand data. The model is expressed by

equation 2.1.14(
d

D

)2

= β1(T − 1) + β2(T
2 − 1) + β3(α1 − T )2I1 + β4(α2 − T )2I2, (2.1.14)

where T = h/H, α1 and α2 are the relative heights of the upper and lower join points,

respectively, of the three segments, β1 . . . β2 are the parameters and I1 and I2 are as follows:

I1 =

 1 if α1 − z ≥ 0

0 otherwise

I2 =

 1 if α2 − z ≥ 0

0 otherwise

The Max and Burkhart’s segmented polynomial models have been afterwards used as a

ground for volume equations. Through integration of the Max and Burkhart’s taper model

consisting of three quadratic segments, Brooks et al. [2008] derived the volume equation

and evaluated the volume equation on the sample data of three commercial tree species

in Turkey, Brutian pine (Pinus brutia Ten.), Cedar of Lebanon (Cedrus libani A. Rich.),

and Cilicica fir (Abies cilicica Carr.). The models explained approximately 97 %, 95 %

and 98 % of the variation for predicting volume of the three tree species respectively and

the average volume error was less than 0.009 m3. All the parameters for each equation

were found to be significant, which approves that the model consisting of three quadratic

segments describes the stem curve better than the other Max and Burkhart’s segmented

models.

A different segmented polynomial taper equation was developed by Cao et al. [1980]. It

consists of three submodels grafted at two join points. Each submodel was in the form of

a modified compatible taper equation presented by Goulding and Murray [1976] using

a quadratic functions instead of a fifth-degree polynomials. The model was proved to be

approximately compatible. Itl was compared with several previously developed models.

No single model was the best for all purposes. The results of the comparison idicate,
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that a simple quadratic equation cannot adequately describe tree taper or predict volume;

the quadratic model of Kozak and others [1969b] neither estimates well the volumes, nor

predicts accurately tree diameters. Using segmented models consisting of three simple

quadratic submodels definitely improves the taper predictions. The compatible fifth degree

polynomial taper equation of Goulding and Murray [1976] as well as other compatible

equations adequately estimates volumes to various height limits but poorly predicts tree

diameters. The conclusion is that a compatible taper equation does not appear to be a

good choice it the sole purpose is to describe tree taper. This is verified also by the results

of the Cao’s segmented polynomial model which estimates well the volume, but has poorer

ability to predict diameters than the Max and Burkhart’s [1976] non-compatible segmented

model. For diameter prediction the Max and Burkhart’s segmented polynomial model had

the best ranking among all the models compared.

The Cao model was further modified by McClure and Czaplewski [1986]. A condition

was added to the approximately compatible model to be exactly compatible with any

volume equation. Application of the exact compatibility did not undesirably affect error

in diameter prediction and the anomalies between volume estimates using the segmented

model and those made using existing volume equations and tables were reduced.

Czaplewski and McClure [1988] supplemented the stem profile model of Max and

Burkhart [1976] with a second upper stem measurement. The stem profile model was

conditioned to exactly predict this available additional upper-stem measurement, which

might further improve estimates, at least near this additional measurement. Additional

measurement at 5.3 m was used. Variance of residuals were reduced, however, bias was

approximately the same for both conditioned and unconditioned models [Czaplewski

and McClure, 1988].

Another segmented taper model consisting of two functions linked together at the inflection

point is proposed by Demaerschalk and Kozak [1977] and tested on 32 age and locality

groupings of British Columbia species; a cubic-cubic segmented polynomial model was

derived by Parresol et al. [1987]. A compatible segmented polynomial model was

proposed by Candy [1989]. Three segment taper model was developed by Fang et al.

[1999, 2000]; segment taper model together with volume equations were developed by

Jiang et al. [2005] using models of Max and Burkhart [1976] and Clark et al.

[1991].
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2.1.5 Variable form and variable exponent taper models

An approach considering the presence not only the neiloid, paraboloid and conic forms but

also several intermediate forms is the variable-exponent approach. The variable-exponent

approach assumes a continuous change between individual geometric forms. The exponent

determines whether the model resembles the profile of a neiloid, paraboloid or cone, or

the transition from one geometric form to the next. It varies continuously throughout the

stem profile as a function of height in order to compensate for the form of different tree

sections [Perez et al., 1990; Valentine and Gregoire, 2001].

The variable-form taper model was first derived by Newberry and Burkhart [1986]

from the model of Ormerod [1973]. Further it has been introduced by Newnham [1988]

and Kozak [1988, 1997]. The model of Kozak [1988], which has become widely used in

the US and Canada [Sharma and Zhang, 2004], is in the form shown in equation 2.1.15:

d = β0D
β1βD2 X

β3T 2+β4 ln (T+0.001)+β5T 0.5+β6eT+β7(D/H), (2.1.15)

where X = (1− T 1/2)/(1− p1/2) and p is the inflection point.

When compared to simple or segmented models the variable exponent models were found to

be superior [Newnham, 1992; Fonweban et al., 2011] and considered to give unbiased

and accurate estimates both for stem form and volume. The promising type of models

was therefore dealt with by number of authors such as Perez et al. [1990]; Muhairwe

et al. [1994] or Huang et al. [2000] who all applied the model of Kozak [1988]. As

input data can serve only DBH and the total height [Flewelling and Raynes, 1993] or

together with former magnitudes also one [Rustagi and Loveless Jr., 1991] or more

[Flewelling, 1993] upper stem diameter measurements.

Taper model of simple form with only one parameter β (equation 2.1.16) was developed

by Sharma and Oderwald [2001].

d2 = D2

(
h

hD

)2−β(
H − h
H − hD

)
(2.1.16)

In spite of its simplicity its prediction of diameters were superior to the segmented-

polynomial taper models up to 60% of total height, while in the higher part the bias

was slightly higher. Later [Sharma and Zhang, 2004] the parameter β was expressed in

terms of the relative height β = f(T ) which resulted in a variable taper equation. Sharma

and Zhang [2004] examined several forms of functions of T (linear, quadratic, exponen-

tial and their combination) and the preferable variable-taper model with four parameters
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β0 . . . β3 expressed as equation 2.1.17.(
d

D

)2

= β0

(
h

hD

)2−(β1+β2T+β3T 2)

·
(
H − h
H − hD

)
(2.1.17)

This taper equation was utilized for the three most important commercial tree species

grown in eastern Canada, jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana

(Mill.) B. S. P.) and balsam fir (Abies balsamea (L.) (Mill.)), and it was found to be superior

to the model of Kozak [1988]. Moreover the equation was modified to incorporate effects

of stand density and thinning.

Bi [2000] developed a variable form model based on logarithms of trigonometric functions

(equation 2.1.18). Although most variable form models are species specific, model of Bi

[2000] is referred to be flexible in terms of ability to fit data of different species and

different stem forms. The model was successfully tested on 25 species of genus Eucaliptus

and Corymbia.

d

D
=

(
log sin (π

2
· T )

log sin (π
2
· 1.3
H

)

)β1+β2·sin (π
2
·T )+β3·cos ( 3π2 ·T )+β4·sin (π

2
·T )/T+β5·D+β6·T

√
D+β7·T

√
H

(2.1.18)

Because most of variable form models and variable exponent models are relatively com-

plicated, undesirable effects of multicollinearity often occur Kozak [1997]; Rojo et al.

[2005]. The last studies tend to develop a variable exponent model with low effect of mul-

ticollinearity. An example of such model is the nine-parameter model of Kozak [2004]:

d = β1 ·Dβ2 ·Hβ3 ·
(

1− T 1/3

1− p1/3

)β4·T 4+β5·(1/eD/H)+β6·
(

1−T1/3

1−p1/3

)0.1
+β7·
(

1
D

)
+β8·H1−( h

H
)1/3+β9·

(
1−T1/3

1−p1/3

)
,

(2.1.19)

where p = hi/H; hi denotes the stem height of the inflection point where the taper curve

changes from neiloid to paraboloid. However, the parameter p is estimated as a model

parameter.

Number of recently developed or applied variable-exponent taper models during last years

[Zakrzewski, 1999; Muhairwe, 1999; Eerikäinen, 2001; Bi and Long, 2001; Valen-

tine and Gregoire, 2001; Lee et al., 2003; Bluhm et al., 2007; Yang et al.,

2009a; Li et al., 2012] attests that variable-exponent taper models are still interesting

and presently evolving topic.
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2.1.6 Process-oriented models

It is necessary to mention that the approach of the empirical stem curve model is not the

only one used. Number of studies have demonstrated that the stem form depends on ex-

ternal conditions like lateral forces on stems or changes in resources availability [Larson,

1963; Dean et al., 2002]. Sloboda et al. [1998] believed, that scientifically satisfying

taper models must be based on process-oriented approaches, but such models were not ma-

ture to estimate yield and assortments with the required precision and therefore empirical

models were in use. There are several theories that more or less successfully attempt to

explain the stem form on the basis of physiological processes.

One of well-developed approaches is the uniform stress hypothesis. It is based on the

idea that the cambium produces new wood in such a way as to equalize the distribution

of stress along the outer surface of the stem. The stem form minimizes the chance of

breakage by increasing cambial growth in regions with highest stress. The hypothesis was

supported by results of experimental studies [Larson, 1965; Milne and Blackburn,

1989; Ezquerra and Gil, 2001; Dean et al., 2002]. On the base of the theory a taper

model can be developed with accurate predictions of the stem curve for various species

[Morgan and Cannell, 1994].

Another approach of process-oriented stem taper models is based on pipe-model theory,

which was formulated by Shinozaki et al. [1964a; 1964b]. The theory rely on assumption

that the sapwood cross-sectional increment per unit of foliage above, or foliage increment

above, is constant over time. The physiological assumptions were validated by experimental

studies, rules of stem growth were stated [Chiba, 1990, 1991] and subsequently several

taper models were developed [Chiba and Shinozaki, 1994; Osawa et al., 1991]. Results

of such taper model development [Mäkelä, 2002] indicate that the pipe model assumptions

are capable of producing realistic predictions of the vertical distribution of stem and branch

diameter in trees of different sizes in the stand.

Process-based models often are combined with empirical models, because some problems

(e.g. height growth) are difficult to solve in process-based growth modelling [Sloboda

and Pfreundt, 1989]. A example of such combined models is the stem form model

based on carbon budget and carbon partitioning developed by Deleuze and Houllier

[1995], which is controlled by an empirical site-dependent height growth curve.
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2.1.7 Problems with fitting taper models and taper model com-

parsion

Most of segmented models and variable exponent models are species-specific; the diameter

prediction accuracy depends on tree species Sharma and Zhang [2004]. The challenge

to represent the stem shape by a model is even more complicated due to intraspecific

variation. It has been long realized that trees of the same species grown at different

stand densities do not necessarily have the same tree form [Sharma and Zhang, 2004;

Sharma and Parton, 2009]. The form is affected also by thinning [Tasissa et al.,

1997; Sharma et al., 2002] and prunning [Valenti and Cao, 1986], water availability

[Wiklund et al., 1995] and the form also differs between trees grown in a plantation

and a natural stand Sharma and Zhang [2004]. Fortunately due to their complexity

the segmented models and variable-exponent models are generally able to conform the

different shapes. There have been attempts at including variables like crown ratio, site

index or age class into a segmented polynomial model [Burkhart and Walton, 1985]

and a variable exponent model [Muhairwe et al., 1994; Tasissa and Burkhart,

1998]. In most cases efforts to incorporate such factors offered limited succes. The studies

approvingly reported no significant improve of the goodness of fit. Amidon [1984] used

even 20 independent variables as predictors and determined best subsets of the predictor

variables from all possible combinations. He also reported little gain in precision with an

usage of more than two independent variables. Li and Weiskittel [2010] also reports

little impact of incorporation of corwn variables on stem form prediction. On the other

hand the incorporation of crown variables substantially improved stem volume predictions

[Li and Weiskittel, 2010].

Parameters determination of the majority of the taper models is based on ordinary least

squares or nonlinear least squares methods. As reported by Amidon [1984], the least

squares analysis assume several conditions which in reality are seldom present. Three as-

sumptions are considered most important: the data are typical, the correct form of the

equation was chosen and the observations of the dependent variable are not statistically

correlated. But because data used to develop taper models have mostly multiple mea-

surements taken along the stem of each sample tree, observation are likely to be correlated

Yang et al. [2009a]. Therefore the assumption of identical and independent errors, which

is the basis for the LS model fitting approach is not longer valid and effects of spatial auto-

correlation between model residuals then occur. Although model parameters estimated by

least squares methods are still unbiased, estimated variances are biased. Related hypothe-
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sis testing and confidence interval estimation of model parameters are invalid [Gregorie,

1987; Yang et al., 2009a]. Therefore autocorrelation can have several adverse conse-

quences in terms of the statistical inference at efforts to indicate statistically significant

predictor variables. The resulting bias Amidon [1984] considers as a serious problem with-

out any general solution both in forestry and other fields of work. To partially eliminate

consequences of autocorrelation Amidon [1984] compares models on the basis of multiple

criteria of fit, rather than on a single functional form.

The problem of spatial autocorrelation between model residuals in empirical modeling of

stem profile curves was solved by later developed mixed-effect taper equation. Mixed-

effect models are statistical regression models containing both fixed effects and random

effect. Mixed-effect taper models take into account the correlation among multiple di-

ameter measurements on an individual stem. Including random effects allows to account

most of the residual autocorrelation[Trincado and Burkhart, 2006]. In contrast to

traditional regression the mixed-effects modeling allows for both population-specific and

subject-specific models. A population-specific model considers only fixed-effects param-

eters and a subject-specific model considers both fixed- and random-effects parameters.

The Max and Burkhart [1976] segmented polynomial model was improved in mixed-

effects modeling framework by Leites and Robinson [2004] and later by Trincado and

Burkhart [2006] or Cao and Wang [2011]. In the last years the mixed-effect model-

ing approach was is also used for more complicated variable-exponent models [Lejeune

et al., 2009; Yang et al., 2009a,b].

Another problem is the multicollinearity. Multicollinearity is defined as a high degree of

correlation among several independent variables. Its presence is usual in overcomplicated

models with too many variables being included. Therefore effects of multicollinearity may

occur in models incorporating site variables like site index, thinning or class age that

may be correlated with basic measurational variables (DBH, heigt). The existence of

multicollinearity is not a violation of the assumptions underlying the use of regression.

Therefore it does not seriously affect the predictive ability. However the presence of multi-

collinearity may cause that the variance of the predicted values is inflated and the standard

errors of the regression coefficients have larger variance with consequent lack of statistical

significance [Rojo et al., 2005].

To evaluate the presence of multicollinearity among variables in models, Rojo et al.

[2005] developed condition number. The condition number is defined as the square root

of the ratio of the largest to the smallest eigenvalue of the correlation matrix. It has
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been found [Rojo et al., 2005] that very low effect of multicollinearity occurs in the

three-parameter model of Riemer et al. [1995].

A number of studies deal with comparison of different models for various purposes. Most

of recent works comparing taper models [Bi and Long, 2001; Rojo et al., 2005; Li and

Weiskittel, 2010] report the variable-form taper models to have superior performance

than the segmented polynomial models or single models. Their better performance is

a result of their flexibility to depict changes in stem form between individual trees of

different size [Bi and Long, 2001]. Rojo et al. [2005] carried out a comparison of total

31 taper models from all three groups of models (single, segmented and variable exponent

models) that were fitted on diameter-height data of 203 trees of maritime pine (Pinus

pinaster Ait.). He found important differences among the three groups of models, but not

among the variable-form models that showed the best performance. Li and Weiskittel

[2010] compared 10 segmented polynomial and variable-form models for the purpose of

developing a regional taper equation for the primary conifer species of Acadian region of

North America - balsam fir, red spruce and white pine. Although for red spruce and white

pine stem prediction was the model of Kozak [2004] the most accurate, for all three species

the Clark et al. [1991] segmented polynomial equation was proved to be the best. The

equation of Clark et al. [1991] also outperformed other segmented polynomial models

in the comparison carried out by Figueiredo-Filho et al. [1996b].

On the other hand by certain circumstances also single polynomial taper model was shown

to perform better than both segmented polynomial and variable-form models [Goodwin,

2009]. Selecting the best equation is difficult and it depends on species, dataset and

intended use [Li and Weiskittel, 2010].

2.1.8 Spline model forms

To describe the stem form entirely polynomial splines have been used. The most common

polynomial spline is the cubic spline, which was considered to be very suitable to describe

stem profiles [Kaufmann, 2001]. Despite many favorable properties a cubic spline does

not preserve the monotony. Even for monotonically increasing or decreasing input points

the resulting curve can due to its intrinsic properties produces an oscillation. The oscilla-

tions are mainly caused by the continuity of the second derivative [De Boor, 2001] and

cannot therefore be totally removed [Lahtinen, 1988]. The most frequently utilized spe-

cial case of cubic interpolation spline is the natural cubic spline, which was used in most
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works dealing with the spline representation of stem curve [Liu, 1980; Hradetzky, 1981;

Smaltschinski, 1983; Kirchner et al., 1991; Rios, 1997; Sloboda et al., 1998].

Except the cubic interpolating spline also a quadratic spline has been used [Lahtinen,

1988; Lahtinen and Laasasenaho, 1979]. The usual quadratic interpolating spline

was found to be inferior to the interpolating cubic spline [Lahtinen and Laasasenaho,

1979]. However, the quadratic interpolating spline, in contrast to the cubic spline, can

be transformed to a monocity preserving quadratic interpolating spline [Lahtinen, 1988,

1990; Schumaker, 1983]. which has an advantage of the preservation of monotony and

thus elimination of oscillations. On the other hand, the quadratic spline is theoretically

a little stiffer at the butt, which arises from the smaller degree of the polynomial pieces.

Moreover the quadratic spline may have a more angular shape than the cubic spline. The

reason for this is that the quadratic spline has only one continuous derivative while the

cubic spline has two.

Smaltschinski [1983] worked with natural cubic spline curves on data of Douglas firs.

He stated that 6 input points are enough to describe the taper curve properly. Additional

input points made the curve more accurate, but from 10 input points the improvement of

the accuracy was negligible. Three of the input points were represented by DBH, diameter

at the relative height of 0.1 and the height of the stem. The other three input points

were set by experiments to diameters at relative heights of 0.2, 0.5 and 0.7. The butt was

extrapolated using free-end conditions. The achieved volume estimation had an error less

than 1.5% and the interpolation error of the 8 cm diameter was less than 3%.

Lahtinen [1988] compared the performance of cubic the spline and a monotony preserving

quadratic spline as a taper curve. He found, that if a tree has a regular shape then the

monotony preserving quadratic spline and the cubic spline calculated from high number of

input points (14 measured diameters and the fixed top diameter) give equal results. For

other trees there were differences in favur of the quadratic spline. It was also shown that

the monotony preserving taper spline suffers less than the cubic spline of the reduction of

the number of interpolating points. The eight point monotony preserving quadratic spline

gave the same total volumes and there were differences in partial volumes only at the butt.

The differences in diameter were small. The five point quadratic spline offers satisfactory

approximation of the taper; the total volume was identical, but there were differences in

partial volumes. Outside the butt were the diameter differences reasonable small, but the

spline cannot give a true shape to a singular tree. A spline with three measured diameters

and the fixed top diameter can be used only for trees of regular shape. In that case it still
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gives reasonable total volumes [Lahtinen, 1988].

Since the accuracy of taper curves based on spline functions depend both on the number

and placement of the interpolating points, Figueiredo-Filho et al. [1996a] tested how

many input points are necessary to adequately represent the stem taper by interpolate

cubic spline and where are their best positions. He had totally 16 points available: two

absolute points at 0.1 m, 1.3 m, thirteen relative points and the height of the stem. 96

combinations of input points consisting of 4 to 13 individual diameters were generated.

All combinations included diameter at 0.1 and total height. The resulting curves were

compared with the spline calculated from all 16 input points. Figueiredo-Filho et al.

[1996a] stated that 10 or more well-distributed points can product a curve predicting partial

volumes very well. Among 8 or more input points no individual point has a fundamental

importance, but the points should be well distributed. When 7 or less points are used,

the placement along the stem is very important. Poor placement can cause oscillations.

Diameters near 10-15 % and 35-45 % seem to be fundamental in this case. 5 input points

are enough to predict the stem form with a mean residual less than 2 %, if the topmost

section of the stem is not important.

In consequence of irregularities of the stem and contamination of data points the mono-

tocity of a taper curve is not always preserved in measured data. Therefore Liu [1980]

attempts to use a smoothing procedure in lieu of interpolation. To portray stem taper of

yellow poplar (Liriodendron tulpifera L.), Liu [1980] uses natural cubic spline and smooth-

ing spline with application of the algorithm of Reinsch [1967]. To fit the spine curves

14 radii at 0, 2, 4, 6, 8, 10, 20, 30, 40, 50, 60, 70, 80, and 90 percent of the total tree

were used as ordinates, while their associated positional heights were treated as abscissas.

The resulting spline functions were evaluated at 51 points along the horizontal axis. The

curve produced by the smoothing algorithm with the extent of smoothing recommended by

Reinsch failed to trace the basal region curvature. Therefore Liu suggests that smoothing

procedures should not be used for the derivation of a taper curve but for smoothing of

isolated errors in measured data. The interpolation cubic spline gave a good result. There

was no significant difference between the cubic spline calculated of 14 input points and the

real measured taper curve. The volume difference of the entire stem varied from -3,3 % to

2,6 % with the mean value of -0.27 %. It is conceivable that better results can be achieved

with more input points, distributed over the entire stem.

Cubic spline was used also by Trincado and Vidal [1999]; Trincado and Sandoval

[2002] for volume estimation of stems of Nothofagus pumilio. Trincado and Vidal [1999]
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modeled the stem form using four input points at the stump height, at the breast height, at

40 % of the total height and at the top of the stem. In spite of relatively high errors both

in diameter predictions and sectional volume estimations Trincado and Vidal [1999]

consider the cubic spline as a suitable instrument for estimation of measurational data

and merchantable volumes. Trincado and Sandoval [2002] compares performance of

cubic spline with the taper equation of Bruce et al. [1968] and reports that the spline

interpolation obtains superior results. At the same time the relative height of 40 % is

considered to be an important position for an input point.

Laasasenaho et al. [2005] utilizes cubic spline to forma a bark thickness curve based

on several bark thickness measurement or predictions along the stem on Norway spruce

trees. Also under bark diameters were interpolated using cubic splines. Resulting stem

curves were used for under bark volume estimation.

Cubic smoothing spline was later employed to predict stem curves in order to determine

the optimal cutting points along the stem for forest harvesters. Since it is not economical

to measure the whole stem from butt to top before crosscutting, the goal was to predict the

stem curve of which only a short bottom part has been measured. The idea of predicting

stem curve based on cubic smoothing spline was introduced by Möttönen and Nummi

[2002] and later modified by Nummi and Möttönen [2004]. Based on measured data

of previously measured and crosscut stems, stem heights of three points where the stem

diameter falls below a given limit are predicted. Subsequently a smoothing spline is fitted

through the predicted points and the known stem curve measurements. To adjust the

predicted stem curve with each new measurement Kalman filter [Kalman, 1960] is used.

The approach was later modified by Koskela et al. [2006]. Only two stem points were

predicted: the stem height where the stem diameter falls bellow 150 mm and the diameter

at a height of 11 m. Accuracy of the stem curve prediction based on smoothing spline

fitted to predicted stem points and measured diameters of the known bottom part was

later compared with a stem curve prediction based on mixed-model [Lisky and Nummi,

1995] and also with model based taper equation of Kozak [1988]. It was shown that

the spline-based prediction method provides highly accurate stem curve predictions. It

outperforms the approach based on mixed-model and was also superior to Kozak’s model-

based method.

A taper and volume prediction method based on nonparametric regression techniques de-

veloped by Lappi [2006] is based on assumptions arising from results of Gaffrey et al.

[1998], that show that there are very strong relationships between the diameters at breast



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 27

height and diameters at arbitrary relative height. Diameters in any relative height can be

expressed as a functional value of DBH:

d̂(h,H,D) = α1(T ) ·D + α2(T ) T ∈ [0, 1], (2.1.20)

where α1(T ) and α2(T ) are continuous, interpolating functions over T . Gaffrey et al.

[1998] recommend to use a polynomial with the degree of six to express the functions α1(T )

and α2(T ); polynomials of degree of more than eight are not advisable because of the risk

of overshooting.

The mehtod of Lappi is based on nonparametric regression functions between diameter

value at a given height and diameter at breast height that were estimated with smoothing

splines. At the regression estimaion stage regression functions (also called mean functions)

are built for a fixed set of diameters - four diameters at absolute heights below breast height

(0.1, 0.25, 0.45 and 0.75 m) and eight diameters at relative distances between the breast

height and the top of the tree (0.1, 0.2 . . . 0.7, 0.85) - as well as for the total height. Similar

nonparametric regression functions of dependency on DBH were obtained also for variances

of mean functions and for correlations between different basic dimension (diameters and

height). From a known DBH or from a known DBH and total height as well as diameters

in any height all basic dimension can be estimated. The set of estimated diameters is

subsequently interpolated by cubic splines as well as the estimations of diameter variances

at given heigths. The resulting stem model contains both the predicted stem profile curve

and variance curves.

The approach was further developed by Kublin et al. [2008]. The model utilizes a

semiparametric method implemented in the German national forest inventory methodology

which predicts the mean diameter at location x from known diameters at 5 % and 30 %

of the stem heigth:

E[d(x)|x, d0.05H , d0.3H , H] = a(x)d0.05H + b(x)d20.05H + c(x)d0.05Hd0.3H + d(x)D0.05HH,

(2.1.21)

where the regression coefficients a(x),b(x), c(x), d(x) are in the form of cubic splines. With

separate population average regressions for diameter at 5 % and 30 % of height the model

can be expressed as

E[d(x)|x,D,H] = µ0(x, µ1(D,H), µ2(D,H), H). (2.1.22)
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2.2 Spline functions

2.2.1 Interpolation techniques

To construct a function of which only functional values at a few some discrete points are

known interpolation techniques are used. Interpolation techniques allow constructing new

data points anywhere in the range of a discrete set of known data points. The techniques

are based on fitting the set of data points (or its component) by an appropriate function

and evaluate the functional value for any desired parameter value. For computer-aided

interpolation Piegl and Tiller [1996] recommend that in the ideal situation the inter-

polation function belongs in a class of functions which

• are capable of precisely representing all the curves needed;

• are easily, efficiently, and accurately processed in a computer, in particular

– the computation of points and derivatives on the curve is efficient,

– numerical processing of the function is relatively insensitive to floating point

round-of error,

– the functions require little memory for storage and

• are simple and mathematically well understood.

Polynomial interpolation

The polynomials are a class of widely exploited functions and several interpolation tech-

niques utilizing polynomials have been developed. Among them, the Lagrange polynomial

or the Newton polynomial belong to the most widely known techniques [De Boor, 2001].

The Lagrange polynomial is a interpolation polynomial of the least degree that fits all data

points in a given set. For given set of n + 1 data points (Pi)
n
i=0 and the parametrization

vector expressed in general asH = (hi)
n
i=0 is the Lagrange interpolation polynomial defined:

L(t) =
n∑
i=0

Li(t)Pi, t ∈ [h0, hn], (2.2.1)

where Li, i = 0, . . . , n are Lagrange polynomials of the nth degree

Li(t) =
n∏

j=0, j 6=i

t− hj
hi − hj

. (2.2.2)
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Polynomials satisfy well the last two criteria of the list mentioned above. The first criterion

is not entirely fulfiled: there are a number of important curve types that cannot accurately

be represented using polynomials.Moreover curves build of only one polynomial segment

have the following disadvantages.

• To fulfill the given restrictions construction of polynomials of high degrees would

often be necessary; e. g. fitting of n points requires polynomial of n − 1th degree.

High degree polynomials are not capable for efficient computer processing. In addi-

tion interpolation using high-degree polynomials is often accompanied by so-called

Runge’s phenomenon, problem of undesirable strong oscillation at the edges of the

interpolated interval.

• One-segment polynomial curves are not suitable for interactive shape design. The

position of each single input point affects the shape of the whole curve. If the position

of one input point is altered, the behavior of the curve is changed not only locally in

the surrounding of the point, but the whole curve is influenced [Piegl and Tiller,

1996].

Piecewise interpolation

Both mentioned disadvantages of polynomial interpolation can be eliminated by utilizing

piecewise polynomial curves compound of a number of lower-degree polynomial curves.

The simplest method of piecewise interpolation is piecewise constant interpolation, where

the desired functional value at parameter value t is assigned from the functional value of

the nearest known data point. Linear interpolation, which utilizes two data points A[xa; ya]

and B[xb, yb], determines the functional value f(t):

f(t) = ya + (yb − ya) ·
t− xa
xb − xa

. (2.2.3)

. Quadratic interpolation utilizes three nearest data points which are inerpolated by the

Lagrange polynomial. As results from following definition of splines, piecewise interpolation

is a form of splines. The piecewise constant interpolation correspods to spline interpolation

of degree zero, linear interpolation corresponds to spline interpolation of degree ,1 etc.

2.2.2 Splines: definition and continuity

Spline functions were the first time defined by I. J. Schoenberg in 1943 [Najzar, 2006].

The term spline is a general tag for a very wide class of functions that are utilizable to
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interpolate or smooth multivariate data. The spline is a special curve defined piecewise by

polynomial functions usually of low degrees (the most often polynomials of 3th degree are

used) or non-polynomial functions [Späth, 1973]. Usually polynomial splines are used,

since they are easiest to handle. By junction of a number of low-degree polynomials the

shaping ability of high-degree polynomials can be achieved together with preservation of

all advantages of low-degree polynomials. The degree of spline function corresponds to the

degree of polynomials used.

Component polynomial segments of a spline curve are connected in join points called knots.

The requirement that the resulting curve is continuous and smooth can be mathematically

expressed as three conditions:

• The functional value must be continuous at the knot,

• the direction of tangent vectors must be continuous at the knot and

• the curvature vector must be continuous at the knot both in magnitude and direction

[Manning, 1974].

These conditions are generally sufficient to ensure the curve appears smooth in knots. The

eye is not able to detect the position of the knot on the resulting curve. A discontinuity of

the functional value appears as a break of the resulting curve at the knot. A discontinuity

of the tangent vector can be observed as a corner. A discontinuity of the curvature vector

can be detected by practiced eye as a step change of torsion of the curve.

The tree conditions are equivalent with the requirement, that the functional value, the first

derivative and the second derivative of the curve are continuous. The third derivative of

the curve is not required to be continuous, because a discontinuity in the rate of change of

curvature of a curve is not visible [Manning, 1974].

Parametric continuity of kth order (expressed also as Ck continuity) indicates that at the

knots vectors of first k derivatives of both functions are identical [Linkeová, 2007]. The

above requirement can also be expressed that the curve should be C2 continuous. Still

there are some spline functions that have C1 continuity only; their second derivative is not

continuous. Step changes of the curvature at the knots can be observed. Such spline curve

lacks the smoothness of C2 curves.
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2.3 Utilized types of splines

Spline is a general name for a very wide class of functions with a huge number of different

types of spline functions [Najzar, 2006]. In accordance to the interpretation of input

data two essential approaches to the construction of the mathematical model of the curve

can be distinguished: interpolation and approximation [Linkeová, 2007]. In the case of

interpolation the resulting interpolation spline curve fits all points in the given sequence

of input points. The result of approximation is an approximation spline that does not

necessarily fit the input points, nevertheless the curve follows the geometry of the input

points.

2.3.1 Ferguson cubic interpolation

Ferguson cubic is a cubic curve formed of a single segment interpolating two known input

points [Linkeová, 2008]. If two input points Pi and Pi+1, a tangent vector pi at the

point Pi and a tangent vector pi+1 at the point Pi+1 are given, the vector equation of

Ferguson’s cubic is expressed as a linear combination of basis functions F0, . . . , F3, where

as the particular weights act the coordinates of the input points and the tangent vectors

in both input points. Ferguson cubic in parameter value t is given by

C(t) = F0(t)Pi + F1(t)Pi+1 + F2(t)pi + F3(t)pi+1, t ∈ [0, 1], (2.3.1)

where the basis functions

F0(t) = 2t3 − 3t2 + 1,

F1(t) = −2t3 + 3t2,

F2(t) = t3 − 2t2 + t,

F3(t) = t3 − t2, t ∈ [0, 1],

(2.3.2)

are the Hermite polynomials of 3th degree [Linkeová, 2008].
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Figure 2.1: Basis function of Fergusons’s cubic curve, also called Hermite polynomials, and

a Fergusons’s cubic defined by points Pi and Pi+1 and tangent vectors pi and pi+1

The functional value F0(t = 0) is equal to one, while all other Hermite polynomials are zero

at the parameter value t = 0. The same is valid for the basis function F3(t = 1). Therefore

the curve starts at the coordinates of the point Pi and ends exactly at the coordinates of

the point Pi1.

2.3.2 Cardinal splines and Catmull-Rom spline

The term cardinal splines denotes a general class of interpolating cubic splines compound of

Ferguson cubics where the tangent vector pi is defined as a multiple of the chord connecting

the previous and the next interpolated point:

pi = τ(Pi+1 −Pi−1), (2.3.3)

where the constant τ known as ”tension” affects how sharply the curve bends at the

interpolated points. As a consequence of identity of tangent vectors in the endpoint of

each segment and in the startpoint of the following segment the C1 continuity in knot

points between two segments is assured. From the way tangent vectors are computed

results the matter of fact that in the first and the last input point no tangent vector is

defined. The cardinal spline does not interpolate the first and the last input point. That
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problem can be solved by duplicating the first and last point or equivalently by setting the

tangent vector in the first point to p0 = τ(P1 −P0) and analogously in the last point.

A particular example of the class of cardinal splines is Catmull-Rom spline [Catmull and

Rom, 1974] for which the value of parameter τ is 1/2. The tangent vector for Catmull-Rom

spline is calculated:

pi =
1

2
(Pi+1 −Pi−1), (2.3.4)

which is simply the average of the previous chord Pi−Pi−1 and the following chord Pi+1−Pi

[Kochanek and Bartels, 1984].

2.3.3 Interpolating Ferguson curve

Interpolation method piecewiese interpolating input points utilizing Ferguson cubics is

proposed by Linkeová [1999, 2001]. Tangent vectors are computed from coordinates of

input points and through the use of forming parameters corrections of the length as well as

the direction of tangent vectors are applied. Tangent vectors p0,p1 . . . ,pn in input points

P0,P1 . . . ,Pn are determined by the help of Lagrange polynomial interpolation curves Li(t)

compuded always for three points P0,P1,P2; P1,P2,P3; . . .Pn−2,Pn−1,Pn. Lagrangian

tangent vector L′0 for three points P0,P1,P2 is expressed as linear combination of input

point coordinations and first derivatives L′i(t), i = 0, 1, 2 of Lagrangian polynomials:

L′0 = L′0(0)P0 + L′1(0)P1 + L′2(0)P2. (2.3.5)

The first derivatives L′i(t), i = 0, 1, 2 of Lagrangian polynomials are given by equations:

L′0(t) =
2t− t1 − t2

(t0 − t1)(t0 − t2)
,

L′1(t) =
2t− t0 − t2

(t− 1− t0)(t1 − t2)
,

L′2(t) =
2t− t0 − t1

(t2 − t0)(t2 − t1)
,

(2.3.6)

where ti, i = 0, 1, 2 denotes parameter value at input points P0,P1,P2.

Resulting tangent vectors pi(t) determining Ferguson cubics at input points Pi(t) are given
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by following equation:

pi(t) =


L′i(t = Pi) i = 0

L′i(t = Pi) + L′i−1(t = Pi) i ∈ [1, n− 2]

L′i−1(t = Pi) + L′i−2(t = Pi) i = n− 1

L′i−2(t = Pi) i = n

(2.3.7)

Tangent vectors set in this way are well determined in case of no strong irregularities

in input point distribution; irregular point distribution can cause overshoots. Therefore

corrections both for directions and lengths of the tangent vectors are established. The

direction correction is applied in the event that a change of driving polygon direction

exceeds a preset value of the forming parameter kd (empirically set to kd = 30◦). In such

case the resulting tangent vector is given by only one of its components (equation 2.3.7)

reducing the direction alternation.

The forming parameter kl for length correction is expressed as equation:

kdi = 1 +
kdmax − kdmin

180◦
(180◦ − γi), (2.3.8)

where kdmax and kdmin
are empirically set to values kdmax = 3; kdmin

= 1 and γi is the angle

between vectors Pi−1 −Pi and Pi −Pi+1.

2.3.4 Natural cubic spline

Interpolating cubic spline is the most widely used interpolation spline due to number of

its advantageous properties. The effectiveness of interpolation using cubic spline is a con-

sequence of its strong convergence property and best approximation property [Liu, 1980].

It has been proved that a continously differentiable fuction can be interpolated by a cu-

bic spline with any prescribed accuracy by using a sufficient high number of interpolating

points in contrast to an interpolating polynomial which does not allways have this prop-

erty [De Boor, 2001; Lahtinen, 1988]. Interpolating cubic spline has also a minimum

curvature property; it has minimal curvature expressed as functional

Φ(u) =

∫ b

a

(u′′(x))2 dx (2.3.9)

among twice differentiable interpolating functions [Marčuk, 1987; Prautzsch et al.,

2002].
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Cubic spline is defined by usage of cubic polynomials on interspaces between individual

knots and by continuity of the first and second derivatives in all the points of the curve.

Specification of the input point positions does not determine the curve uniquely; for unic-

ity of determination of spline function specification of two more conditions is required.

Generally values of first of second derivative at the end points are set; most frequently the

so-called free boundary condition g′′(a) = 0, g′′(b) = 0 is chosen which means that the

second derivative of the spline function g at the beginning point a and at the end point b

are set to zero [Ježek, 2000]. Zero curvature at the edge points causes a ”natural” look

of the resulting curve, which gives the curve its name.

Natural cubic spline is given by equation 2.3.10 [Marčuk, 1987]:

g(x) = mi−1
(xi − x)3

6hi
+mi

(x− xi−1)3

6hi
+

(
fi−1 −

mi−1h
2
i

6

)
xi − x
hi

+

(
fi −

mih
2
i

6

)
x− xi−1

hi
,

(2.3.10)

where fi denotes functional value at the point xi, hi = xi − xi−1 and unknowns mi are

calculated from a system of linear equations 2.3.11:

Am = Hf . (2.3.11)

The square tridiagonal symmetric matrix A is defined by equation 2.3.12, the rectalgle

tridiagonal matrix H is given by equation 2.3.14 and the vector f is the vector of length n

containing known funcional values.

A =



h1 + h2

3

h2

6
0 · · · 0 0

h2

6

h2 + h3

3

h3

6
· · · 0 0

0
h3

6

h2 + h3

3
· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · ·
hn−1

6

hn−1 + hn

3


(2.3.12)

m =


m1

m2

...

mn−1

 , f =


f1

f2
...

fn

 , (2.3.13)
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H =



1

h1

(
−

1

h1
−

1

h2

)
1

h2
· · · 0 0

0
1

h2

(
−

1

h2
−

1

h3

)
· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · ·

(
−

1

hn−1
−

1

hn

)
1

hn


(2.3.14)

2.3.5 B-spline

Regarding the presence of random errors of measurements that occur at the determination

of input point coordinates also approximation splines can be used. The class of B-splines is

the most important representative of approximation splines. In case of approximation, the

curve does not need to fit all the given input points, but follows the geometry of the input

points. Therefore the input points Q0,Q1 . . . ,Qn are called driving points and the ordered

set of driving points (Qi)
n
i=0 = (Q0,Q1 . . . ,Qn) is called the driving polygon [Piegl and

Tiller, 1996; Linkeová, 2007].

The B-spline is allways smoother than its driving polygon [MacCallum and Zhang,

1986] and whole B-spline curve allways lie within the convex hull of the driving polygon.

Therefore maximum deviations of the curve from the driving points are limited. Connec-

tions of the individual segments satisfies the conditions of Cp−1 continuity, where p is the

degree of the curve. The letter B in the term B-spline comes from the initial letter of the

word basis, because B-spline is upon so called basis functions.

Parameter values in that segments of B-spline curve are joined are called knots. The

ordered non-decreasing sequence of (m + 1) real numbers T = (ti)
m
i=0 = (t0, t1. . . . , tm) is

called knot vector. In B-spline the knot vector is allways uniform which means that the

spacing between knots is of equal length, t(i+1) − ti = ∆t = constant, i = 0, 1, . . . ,m − 1.

On a given knot vector T the B-spline basis functions Ni,p(t), i = 0, . . . , n of the degree p

are defined by recursion formula 2.3.15.

Ni,0(t) =

 1, t ∈ [ti, ti+1),

0, t /∈ [ti, ti+1),
(2.3.15)



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 37

Ni,k(t) =
t− ti
ti+k − ti

Ni,k−1(t) +
ti+k+1 − t
ti+k+1 − ti+1

Ni+1,k−1(t), k = 1, . . . , p.

Figure 2.2: B-spline basis functions of degree zero (at the top) to three (at the bottom)

for an open B-spline defined by an uniform knot vector T = (0, 1/8, 2/8, · · · , 8/8). Segments

without the full support property (passive segments) are filled with grey colour. B-spline

basis functions can be apprehended as courses of weihgts for individual driving points. The

B-spline coordinates at parameter value t is then apprehended as an average of driving point

coordinates weighted by basis function values Ni,p(t).

The sum of B-spline basis functions in active B-spline segments is constant and equal to

one. The B-spline curve C(t) of degree p is then constructed as linear combination of



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 38

driving point coordinates and basis functions of degree p based on equation 2.3.16.

C(t) =
n∑
i=0

Ni,p(t)Qi, (2.3.16)

In respect to relation between the driving polygon and the knot vector three types of B-

spline are distinguished. Open B-spline does not fit any of the driving points. Its knot

vector is formed by non-decreasing sequence of knots:

T = (t0 ≤ t1 ≤ t2 ≤ . . . ≤ tm). (2.3.17)

The full support property (active B-spline segments) is not fulfilled in the whole knot

range t ∈ [t0, tm], but only on the interval [tp, tm−p], where exactly p + 1 basis function

gather non-zero values (Figure 2.2). The pasive segments belonging to parameter values

in intervals [t0, tp) and(tm−p, tp] conect the outer points of active B-spline curve with the

coordinate basic origin (the outer points of the whole open curve have coordinates [0,0],

because all basis function at knots t = t0 and t = tp are zero) and are ignored. Therefore

the parameter range of open curves is only the interval [tp, tm−p].

Clamped B-splines exactly fit the first and the last point of the driving polygon. The knot

vector contains at the beginning and at the end multiple knots of (p+ 1) multiplicity and

the inner knots generate again a non-decreasing sequence:

T = (t0 = t1 = · · · = tp ≤ tp+1 ≤ tp+2 ≤ . . . ≤ tm−p−1 ≤ tm−p = · · · = tm−1 = tm).

(2.3.18)

As a consequence of multiple knots with (p + 1) multiplicity p knot spans of zero length

are generated both at the begining and the end of the knot vector. Therefore the passive

segments are reduced to a point (concretely to the driving point P0 at the beginnig of the

curve and to the driving point Pn at the end of the curve) and the clamped curve contains

active segments only. Basis functions associated to the outer points of the driving polygon

are at the outer values of the knot vector equal to one and the clamped curve always

interpolate these points.
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Figure 2.3: B-spline basis functions of degree zero to three for a clamped B-spline curve

with an uniform knot vector T = (0, 1/6, 2/6, · · · , 6/6). All segments of clamped B-splines

are active with p+ 1 non-zero basis function and with sum of basis functions equal to one.

Basis functions related to the first and to the last driving points gather the value of one at

both endpoints. This indicates that the full weight is given to the end point coordinates

and the curve exactly fits the point.

Closed B-spline is such curve that has the first driving point identical with the last driving

point whereas the continuity of the curve in that point corresponds to the continuity of

the whole curve. In order to create such curve, p initial driving points have to be repeated

at the end of the driving polygon:

Qn−p+1 = Q0,Qn−p+2 = Q1, . . . ,Qn = Qp−1. (2.3.19)
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The knot vector is then formed by non-decreasing sequence of knots:

T = (t0 ≤ t1 ≤ t2 ≤ . . . ≤ tm). (2.3.20)

As well as the open curve does, the closed curve has an active range at the interval [tp, tm−p]

and the passive segments are ignored [Piegl and Tiller, 1996; Linkeová, 2007].

2.3.6 NURBS (Non-Uniform Rational B-spline)

Non-uniform rational B-splines are a generalization of B-splines. The firs step of gener-

alization is the non-uniformity of knot vector. The distance between individual knots is

not constant; the knots can be defined in any distances. As a consequence the basis func-

tions are modificated and the curve shape differs from the B-spline. The second step of

generalization of B-splines to NURBS is the racional property. Each driving point Qi has

assigned a weight wi expressing the relative importance of the concrete driving point on the

shape of the resulting curve compared to the importance of the other driving points. As a

consequence, instead of being piecewisely compond of polynomial functions, the NURBS

are in general composed of rational functions.

NURBS curve C(t) of the degree p is given by equation:

C(t) =
n∑
i=0

Ri,p(t)Qi, (2.3.21)

where Ri,p(t) are rational basis functions defined by following:

Ri,p(t) =
Ni,p(t)wi∑n
j=0Nj,p(t)wj

. (2.3.22)

The consequence of weight implementation is the rational property of the curve; individual

segments can be analytically expressed as a proportion of two polynomials. This prop-

erty allows the NURBS to exactly form even general curves that cannot be expressed by

polynomials, e. g. conic sections [Procházková and Procházka, 2007].

Contrary to B-spline, the shape of NURBS can be modified in several ways. Except coordi-

nations of driving points themselves the weights of driving points can be used to emphasize

the relative improtance of concrete driving points. The weights can be set interactively by

user or can be generated automatically from the configuration of the driving point using

several optimization methods. One of the most common methods of automatical weight



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 41

optimization is the averaging method (equation 2.3.23). The averaging algorithm desig-

nates weight distribution so that the resulting curve passes all input points at relatively

equal distances [Linkeová, 2007]:

wi =
1

i+ 1

i∑
j=0

|QiTj|, i < p,

wi =
1

p+ 1

i∑
j=i−p

|QiTj|, p ≤ i ≤ n− p,

wi =
1

n− i+ 1

n−p∑
j=i−p

|QiTj|, i > n− p,

(2.3.23)

where the partial driving polygon centers Ti is given by

Ti =
1

p+ 1

i+p∑
j=i

Qj, i = 0, . . . , n− p. (2.3.24)

The averaging weihgth wi of the driving point Qi is then equal to the average distance

of the driving point from the partial driving polygon centers of all segments in which the

point Qi takes part on the construction of the curve [Linkeová, 2007].

The shape of the curve is influenced also by the degree of spline. With lower degrees

of splines each segment is defined by a few driving points and each driving point has a

height importance on the shape of the curve. The curve then follows the driving polygon

very closely. In contrast, sements of higher degree curves are defined by higher number of

driving points and therefore each of the driving points has relatively low impact on the

curve shape. Higher degree curves are smoother [Piegl and Tiller, 1996; Linkeová,

2007]. The maximum degree that can be chosen for a curve is equal to the number of spans

of the driving polygon. In that case, the curve is compound of only one rational segment.

The third magnitude influencing the shape of the resulting curve is the knot vector. The

same way as the weights the knot spacing can be set manually or by optimizing algorithms.

The most usually the uniform knot vector, the averaging method [Linkeová, 2007] or

the chord method [Linkeová, 2007] are used. Implementation of multiple knots causes

decrease of degree of continuity in corresponding points. By implementing multiple knots

also sharp edges can be modeled [Procházková and Procházka, 2007]. The uniform
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knot vector is given by equation 2.3.25.

ti = 0, i = 0, . . . , p,

ti =
i− p
m− 2p

, i = p+ 1, . . . ,m− p− 1,

ti = 1, i = m− p, . . . ,m.

(2.3.25)

The averaging knot vector is given by equation 2.3.26.

ti = 0, i = 0, . . . , p,

ti =
1

L

i−p∑
j=1

lj, i = p+ 1, . . . ,m− p− 1,

ti = 1, i = m− p, . . . ,m,

(2.3.26)

where the partial driving polygon centers Ti are given by

T0 = Q0,

Ti =
1

p+ 2

i+p∑
j=i−1

Qj, i = 1, . . . , n− p,

Tn−p+1 = Qn,

(2.3.27)

the distance of two subsequent partial driving polygon centers li is

li = |Ti−1 −Ti|, i = 1, . . . , n− p+ 1, (2.3.28)

and the sum of all these distances L

L =

n−p+1∑
i=1

li. (2.3.29)
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Figure 2.4: 3rd degree rational basis functions of a clamped NURBS with differ-

ent knot vectors and weight distribution. From above: Uniform knot vector T =

(0, 0, 0, 0, 1/6, 2/6, . . . , 1, 1, 1, 1) and uniform weight distribution W = (1, 1, . . . , 1). Av-

eraging knot vector and uniform weight distribution. Averaging knot vector and av-

eraging weight distribution. Averaging knot vector and interactively set weights W =

(1, 1, 4, 1, . . . , 1).

2.3.7 Interpolation B-spline

B-splines and NURBS can serve not only as approximation curves but also as interpolation

curves [Linkeová, 2007; Eberly, 2008]. In that case the curve exactly fits all points in

the given sequence.

In order that B-spline or NURBS curves, which are by their definition approximation
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splines, can interpolate a sequence of ñ + 1 given definition points Pi a sequence of yet

unknown n + 1 driving points Qi must be found in that way that B-spline or NURBS

approximating the new driving polygon exactly fits all the orginal definition points. This is

achieved by arranging an equation system whose solution are coordinates of the new driving

polygon. That is an inverse problem to the problem of constructing the approximation

curve [Linkeová, 2007].

Two types of interpolation curves are distinguished. In the first case the construction

of an interpolation curve is coming out of the condition that the number newly found

driving points ñ + 1 is identical to the number of the given definition points n + 1. Such

interpolation curve is called simple interpolation curve.

The second approach sets the condition that the number of active segments of the resulting

interpolating curve is identical to the number of spans in the definitiol polygon ñ and that

the knots of the resulting curve correspond with the definition points. Each segment of

the interpolation curve then fits two following points as well as the segments of cubic in-

terpolation splines. Such interpolation curve is called knot interpolation curve. Additional

conditions must be defined so that the knot interpolation curve is uniquely defined. As

additional conditions most frequently the vectors of derivatives of the curve in the edge

points are used.

As the first step in construction of the interpolation spline a parametrization vector must be

defined. The parametrization vector H is a non-decreasing sequence of ñ+ 1 real numbers

representing the parameter values of the curve at each definition point:

H = (h0 ≤ h1 ≤ h2 ≤ . . . ≤ hñ). (2.3.30)

There are several methods to obtain the parametrization vectors. The uniform parametriza-

tion vector H = (hi)
ñ
i=0 with constant distance of parameter values is given by

hi =
i

ñ
, i = 0, . . . , ñ. (2.3.31)

Frequenty used is the chord length parametrization vectror that has the distances of pa-

rameter values proportional to the chord lengths of the definition polygon:

h0 = 0,

hi =

∑i
j=1 |Pj−1Pj|∑ñ
j=1 |Pj−1Pj|

, i = 1, . . . , ñ.
(2.3.32)
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Similar to the chord length parametrization vector is the centripetal parametrization vector.

The distances between parameter values are proportional to the square roor of the chord

lengths of the definition polygon. This method should eliminate undesirable overshoots of

the curve in cases of sharp angles in the definition polygon:

h0 = 0,

hi =

∑i
j=1

√
|Pj−1Pj|∑ñ

j=1

√
|Pj−1Pj|

, i = 1, . . . , ñ.
(2.3.33)

The simple interpolate B-spline C(t) is then given by (the simple interpolation NURBS is

constructed by analogy):

C(t) =
ñ∑
i=0

Ni,p(t)Qi, (2.3.34)

where Pi, i = 0, . . . , ñ are the driving points. Coordinates of the driving points are obtained

as a solution of equation system

C(hi) =
ñ∑
j=0

Nj,p(hi)Qj = Pi, i = 0, . . . , ñ, (2.3.35)

which can be expressed as matrices:
N0,p(h0) N1,p(h0) . . . Nñ,p(h0)

N0,p(h1) N1,p(h1) . . . Nñ,p(h1)
...

...
. . .

...

N0,p(hñ) N1,p(hñ) . . . Nñ,p(hñ)

 ·


Q0

Q1

...

Qñ

 =


P0

P1

...

Pñ

 (2.3.36)

2.3.8 Iterative non-uniform B-spline

Another method to construct an interpolation curve using B-splines was presented by Lin

et al. [2004]. Using the so-called iterative non-uniform B-spline a given ordered set of

points can be fitted by a non-uniform B-spline of degree 3 without solving a linear equation

system.

From the given input point set Pi, i = 1, 2, . . . , n the initial control polygon is derived as

follows:

P0
i = Pi, i = 1, 2, . . . , n; P0

0 = P0
1,P

0
n+1 = P0

n, (2.3.37)



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 46

and an initial non-uniform B-spline curve C0(t) is constructed on the knot vector ti, i =

0, 1, . . . , n+ 5 defined as 2.3.38:

ti =
i−2∑
j=2

‖Pj−Pj−1‖, i = 4, 5, . . . , n+2, t0 = t1 = t2 = t3 = 0, tn+2 = tn+3 = tn+4 = tn+5.

(2.3.38)

Figure 2.5: Iterative non-uniform B-spline with 10 iterations.

By gradually adjusting the positions of the control points with iterative formula, the B-

spline curve approaches the given point set step by step (Figure 2.5). The iterative shift

of jth control point in kth iteration is given by adjusting vector:

∆k
j = Pk

j − Ck(tj+2), j = 1, 2, . . . , n. (2.3.39)

Then the control points of the iterative non-uniform B-spline after (k + 1)th iteration are

given by

Pk+1
i = Pk

i + ∆k
j , i = 1, 2, . . . , n; Pk+1

0 = Pk+1
1 ,Pk+1

n+1 = Pk+1
n . (2.3.40)

Each curve of the sequence has the same non-uniform B-spline basis functions defined

on the same knot vector. Only the control points are adjusted according to the iterative
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format. Lin et al. [2004] proved that the limit curve of the iterative sequence interpolates

the given point set, when the iterative time tends to infinity.

2.4 Regression splines and smoothing splines

Smoothing methods and nonparametric regression techniques serve the purpose of detect-

ing a overall tendency in empiric data, finding a regression model and prediction using

the nonparametric regression models. The basic aim is to estimate an unknown smooth

function f ∈ C2[x1, xn] of unspecified form [Aydin, 2007].

Nonparametric regression techniques are mostly utilized for describing data sets too com-

plicated to be fully modeled with parametric models. As reported by Eilers and Marx

[1996], the name nonparametric does not always correspond with the principle of the meth-

ods. While moving statistic and kernel smoothing have no parameters, spline smoothers

are in fact described by a huge number of parameters.

2.4.1 Simple nonparametric regression methods

The most simple smoothing methods are the group of moving statistics [Rodŕıguez, 2001;

Aydin, 2007]. From that group the moving average is the basic method. The regression

value at predictor value xi is obtained by averaging the observation values y corresponding

to predictor values x in a neighborhood of xi:

f(xi) =
∑

j∈N(xi)

(yj/ni), (2.4.1)

for a neighborhood N(xi) with ni observations. Usually a symmetric neighborhood con-

sisting of the nearest 2k + 1 points is chosen:

N(xi) = {max(i− k, 1), . . . , i− 1, i, i+ 1, . . . ,min(i+ k, n)} (2.4.2)

The moving average can be used only for equally spaced points and near endpoints it shows

high bias. Therefore rather utilization of moving line is recommended. The moving line

consists of series of local lines estimated by least squares:

f(xi) = α̂i + β̂ixi, (2.4.3)
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where α̂i and β̂i are the least squares estimates based on points in a neighborhood N(xi)

of xi.

Kernel smoothing corresponds to weighted moving average with weights declining with

rising distance from the target value in x-space. A weighting scheme [Aydin, 2007] sets a

weight associated with observation yj for prediction at xi:

wij =
K
(xi − xj

λ

)
n∑
j=1

K
(xi − xj

λ

) =
K(u)
n∑
j=1

K(u)
, (2.4.4)

where K(u) is a decreasing function of distance u from the target value and λ is the

bandwith, also called the smoothing parameter. It has been shown [Aydin, 2007], that the

selection of smoothing parameter is much more important for the performance of the kernel

regression than the selection of the kernel function. The kernel function is supposed to be

symmetric (even), non-negative and twice differentiable. Some popular kernel functions

are shown in Table 2.1.

Table 2.1: Kernel function examples for kernel smoothing

Kernel Equation

Gaussian kernel K(u) = 1√
2π
e−u

2
, u ∈ [−∞,∞]

Triangular kernel K(u) = (1− |u|), u ∈ [−1, 1]

Epanechnikov K(u) = 3
4
(1− u2), u ∈ [−1, 1]

Minimum var K(u) = 3
8
(3− 5u2), u ∈ [−1, 1]

A combination of kernel smoothing and polynomial regression was proposed by Cleve-

land [1979] and later improved by Cleveland and Devlin [1988]. The method is

called LOESS or LOWESS (locally weighted scatterplot smoothing) and is also known as

locally weighted polynomial regression. At each point in the data a low-degree polynomial

is fitted to the subset of the data located in the neighbourhood of the point. The range of

the neighbourhood is determined analogicaly to kernel smoothing by value of smoothing

parameter λ, which is a function of the chosen degree of local polynomial.
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2.4.2 Smoothing cubic spline

Smoothing cubic spline was proposed by Reinsch [1967]. It is based on the method of

interpolate cubic spline. Instead of minimizing the functional 2.3.9 it is demanded to

minimize functional 2.4.5

Φ1(u) =

∫ b

a

(u′′(x))2 dx+
n∑
k=0

pk(u(xk)− f̃k)2. (2.4.5)

This functional relates the requirement of minimal curvature of the function with the

requirement of minimal residual sum of squares. Given positive numbers pk are weight

coefficients influencing the rate of minimal distance of the smoothing function from given

points against the minimal curvature requirement. The first term denotes the curvature

of the function and it penalizes its roughness; the second term denotes the residual sum of

squares weighted by coefficients pk and it penalizes lack of fit.

The rate of importance of minimization of residual sum of squares and minimization of

curvature of the function can also be expressed by smoothing paramerer λ penalizing the

curvature of the function [Aydin, 2007] in equation 2.4.6

Φ1(u) = λ

∫ b

a

(u′′(x))2 dx+
n∑
k=0

(u(xk)− f̃k)2 (2.4.6)

To find the coefficients of smoothing spline functions it is necessary to determine the

vector m by solving equation 2.4.8, where the equation system matrix (A + HP−1HT) is

fivediagonal and symmetric. Square diagonal matrix P contains the weight cefficients pk

(2.4.7).

P =


p0 0 · · · 0

0 p1 · · · 0
...

...
. . .

...

0 0 · · · pn

 (2.4.7)

(A + HP−1HT)m = Hf̃ (2.4.8)

The next step is to determine the vector µ of the functional values of the smoothing spline

at knots by solving equation 2.4.9. After the functional values are known, the resulting

smoothing spline function is easily determined using equation 2.3.10.

µ = f̃ −P−1HTm (2.4.9)
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2.4.3 P-splines

P-splines [Eilers and Marx, 1996; Marx, 2010], or B-splines with difference penalties,

are based on the approach of O’Sullivan [1988], who used B-splines with second derivative

penalty to smooth data. To make the B-spline smooth the data, O’Sullivan [1986] uses

a relatively high number of knots and introduces a penalty on the second derivative of the

fited curve. The derived least squares objective function, which should be minimized, is:

S =
m∑
i−1

(
yi −

n∑
j=1

αjNj(xi)
)2

+ λ

∫ xmax

xmin

( n∑
j=1

αjN
′′
j (x)

)2
dx (2.4.10)

for regression of m data points Pi = (xi, yi) on a B-spline consinsing of n B-spline basis

functions with αj being the B-spline coefficients. Instead of the penalty of secont derivative,

P-splines use penalties of kth-order finite differencies:

S =
m∑
i−1

(
yi −

n∑
j=1

αjNj(xi)
)2

+ λ
n∑

j=k+1

(∆kαj)
2. (2.4.11)

For example of k = 2 can be the difference expressed as:

∆2αj = ∆∆αj = aj − 2αj−1 + αj−2. (2.4.12)

To the most important properties of P-splines as a regression technique belongs no bound-

ary effect, in contrast to many kernel smoothers. Polynomial data can be fitted exactly

by P-splines and the limit of P-splines fit with strong smoothing (large values of λ) is a

polynomial.

2.4.4 Amount of smoothnig

Most smoothing techniques allow the user to influece easily the amount smoothness of

fitted curve by changing the velue of the parameter λ. A major problem of any smoothing

technique is the choice of the optimal amount of smoothing [Eilers and Marx, 1996].

The problem of optimal smoothing was being solved by Craven and Wahba [1979];

Utreras [1981]. Eilers and Marx [1996] propose utilizing the Akaike information

criterion.

The Akaike information criterion (AIC) is originally proposed to determine the relative

goodness of fit of a statistical model in comparison to alternative statistical models. The

general form of AIC is given by:

AIC = −2 logL(θ̂) + 2k, (2.4.13)
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where L(θ̂) is the maximized likelihood function and k is the number of free parameters in

the model. For the least squares method the AIC is given by:

AIC = n log

(
RSS

n

)
+ 2k, (2.4.14)

where RSS denotes the residual sum of squares. When comparing models he mode with

each other, thel with lowest value of AIC is considered as the best. To determine the

optimal smoothing

Another technique that allows to determine the omptimal amounth of smoothing is the

cross-validation method (CV) [Stone, 1974] and the generalized cross-validation (GCV)

method [Craven and Wahba, 1979; Eilers and Marx, 1996]. In general approach the

CV is a technique for assesing how a statistical model will generalize to an independent

data set using the same data that were used to fit the model. The cross-validation method

involves partitioning sample of data into complementary subsets, performing the analysis

on one subset, and validating the analysis on the other subset. There are several types

of cross-validation. In repeated random sub-sampling cross-validation method are data

repeatedly randomly splited into training and validation data and the results of validation

are then averaged. The K-fold CV randomly partitions the data into K subsamples of

which a single subsample serves as validation data, while the others are used as training

data to fit the model. The process is then repeated K-times so that each of the subsamples

is used exactly once as the validation data. A special case of K-fold CV is the 2-fold CV,

where the data are divided into two equal-sized parts. Marx [2010] recommends the

usage of leave-one-out cross validation approach (LOOCV), which is a special case of K-

fold CV, where K corresponds with the number of observations. In that approach a single

observation serves as validation data, while all the other observations are used to fit the

model:

LOOCV =
n∑
i=1

(
yi − µi(θ̂[−i])

)2
, (2.4.15)

where θ̂[−i] is the estimator obtained by removing the i-th sample.

2.5 Volume estimation

There are number of different log volume estimation techniques available. Three of the

most used are the equations of Smalian, Huber and Newton.
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Smalian’s equation is given as

V = (A1 + A2)L/2, (2.5.1)

Huber’s equation as

V = (A3)L, (2.5.2)

and Newton’s equation as

V = (A1 + 4A3 + A2)L/6, (2.5.3)

where V is the log volume (m3), A1 and A2 are the cross-sectional areas of the ends of the

log (m2), A3 is the cross-sectional area of the midpoint of the log (m2) and L is the log

length (m).

Huber’s and Smalian’s equations assume that the log form is parabolic. If the geometric

solid is an exact frustum of paraboloid, both formulae yield exact results [Biging, 1988].

If the log form departs form parabolic form, both equations become biased. In contrast,

Newton’s equation is based on assumption that the taper can be expressed as a third-degree

polynomial [Wensel, 1977]. In that case the equation of Newton provide exact result.

Comparison of accuracy of log volume estimation techniques has been performed, mostly

by comparing computed volumes with results obtained from xylometry measurements

[Goulding, 1979; Biging, 1988; Figueiredo-Filho and Schaaf, 1999; Figueiredo-

Filho et al., 2000; Özçelik et al., 2008; Machado and Nadolny, 1991; Machado

et al., 2006]. Results proposed Biging [1988] indicate that the Huber’s and Newton’s

equations offer the most accurate results for logs of length 8 feet or longer. For shorter logs

there were found no differences. Also the study of Figueiredo-Filho et al. [2000] com-

paring traditional formula with cubic spline method, centroid sampling [Wood et al.,

1990] and over ng bolts [Bailey, 1995] consider Huber’s method as the most accurate

for longer sections, while for sections shorter than 2 m all methods give satisfactory re-

sults. That is also consistent with the conclusions of Machado and Nadolny [1991];

Machado et al. [2006]. By contrast Özçelik et al. [2008] consider the Huber’s and

Smalian’s equation to be unsatisfactory and recommend to use center-of-gravity [Lynch

et al., 1994] or centroid method. Biging [1988] qwrns that the results does not need

to be unquestionable, since the xylometry method is not perfectly precise itself because of

absorptivity of the wood, necessity of holding the log under the water surface by a ma-

chine and other influences. Schreuder et al. [1993] recommend to use Huber equation

in case of uniform length of the logs; otherwise the Smalian’s method is recommended for

the sections not longer than 3 m.
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When the stem profile is expressed by a taper equation, the volume can be easily and

precisely obtained by integration of the taper equation [Bruce et al., 1968; Goulding

and Murray, 1976; McClure and Czaplewski, 1986]. This is also the approach

for developing compatible taper equations. Analytical integration can be used for taper

equations with single explicit functional form. For segmented models the volume must be

calculated piecewise by integrating each segment individually [Cao et al., 1980]. The

same way would be applicable for spline representation of stem profile but the process

would be complicated. Therefore numerical integration is usually applied.

Numerical integration methods represent an approach of getting an approximation of the

integral of a function. Numerical integration is used in cases that it is not possible to find

the primitive function F (x) of the function f(x) whose integral is wanted to be calculated,

or the function f(x) is too complex [Děmidovič and Maron, 1966]. In practice the

function is sometimes defined by a list of discrete values and in that cases the term primitive

function looses its sense.

Numerical integration methods evaluate the finite integral by splitting the interval of inte-

gration into a number of very small subintervals < a, b > and to approximate the each of

the areas S limited by the subinterval < a, b > and the function f(x). A class of numerical

integration methods is based on interpolating functions. The simplest method is to let

the interpolating function be a piecewise constant function which passes through the point

[(a+b)/2, f((a+b)/2)]. The area under the function is splitted into number n of rectangles.

Therefore the method is called the rectangle rule. The integral is approximated by the sum

of the rectangle areas: ∫ b

a

f(x)dx ≈ (b− a) · f
(
a+ b

2

)
. (2.5.4)

The rectangle rule corresponds to the volume estimation using Huber’s function with a

high number of very short sections.

Another simple method is called the trapezoidal rule. The interpolating function is a

piecewise linear function which passes through the points [a, f(a)] and [b, f(b)]. The area

of under the function f(x) is divided into n trapeze sections. The approximation of the

sectional area is given by: ∫ b

a

f(x)dx ≈ (b− a) · f(a) + f(b)

2
. (2.5.5)

This trapezoidal rule corresponds to the volume estimation using Smalian’s equation. With

shrinking the subinterval < a, b > the results of both methods tend to approach each other.

In the limit case (b− a)→ 0 and n→∞ both methods are identical.
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For computing the volume of stem represented by spline mostly trapezoidal rule (or

Smalian’s formula) was used[Trincado and Sandoval, 2002; Goulding, 1979]. As

has been shown [Biging, 1988; Schreuder et al., 1993], there is no difference in vol-

ume estimation for short sections between both equations. Numerical integration works

with extremely short sections. In this case predominate the advantage of Smalian’s equa-

tion of its computational simplicity. Moreover, some spline types do not assure uniform

length of the intervals between their discrete values, which practically disallows the usage

of Huber’s equation.

2.6 Accuracy evaluation

From statistical point of view it is sufficient and correct approach to use a single criteria for

model comparisons, such as sum of squared residuals, AIC or CV. But because the taper

models should be applicable for a particular purpose with a number of special demands,

it is reasonable to use multiple criteria expressing different demands on the desired taper

function. Amidon [1984] uses multiple evaluation criteria to overcome the consequences

of autocorellation.

To compare number of taper model Cao et al. [1980] computed volumes both outside and

inside bark at 10-percent intervals of total height and compared to predicted volumes from

each of the models. Also predicted diameters both inside and outside bark at the points of

10-percent height intervals were compared to actual diameters. Three criteria were then

applied to evaluate the models: bias (the mean of the differences), mean absolute difference

and standard deviation of differences. Liu [1980] evaluated accuracy of cubic spline curves

at 51 points along the height axis. He also compared the predicted and observed volume

for the entire stem and for the first, second and third 5-meter sections. Smaltschinski

[1983] considered the spline curve as accurate, if it fulfilled three criteria. The sum of the

deviations at n measurement points has to be smaller than 0.5 · n, the volume error has

to be lower than 0.5% and the interpolation error at the 8 cm diameter (merchantable

thickness limit) is not higher than 4 mm.

Lahtinen [1988] has three criteria of suitability of a spline model. The most important

one is that the taper curve accurately estimates the volume of the stem or of any part of it.

Volume differences for total volume and for each of seven parts are evaluated. The second

criterion is the magnitude of diameters error. Each taper curve is tested by evaluating

the maximal diameter difference. The third criterion of suitability is the form of the taper
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curve and how natural the shape is. This is a important property, but difficult to measure.

Parresol et al. [1987] and Figueiredo-Filho et al. [1996a] have consistent approach

of evaluating diameters at selected fixed heights. Also the statistics are very similar.

Figueiredo-Filho et al. [1996a] used eleven relative points along the stem to analyze

the accuracy of the cubic spline stem form prediction. The points were purposely chosen

at the midpoints of the sections between measured points. As comparative data were

considered diameters predicted by spline using all 16 measured points. Differences between

diameters predicted by the spline and the comparative diameters were used to calculate

following statistics (table 2.2). The same statistics were used to analyze the total and

partial (10 sections along the stem) volume estimations.

Table 2.2: Statistics used to evaluate predicted diameters and volumes by Figueiredo-

Filho et al. [1996a]

Statistics Calculation

Bias (
∑

Diffi)/N

Mean absolute deviation (
∑

abs(Diffi))/N

Standard deviation of differences [
∑

(Diffi − Bias)2/(N − 1)]0.5

Sum of squared relative residuals
∑

(Diffi/di)
2

Percentage of residuals
∑

(Diffi/di)100/N

To evaluate the precision and accuracy of diameter estimates of different taper models

Rojo et al. [2005] use three statistical criteria obtained from residuals: bias E (equa-

tion 2.6.1), mean square error MSE (equation 2.6.2) and adjusted coefficient of determi-

nation R2
adj (equation 2.6.3), which in contrast to common coefficient of determination

penalizes the statistics as extra variables are included in the model.

E =
n∑
i=1

yi − ŷi
n

, (2.6.1)

MSE =
n∑
i=1

(yi − ŷi)2

n− p
, (2.6.2)

R2
adj = 1− (n− 1) ·

n∑
i=1

(yi − ŷi)2

n− p
·

n∑
i=1

(yi − yi)2, (2.6.3)

where yi, ŷi and yi are the measured, predicted and average values of the dependent

variable, which in most cases differs from the diameter. n is the total number of obser-

vation used to fit the model and p is the number of model parameters. Moreover Rojo
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et al. [2005] used the Akaike information criterion (AIC) [Kitagawa, 2008] and a cross-

validation approach for all three mentioned statistics. Similar criteria were used by Cao

et al. [1980]; Bi and Long [2001] and Li and Weiskittel [2010], who used mean

absolute bias, root mean squared error and mean percentage of bias.

[Kozak and Smith, 1993] proposed a methodology for comparing taper functions based

on the calculation of three statistics for each estimate. Goodwin [2009] extended the

approach and created an index of predictive accuracy called the MSS18 Index. For each

tree in the data set, a measurement point and associated log is randomly selected. For

each point or log, six predictions are made of known quantities with each taper model.

Prediction errors are assimilated across size categories into three statistical measures of

precision and bias, giving a total of 18 statistics for each model. Synthesis of the statistics

into the MSS18 Index provides a simple basis for comparison. The six predictions are

defined as follows:

1. Diameter in given height,

2. height of given diameter,

3. entire stem volume from ground to tip,

4. log volume between two heights,

5. log volume between a bottom height and top diameter,

6. log volume between a bottom diameter and top diameter.

The six predictions are then evaluated using three statistics.

1. Mean absolute bias indicates the evenness of bias across size categories.

2. Mean standard error of estimate indicates overall prediction accuracy because it

incorporates both bias and precision.

3. One minus coefficient of determination is an overall measure of prediction.

Each of 18 statistics is scaled so that its mean value is 1. The MSS18 Index is then calcu-

lated as a mean of all scaled statistics. Model with the lowest MSS18 index is considered

the best.

Statistical methods for determining the sample size for fitting taper models were developed

by Demaerschalk and Kozak [1974] and Kitikidou and Chatzilazarou [2008].
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Methods

3.1 Data

The research uses data both of coniferous and broadleaved trees. The data of coniferous

trees come from 85 Norway spruce trees (Picea abies [L.] Karst.). The trees were from three

50 to 100-year-old stands located in the School Forest Enterprise Kostelec nad Černými

lesy, Czech Republic. In order to cover the shape variability in the stands dominant trees

as well as suppressed trees were selected for the analysis. The diameter at breast height

(DBH) of the trees ranges from 88 mm to 438 mm (mean 204 mm), and tree heights range

from 10.6 m to 37.1 m (mean 21.3 m).

The data of broadleaved trees include two species, common beech (Fagus sylvatica L.)

and mountain oak (Quercus petraea (Matt.) Liebl.). The data come from the protected

landscape area B́ılé Karpaty, Czech Republic. The data collection was carried out in

cooperation with the research project of the Ministry of Agriculture of the Czech Republic

No. QI102A079 ’Research on biomass of broadleaved species’ and in cooperation with the

company Lesy Komňa, s. r. o. The broadleaved data consist of 48 trees of both species.

The DBH of the trees ranges from 270 mm to 577 mm, and tree heights range from 14.6

m to 33.4 m.

The data sampling design is the same for both coniferous and broadleaved species. Diam-

eters outside bark is measured on the felled trees from the tree base to the top at 0.1-m

intervals so that the ordered pairs of values represent coordinates of points representing

the stem profile. The distances from the tree base (abscissae) are measured using a steel

57
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tape with 0.01-m precision, and the diameters (ordinates) are measured and recorded with

an electronic caliper with 1-mm precision. Thus, more than several hundred diameters de-

scribing the stem form were obtained from each tree and were compared with the diameters

predicted by splines, as described in the following sections.

3.2 Software

3.2.1 MATLAB® R2012b

MATLAB® is a programming language and interactive environment for numerical tech-

nical computation, visualization, algorithm development, data analyses and programming

[The MathWorks, Inc., 2010]. MATLAB was created at the end of the 1970s; in 1984

it was launched into the market by the company The MathWorks, Inc. The software orig-

inally designated for mathematical purposes was gradually extended and presently it is

utilized in a wide spectrum of applications. Nowadays, it is a world standard in the field of

technical computation and simulation in the sphere of research and development, industry

and education.

MATLAB is the main tool utilized for the elaboration of the thesis. All the necessary

computing was performed in the MATLAB environment. MATLAB was used above all

to design the routines for particular splines computation, for taper function fitting and

statistical evaluation of the models. Nearly all figures presented in the thesis were obtained

using MATLAB.

Possibilities of exploitation of MATLAB in particular fields are extended by the help of

application libraries and packets, in MATLAB terminology called toolboxes and blocksets,

containing related functions and tools. Following toolboxes were used for the purposes of

the thesis.

Statistics Toolbox™
Statistics Toolbox™ is a set of functions and tools for organizing, analyzing and modeling

data [The MathWorks, Inc., 2003]. The toolbox includes tools for statistical hypothesis

testing, correlation and regression analysis, data classification, multivariate statistics etc.

and allows presenting the results in both numerical and graphical outputs. To facilitate

data processing, the toolbox also includes special data types for organizing and hetero-
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geneous data, which allowes storing numeric data, text data and metadata in a single

variable.

For the purposes of the thesis the Statistics Toolbox was used especially for statistical

processing of computed stem curves and their residuals. Functions for cross-validation

evaluation approach as well as statistical tests included in the toolbox were used to compare

the performance of particular spline types. Non-linear regression analysis tools were utilized

to fit taper models of polynomial, segmented polynomial or variable-exponent forms.

Curve Fitting Toolbox™
Curve Fitting Toolbox™ provides tools and functions for fitting curves and surfaces to data

[The MathWorks, Inc., 2002]. The toolbox contains tools for conducting regression

analyses and comparison of candidate models as well as libraries for optimizing solvers for

curve and surface fitting. Also non-parametric fitting techniques, such as splines, interpo-

lation and smoothing are included.

The functions of Curve Fitting Toolbox were utilized in preliminary analyses of the data,

for verification of the created programs for spline fitting and for fitting and verification of

regression models.

3.3 Individual stem curve modeling

3.3.1 Primary comparison of spline types for modeling stem

curves of coniferous trees

3.3.1.1 Specification of selected splines

The first step in evaluating abilities of individual spline types to represent the stem form

and selecting the best candidate was a simple comparison of particular splines. All splines

evaluated in the primary comparison, together with their specifications (if needed) and

abbreviations are listed in Table 3.1.

Ten representatives of interpolation splines were selected for the analysis. The first two

representatives are cubic splines with first degree continuity, based on Ferguson’s cubics:

Catmull-Rom spline and Ferguson interpolation curve proposed by Linkeová [1999]. Fur-

ther six representatives of interpolation B-splines with different degree and parameteriza-
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Table 3.1: Spline types used in the study

Abbrev. Spline Specification

In
te

rp
o
la

ti
o
n

CRS Catmull-Rom spline

LFC Linkeova Ferguson curve

IBSu2 Interpolation B-spline degree 2; uniformly spaced parameterization

IBSu3 Interpolation B-spline degree 3; uniformly spaced parameterization

IBSu4 Interpolation B-spline degree 4; uniformly spaced parameterization

IBSc2 Interpolation B-spline degree 2; centripetal parameterization

IBSc3 Interpolation B-spline degree 3; centripetal parameterization

IBSc4 Interpolation B-spline degree 4; centripetal parameterization

NCS Natural cubic spline

IterBS Iterative NUBS degree 3; number of iterations: 50

A
p

p
ro

x
im

at
io

n

BS2 B-spline degree 2

BS3 B-spline degree 3

BS4 B-spline degree 4

NUBS2 Non-uniform B-spline degree 2; averaging knot vector

NUBS3 Non-uniform B-spline degree 3; averaging knot vector

NUBS4 Non-uniform B-spline degree 4; averaging knot vector

NURBSdbh2 NURBS degree 2; averaging knot vector; weight in DBH = 3

NURBSdbh3 NURBS degree 3; averaging knot vector; weight in DBH = 3

NURBSdbh4 NURBS degree 4; averaging knot vector; weight in DBH = 3

NURBSav2 NURBS degree 2; averaging knot vector; averaging weight distr.

NURBSav3 NURBS degree 3; averaging knot vector; averaging weight distr.

NURBSav4 NURBS degree 4; averaging knot vector; averaging weight distr.

tion presets were selected. The last two representatives of interpolation splines are cubic

splines with second degree continuity: the widely used natural cubic spline and the iterative

B-spline proposed by Lin et al. [2004].

The group of selected approximation splines is built of representatives of B-splines and

NURBS (non-uniform rational B-splines). For all approximation splines, clamped curves,

which exactly fit the first and last control points, were used. Four approximation splines (all

variants of the second, third, and fourth degree) were tested: BS, NUBS; NURBSdbh, and

NURBSav. BS denotes the B-spline with uniform knot spacing. NUBS means non-uniform

B-spline with the knot vector determined by averaging method, which optimizes the knot
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spacing when input points are unevenly distributed. The third and the fourth variants

were represented by NURBS with different weight distributions, both with averaging knot

vector. In NURBSdbh, the relative importance of the input point representing the DBH

was increased by setting its weight to 3, while the weights of the remaining points were set

to 1; this should improve the fit of the butt swell curvature. In NURBSav, the weights were

set with an averaging algorithm that optimizes weight distribution so that the resulting

curve passes all input points at relatively equal distances [Linkeová, 2007].

3.3.1.2 Specification of input data points

Splines were compared using several input point distribution. By input point is meant a

coordinate pair of a point measured on the stem surface where the abscissa is the above-

ground height and the ordinate is the appropriate thickness. Because the spline models were

fitted in terms of the stem curve (rotation of the stem curve produces the stem surface),

the ordinates are expressed as the appropriate radii of the stem (half of the measured

diameters).

To compare the performance of individual splines, nine input point sets with different point

numbers were used. An input point set consists of two subsets of points.

The first subset contains four fixed input points determined by the above-ground height:

1. h = 0 m; thickness of the base of a tree,

2. h = 0.3 m; thickness at the stump height,

3. h = 1.3 m; DBH,

4. h = H; the height of a tree, zero thickness.

These positions may not be the optimal to improve accuracy of the curve [Smaltschinski,

1983; Goodwin, 2009], but have to be necessarily involved. Both the stem foot and the top

must be involved to obtain the curve of the whole stem. The stump diameter is required

for the proper description of the butt swell. DBH is included because it is a conventional

parameter, and its value is always measured. All the positions are well defined and the

diameters are easy to gain.

The second subset contains a different numbers of points, from 2 to 10. The points are

defined by percentage relative height and represent the optimal input point distributions
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for given numbers of input points, as defined by Figueiredo-Filho et al. [1996a]. The

combinations of input point placement are shown in Table 3.2.

Table 3.2: Optimal combinations of input points for particular point numbers

[Figueiredo-Filho et al., 1996a]

Combination no. Relative heights [%]

1 15 35

2 15 45 75

3 10 25 45 65

4 10 25 45 65 85

5 10 25 35 45 65 85

6 10 15 25 45 65 85 95

7 10 15 25 35 45 65 85 95

8 10 15 25 35 45 55 65 85 95

9 10 15 25 35 45 55 65 75 85 95

3.3.1.3 Evaluation of spline models

For each input point combination, stem curves were predicted using all splines. Residuals

(differences between predicted and measured diameters) were assessed for each position of

measured diameters for all trees. The accuracy of each predicted curve was described with

five statistics (Table 3.3).

For each tree one value of each statistic is obtained. All the statistics are designed so that

they are comparable among stems with different number of evaluation points. Diameter

bias (DB) indicates whether a modeled curve systematically under- or overestimates stem

thickness. The mean absolute residual (MAR) reflects the average distance between the

predicted and the original diameters. The standard deviation of residuals (SDR) detects

heterogeneity in residual values; large values may signify oscillations, which are undesirable.

The mean squared residual (MSR) value reveals locally high deviations in the curve; high

MSR values relative to the MAR value usually signifies oscillations. The total volume

difference (TVD) calculated for the whole stem expresses the absolute error of volume if

the real stem form is replaced by the spline function.

The volume of spline models was calculated as the sum of the volumes of log sections using

Smalian’s equation. This is recommended for short sections when the section lengths may
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Table 3.3: Statistics used for evaluating the accuracy of the models

Abbreviation Statistics Equation

DB Diameter Bias
N∑
i=1

Diffi/N

MAR Mean absolute residual
N∑
i=1

abs(Diffi)/N

SDR Standard deviation of residuals
N∑
i=1

[(Diffi−DB)2/(N − 1)]0.5

MSR Mean squared residual
N∑
i=1

Diff2
i /N

TVD Total volume difference Volspl− Volorig

Diffi = di − d̂i
d̂i - measured diameter

di - predicted diameter

N - number of measured diameters

Volorig =
N∑
i=1

li(πd̂
2
i + πd̂2i+1)/2 - volume computed from measured diameters

Volspl =
N∑
i=1

li(πd
2
i + πd2i+1)/2 - volume computed form predicted diameters

li - distance between ith and (i+ 1)th diameter

not be equal [Schreuder et al., 1993], although Huber’s equation is generally considered

to be more accurate [Biging, 1988; Figueiredo-Filho et al., 2000; Özçelik et al.,

2008].

Accuracy of splines in terms of individual statistics was compared individually for each

input point combination through the use of one-way analysis of variance and Tukey-Kramer

honestly significant difference test for multiple comparisons. To examine the influence of

input point number on the accuracy of the splines, the individual input point combinations

were compared with the use of two-way analysis of variance. The influence of adding

more input points was tested by comparing mentioned input point combination with an

additional combination containing 22 input points. The combination consists of four fixed

points and 18 points placed to the relative heights 10 %, 15 %, . . . , 95 %.



CHAPTER 3. METHODS 64

3.3.2 Determination of the optimal distribution of input points

for modeling stem curves of coniferous trees

3.3.2.1 Selection of spline types

By virtue of the results of the previous comparison the number of splines was lowered.

Splines regarded as the best representatives of four spline classes were used. A represen-

tative of first degree continual splines consisting of cubic polynomials, the Catmull-Rom

spline, showed the best pertinence for stem profile modeling. The best representative of

cubic splines (second degree continuous splines consisting of cubic segments) is the natural

cubic spline; it has he minimal curvature among twice continuously differentiable interpo-

lating curves and therefore it produces the least pronounced oscillations among interpolants

in this class. As showed earlier, the accuracy of interpolation B-splines declines with rising

degree of the curve. The second degree interpolation B-spline was selected from the class.

The accuracy declines with rising degree also for approximation B-splines and NURBS.

Adding weights does not improve the accuracy. Therefore second degree B-spline with

uniform weights was selected from the class of approximation splines.

Regarding different properties and behavior of individual spline types it is useful to pre-

suppose that the optimal input point distribution is different for particular spline types.

Therefore each spline type is treated separately.

3.3.2.2 Input point positions

Smaltschinski [1983] considers the minimum number of input points for spline repre-

sentation of stem curve to be 6; Lahtinen [1988] mentions that five point splines gives

satisfactory approximation of the stem curve. Lower numbers of point are not sufficient.

As results from primary analysis (Chapter 4.1.2) and some earlier works [Smaltschinski,

1983; Figueiredo-Filho et al., 1996a], it is not meaningful to add more than 9 points.

Therefore optimal combinations containing 5-9 points were searched for.

The input point combinations are built in the same way as mentioned in chapter 3.3.1.2.

An combination contains a subset of four fixed input points (0 m, 0.3 m, 1.3 m and H) and

a subset of additional input points. The subset of additional input points contains from

1 to 5 points defined as radii in relative heights. The relative heights are chosen from the

set {10 %, 15 %, . . . , 95 % } (multiples of 5 % from the interval between 10 % and 95 %)

For each number of additional input points all possible combinations were generated and
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evaluated. Thus for each spline 18 models were evaluated for 5 input points, 153 models

for 6 input points, . . . and 8 568 models for 9 input points.

For each model all stems were evaluated. Diameter bias (DB), mean absolute residual

(MAR), standard deviation of residuals (SDR), mean squared residual (MSR) and total

volume difference (TVD) (all defined in Table 3.3) were calculated for the whole stem as

well as for ten uniformly spaced height sections (0-10 %, 10-20 %, . . . ).

3.3.2.3 Aggregate objective function

Individual input combinations were compared using aggregate objective function (AOF)

approach. Aggregated objective function (or target function) method is a optimization

technique utilized in multi-criterion optimization. To each criteria a weight is assigned,

expressing the relative importance of that criteria. The aggregate objective function value

is calculated as the weighted sum of the normalized criteria values. The alternative with

the lowest (for minimization problem) or highest (for maximization problem) is considered

as the best solution.

Before the target function is calculated, all values Xi of each criteria X must be normalized

in order to take the value between 0 and 1. Because diameter bias and total volume

difference can take both positive and negative values, absolute values in equation 3.3.1

assure non-negative values of the normalized criteria, so that the criteria are comparable.

Xinorm =
|Xi| −min(|X|)

max(|X|)−min(|X|)
(3.3.1)

The weight distribution for the criteria is shown in Table 3.4. The criteria and their

weights were chosen so that the average accuracy of the curves is well balanced with their

reliability. The mean value of the error statistics must be as low as possible so that the

predicted curves are in average as accurate as possible. Simultaneously, the variance of

all the error statistics is minimized and therefore the stem curve models are as reliable as

possible.

The third of the total weight is given to magnitudes controlling the shape of the curve -

MAR, SDR and MSR, where the weights are distributed relatively as 12.5 %, 12.5% and

25 % respectively for the three magnitude medians and the same weight distribution for

their variations. The second third is given to the statistics controlling systematic shift of

the curves - DB and TVD. The weights are distributed equally among their means and
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Table 3.4: Distribution of weights assigned to individual criteria for the aggregate objective

function

Characteristic Weight (%)

Shape accuracy

MAR
median

33.33

8.33
4.17

variance 4.17

SDR
median

16.67
8.33

variance 4.17

MSR
median

16.67
8.33

variance 4.17

Systematic error

DB
median

33.33

16.67
8.33

variance 8.33

TVD
median

16.67
8.33

variance 8.33

Significance of

prediction error

DB
section CI

33.33

16.67
5.56

total CI 11.11

TVD
section CI

16.67
5.56

tota CIl 11.11

variations. The last third of the total weight is given to magnitudes expressing if the

total DB and TVD and the DB and TVD of individual sections are systematically shifted

from zero, i. e. if they are systematically over- or underestimate. The magnitude labelled

as Section CI in the table 3.4 expresses the number of sections with DB and TVD values

respectively significantly different from zero. The values were considered to be significantly

different from zero, if the 95% confidence interval did not contain zero. The magnitude

labeled as Total CI is a binary magnitude expressing if the total DB or TVD significantly

differs from zero.

3.3.3 Comparison of performance of individual splines

Comparison of suitability of particular spline types for representing stem curves of conifer-

ous trees with the use of different numbers of input points is carried out. In order to satisfy

demands of individual splines resulting from their different properties, the stem curves are

modeled on the base of input points distributed according to the optimal positions, that

were ascertained in chapter 4.1.3.



CHAPTER 3. METHODS 67

The comparison is carried out separately for each number of input points. Stem curve

of each measured tree is modeled by four different splines (Catmull-Rom spline, natural

cubic spline, interpolation B-spline, B-spline; for the details about spline selection see chap-

ter 3.3.2.1). Spline models of particular stems are evaluated using five criteria (Table 3.3).

All the criteria values are calculated both for the whole stem and for ten uniformly spaced

height sections (0-10 %, 10-20 %, . . . ). The values of criteria calculated for the whole

stem are compared among particular spline types. For the reason of different dispersion

of the criteria values among the spline types Kruskall-Wallis test was used to compare the

means of the criteria values. For DB and TVD (these criteria can obtain both positive

and negative values) one-sample t-tests are used to detect if their means are significantly

different from zero.

3.3.4 Spline representation of irregular stem curves of broadleaved

trees

Utilizing splines for stem curve representation of broadleaved species may be more beneficial

than for coniferous species due to higher complicacy of stem curve of broadleaved species

compared to coniferous species and due to high percentage of stems with irregular shape.

Irregularities in broadleaved stem curves are represented mainly by sudden diameter drop

due to bifurcation of the main stem or large branching. Moreover such large branchings are

usually preceded by local enlargement of the stem diameter, which violates the monotony of

the stem curve and makes the profile even more complicated. Stem curves of such irregular

stems are difficult or even impossible to be described by common taper functions usually

restricted to create a smooth monotone curve. In this study data from two broadleaved

species, European beech and Sessile oak were used (see chapter 3.1 for more information

about the data).

The selection of splines for the study is based on results of previous analyses. Three

candidates were selected for further utilization: Catmull-Rom spline with tangent vector

corrections, natural cubic spline and B-spline of 2nd degree.

The basic set of input points for spline computation contained six input points. Four fixed

input points represented diameters conventional heights (base diameter, stump diameter,

DBH and the height). Another two input points interactively added to describe the location

of the most significant malformation. A position of the seventh input point was optimized

to maximize the accuracy of the curve.
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It is obvious, that the optimal position of the next input point depends on the location

of the two inserted points. If they are located in the lower stem, it is necessary to place

the point so that it controls the upper part of the curve. With shifting the inserted points

upwards also the additional point must be shifted so that the input points are evenly

distributed along the stem. Above certain threshold height it is not useful to specify more

the curve above the inserted points; the accuracy of the curve is improved by placing the

point rather to the lower part of the stem.

To evaluate the accuracy of splines, residuals at each position of measured diameters were

determined and five statistics were computed (Table 3.3). The optimal positions of 7th

input point were determined for each stem individually using multi-criteria optimizing

method of aggregate objective function with ten criteria. The first five criteria were the

medians of above mentioned statistics with weights set as 0.05, 0.05, 0.05, 0.1 and 0.25,

respectively. The second five criteria were variances of the same magnitudes with identical

weight distribution. Dependency of the three best positions of seventh input point on the

position of inserted points was searched using linear regression.

Suitability of additional input point placement according to the linear regression was re-

viewed. Several options of the seventh input point were compared. Firstly, the seventh

point was placed to the optimal position determined individually for each stem. Secondly,

the point was placed according to the linear regression. Thirdly, the point was placed in

the center of the largest input point interspace. Fourthly (in tables labeled as Randomly I),

the point was placed randomly near the center of the largest input point interspace (normal

distribution with mean value equal to the center of the largest interspace and with such

variance that the interspace covers the random point with probability 99.9 %). Finally (in

tables labeled as Randomly II), the point was placed randomly into one of the two largest

interspaces (uniform distribution). As the control variant served splines computed from

six points only. Finally, the performance of particular splines was compared.

3.4 Local regression model of typical stem form

3.4.1 Data

For development of the local regression model of typical stem form regular stems of conifer-

ous trees were considered. Therefore the spruce data described in chapter 3.1 were utilized

for this purpose.
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The generalized local model results from a number of spline models of individual stems

from a stand or locality. When spline models for several individual stems are defined, as

many height-diameter pairs as needed can be generated.

Data rescaling

In order to have identical scale the height-diameter data must be normalized before fitting

the regression model. The height components of all data points are divided by the height

of the respective stem so that the normalized height ranges from 0 (ground level) to 1

(stem height).

hnorm = T =
h

H
(3.4.1)

The diameter cannot be normalized into the range from 0 to 1 by reason of the pronounced

variability in the shape of butt swell. Therefore the diameter is expressed as the ratio either

to a diameter in a fixed absolute height (most frequently the DBH) or to a diameter in a

relative height. Because the stem form is more related to the relative proportions than to

the absolute measures, the diameter in 10 % of the total height would be the best to be

chosen as the factor. The normalized diameters would be:

dnorm =
d

d0.1
. (3.4.2)

However, most taper models utilize the DBH as the factor. This approach is more effective

from the practical point of view. The value of the factor diameter is necessary to be known

both for normalizing the stem diameters and for the reverse operation of computing the

real diameters of a new stem derived from the model. The conventional DBH is easier to

obtain in comparison of the diameter in the relative height of 10 %. Moreover, it is more

favorable that the diameter at breast height is kept less biased. Therefore the DBH is

utilized as the diameter factor. The normalized diameters are:

dnorm =
d

D
. (3.4.3)

Figure 3.1 shows the difference between both mentioned approaches of data normalization.

With increasing number of stems incorporated in computing the regression spline model of

typical stem form, the point cloud of normalized diameters becomes too dense and the fit

of the regression spline becomes computationally demanding. In order to lower down the

number of points the original data set containing diameters measured with interspaces 0.1

m was reduced to stem profiles with interspaces 2 m. Thus stem diameters at 0 m, 1 m,

1.3 m, 3 m and at each next odd meter together with the stem height were used as input

points.
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(a) Diameter at relative height (d0.1) (b) Diameter at breast height (D)

Figure 3.1: Normalized diameters and heights of 15 spruce stems. Diameter can be nor-

malized using two different factors: a diameter at a relative height or the DBH.

3.4.2 Spline regression models and parameter optimizing

The normalized data are fitted to construct the non-parametric regression model. Two

different regression splines are used to construct the models; the ordinary smoothing spline

and the P-spline.

For both methods the optimal amount of smoothing must be determined. This is carried

out using the leave-one-out cross-validation criteria. According to the LOOCV approach

the best λ is the value that minimizes CV. For smoothing spline, the only parameter to be

changed is the smoothing parameter λ (lambda). For P-splines the amount of smoothing

depends on two parameters: the smoothing parameter λ and the number of segments.

Optimization of amount of smoothing for smoothing spline

The smoothing parameter λ can take any real value from the close range < 0, 1 >. In order

to find out the development of CV criterion in dependence on λ the whole range must be

covered. It is important to cover closely above all both extremities of the range. Therefore

behavior of smoothing spline was examined with twenty λ values

λ ∈ {10−6, 10−5, . . . , 10−2, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 1− 10−2, 1− 10−3, . . . , 1− 10−10}

covering sufficiently the range < 0, 1 >.

In order to determine the dependency of the optimal amount of smoothing on number of

input points, the λ value was optimized for different numbers of stems. The λ value was

optimized subsequently for 1 to 50 stem profiles consisting of 17 points in average; thus
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the number of smoothed points varied from 15 to 845. The input point density can be also

expressed as different height interspaces between diameters. Therefore the λ value was also

optimized for several numbers of stem profiles, where the interspaces between diameters

were subsequently set to 0.1 m, 0.2 m, 0.3 m, 0.4 m and 0.5 m.

All diameters of all stems were treated as one data set. To compute the CV criterion for

a given λ the smoothing spline was fitted n times whereas each of the n points served just

once as the validation data. In order to eliminate the influence of different point numbers in

data sets the CV criterion was divided by number of input points. Therefore the LOOCV

denotes the mean squared residual of the validation points.

LOOCV =
1

n

n∑
i=1

(
yi − µi(θ̂[−i])

)2
, (3.4.4)

where θ̂[−i] is the estimator obtained by removing the i-th sample.

Optimization of amount of smoothing for P-spline

The smoothing parameter λ of P-spline can take any non-negative value. The set of λ

values utilized for describing the behavior of P-spline smoothing consists of powers of two

with exponents gradually changing from -10 to 12:

λ ∈ {2−10, 2−9, . . . , 20, . . . , 211, 212}.

Because the P-spline regression method is based on B-splines, the amount of smoothing

is influenced also by another parameter, the number of segments (as indicated in the

description of B-spline properties; chapter 2.3.6). When P-spline is fitted to data, number

of segments is to be chosen as well as the smoothing parameter. Therefore the smoothing

parameter must be optimized depending on the chosen number of P-spline segments. The

set of the parameter number of segments (nseg) values that were used for λ optimization

consists of powers of two with exponents from 1 to 9:

nseg = {2, 4, 8, 16, . . . , 512}.

The CV criterion in dependence on λ value is calculated for all values of nseg. In order to

find the dependency of the optimal λ also on the number of input points, the development

of CV with different λ values was observed for different numbers of trees. The calculation

of CV criterion is performed the same way as in the case of smoothing spline.
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3.4.3 Comparison of spline regression models and taper func-

tions

The performance of spline regression models is compared with conventional parametric

taper equations. Based on the taper model comparison carried out by Rojo et al. [2005]

the following models are selected for the comparison. As the best model of polynomial form

the model of Cervera was selected. The best rerpresentative of the group of segmented

polynomial models is considered the original model of Max and Burkhart [1976]. Be-

cause the variable exponent models are designated as the most accurate models two of

them were selected for the comparison; the model of Bi [2000] and the model proposed by

Lee et al. [2003].

Table 3.5: Taper equation selected for comparison with regression splines

Taper model Equation

Cervera (1979)
d

D
= b1 + b2 ·X + b3 ·X2 + b4 ·X3 + b5 ·X4

Max and Burkhart [1976]

(
d

D

)2

= β1(z − 1) + β2(z2/1) + β3(α1 − z)2I1 + β4(α2 − z)2I2,

Bi [2000]
d

D
=

(
log sin (

π

2
· T )

log sin (
π

2
·
1.3

H
)

)b1+b2·sin (π
2
·T )+b3·cos ( 3π

2
·T )+b4·sin (π

2
·T )/T+b5·D+b6·T

√
D+b7·T

√
H

Lee et al. [2003] d = b1 ·Db2 · (1− T )b3T
2+b4T+b5

For fitting the spline models and the selected conventional taper models the same data set

was used as for smoothing optimization. 85 spruce stem profiles with 2 m long interspaces

served for this purpose.

Before finding the regression parameters of the taper functions, the original data had to be

transformed in order to correspond to the independent and dependent variables featuring in

individual taper models. The taper functions were fitted using the least squares method.

For fitting the non-linear functions of variable-exponent taper models, the Levenberg-

Marquardt algorithm was used.

The comparison of individual regression techniques with optimal amount of smoothing was

carried out using the LOOCV approach. When the models are fitted using all accessible

data, a single stem is retained as validation data, while all other stems are used to compute

a regression spline or to fit a taper model. Residuals, i.e. differences between the measured

diameters of the validation stem and the diameters predicted by the model, are assessed

for each position of measured diameters of the validation stem. The residual values of each
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validation stem are evaluated using the statistics listed in Table 3.3. This procedure is

repeated for all stems, so that every single stem serves as validation data exactly once.

The models were also fitted using lower numbers of stems: 5, 10, 20, 40 and 60. For these

cases the appropriate number of stems was selected randomly from the whole data set.

From the remaining stems, one was randomly selected as the validation stem and the real

diameters were compared to the diameters predicted by the model. This procedure was

repeated 400 times.

Because the variances of the evaluative statistics were not equal in all cases, the Kruskal-

Wallis test was used to test the equality of mean values of the statistics among taper

models.



Chapter 4

Results and Discussion

4.1 Individual stem curve modeling

4.1.1 Tangent vector corrections for Catmull-Rom spline

The Catmull-Rom spline interpolates well input point sequences with approximately uni-

form chords, i.e. distances between successive points. In such case the length of the tangent

vectors approximately corresponds to the length of the chords and the Catmull-Rom spline

generates a smooth interpolation curve. Because the tangent vector length at the point Pi

is derived from the distance of points Pi−1 and Pi+1, in case of markedly unequal distances

between input points may the length of the tangent vector exceed several fold the length

of the chord of the interpolated segment. The curve is then forced to produce oscillation

or even loops (Figure 4.1).

This effect can be eliminated by correcting the lengths of the tangent vectors for short

curve segments adjacent to a long curve segment. Therefore corrections of the tangent

vectors lengths are implemented into the algorithm. The tangent vectors are corrected

not concerning individual input points, but in relation to curve segments. In the following

equation, piout denotes the tangent vector which originates in the input point Pi and drives

the ith curve segment in the closeness of the input point Pi. The tangent vector pi+1in drives

the ith curve segment in the closeness of the input point Pi+1

74
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Using the notation used in chapter 2.3.1 the corrected tangent vectors can be expressed:

piout =

 kf · ci/ci−1 · (Pi+1 −Pi−1) if ci−1 > kc · ci
τ · (Pi+1 −Pi−1) otherwise

(4.1.1)

pi+1in =

 kf · ci/ci+1 · (Pi+2 −Pi) if ci+1 > kc · ci
τ · (Pi+2 −Pi) otherwise

where ci denotes the length of the ith chord:

ci = ||Pi+1 −Pi||

ci−1 = ||Pi −Pi−1||.
(4.1.2)

Values of the parameters kc - the correction condition - and kf - the correction factor - are

to be set empirically. For given purposes proved good the values kc = 5, kf = 2.

Figure 4.1: Tangent vector length corrections for Catmull-Rom spline. Left: A stem profile

fitted by the original Catmull-Rom spline and the problematic spline segment. Right:

Catmull-Rom spline with tangent vector length correction.

The corrections adjust the length of the tangent vectors in case of markedly different

subsequent chord lengths. The important thing is that although the lengths of tangent
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vectors entering and leaving a particular input point may not be equal, the direction of

the tangent vectors is kept. Such corrections do not infract the first degree continuity of

the curve.

4.1.2 Primary comparison of spline types

4.1.2.1 Lowering the number of evaluated spline types

Based on preliminary analyses, all interpolation B-splines with centripetal parameterization

(IBSc2, IBSc3, IBSc4) were excluded because they generated uncontrollable oscillations.

For the same reason, interpolation B-splines with uniformly spaced parameterization of

degree 3 and 4 (IBSu3, IBSu4) were also excluded. Approximation splines of degree 4

(BS4, NUBS4, NURBSdbh4, NURBSav4) were removed from subsequent analysis because

of their low forming ability. The Ferguson interpolation curve (LFC) was also excluded

from further analysis because it was unable to conform to the lower part of the stem

curve; this failure to conform is caused by tangent vector directions derived from Lagrange

interpolation polynomials. The mentioned splines are not suitable for this special purpose

and do not figure in the analysis anymore.

4.1.2.2 The influence of input point combination

The accuracy of spline stem curve models improved with an increase in the number of input

points up to a threshold number. As illustrated in Table 4.1, near maximum accuracy was

obtained in almost all cases with nine input points (four input points at fixed positions and

five additional points at relative heights); the use of more than nine input points did not

result in a statistically significant improvement in accuracy. No significant improvement in

accuracy was observed even with the use of the full set of 22 input points (absolute heights

0 m, 0.3 m, 1.3 m and relative heights 10 %, 15 % . . . 95 %, 100 %). The effect of numbers

of input points is demonstrated with an example based on MAR values obtained with the

Catmull-Rom spline (Figure 4.2).
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Table 4.1: Numbers of input points sufficient for accurate description of the stem form in

terms of the indicated statistic

Spline DB MAR SDR MSR TVD

CRS 9 9 9 7 7

IBSu2 9 7 7 7 8

NCS 8 8 8 8 8

IterBS 9 8 8 8 8

BS2 9 9 9 7 9

BS3 9 9 7 7 9

NUBS2 9 9 9 7 9

NUBS3 9 9 9 9 9

NURBSdbh2 9 9 7 7 9

NURBSdbh3 9 9 9 9 9

NURBSav2 9 9 9 9 9

NURBSav3 11 9 9 9 11

Figure 4.2: Relationship between mean absolute residual (MAR) and number of input

points for the Catmull-Rom spline. Combination no. 10 contains 22 input points, as

idicated in the text. Boxes indicate medians and 25th and 75th percentiles; notches indicate

comparison intervals for medians; whiskers correspond to 99 % coverage of the data; crosses

denote outlier values.
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Both Figure 4.2 and Tables A.2 and A.3 indicate, that the input point combination no.

3 (eight input points) paradoxically produces curves with higher errors than the previous

combination containing seven points. This efect is caused by a lack of points located in

the upper parts of the stem. Combination no. 2 contains an input point at 75 % of the

stem height, while the most upperpoint of combination no. 3 is placed to 65 % of the stem

height. Therefore the upper stem curvature is not well described and diameters of the last

third of the stem are underestimated. If the point at 65 % would be replaced by a point

at 75 % of the stem height, the errors of splines based on point combination no. 3 would

be much lower, as indicated in Figure 4.3.

Figure 4.3: Developement of MAR values with corrected input point combination no 3.

See explanation in the text.

The number of diameters required to describe the stem curve properly well corresponds

with the results of Smaltschinski [1983]. He states that from 10 points the contribution

of an added point is negligible which is in accordance with the results obtained in this

study (Table 4.1). Figueiredo-Filho et al. [1996a] considers the accuracy of the whole

curve sufficient not until 10 input points, which is not a big difference.

Comparison of Figures 4.2 and 4.3 well illustrates the importance of the input point

distribution. This is in accordance with later works, e.g. Smaltschinski [1983] and

Figueiredo-Filho et al. [1996a]. The input point combinations proposed by Figueiredo-

Filho et al. [1996a] are regarded as the optimal point distribution for natural cubic
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spline. But obviously they are not optimal in case of using Catmull-Rom spline. Consider-

ing those two facts it is in evidence that different splines have different optimal distribution

of input points. That topic is being solved in chapter 4.1.3.

4.1.2.3 Comparison of spline types

The comparisons of individual spline types with 6 (combination no. 1; the least number

investigated) and 9 (combination no. 4; the highest number meaningful for accuracy

improvement) input points are shown in Tables 4.2 and 4.3. The complete set of tables

illustrating results of comparisons of splines based on 6 to 10 points (combinations 1 to

5) are inserted in Appendix A. Because a further increase in point number did not affect

the accuracy, results for combinations with more input points (combinations 6 to 9 in

Table 3.2) are not shown. To illustrate no significant improve of accuracy with more

points, Appendix A also contains Table A.6 with the results of the comparison of splines

computed from the full set of points. Stem curves modeled by all interpolation splines and

two representatives of approximation splines (BS2 and NURBSav2) based on six to nine

input points are showed in Figures B.1-A.6 in Appendix A.

Table 4.2: Comparison of splines based on 6 input points (combination no. 1). For each

statistic mean value and standard deviation is shown. Values in a column followed by the

same letter indicate no significant difference between spline types. Stars in columns DB

and TVD indicate mean values significantly different from zero.

Spline DB (10-2 m) MAR (10-2 m) SDR (10-2 m) MSR (10-3 m2) TVD (%)

CRS -1.03 0.52 a* 1.30 0.54 a,b 1.64 0.69 a,b 0.32 0.26 a -8.22 3.69 a*

IBS2u -0.92 0.49 a* 1.14 0.47 a 1.46 0.61 a 0.25 0.21 a -8.14 3.81 a*

NCS 0.45 1.03 c* 1.76 1.33 c 2.11 1.49 c 0.67 0.99 b 6.27 11.01 b*

IterBS 0.49 1.11 c* 2.26 1.74 d 2.73 1.97 d 1.13 1.61 c 7.12 12.89 b*

BS2 -1.16 0.61 a,b* 1.57 0.61 b,c 1.93 0.75 b,c 0.43 0.33 a,b -9.24 4.01 a*

BS3 -1.15 0.61 a,b* 1.67 0.64 b,c 2.02 0.77 b,c 0.47 0.35 a,b -8.85 4.17 a*

NUBS2 -1.24 0.63 a,b* 1.61 0.63 b,c 1.95 0.76 b,c 0.45 0.34 a,b -10.34 4.09 a,c*

NUBS3 -1.28 0.65 a,b* 1.71 0.66 b,c 2.04 0.79 b,c 0.48 0.37 a,b -10.83 4.31 a,c*

NURBSdbh2 -1.17 0.64 a,b* 1.68 0.63 b,c 2.08 0.77 b,c 0.50 0.36 a,b -8.99 4.36 a*

NURBSdbh3 -1.27 0.68 a,b* 1.83 0.68 c 2.20 0.80 c 0.55 0.39 a,b -10.30 4.94 a,c*

NURBSav2 -1.44 0.75 b* 1.93 0.72 c,d 2.30 0.85 c,d 0.61 0.44 b -12.33 4.90 c*

NURBSav3 -1.47 0.73 b* 1.90 0.73 c,d 2.22 0.86 c 0.57 0.43 a,b -12.98 4.76 c*
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Table 4.3: Comparison of splines based on 9 input points (combination no. 4)

Spline DB (10-2 m) MAR (10-2 m) SDR (10-2 m) MSR (10-3 m2) TVD (%)

CRS 0.00 0.15 a,b 0.39 0.11 a 0.54 0.17 a 0.03 0.02 a 0.25 2.17 a

IBS2u 0.02 0.15 a,b 0.43 0.12 a,b 0.66 0.23 a,b 0.05 0.04 a,b -1.27 2.52 b*

NCS -0.16 0.19 c* 0.70 0.32 c 1.07 0.53 c 0.14 0.15 c -1.68 2.51 b,c*

IterBS -0.26 0.23 d* 0.95 0.48 d 1.52 0.82 d 0.30 0.33 d -2.89 2.77 c*

BS2 -0.01 0.17 a,b 0.52 0.13 b,e 0.83 0.24 b 0.07 0.04 a,b 1.43 2.34 a,d,e*

BS3 -0.02 0.19 a,b 0.58 0.15 e 0.93 0.29 b,c 0.09 0.06 b,c 1.63 2.44 d,e*

NUBS2 -0.02 0.17 a,b 0.51 0.12 b,e 0.80 0.23 b 0.07 0.04 a,b 1.22 2.31 a,d*

NUBS3 -0.04 0.20 a* 0.59 0.16 c,e 0.94 0.28 b,c 0.10 0.06 b,c 1.39 2.47 a,d*

NURBSdbh2 0.05 0.19 b 0.58 0.14 e 1.03 0.35 c 0.12 0.08 b,c 2.64 2.77 d,e*

NURBSdbh3 0.02 0.22 a,b 0.66 0.17 c,e 1.17 0.42 c 0.15 0.11 c 2.72 3.05 d,e*

NURBSav2 0.00 0.20 a,b 0.62 0.15 c,e 1.07 0.35 c 0.12 0.08 b,c 2.24 2.79 d,e*

NURBSav3 -0.08 0.24 a,c* 0.69 0.2 c 1.06 0.34 c 0.12 0.08 b,c 1.45 2.71 a,d,e*

Interpolation splines

The most accurate results were obtained with the Catmull-Rom spline. While both diam-

eter prediction and volume estimation were underestimated for 6 and 8 points, with 9 and

more points the Catmull-Rom spline was the only spline that did not show systematic er-

rors neither in diameter prediction nor in volume estimation. Moreover, the Catmull-Rom

spline had the lowest values of MAR, SDR, and MSR, which indicates that the Catmull-

Rom spline closely follows the original data and with well-balanced diameter errors. No

oscillations or locally increased diameter errors were detected with the Catmull-Rom spline.

The second degree interpolation B-spline also had low residual value; in most cases its

errors were not significantly higher than those of Catmull-Rom spline. Unfortunately,

the interpolation B-spline systematically underestimates the total volume even for higher

numbers of input points.

The natural cubic spline and the iterative B-spline had positive values of diameter bias and

overestimated the stem volume when six points were used (combination 1 in Table 3.2),.

With seven or more input points, both second-degree continual cubic splines systematically

underestimated the diameters as well as the total volumes. With six or seven input points,

these two functions had the highest SDR and MSR values among all splines, indicating a

chance of oscillations; deviations with the iterative B-spline were always higher. With more

than seven input points, residuals and their square values were most pronounced with the
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iterative B-spline while oscillations generated by the natural cubic spline were reduced.

The propensity of the natural cubic spline for oscillations has been described earlier

[De Boor, 2001; Lahtinen, 1988] and is attributed to the continuity of its second deriva-

tive. In agreement with Figueiredo-Filho et al. [1996a], oscillation in the current

study most often occurred with smaller numbers of input points; as the number of input

points increased, the oscillations decreased.

The oscillations produced by the iterative B-spline were even higher than those of the

natural cubic spline and are easily explained. The natural cubic spline is defined as a

curve having minimal curvature among all second-order continuous curves interpolating

a given set of points Liu [1980]; Lahtinen [1988]. Because the iterative B-spline has

been proven to approach the interpolation curve [Lin et al., 2004] and has second-order

continuity, its curvature must necessarily be higher than that of natural cubic spline, which

results in more pronounced oscillations. For the same reasons, oscillations were observed in

this study for all interpolation B-splines of the third and fourth degree, which have second

and even third, respectively, degree continuity.

Because there is no reason to assume that the stem curve is necessarily second-degree

continuous, it is better to avoid the risk of oscillation by not using second-degree continuous

interpolation splines. This agrees with Lahtinen [1988], who achieved better results using

a quadratic spline with only first-degree continuity.

Approximation splines

The behavior of all approximation splines was very similar. With an increase in the num-

ber of input points, MAR, SDR, and MSR for all the approximation splines decreased,

indicating that the fit of the splines to the real stem curve improved. On the other hand,

bias values and total volume estimates increased with increasing input points. For input

combinations 1-3 (six to eight input points), bias was negative, while for more than 11

input points, bias became positive. The TVD value was negative for the smallest num-

ber of input points; for more than eight input points, the total volume was significantly

overestimated.

Plain second degree B-spline was the best representative of the group. With the approxima-

tion splines, residual values tended to increase (in many cases with statistical significance)

with an increase in the spline degree. In addition, residual values were higher for NURBS

than for B-splines.
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Residual values were higher for approximation splines of the third degree than for those of

the second degree, and were even higher for approximation splines of the fourth degree. The

poor performance of approximation splines of higher degrees can be explained according

to Linkeová [2007]. The greater the degree of the B-spline, the more points drive each

segment of the curve. Because B-splines are defined as a linear combination of input

point coordinates and basis functions, an increase in the number of points describing each

segment decreases the relative influence of each input point position on the shape of the

segment and therefore increases the distance between the resulting curve and the input

points.

Also weight implementation affects the curve accuracy. NURBS that emphasized DBH

and that had weights set by the averaging method had higher residual values than the

plain B-spline with uniform weight distribution. Weights of the input points in NURBS

express the relative importance of the input points. The negative consequence of improving

the approach of the curve to the emphasized point is a reduction in how the other points

affect the curve. Splines with averaging weight distribution suffer in the same matter. BS2

with uniform knot vector and NUBS2 with averaging knot vector produce in all cases very

similar results. Therefore, the knot vector does not appear to be crucial.

B-splines and NURBS are always smoother than the driving polygon [MacCallum and

Zhang, 1986] and lie within its convex hull. Therefore, the lower part of a stem is always

overestimated while the upper part is underestimated. With few input points, all of the

splines examined here underestimated the diameters in average and total volume. An

increase in the number of input points improved the representation of the upper stem but

not of the butt swell curvature. When the numbers of points were increased, therefore, the

upper stem diameter was no longer underestimated, and the total values were influenced

by the positive deviation at the lower stem. Bias and the volume estimation would be

more balanced if more points were also included at the bottom part of the stem.

4.1.3 Determination of the optimal input point distribution

It was found that for proper fit of the lower stem curvature it is useful to place an input

point approximately to 10 % of the stem height. For lower trees this is satisfied by the

point at breast height. Therefore the data set was split into two height classes where

the threshold value was 20 m and input point placement was optimized for each class

separately.
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For reasons of readability, the demonstration of the dependence of standardized criteria

values on input point positions in Figure 4.4 displays the optimization of a position of a

single input point in five-point Catmull-Rom spline. For the optimization of a single point

there are 18 positions to be evaluated. For two points there are 153 different combinations

and for next numbers of input points there are even more possible combinations to evaluate.

Such numbers of combinations cannot be legibly shown in a chart.

Figure 4.4: Developement of standardized criteria values for different input point combi-

nations; Catmull-Rom spline; 1 additional input point

As indicates Figure 4.4, the standardized values of criteria are closest to zero in the optimal

point position. With growing distance from the optimal position the values of the criteria

increase. The criteria have mostly their minimum close to each other, but apparently the

minima of the cirteria do not meet exactly. The optimal position is then depentend on

the importance of particular criterion, which is expressed as the weight of the aggregate

objective function. The higher weight of a criterion, the closer to its minimum is the final

optimal position.

The chart visualizing the development of standardized criteria values (Figure 4.4) and also

tables showing properties and details of twelve combinations with the lowest value of the

aggregate objective function were generated for each spline and each input point number.
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Table 4.4: Overview of best positions for 5th input point; Catmull-Rom spline (AOF =

value of aggregate objective function; Comb. = rank of the combination; Pos. = positon

of the 5th input point)

AOF Comb. Pos. DB MAR SDR MSR TVD

1 0.148 11 60 -0.16 0.53 0.71 0.06 -0.40

2 0.165 10 55 -0.26 0.61 0.80 0.08 -1.20

3 0.248 13 70 -0.16 0.47 0.61 0.04 -2.25

4 0.255 12 65 -0.20 0.51 0.66 0.05 -1.87

5 0.257 8 45 -0.30 0.83 1.03 0.13 -0.23

6 0.273 14 75 -0.23 0.53 0.67 0.05 -3.75

7 0.300 9 50 -0.33 0.71 0.91 0.10 -1.78

8 0.380 16 85 -0.44 0.75 0.92 0.09 -7.37

9 0.396 7 40 -0.55 0.95 1.18 0.17 -3.58

10 0.460 15 80 -0.21 0.64 0.79 0.07 -3.70

11 0.461 17 90 -0.78 0.98 1.18 0.16 -11.43

12 0.481 6 35 -0.78 1.09 1.35 0.22 -6.75

Table 4.5: Sectional and total diameter bias for 12 best input point combinations for CRS.

Yellow background of a cell indicates that the mean significantly differs from zero.

No. of bi-

ased sections

Section
Total

1 2 3 4 5 6 7 8 9 10

1 4 0.04 0.24 0.08 0.03 -0.03 0.05 -0.09 -0.44 -0.90 -0.76 -0.16

2 5 0.04 0.27 0.16 0.13 0.02 -0.08 -0.45 -0.84 -1.19 -0.86 -0.26

3 5 0.04 0.16 -0.15 -0.33 -0.46 -0.31 -0.08 0.06 -0.27 -0.49 -0.16

4 6 0.04 0.18 -0.07 -0.21 -0.31 -0.17 -0.08 -0.22 -0.66 -0.67 -0.20

5 8 0.04 0.43 0.56 0.57 0.19 -0.35 -0.92 -1.28 -1.49 -0.96 -0.30

6 6 0.04 0.11 -0.27 -0.53 -0.71 -0.59 -0.33 0.03 0.01 -0.27 -0.23

7 8 0.04 0.31 0.27 0.25 0.04 -0.28 -0.77 -1.14 -1.40 -0.93 -0.33

8 7 0.05 0.03 -0.49 -0.87 -1.18 -1.15 -0.94 -0.47 0.06 0.28 -0.44

9 9 0.04 0.43 0.52 0.32 -0.33 -0.93 -1.43 -1.67 -1.73 -1.04 -0.55

10 7 0.04 0.10 -0.33 -0.62 -0.84 -0.73 -0.45 0.02 0.34 0.17 -0.21

11 8 0.05 -0.04 -0.67 -1.17 -1.6 -1.68 -1.55 -1.15 -0.58 0.11 -0.78

12 8 0.05 0.45 0.42 -0.07 -0.86 -1.44 -1.85 -1.99 -1.92 -1.10 -0.78
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Table 4.6: Sectional and total volume difference for 12 best input point combinations for

CRS. Yellow background of a cell indicates that the mean significantly differs from zero.

No. of bi-

ased sections

Section
Total

1 2 3 4 5 6 7 8 9 10

1 4 0.40 3.30 1.39 0.62 -0.26 1.08 -0.96 -9.39 -26.91 -45.82 -0.40

2 6 0.41 3.61 2.33 1.86 0.31 -1.29 -8.03 -18.85 -35.53 -52.2 -1.20

3 5 0.43 2.22 -1.89 -4.86 -7.37 -5.93 -2.22 0.84 -8.84 -28.7 -2.25

4 6 0.42 2.55 -0.80 -3.00 -4.89 -3.36 -1.81 -5.03 -19.89 -39.87 -1.87

5 9 0.4 5.72 7.92 8.61 3.3 -5.39 -16.2 -28.41 -43.8 -58.08 -0.23

6 5 0.45 1.70 -3.40 -7.47 -11.03 -10.5 -6.61 0.36 1.50 -10.26 -3.75

7 8 0.39 4.13 3.77 3.48 0.41 -5.01 -14.4 -26.05 -41.71 -56.45 -1.78

8 7 0.47 0.72 -6.09 -12.06 -17.6 -19.44 -18.31 -12.1 0.74 31.61 -7.37

9 9 0.41 5.66 7.40 4.79 -4.9 -15.36 -25.97 -36.95 -50.37 -62.44 -3.58

10 7 0.45 1.56 -3.88 -8.32 -12.04 -11.79 -7.8 2.14 14.6 30.06 -3.70

11 8 0.51 -0.13 -8.40 -15.98 -23.23 -27.28 -29.09 -27.47 -21.18 8.55 -11.43

12 8 0.47 5.89 5.89 -0.86 -12.7 -23.19 -33.18 -43.29 -55.41 -66.19 -6.75

The first table (demonstration on the example of Catmull-Rom spline, 5 input points is

shown in Table 4.4) shows the details of the best combinations and values of the five statis-

tics characterizing accuracy of curves based on those input point combinations. Sectional

diameter bias and total diameter bias with the indication of bias values significantly differ-

ent from zero are shown in Table 4.5. Similarly the sectional and total volume differences

are visualized (Table 4.6).

Twelve combinations considered as best in terms of the aggregate objective function were

evaluated concerning the requirement of stability and reliability of the combination. A

input point combination was selected as optimal, if small shift of the point positions (up

to 5 % of the stem height) does not markedly affect the accuracy of the curve. Therefore

input combinations generating curves with low errors by chance are eliminated.

Due to different behavior of individual splines optimal input point positions also differ.

With natural cubic spline the input points are added preferably to the lower third of the

stem in order to reduce oscillations emerging above all in the lower third. On the other

hand with B-spline the points are placed preferably to the surroundings of 70 % of the

height so that the approximation spline is able to describe the major change of direction of

the upper tree profile. With Catmull-Rom spline and interpolation B-spline the points are
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Table 4.7: Optimal positions of additional points for trees under 20 m. Relative heights (%)

CRS NCS IBS2 BS2

60 35 55 70

50 85 15 45 20 60 65 85

15 50 85 15 40 80 20 40 75 25 65 85

15 35 55 85 15 25 35 95 20 40 65 85 10 50 60 85

15 25 35 55 85 10 15 20 65 95 20 40 50 70 90 10 15 50 60 85

Table 4.8: Optimal positions of additional points for trees over 20 m. Relative heights (%)

CRS NCS IBS2 BS2

65 25 50 65

50 80 15 45 25 65 60 85

10 50 80 15 35 80 15 30 65 30 50 80

10 40 60 85 10 15 35 80 15 30 55 75 15 50 65 80

10 20 50 75 95 10 15 25 45 85 15 30 50 70 85 10 40 50 65 80

distributed more evenly along the stem. The final positions of input points for lower and

higher stems are shown in Tables 4.7 resp 4.8. These positions were then used to model

stem curves for spline comparison.

The optimal input point positions for natural cubic spline found in this study differ from

those stated by Smaltschinski [1983] and also from those stated by Figueiredo-Filho

et al. [1996a]. Reasons are following. Neither of them included the stem foot in the

spline. Smaltschinski [1983] avoided the demanding curvature of the stem butt by start-

ing the spline at 1.3 m; Figueiredo-Filho et al. [1996a] started the stem profile at

the height 0.1 m. Moreover, they both used only the two edge points as fixed points (at

1.3 m and 0.1 m, respectively, and the top of the stem); the other point positions were

optimized to minimize errors. In this study the stem is modeled from the very bottom

and except the foot and the top of the stem two other points were fixed at conventional

positions of stump height and breast height, while fewer positions were optimized. As

stated by Smaltschinski [1983], the conventional measuring height 1.3 m is not favorable

concerning the accuracy of the resulting curve, but the model is expected to reflect the

conventional measuring point. What makes this study yet more exacting is a more pro-

nounced but swell of spruce trees causing higher propensity of the curves for oscillating in

comparison with the more moderate but swell of loblolly pine trees used by Figueiredo-
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Filho et al. [1996a]. This difference of the shape of the butt swell is clearly visible when

comparing figures in this thesis with the figures of Figueiredo-Filho et al. [1996a].

4.1.4 Comparison of performance of individual splines

Results of the evaluation of performance of splines based on the optimal input point dis-

tributions for five to nine input points is shown in Table 4.9. The table contains criteria

values calculated for the whole stem curve and their statistical comparison. Sectional di-

ameter biases and volume differences for splines with five to nine input points are shown

in Tables B.1 to B.5 (Appendix B).

A reliable curve with well-balanced error is produced by Catmull-Rom spline. For all input

point numbers the Catmull-Rom spline gives unbiased estimates of total volume with the

mean total volume difference less than 1 % .The overall diameter prediction is slightly

underestimated (less than 2 mm) for five input points; for more input points the prediction

is unbiased (Table 4.9). The mean absolute residual moves around 0.5 cm for five points

and less for more points. The low values of SDR and MSR for all input point numbers

illustrate the evenness of the error distribution along the stem. When only five input

points are used the spline does not represent well the two major direction changes of the

stem profile. Therefore the second section is slightly overestimated and the three topmost

sections are underestimated both for diameter and volume predictions. With six input

points only the second section is biased; with more input points the spline gives diameter

and volume predictions without any, neither sectional nor total, systematic deviations.

The oscillations of natural cubic spline are strongly pronounced with lower numbers of

input points. With rising number of input points the oscillation is reduced; with eight

and nine points its extent is limited only to the lowermost third of the stem. However

the oscillation is not completely eliminated even with nine input points, as illustrated by

significantly higher values of MAR, SDR and MSR throughout all the input point numbers.

Although the total volume estimation and overall diameter prediction are not significantly

biased, the high sectional diameter and volume errors also show the unsuitability of this

spline for the given purpose.

A reasonable representation of the stem curve produced by interpolation B-spline is evi-

denced by low values of MAR, SDR and MSR for all numbers of input points. With 5

input points the two lowermost sections and the topmost third are biased and the total

volume estimate is overestimated. With 6 and more input points the total volume and
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the overall diameter prediction are accurate. Splines based on seven and more points give

unbiased predictions of diameter and volume both for the sections and the entire stem.

Approximation B-spline suffers by systematic errors in both main curvatures. For all

numbers of input points it overestimates the lower part and underestimates the topmost

sections (tables). The unbiased total diameter and volume estimates emerging in some

cases are consequences of compensation of both systematic errors. With increasing number

of input points, values of MAR, SDR and MSR tend to decrease in contrast to the volume

error, which grows and decreases in turns.

Table 4.9: Comparison of splines based on optimal distribution of input points for different

numbers of input points. For each statistics mean and standard deviation is shown. Values

in a column followed by the same letter indicate no significant difference between spline

types. Stars in columns DB and TVD indicate mean values significantly different from

zero.

Spline DB (10-2 m) MAR (10-2 m) SDR (10-2 m) MSR (10-3 m2) TVD (%)

5
p

oi
n
ts

CRS -0.18 0.32 a* 0.58 0.20 a 0.75 0.26 a 0.06 0.05 a -0.91 4.86 a,b

NCS -5.35 5.06 b* 8.36 6.45 b 9.49 7.32 b 14.43 20.23 b 4.45 25.49 a,b

IBS2u 0.03 0.30 a 0.72 0.26 a 1.34 0.58 c 0.21 0.18 c 1.32 3.95 a*

BS2 -0.49 0.37 c* 1.09 0.36 c 1.36 0.43 c 0.20 0.13 c -2.36 5.02 b*

6
p

oi
n
ts

CRS -0.02 0.25 a 0.48 0.16 a 0.63 0.22 a 0.04 0.03 a 0.20 3.67 a

NCS -0.11 0.41 a* 2.03 1.42 b 2.49 1.66 b 0.89 1.18 b -1.31 5.25 b*

IBS2u -0.01 0.26 a 0.51 0.18 a 0.76 0.29 a 0.07 0.06 a -0.07 3.75 a,b

BS2 -0.08 0.29 a* 0.73 0.22 c 1.02 0.30 c 0.11 0.07 c 0.92 4.64 a

7
p

oi
n
ts

CRS -0.01 0.18 a 0.43 0.14 a 0.58 0.20 a 0.04 0.03 a -0.24 2.57 a

NCS -0.11 0.38 b* 1.59 0.91 b 2.02 1.14 b 0.53 0.60 b -1.47 5.37 a*

IBS2u -0.01 0.20 a,b 0.44 0.14 a 0.63 0.21 a 0.04 0.03 a -0.29 2.70 a

BS2 -0.05 0.20 a,b 0.63 0.17 c 0.94 0.26 c 0.10 0.05 c 1.11 2.67 b*

8
p

oi
n
ts

CRS -0.03 0.15 a 0.40 0.12 a 0.56 0.18 a 0.03 0.03 a -0.16 2.06 a

NCS -0.03 0.41 a 0.81 0.30 b 1.19 0.47 b 0.16 0.13 b 0.29 5.02 a,b

IBS2u -0.03 0.20 a 0.44 0.14 a 0.63 0.22 a 0.04 0.03 a -0.07 2.56 a

BS2 -0.03 0.17 a 0.54 0.12 c 0.86 0.24 c 0.08 0.04 c 0.84 2.47 b*

9
p

oi
n
ts

CRS -0.03 0.15 a 0.39 0.11 a 0.54 0.18 a 0.03 0.03 a -0.26 1.91 a,b

NCS -0.13 0.39 b* 0.75 0.33 b 1.16 0.54 b 0.16 0.20 b -1.04 8.60 a

IBS2u 0.01 0.12 a 0.40 0.13 a 0.60 0.22 a 0.04 0.03 a -0.12 1.95 b

BS2 -0.01 0.16 a 0.53 0.12 c 0.85 0.24 c 0.08 0.04 a 1.18 2.25 c*
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The B-spline is always smoother than the driving polygon and therefore the lower stem

is always overestimated, while the upper stem underestimated. With adding more input

points the curve can be considerably improved, but in the curvatures it will never entirely

reach the input points. When more points are added to the upper part, the upper curve is

put more precisely and the underestimation of the upper stem is reduced. That is exactly

what happens with adding the seventh and the ninth point. Although the curve is more

accurate, the plus error of the lower stem dominates and paradoxically the absolute value

of total volume error grows. The volume error is again lowered with 8-point spline. The

8-point set contain an input point in relative height 10 %, which reduces the plus error of

the lower stem.

Values of the evaluation criteria for the natural cubic spline in this study are higher as

compared to the values presented by Figueiredo-Filho et al. [1996a]. Except the

differences between both studies, which were mentioned in chapter 4.1.3 and which explain

the differences between the optimal distribution of input points, one reason more takes

place. Values of error statistics were determined from deviations between the predicted

curve and measured diameters, while Figueiredo-Filho et al. [1996a] used a smooth

curve as a reference.

With the exception of natural cubic spline all the splines selected for this study have only

the first degree continuity. Therefore they do not suffer from oscillations and their er-

rors are lower than the errors of the natural cubic spline. This is with agreement with

Lahtinen [1988] who reported that the quadratic spline, which is only once continuously

differentiable, was superior to the cubic spline and also with Goulding [1979] who rec-

ommends infracting the second degree continuity of the curve in cases of malformed stems

or in cases of unevenly long intervals between input points in order to avoid oscillations.

Well workable cubic segments and interruption of second order continuity in knots are two

important properties of Catmull-Rom spline that cause the ability to represent accurately

the stem without the risk of oscillations.

4.1.5 Spline representation of irregular stem curves of broadleaved

trees

With respect to the assumed type of dependence between the optimal positions of addi-

tional input point and the positions of the inserted points describing the stem irregularity,

the resulting point set was split into two parts and linear regression was computed sepa-
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rately for each part (Figure 4.5). The threshold value was determined in such way that the

residual sum of squares is minimized. Expected relation between optimal position of the

seventh point and positions of the inserted points was found only for Catmull-Rom spline.

Therefore regression was fitted only for Catmull-Rom spline (Figure 4.5). Coefficients of

determination of both lines are very low (0.29 and 0.13 respectively), but the regression

parameters are statistically proved to be significantly different from zero.

Figure 4.5: Regression lines for 7th point placement for Catmull-Rom spline. X values

denote the relative height of the inserted points describing the stem irregularity. Y values

are the optimal position of seventh input point. Solid green line is the regression line;

dashed red lines denote borders of 95% confidence region.

With natural cubic spline and B-spline the location of the optimal input points is in

principle independent on the positions of the inserted input points and it does not allow

building the regression. Therefore general optimal position of the seventh point for all stems

was calculated. It was found that both for natural cubic spline and B-spline the curve is

the most accurate if the seventh point is placed in 20 % of the stem height. For evaluating

different methods of placing the seventh point was the regression replaced by situating the

additional point to the relative height 20 % of the stem height. The dependence of the

optimal input point positions on the positions of the inserted points is shown in Figure C.1

(Appendix C).

For all splines, according to expectations the lowest error values are found in case that the

point is placed to its optimal position. But rarely the errors significantly differ from errors

of other variants of point placement.
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Table 4.10: Comparison of variants of the seventh point placement for Catmull-Rom spline.

Different indexes in columns indicate statistically significant differences among variants.

Variant of placement DB (10-2 m) MAR (10-2 m) SDR (10-2 m) MSR (10-3 m2) TVD (%)

Optimal position 0.001 a,b 0.394 a 0.523 a 0.033 a 0.204 a

Regression -0.020 a,b 0.465 b 0.585 a,b 0.045 a,b -0.051 a

Center of largest intersp. 0.039 a 0.467 b 0.576 a,b 0.046 a,b 1.076 a

Randomly I (near center) -0.045 a,b 0.483 b 0.600 b 0.050 a,b -0.305 a

Randomly II -0.042 a,b 0.527 b,c 0.634 b,c 0.063 b,c -0.357 a

6-points spline -0.089 b 0.570 c 0.665 c 0.071 c -0.924 a

As shows Table 4.10, the errors of Catmull-Rom spline (Figure C.2 in Appendix C) with

the additional point placed according to the linear regression, into the center of largest

interspace or randomly near the center are approximately equal. Statistical tests indicate

that there mostly are no significant differences between placing the seventh point to its

optimal position, according to the regression and to the center of the largest interspace.

On the contrary, considerably worse are variants with only six points or with the seventh

point placed randomly.

Table 4.11: Comparison of variants of the seventh point placement for natural cubic spline.

Variant of placement DB (10-2 m) MAR (10-2 m) SDR (10-2 m) MSR (10-3 m2) TVD (%)

Optimal position -0.765 a 2.411 a 2.873 a 1.354 a 5.431 a

20 % of stem height -0.507 a,b 2.572 a 3.070 a 1.573 a 15.207 a

Center of largest intersp. 1.005 b,c 2.952 a 3.797 a 2.453 a 47.234 b,c

Randomly I (near center) 0.938 b,c 3.037 a,b 3.822 a,b 2.418 a 49.829 b

Randomly II 2.424 c 4.176 b 4.961 b 5.671 a 99.684 c

6-points spline 4.911 d 7.243 c 7.782 c 14.169 b 209.835 d

In natural cubic spline the seventh input point markedly reduces the high errors (Ta-

ble 4.11) caused by uncontrollable oscillations (Figure C.3). The lowest error values are

obtained by placing the seventh point to 20 % of the stem height. But for all variants the

oscillation is still very strong.

For B-spline (Figure C.4) the results of the comparison (Table 4.12) show that placing the

additional point to the relative height 20 % significantly lowers the diameter bias and the

total volume difference if compared with other variants of the additional point placement.

On the contrary, values of MAD, SDR and MSR are higher, in some cases significantly.
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Table 4.12: Comparison of variants of the seventh point placement for B-spline.

Variant of placement DB (10-2 m) MAR (10-2 m) SDR (10-2 m) MSR (10-3 m2) TVD (%)

Optimal position 0.098 a,b 0.553 a 0.760 a,b 0.070 a 0.973 a,b

20 % of stem height 0.033 a 0.621 b 0.811 b 0.086 a,b -0.004 a

Center of largest intersp. 0.241 c 0.610 a,b 0.756 a 0.079 a,b 3.743 c

Randomly I (near center) 0.204 c 0.618 b 0.774 a,b 0.082 a,b 2.848 c

Randomly II 0.181 a,b 0.654 b 0.807 b 0.089 b,c 2.684 b,c

6-points spline 0.163 b,c 0.718 c 0.857 b 0.104 c 2.506 b,c

While placing the point to the relative height 20 % improves the shape of the curve in the

lower stem, which is the most important for volume estimation, placing the point into the

largest interspace between existing points results in more even distribution of input points

and decrease of the deviations of the modeled curve from the real data.

Differences between individual spline types are also significant. The lowest errors are

produced by Catmull-Rom spline, the highest by the natural cubic spline.

Oscillations of natural cubic spline caused by its second degree continuity have been al-

ready many times reported Goulding [1979]; Lahtinen [1988]. Natural cubic spline

may be suitable for describing smooth curves of coniferous trees, but is not able to cope

with complicated profiles of broadleaved trees. By this reason Goulding [1979] does

not recommend utilization of cubic splines for modeling stem curves of malformed stems.

Also Lahtinen [1988] recommends lowering the degree of continuity for more complicated

stems.

Also B-spline due to its approximation property is not suitable for complicated stem curves,

although profiles of coniferous trees were well represented using B-spline. It smoothes

the driving polygon and therefore it is not able to fit the rapid diameter drop following

branching. Good choice is the utilization of Catmull-Rom spline.

Optimal input point combinations proposed by Smaltschinski [1983] or Figueiredo-

Filho et al. [1996a] are not applicable for malformed profiles. Determination of optimal

position individually for each stem in practice is out of the question, because it requires

measurement of many diameters from which one is selected as the best. Utilization of

regression seems to be useless regarding identical results obtained by placing the additional

input point around the center of the longest interspace. A comparison shows, that the

average distance between the location determined by the regression and the center of
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the largest interspace is only 6 % of the stem height (median value is only 2 % of the

stem height), which is a negligible distance. At the same time it is proved, that input

point position determined in this way is not significantly worse than the best position of

individual stems.

It can be concluded, that for improving the accuracy the position of the seventh point

is important. It should not be placed randomly, but equalizing the point distribution by

placing the point in the center of the longest input point interspace can be a reasonable

way.

4.2 Local regression model of typical stem form

4.2.1 Optimal amount of smoothing for smoothing spline

The smoothing parameter λ can take any values from the close range < 0, 1 >. If λ = 0,

the amount of smoothing is maximum and the spline becomes the least-squares regression

line fitted to the data. With rising λ the amount of smoothing declines. For the other

extreme λ = 1, the smoothing property of the curve disappears and the smoothing cubic

spline becomes interpolation cubic spline.

The development of CV criteria in dependence on the value of λ is shown in Figures 4.6

and 4.7. Separate lines in Figure 4.6 indicate the optimal amount of smoothing for dif-

ferent input point density expressed in term of numbers of trees used to fit the regression

spline. The development of CV criterion is very similar for all point densities. As indi-

cates Subfigure 4.6a for low numbers of trees (2-4 trees) the CV criterion is minimized

with λ = 0.9999. For higher input point densities the minimum of CV criterion moves

to λ = 1 − 10−4 = 0.99999. However, in the range between 1 − 10−4 and 1 − 10−6 the

change of CV criterion is negligible. Outside that range the value of CV steeply increases.

This tendency is observable in all input point densities; with higher densities the rise of

CV criterion value with growing λ is less rapid and the tolerance of suitable λ value is

extended in the direction towards lower amount of smoothing.

The same results are obtained in case of expressing the point density in terms of the length

of input point interspaces (shown in Figure 4.7 on the example of five and twenty stems

with different point density). Because the development of CV criterion in dependence on

λ value was observed in several discrete points only, it can be concluded, that the optimal
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amount of smoothing is achieved with λ ranging between 1− 10−4 and 1− 10−6. The best

choice for λ is 1− 10−5 or 0.99999.

(a) Number of trees: 2, 4, 6, 8, 10

(b) Number of trees: 10, 20, 30, 40, 50

Figure 4.6: Cross-validation values in dependence on smoothing parameter λ for smoothing

spline. Separate lines show the development of CV criterion for different density of input

points expressed as number of trees.
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(a) Number of trees: 5

(b) Number of trees: 20

Figure 4.7: Cross-validation values in dependence on smoothing parameter λ for smoothing

spline. Separate lines show the development of CV criterion for different density of input

points expressed as the interspace of input points in an individual stem.
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It is difficult to compare the optimal value of λ resulting from this study with the re-

sults of other authors utilizing the smoothing spline for stem curve modeling or prediction.

Liu [1980] utilized a different form of smoothing spline. Neither Nummi and Möttönen

[2004] nor Kublin et al. [2008] included the investigation into optimal amount of smooth-

ing in their work.

4.2.2 Optimal amount of smoothing for P-spline

For P-spline the smoothing parameter λ can take any non-negative value. With λ =

0 the P-spline becomes a polynomial fit. With rising value of λ also rises the amount

of smoothing. As λ value approaches infinity, the P-spline becomes a linear regression

function.

Figure 4.8: Cross-validation values in dependence on smoothing parameter λ for P-spline.

Separate lines show the development of CV criterion for different number of segments.

The results of optimizing the smoothing parameter value in dependence on number of P-

spline segments by the help of leave-one-out cross-validation are shown in Figure 4.10 and

in Table 4.13. It is obvious, that the development of CV criterion with varying λ is strongly

dependent on the number of segments. With low numbers of segments the optimal values

of λ, having the lowest values of CV criterion, are also low. For rising number of segments,
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the optimal λ also increases.

The dependence of the optimal amount of smoothing on the number of segments can be

explained with the knowledge in B-spline properties. The lower is the number of P-spline

segments, the more input points influence the shape of the segment and the lower is the

relative effect of a position of each point. Moreover the cubic segments, which the P-spline

consists of, have at the most one inflection point. P-splines consisting of low numbers of

segments are smooth by themselves; only a little ”additional smoothing” is required.

Table 4.13: Cross-validation values in dependence on smoothing parameter λ and number

of segments (CV·10−3)

Smoothing parameter λ

2−10 2−8 2−6 2−4 2−2 20 22 24 26 28 210 212

N
u

m
b

e
r

o
f

se
g
m

e
n
ts

2 2.15 2.16 2.27 2.77 3.76 4.59 5.47 6.35 6.77 6.90 6.93 6.94

4 1.50 1.52 1.66 2.04 2.38 2.71 3.48 4.57 5.74 6.53 6.83 6.92

8 1.14 1.16 1.26 1.48 1.72 2.00 2.36 2.88 3.84 5.04 6.15 6.70

16 1.21 1.22 1.22 1.23 1.28 1.44 1.72 2.09 2.53 3.25 4.38 5.62

32 1.28 1.26 1.24 1.23 1.22 1.22 1.29 1.52 1.87 2.28 2.82 3.77

64 1.62 1.48 1.39 1.30 1.24 1.22 1.21 1.23 1.37 1.67 2.06 2.51

128 3.15 2.08 1.71 1.50 1.38 1.29 1.23 1.22 1.21 1.28 1.50 1.85

256 9.10 4.35 2.52 1.91 1.63 1.45 1.34 1.26 1.22 1.21 1.23 1.36

512 34.17 12.35 4.95 2.90 2.11 1.76 1.54 1.39 1.30 1.24 1.22 1.21

In order to describe the dependency between the optimal value of the smoothing parameter

on number of P-spline segments a regression analysis was carried out. The λ values with the

lowest CV criterion are plotted against their respective number-of-segments. A regression

power function fits nearly exactly all the data points (coefficient of determination r2 = 1,

root mean square error rmse = 1.87 · 10−13, p-value of F-test of the model fit p = 0). The

form of the regression model together with the coefficients are indicated in equation 4.2.1;

the regression is visualized in Figure 4.9.

λ = β1 · nsegβ2

β1 = 1.526 · 10−5

β2 = 3

(4.2.1)
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(a) Linear scales on both axes (b) Logarithmic scales on both axes

Figure 4.9: Dependence of optimal value of smoothing parameter λ on number of P-spline

segments fitted by regression power function

Figure 4.10: Cross-validation values in dependence on number of smoothed points. Sepa-

rate lines show the development of CV criterion for different values of smoothing parameter

λ.

The development of cross-validation criterion with gradually increasing number of input

points, expressed in terms of number of stems, was observed in order to determine the in-

fluence of input point number on the optimal λ value. The example presented in Figure 4.9

shows the CV criterion development for P-spline with 64 segments. Separate lines denote

different λ values.
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(a) 84 stems (b) 10 stems

Figure 4.11: Smoothing spline regression curve derived from relative stem profiles of 84

and 10 stems and the validation stem fitted by the regression curve

When more than 10 stems (171 points) are used, the CV criterion shows a steady moderate

decrease with rising number of input points. The lines of different λ values converge, but

their order does not change markedly. For a given number of knots the optimal value of λ

is stable for different numbers of input points.

4.2.3 Comparison of spline regression models with selected taper

models

Both regression spline models were fitted using the normalized data, that were obtained

using the transformation expressed in the equations 3.4.1 and 3.4.3. The normalized height-

diameters pairs of all measured stems and ten randomly selected stems are showed together

with the regression splines in Figure 4.11 (smoothing spline) and Figure 4.12 (P-spline).

In both figures are showed also data points representing a validation stem that was not

used for model fitting.

All models retransformed to fit a particular validation stem in real proportions are showed

in Appendix D. Figure D.2 and Figure D.3 show the fitted models derived from 84 stems

(all measured stems with the exception of one validation stem). Models derived from

measured data of 10 randomly selected stems are shown in Figures D.4 and D.5.

Figure 4.13 shows the development of the evaluative criteria (MAR and MSR) in depen-

dence on rising number of stems incorporated in regression models. The particular example

showed in the figure represents residuals of P-spline models; developments of the evaluative
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(a) 84 stems (b) 10 stems

Figure 4.12: P-spline regression curve derived from relative stem profiles of 84 and 10 stems

and the validation stem fitted by the regression curve

criteria for other taper models are similar. The development of total volume difference and

absolute volume difference of P-spline regression models is showed in Figure D.1.

With rising numbers of stems the values of absolute diameter errors as well as absolute

volume differences decline. With the help of two-way analysis of variance, the decline of

the error values both for diameters and volume proved significant. For the model of Bi

[2000] the accuracy drop with lower number of stems is very pronounced. While with 84

stems its accuracy is very good in comparison with other models, for five stems only the

performance of the model is very poor. On the other hand the model of Lee et al. [2003]

has the lowest accuracy among all models with high number of stems used, while for low

number of stems the accuracy of its predictions was comparable with the other models.

The accuracy of the model is not so strongly dependent on the number of stems.

When all measured stems were used to derive the regression model (Table 4.14), both

splines represented the mean function of typical stem curve very well. There was no

systematic error in diameter prediction nor in volume estimation. The mean errors for

both diameter (less than 2 mm) and volume (less than 1 %) prediction were very low.

However, the mean absolute residuals achieve quite high values, and also the variances of

DB and TVD are high, what corresponds with the high values of mean absolute volume

differences (Figure D.1 in Appendix D).

With lowering the number of stems, the diameter predictions of nearly all models become

significantly biased. No significant diameter bias was only found with the model of Bi

[2000]. This is caused above all by high variance of the prediction accuracy. Although

the variances are not significantly different, the standard deviations of evaluative criteria
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(a) Mean absolute residual (b) Mean squared residual

Figure 4.13: Development of accuracy of stem curve prediction with rising number of stems

incorporated in the P-spline regression model

in Tables D.1 to D.5 are usually the highest with the model of Bi [2000]. With only five

stems used to derive the model parameters, variances of the criteria are extremely high

(Table D.5). On the other hand, when the model was parameterized with the use of all

stems, the accuracy of the model was high.

Concerning the criteria expressing the quality of fit of the curve (MAR, SDR, MSR) two

groups of models according to the accuracy can be distinguished. For high number of

stems used for model parameterization the segmented polynomial model of Max and

Burkhart [1976], the variable-exponent model of Bi [2000], and both spline models show

better results than the single polynomial model of Cervera and the variable-exponent

model of Lee et al. [2003]. With lower number of trees the most accurate models

are the segmented polynomial model together with the P-spline model; lower accuracy

was observed with the smoothing spline models. The single polynomial model and both

variable-exponent models showed significantly higher errors.
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Table 4.14: Comparison of taper models based on all 85 stems. For each statistic mean

value and standard deviation is shown. Values in a column followed by the same letter

indicate no significant difference between spline types. Stars in columns DB and TVD

indicate mean values significantly different from zero.

Taper model DB (10-2 m) MAR (10-2 m) SDR (10-2 m) MSR (10-3 m2) TVD (%)

Cervera 0.26 1.27 a 1.58 0.60 a 1.88 0.56 a 0.44 0.33 a -1.22 6.61 a

Max-Burkhart 0.18 1.31 a 1.32 0.68 b 1.52 0.67 b 0.34 0.35 b -0.24 6.73 a

Bi 0.01 1.09 a 1.31 0.60 b 1.55 0.62 b 0.32 0.27 b -0.95 5.69 a

Lee et al. 0.22 1.10 a 1.56 0.50 a 1.93 0.48 a 0.43 0.25 a 0.09 5.70 a

Smoothing spline 0.19 1.34 a 1.37 0.68 a,b 1.56 0.65 b 0.35 0.34 b 0.59 6.75 a

P-spline 0.13 1.31 a 1.31 0.67 b 1.50 0.66 b 0.33 0.34 b -0.29 6.69 a

Almost all tested models are able to represent well the mean function of the typical stem

curve. With rising number of stems incorporated in the regression model the models

approach the real mean function (the typical stem curve) and the new trees are represented

with lower error. The problem, which the models are not able to cope with, is the between-

tree stem form variability. If the shape of a particular stem differentiates from the mean

stem curve function, the so-called fixed-effect taper models are not able to model accurately

the stem curve. Therefore so-called mixed effect taper models were introduced in last

years [Leites and Robinson, 2004; Lejeune et al., 2009; Cao and Wang, 2011;

Fonweban et al., 2011]. The mixed effect models consist of the fixed mean function

describing the average stem curve and the random effect describing the error structure and

allowing to specify the stem curve for each invividual tree on the base of an additional

information, e.g. an upper stem diameter Sharma and Parton [2009].

The regression models compared are the fixed effect models describing only the mean

function an are not able to consider the between-tree variability and to conform to each

individual stem. That is the reason why the variability of diameter and volume prediction

is such high, although the mean error is very low. The method is suitable for predicting

the volume of a group of trees or volume of a stand. In such case the mean stem curve will

approach the regression model and the mean diameter and volume errors will approach

zero. If volume of a single stem is estimated, the real stem curve can deviate from the

model and the absolute volume error will be approximately 5 to 6 % in average, as shown

in Figure D.1.

It was stated many times [Max and Burkhart, 1976; Newnham, 1992; Jiang et al.,

2005], that the single polynomial models are too rigid to conform the complicated shape
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of stem curve. This fact proved true also in this comparison, where the model considered

being the best among the single polynomial models [Rojo et al., 2005] was outperformed

by other models.

The rather complicated variable-exponent model of Bi [2000] is able to produce accurate

predictions if the model parameter values are derived from a high number of stem profiles.

In the comparison of Rojo et al. [2005] the models were parameterized using stem

profiles of 203 stems. The variable-exponent taper model has to be fit using non-linear

least squared fitting methods, such as Levenberg-Marquardt algorithm, that are not able

to produce the unique best solution and are not abe to assure the optimality of the result.

With high number of parameters in the model and few data point to be fitted, the methods

for model parameterization can be unstable and give inaccurate results [Kublin et al.,

2008].

An important result of the comparison is that the P-spline regression taper model per-

formed at least as well as the models regarded [Rojo et al., 2005] as the best representa-

tives of three main groups of taper models: single polynomial models, segmented models,

and variable-exponent models. The performance of the smoothing spline regression ta-

per model was comparable with the performance of P-spline in most aspects; however in

some rare cases the values of the evaluative error statistics were higher with statistically

significant difference. As stated by Koskela et al. [2006], for regression spline models

the choice of the smoothing parameter λ is crucial. Regarding the studies performed to

optimize the smoothing parameter value under variable conditions it can be assumed, that

the λ value used approximated the optimal amount of smoothing.

The taper models utilizing regression splines, specifically the smoothing spline and the

P-spline, can be used to represent the mean function of the local typical stem curve. Their

performance is comparable with the performance of variable-exponent models, generally

considered to be the most accurate type of taper models. Parameterization of non-linear

variable exponent models with usually high number of parameters is done using com-

putationally expensive and numerically instable algorithms. On the other hand, simple

parametric models are usually too rigid to depict the stem curve appropriately. The non-

parametric spline regression models combines the advantages of both approaches; they

provide enough flexibility and fitting algorithms are inexpensive and numerically stable.



Chapter 5

Conclusions

5.1 Summary

The main goal of the doctoral thesis was to explore possibilities and suitability of spline

functions for stem curve representation.

The first part of the thesis summarizes the basic concepts in stem form description and

gives an overview of basic methods and approaches for stem curve modeling. Also a

theoretical background for splines is provided. The rest of the thesis describes utilized

methods and results of two major challenges that were solved. The first challenge was to

find an appropriate spline function for describing with sufficient accuracy stem curves of

individual stems of both coniferous and broadleaved species using points obtained from a

digital photography interactively by human interpreter. The second challenge was to find

a methodology for developing a regression model of typical local stem curve through the

use of splines.

The research was processed on data of 85 Norway spruce stems and 48 stems broadleaved

trees. The spruce data come from 50 to 100 years old stands located in the School Forest

Enterprise Kostelec nad Černými lesy. The broadleaved stems come from the protected

landscape area B́ılé Karpaty and include two species, common beach and mountain oak.

The data of both coniferous and broadleaved trees contain closely measured stem profiles

with the diameter interspaces 0.1 m.

104
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Individual stem curve modeling

On the basis of literature research several different spline techniques were selected and

programs for spline computation were written. The number of splines for further analyses

was reduced by virtue of results of preliminary analyses examining pertinence of individual

spline techniques for stem form modeling. Spline techniques not suitable for the particular

purpose were eliminated from subsequent analyses.

The performance of individual splines was compared using nine input point sets with

different point numbers. Input point positions were chosen according to Figueiredo-

Filho et al. [1996a], who considered those positions as optimal for spline interpolation.

As a result of the primary comparison of the splines, four candidates were selected for

further work: the natural cubic spline, the Catmull-Rom spline, 2nd degree interpolation

B-spline and 2nd degree approximation B-spline.

The next work dealt with the optimization of input point positions. The input point

placement can be crucial for accuracy of the stem curve representation. It was found

that due to different properties of individual splines the optimal input point positions also

differ. For mentioned splines optimal sets of input point positions were stated for five to

nine input points. Less than five input points cannot ensure reasonable accuracy of the

model. Adding more than nine input points has very little effect on accuracy improvement.

The four most promising spline types were once more compared with the use of individual

optimal input point distribution for each spline. The stem curves are best represented

by Catmull-Rom spline. The spline has no systematic bias in both diameter and volume

prediction and produces a reliable curve with low and well-balanced residuals. A reasonable

stem curve representation is produced also by interpolation B-spline, but the errors are

significantly higher. The approximation B-spline can represent well the stem curve with

the use of higher numbers of input points. However due to the approximation property of

the spline, the diameters will always be overestimated in the convex part of the curve and

underestimated in the concave part. The natural cubic spline, which has been utilized many

times for stem curve representation, showed high propensity for oscillation and therefore

it was outperformed by the other splines in terms of stem curve model accuracy. With

rising number of input points the risk of oscillation decreases, but it does not disappear

even with high numbers of input points.

The Catmull-Rom spline gives very good results in case of approximately uniform distri-

bution of input points. If the points are distributed markedly unevenly, the curve can
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produce oscillation or even loops. To avoid this effect, a method of tangent vector correc-

tion is presented.

Following recommendations result from the study. Catmull-Rom spline is a reasonable

interpolation method applicable to the problem of stem curve modeling from a set of

measured diameters along the stem. To maximize the accuracy the input point should be

distributed as indicated in the thesis. To avoid unexpected behavior of the curve in case

of markedly unequal distances between input points, the tangent vector length corrections

should be used.

Local regression model of typical stem form

Possibilities of non-parametric regression techniques were investigated. For the purpose

two spline regression techniques were selected: smoothing spline and P-splines. Both

techniques were used to represent the mean function expressing the dependence of relative

diameter on relative height.

For both techniques the optimal amount of smoothing was investigated. The smoothing

parameter λ was optimized in dependence on number of stems incorporated in the model

and on density of input points. The optimization was carried out using leave-one-out cross-

validation method. For smoothing spline, the optimal value of the smoothing parameter

was approximately 0.99999, independently on number of stems. For P-splines, the opti-

mal value of the smoothing parameter is also independent on number of stems, but it is

determined by number of P-spline segments.

The stem curve models represented by optimally smoothed smoothing spline and P-spline

were compared with stem curves modeled by best representatives of three main groups

of parametric taper models: a polynomial model, a segmented polynomial model and

two variable-exponent models. The comparison was carried out using cross-validation

approach, where repeatedly one stem was retained as validation data and the other stems

served as data for model fitting.

Both regression splines showed good results. Their performance was significantly better

that the performance of the polynomial model and one of the variable-exponent models.

The accuracy of stem curves represented by the second variable-exponent model and the

segmented polynomial model was comparable with the accuracy of stem curves represented

by spline models. The advantage of spline models in contrast to variable-exponent models

is the simplicity and numeric stability of the model computation. With decreasing number

of stems incorporated in the regression model the accuracy decline for all models; however
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with spline models the accuracy drop is not as strong as with some of the parametric

models, especially the variable-exponent models.

Following findings result from the study. Both regression splines can be used to model the

mean function of typical stem form. The accuracy of P-spline models is higher than the

accuracy of smoothing spline models. For both splines the amount of smoothing must be

optimized: for smoothing spline the optimal λ proved 0.99999, for P-spline the optimal λ

is determined by number of P-spline segments.

5.2 Contributions of the Thesis

1. Design of a methodology of a single stem curve representation by splines, readily

feasible for the use in the software DendroScanner.

2. Design of a methodology of a regression model of typical stem using splines, readily

feasible for the use in the software DendroScanner.

5.3 Future Work

The author is aware that the topic of spline models of stem curves of individual stems and

spline regression models of a typical local stem curve is not exhaustively developed in the

doctoral thesis. The future work extending the scope of the doctoral thesis could cover the

following:

• It would be interesting to explore possibilities of even more non-parametric regression

methods involving splines, e.g. smoothing by using B-splines.

• The spline regression models utilized in the thesis are the mean functions of the typ-

ical stem curve. The error structure of the regression is neglected. The methodology

of regression spline taper models could be further improved by implementation of

random effect allowing the model to describe individual stems.

• There are several other non-parametric stem curve prediction methods, that have

been proposed by different authors. It would be interesting to include such methods

in the investigation and explore their performance in comparison with performance

of the models used in the thesis.
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Appendix A

Primary comparison of spline types

Table A.1: Comparison of splines based on 6 input points (combination no. 1). For each

statistic mean value and standard deviation is shown. Values in a column are followed by

the same letter sighnify no significant difference between spline types. Stars in columns

DB and TVD indicate mean values significantly different from zero.

Spline DB (10-2 m) MAR (10-2 m) SDR (10-2 m) MSR (10-3 m2) TVD (%)

CRS -1.03 0.52 a* 1.30 0.54 a,b 1.64 0.69 a,b 0.32 0.26 a -8.22 3.69 a*

IBS2u -0.92 0.49 a* 1.14 0.47 a 1.46 0.61 a 0.25 0.21 a -8.14 3.81 a*

NCS 0.45 1.03 c* 1.76 1.33 c 2.11 1.49 c 0.67 0.99 b 6.27 11.01 b*

IterBS 0.49 1.11 c* 2.26 1.74 d 2.73 1.97 d 1.13 1.61 c 7.12 12.89 b*

BS2 -1.16 0.61 a,b* 1.57 0.61 b,c 1.93 0.75 b,c 0.43 0.33 a,b -9.24 4.01 a*

BS3 -1.15 0.61 a,b* 1.67 0.64 b,c 2.02 0.77 b,c 0.47 0.35 a,b -8.85 4.17 a*

NUBS2 -1.24 0.63 a,b* 1.61 0.63 b,c 1.95 0.76 b,c 0.45 0.34 a,b -10.34 4.09 a,c*

NUBS3 -1.28 0.65 a,b* 1.71 0.66 b,c 2.04 0.79 b,c 0.48 0.37 a,b -10.83 4.31 a,c*

NURBSdbh2 -1.17 0.64 a,b* 1.68 0.63 b,c 2.08 0.77 b,c 0.50 0.36 a,b -8.99 4.36 a*

NURBSdbh3 -1.27 0.68 a,b* 1.83 0.68 c 2.20 0.80 c 0.55 0.39 a,b -10.30 4.94 a,c*

NURBSav2 -1.44 0.75 b* 1.93 0.72 c,d 2.30 0.85 c,d 0.61 0.44 b -12.33 4.90 c*

NURBSav3 -1.47 0.73 b* 1.90 0.73 c,d 2.22 0.86 c 0.57 0.43 a,b -12.98 4.76 c*
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Table A.2: Comparison of splines based on 7 input points (combination no. 2)

Spline DB (10-2 m) MAR (10-2 m) SDR (10-2 m) MSR (10-3 m2) TVD (%)

CRS -0.09 0.23 a,b* 0.46 0.13 a 0.62 0.18 a 0.04 0.03 a -0.31 3.54 a,b

IBS2u -0.05 0.22 a 0.46 0.14 a 0.66 0.21 a 0.05 0.04 a -1.00 3.61 a,b*

NCS -0.52 0.42 c* 1.47 0.98 c 1.98 1.37 c 0.57 0.81 b -5.31 4.53 c*

IterBS -0.85 0.57 d* 2.28 1.55 d 3.10 2.18 d 1.43 1.95 c -7.6 5.01 d*

BS2 -0.21 0.28 a,b,e* 0.70 0.20 a,b 0.99 0.28 a,b 0.11 0.06 a -0.23 3.65 a,b

BS3 -0.24 0.30 b,e* 0.82 0.26 b 1.15 0.35 b 0.14 0.09 a -0.32 3.73 a,b

NUBS2 -0.25 0.29 b,e* 0.71 0.21 b 0.97 0.27 b 0.10 0.06 a -0.71 3.63 a,b

NUBS3 -0.35 0.33 e,f* 0.89 0.29 b,e 1.20 0.37 b 0.16 0.10 a -1.55 3.75 a,e*

NURBSdbh2 -0.18 0.30 a,b,f* 0.77 0.22 b 1.16 0.35 b 0.15 0.09 a 0.57 3.95 b

NURBSdbh3 -0.30 0.35 e* 0.95 0.29 b,e 1.38 0.45 b 0.21 0.14 a -0.48 4.16 a,b

NURBSav2 -0.32 0.36 e* 0.90 0.28 b,e 1.29 0.40 b 0.18 0.11 a -0.52 4.17 a,b

NURBSav3 -0.50 0.38 f* 1.13 0.38 e 1.43 0.47 e 0.23 0.15 a -3.18 4.02 e*

Table A.3: Comparison of splines based on 8 input points (combination no. 3)

Spline DB (10-2 m) MAR (10-2 m) SDR (10-2 m) MSR (10-3 m2) TVD (%)

CRS -0.23 0.21 a* 0.57 0.16 a 0.78 0.23 a 0.07 0.04 a -1.00 2.38 a*

IBS2u -0.20 0.20 a* 0.55 0.14 a 0.80 0.23 a 0.07 0.05 a -2.34 2.66 a,b*

NCS -0.30 0.22 a,b* 0.78 0.31 b 1.14 0.5 b 0.16 0.15 b -2.67 2.66 b*

IterBS -0.45 0.25 b,c* 1.02 0.45 c 1.58 0.79 c 0.31 0.32 c -4.12 2.91 c*

BS2 -0.28 0.27 a,b* 0.75 0.22 b 1.08 0.32 b 0.13 0.07 a,b -0.48 2.72 a,d

BS3 -0.29 0.28 a,b* 0.82 0.25 b,d 1.17 0.36 b 0.15 0.09 b -0.44 2.83 a,d

NUBS2 -0.31 0.28 a,b* 0.76 0.23 b 1.07 0.32 b 0.13 0.08 a,b -0.86 2.75 a,d*

NUBS3 -0.36 0.31 b* 0.87 0.28 b,d 1.21 0.38 b,d 0.16 0.1 b -1.24 2.91 a,b*

NURBSdbh2 -0.24 0.29 a,b* 0.83 0.24 b,d 1.27 0.39 b,d 0.18 0.11 b 0.55 3.17 d

NURBSdbh3 -0.29 0.33 a,b* 0.94 0.29 c,d 1.41 0.46 c,d 0.22 0.14 b 0.09 3.41 a,d

NURBSav2 -0.38 0.37 b,c* 0.96 0.31 c,d 1.40 0.45 c,d 0.21 0.14 b -0.75 3.50 a,d

NURBSav3 -0.52 0.38 c* 1.08 0.37 c 1.42 0.47 c,d 0.22 0.15 b -2.75 3.36 b,c*
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Table A.4: Comparison of splines based on 9 input points (combination no. 4)

Spline DB (10-2 m) MAR (10-2 m) SDR (10-2 m) MSR (10-3 m2) TVD (%)

CRS 0.00 0.15 a,b 0.39 0.11 a 0.54 0.17 a 0.03 0.02 a 0.25 2.17 a

IBS2u 0.02 0.15 a,b 0.43 0.12 a,b 0.66 0.23 a,b 0.05 0.04 a,b -1.27 2.52 b*

NCS -0.16 0.19 c* 0.70 0.32 c 1.07 0.53 c 0.14 0.15 c -1.68 2.51 b,c*

IterBS -0.26 0.23 d* 0.95 0.48 d 1.52 0.82 d 0.30 0.33 d -2.89 2.77 c*

BS2 -0.01 0.17 a,b 0.52 0.13 b,e 0.83 0.24 b 0.07 0.04 a,b 1.43 2.34 a,d,e*

BS3 -0.02 0.19 a,b 0.58 0.15 e 0.93 0.29 b,c 0.09 0.06 b,c 1.63 2.44 d,e*

NUBS2 -0.02 0.17 a,b 0.51 0.12 b,e 0.80 0.23 b 0.07 0.04 a,b 1.22 2.31 a,d*

NUBS3 -0.04 0.20 a* 0.59 0.16 c,e 0.94 0.28 b,c 0.10 0.06 b,c 1.39 2.47 a,d*

NURBSdbh2 0.05 0.19 b 0.58 0.14 e 1.03 0.35 c 0.12 0.08 b,c 2.64 2.77 d,e*

NURBSdbh3 0.02 0.22 a,b 0.66 0.17 c,e 1.17 0.42 c 0.15 0.11 c 2.72 3.05 d,e*

NURBSav2 0.00 0.20 a,b 0.62 0.15 c,e 1.07 0.35 c 0.12 0.08 b,c 2.24 2.79 d,e*

NURBSav3 -0.08 0.24 a,c* 0.69 0.2 c 1.06 0.34 c 0.12 0.08 b,c 1.45 2.71 a,d,e*

Table A.5: Comparison of splines based on 10 input points (combination no. 5)

Spline DB (10-2 m) MAR (10-2 m) SDR (10-2 m) MSR (10-3 m2) TVD (%)

CRS -0.01 0.13 a,b 0.38 0.11 a 0.54 0.17 a 0.03 0.02 a 0.14 1.95 a

IBS2u 0.02 0.14 a,b 0.43 0.12 a,b 0.68 0.23 a,b 0.05 0.05 a,b -1.69 2.57 b*

NCS -0.19 0.20 c* 0.64 0.26 c 1.03 0.50 c 0.13 0.13 c -2.31 2.68 b*

IterBS -0.32 0.26 d* 0.84 0.38 d 1.45 0.77 d 0.27 0.29 d -3.86 3.13 c*

BS2 0.01 0.15 a,b 0.51 0.13 b,e 0.82 0.24 b,e 0.07 0.04 a,b 1.58 2.02 d*

BS3 0.00 0.17 a,b 0.57 0.15 c,e 0.92 0.29 c,e 0.09 0.06 b,c 1.86 2.10 d,e*

NUBS2 -0.01 0.15 a,b 0.50 0.12 b,e 0.80 0.23 b,e 0.07 0.04 a,b 1.39 2.01 d*

NUBS3 -0.02 0.18 a,b 0.60 0.16 c,e 0.96 0.3 c,e 0.10 0.06 b,c 1.76 2.18 d,e*

NURBSdbh2 0.06 0.17 a* 0.58 0.14 c,e 1.03 0.35 c 0.12 0.08 b,c 2.81 2.46 e*

NURBSdbh3 0.04 0.20 a* 0.66 0.18 c 1.19 0.44 c 0.16 0.12 c 3.05 2.79 e*

NURBSav2 0.01 0.19 a,b 0.62 0.15 c 1.06 0.35 c 0.12 0.08 b,c 2.40 2.48 d,e*

NURBSav3 -0.07 0.22 b* 0.70 0.21 c 1.08 0.35 c 0.13 0.09 b,c 1.63 2.40 d*
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Table A.6: Comparison of splines based on 22 input points (0 m, 0.3 m, 1.3 m, 10 %, 15

%, . . . , 95 %, 100 %)

Spline DB (10-2 m) MAR (10-2 m) SDR (10-2 m) MSR (10-3 m2) TVD (%)

CRS 0.01 0.09 a 0.31 0.08 a 0.48 0.15 a 0.03 0.02 a 0.23 1.32 a

IBS2u 0.01 0.09 a 0.36 0.10 a,b 0.63 0.22 a,b 0.04 0.04 a -1.39 2.14 b*

NCS -0.08 0.12 b* 0.46 0.16 c 0.86 0.41 c,e 0.09 0.10 b -0.76 1.54 b*

IterBS -0.16 0.16 c* 0.57 0.22 d 1.21 0.62 d 0.19 0.20 c -1.60 1.92 b*

BS2 0.13 0.10 d* 0.40 0.09 b,c 0.75 0.23 b,c 0.06 0.04 a,b 2.55 1.48 c*

BS3 0.17 0.11 d,e* 0.44 0.11 c 0.85 0.29 c,e 0.08 0.06 a,b 3.13 1.60 c,d*

NUBS2 0.14 0.10 d* 0.41 0.09 b,c 0.76 0.24 b,c 0.06 0.04 a,b 2.63 1.52 c*

NUBS3 0.19 0.11 d,e* 0.46 0.11 c 0.89 0.31 c,e 0.09 0.06 a,b 3.47 1.72 c,d,e*

NURBSdbh2 0.22 0.13 e* 0.48 0.12 c 1.03 0.39 e 0.12 0.10 b 4.12 2.14 d,e*

NURBSdbh3 0.25 0.15 e* 0.52 0.14 c,d 1.13 0.46 d,e 0.15 0.13 b,c 4.70 2.39 e*

NURBSav2 0.19 0.12 e* 0.47 0.11 c 0.97 0.35 e 0.11 0.08 b 3.78 2.02 d,e*

NURBSav3 0.22 0.13 e* 0.49 0.13 c 0.95 0.35 e 0.10 0.08 b 3.94 1.81 d,e*
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(a) Combinations no. 1 and 2 (b) Combinations no. 3 and 4

Figure A.1: Stem curves represented by Catmull-Rom spline

(a) Combinations no. 1 and 2 (b) Combinations no. 3 and 4

Figure A.2: Stem curves represented by intepolation B-spline
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(a) Combinations no. 1 and 2 (b) Combinations no. 3 and 4

Figure A.3: Stem curves represented by natural cubic spline

(a) Combinations no. 1 and 2 (b) Combinations no. 3 and 4

Figure A.4: Stem curves represented by iterative B-spline
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(a) Combinations no. 1 and 2 (b) Combinations no. 3 and 4

Figure A.5: Stem curves represented by B-spline

(a) Combinations no. 1 and 2 (b) Combinations no. 3 and 4

Figure A.6: Stem curves represented by NURBS (NURBSav2)



Appendix B

Comparison of performance of splines

Table B.1: Sectional diameter bias (DB) and relative volume difference (VD) for 5-point

splines. Stars indicate values significantly different from zero.

Spline
Section

1 2 3 4 5 6 7 8 9 10

D
B

(1
0
-2

m
)

CRS -0.01 0.19* -0.05 -0.12 -0.10 -0.03 -0.02 -0.33* -0.73* -0.66*

NCS 0.46 8.22* 2.75* -5.21* -10.69* -13.39* -13.61* -11.83* -8.35* -3.35*

IBS 1.18* 0.23* 0.02 0.04 0.05 -0.04 -0.17* -0.36* -0.53* -0.42*

BS 1.52* 0.57* -0.11 -0.48* -0.75* -1.08* -1.35* -1.54* -1.49* -0.84*

V
D

(%
) CRS -0.20 2.33* -0.09 -0.95 -1.08 0.05 0.08 -6.13* -19.73* -36.37*

NCS 7.45* 105.40* 46.41* -31.80* -61.38* -60.63* -50.60* -44.17* -43.29* -48.48*

IBS 7.81* 2.58* 0.23 0.22 0.11 -0.70 -2.14 -5.51* -12.36* -20.75*

BS 13.92* 6.07* -1.00 -5.46* -9.58* -14.70* -20.85* -28.76* -38.91* -48.52*
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Table B.2: Sectional diameter bias (DB) and relative volume difference (VD) for 6-point

splines. Stars indicate values significantly different from zero.

Spline
Section

1 2 3 4 5 6 7 8 9 10

D
B

(1
0
-2

m
)

CRS -0.01 0.22* 0.03 0.01 0.03 -0.01 -0.01 0.03 0.03 -0.18*

NCS -0.04 0.17* -3.86* -2.82* -0.07 1.68* 2.08* 1.53* 0.55* -0.14

IBS 0.08 0.19* 0.01 -0.15* -0.19* -0.09 0.06 0.09 -0.02 -0.13*

BS 1.51* 0.57* -0.07 -0.39* -0.55* -0.59* -0.47* -0.37* -0.51* -0.44*

V
D

(%
) CRS -0.21 2.49* 0.40 -0.09 -0.19 -0.55 -0.28 0.40 0.27 -5.31

NCS 1.98 3.06* -33.92* -27.12* 0.14 26.56* 40.96* 39.64* 25.89* 6.52

IBS 0.14 2.17* 0.24 -1.44 -2.30* -0.77 1.67 2.82 0.58 -1.68

BS 13.86* 6.06* -0.56 -4.44* -7.17* -8.26* -7.37* -6.74* -14.17* -25.22*

Table B.3: Sectional diameter bias (DB) and relative volume difference (VD) for 7-point

splines. Stars indicate values significantly different from zero.

Spline
Section

1 2 3 4 5 6 7 8 9 10

D
B

(1
0
-2

m
)

CRS 0.03 0.05 -0.06 -0.02 0.03 -0.01 -0.01 0.02 0.03 -0.18*

NCS -0.51* -1.48* -2.89* -0.78* 1.24* 1.93* 1.58* 0.66* -0.23* -0.45*

IBS -0.01 0.06 0.01 0.00 -0.11* -0.14* -0.02 0.06 0.06 -0.01

BS 1.39* 0.40* 0.01 -0.19* -0.28* -0.38* -0.39* -0.43* -0.61* -0.50*

V
D

(%
) CRS 0.21 0.46 -0.77 -0.54 -0.30 -0.51 -0.36 0.25 0.25 -5.31

NCS -2.38* -10.84* -27.43* -9.72* 14.99* 29.17* 29.24* 16.14* -5.68* -24.19*

IBS -0.64 0.95 0.28 0.16 -1.43 -1.94* -0.20 1.53 2.35 6.39

BS 12.88* 4.07* -0.16 -2.72* -4.48* -5.95* -6.39* -8.05* -17.04* -28.71*
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Table B.4: Sectional diameter bias (DB) and relative volume difference (VD) for 8-point

splines. Stars indicate values significantly different from zero.

Spline
Section

1 2 3 4 5 6 7 8 9 10

D
B

(1
0
-2

m
)

CRS 0.03 0.06 -0.03 -0.01 0.07 -0.01 -0.17* -0.16* 0.02 -0.09*

NCS -0.55* 0.17* 0.28* 0.01 -0.23* -0.10 0.19 0.30* 0.07 -0.20*

IBS 0.08 0.07 0.05 0.03 -0.04 -0.04 0.09* 0.07 -0.13* -0.25*

BS 1.13* 0.06 -0.18* -0.24* -0.1*9 -0.07* -0.09* -0.19* -0.51* -0.49*

V
D

(%
) CRS -0.06 0.04 -0.01 0.01 0.0*9 0.00 -0.10* -0.10* -0.0 1 0.00

NCS -0.15 0.09* 0.31* 0.02 -0.12 -0.06 0.09 0.11* 0.02 -0.02*

IBS 0.03 0.02 0.02 0.01 0.00 0.00 0.05* -0.01 -0.0*6 -0.03*

BS 1.08* 0.06 -0.11* -0.14* -0.08* -0.04* -0.05* -0.08* -0.14* -0.05*

Table B.5: Sectional diameter bias (DB) and relative volume difference (VD) for 9-point

splines. Stars indicate values significantly different from zero.

Spline
Section

1 2 3 4 5 6 7 8 9 10

D
B

(1
0
-2

m
)

CRS 0.04 0.04 -0.09 -0.05 0.02 0.00 -0.05 -0.01 -0.03 -0.17*

NCS -0.58* -0.02 -0.01 -0.27 -0.27 -0.12 0.10 0.21* 0.07 -0.17*

IBS 0.04 0.06 -0.01 0.07 0.07 -0.01 0.00 0.03 -0.02 -0.12*

BS 1.13* 0.06 -0.13* -0.17* -0.10* -0.05 -0.09* -0.19* -0.51* -0.49*

V
D

(%
) CRS -0.04 0.01 -0.07 -0.02 0.06 0.01 -0.03 -0.03 -0.02 -0.01

NCS -0.19* -0.03 0.00 -0.20* -0.15* -0.07 0.05 0.07* 0.01 -0.01*

IBS -0.03 0.01 -0.03 0.05 0.10* 0.02 0.00 0.00 -0.01 -0.01

BS 1.08* 0.05 -0.09* -0.11* -0.02 -0.03 -0.05* -0.08* -0.14* -0.05*



A
P
P
E
N
D
IX

B
.
C
O
M
P
A
R
IS
O
N

O
F
P
E
R
F
O
R
M
A
N
C
E
O
F
S
P
L
IN

E
S

134

(a) Combinations no. 1 and 2 (b) Combinations no. 3 and 4

Figure B.1: Stem curves represented by Catmull-Rom spline

(a) Combinations no. 1 and 2 (b) Combinations no. 3 and 4

Figure B.2: Stem curves represented by intepolation B-spline
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(a) Combinations no. 1 and 2 (b) Combinations no. 3 and 4

Figure B.3: Stem curves represented by natural cubic spline

(a) Combinations no. 1 and 2 (b) Combinations no. 3 and 4

Figure B.4: Stem curves represented by B-spline



Appendix C

Irregular stem curve spline

representation

(a) Catmull-Rom spline

(b) Natural cubic spline

(c) B-spline

Figure C.1: Dependece of the optimal input point position on the position of the

inserted points

136
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(a) Optimal position (b) Accroding to regression

(c) Center of interspace (d) Six points only

Figure C.2: Irregular stem curves represented by Catmull-Rom spline with different 7th point placement; example no. 1
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(a) Optimal position (b) 20 % of the stem height

(c) Center of interspace (d) Six points only

Figure C.3: Irregular stem curves represented by natural cubic spline with different 7th point placement
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(a) Optimal position (b) 20 % of the stem height

(c) Center of interspace (d) Six points only

Figure C.4: Irregular stem curves represented by B-spline with different 7th point placement



Appendix D

Comparison of taper regression

models

(a) Total volume difference (b) Absolute total volume difference

Figure D.1: Development of accuracy of stem volume prediction with rising number of

stems incorporated in the P-spline regression model
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Table D.1: Comparison of taper models based on 60 stems. For each statistic mean value

and standard deviation is shown. Values in a column followed by the same letter indicate

no significant difference between spline types. Stars in columns DB and TVD indicate

mean values significantly different from zero.

Taper model DB (10-2 m) MAR (10-2 m) SDR (10-2 m) MSR (10-3 m2) TVD (%)

Cervera 0.20 1.29 a* 1.65 0.61 a 1.99 0.57 a 0.48 0.34 a -1.56 6.53 a*

Max-Burkhart 0.29 1.37 a* 1.38 0.72 b,c 1.58 0.71 b,c 0.37 0.38 b,c 0.22 6.80 b

Bi 0.07 1.33 a 1.49 0.81 b 1.74 0.83 d 0.43 0.54 a,b -0.69 6.30 a,b*

Lee et al. 0.24 1.18 a* 1.68 0.54 a 2.07 0.51 a 0.50 0.27 a 0.25 5.99 b

Smoothing s. 0.14 1.38 a* 1.45 0.70 b,c 1.65 0.66 b,d 0.39 0.36 b,c 0.26 6.80 b

P-spline 0.15 1.28 a* 1.32 0.67 c 1.51 0.66 c 0.33 0.34 c -0.30 6.42 a,b

Table D.2: Comparison of taper models based on 40 stems

Taper model DB (10-2 m) MAR (10-2 m) SDR (10-2 m) MSR (10-3 m2) TVD (%)

Cervera 0.21 1.34 a,b* 1.66 0.62 a 1.99 0.57 a 0.49 0.34 a -1.48 6.82 a*

Max-Burkhart 0.15 1.47 a,b* 1.47 0.75 b,c 1.68 0.74 b,c 0.42 0.41 a,b -0.27 7.27 a,b,c

Bi 0.00 1.35 a 1.52 0.78 b,d 1.78 0.83 b 0.45 0.49 a -0.90 6.34 a,b*

Lee et al. 0.38 1.15 b* 1.64 0.53 a,d 2.02 0.47 a 0.48 0.26 a 0.98 6.12 c*

Smoothing s. 0.09 1.32 a 1.43 0.66 b,c 1.64 0.61 c 0.37 0.33 b -0.06 6.54 b,c

P-spline 0.10 1.30 a 1.38 0.64 b 1.58 0.64 c 0.35 0.33 b -0.63 6.39 a,b

Table D.3: Comparison of taper models based on 20 stems

Taper model DB (10-2 m) MAR (10-2 m) SDR (10-2 m) MSR (10-3 m2) TVD (%)

Cervera 0.25 1.34 a* 1.69 0.63 a 2.01 0.59 a 0.50 0.37 a -1.40 6.77 a*

Max-Burkhart 0.20 1.42 a* 1.42 0.73 b 1.64 0.72 b 0.40 0.39 a,b -0.08 6.83 a,b

Bi 0.10 1.67 a 1.68 1.10 a 1.94 1.18 a,c 0.61 0.99 c -0.47 7.34 a,b

Lee et al. 0.23 1.14 a* 1.66 0.53 a 2.05 0.51 a 0.48 0.28 a 0.02 5.88 b

Smoothing s. 0.23 1.51 a* 1.59 0.79 a 1.81 0.73 c 0.47 0.44 a,b 0.38 7.33 b

P-spline 0.25 1.35 a* 1.41 0.69 b 1.61 0.66 b 0.37 0.37 b -0.14 6.64 a,b
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Table D.4: Comparison of taper models based on 10 stems

Taper model DB (10-2 m) MAR (10-2 m) SDR (10-2 m) MSR (10-3 m2) TVD (%)

Cervera 0.36 1.38 a* 1.69 0.67 a,b 2.01 0.62 a 0.51 0.41 a -0.73 6.92 a*

Max-Burkhart 0.21 1.33 a* 1.37 0.68 c 1.58 0.67 b 0.36 0.36 a -0.03 6.75 a,b

Bi 0.23 2.07 a* 1.85 1.52 a 2.17 1.79 a 0.94 3.08 b -0.02 8.82 a,b

Lee et al. 0.22 1.21 a* 1.70 0.54 a,b 2.09 0.52 a 0.51 0.30 a -0.09 6.02 a,b

Smoothing s. 0.29 1.43 a* 1.59 0.71 b 1.82 0.67 c 0.45 0.38 a 0.79 7.10 b*

P-spline 0.18 1.41 a* 1.52 0.70 b,c 1.74 0.66 b,c 0.42 0.37 a -0.58 6.89 a,b

Table D.5: Comparison of taper models based on 5 stems

Taper model DB (10-2 m) MAR (10-2 m) SDR (10-2 m) MSR (10-3 m2) TVD (%)

Cervera 0.22 1.46 a* 1.78 0.67 a 2.09 0.62 a 0.55 0.39 a -1.55 7.41 a*

Max-Burkhart 0.18 1.46 a* 1.52 0.70 b 1.74 0.68 b 0.43 0.38 b -0.16 7.48 a,b

Bi 0.60 8.09 a 3.38 7.53 c 4.34 14.08 a 23.41 293.06 c 59.57 1115.70 a,b

Lee et al. 0.38 1.40 a* 1.79 0.70 a 2.16 0.65 a 0.58 0.55 a,c 0.74 7.31 b*

Smoothing s. 0.31 1.53 a* 1.70 0.76 a 1.94 0.68 c 0.51 0.43 a,d 0.76 7.53 b*

P-spline 0.30 1.53 a* 1.65 0.77 a,b 1.85 0.70 b,c 0.48 0.41 b,d -0.07 7.67 a,b
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(a) Cervera (1973)

(b) Max and Burkhart [1976]

(c) Bi [2000]

Figure D.2: Selected taper models based on 84 stems and the validation stem fitted by the

model
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(a) Lee et al. [2003]

(b) Smoothing spline

(c) P-spline

Figure D.3: Selected taper models based on 84 stems and the validation stem fitted by the

model
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(a) Cervera (1973)

(b) Max and Burkhart [1976]

(c) Bi [2000]

Figure D.4: Selected taper models based on 10 stems and the validation stem fitted by the

model
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(a) Lee et al. [2003]

(b) Smoothing spline

(c) P-spline

Figure D.5: Selected taper models based on 10 stems and the validation stem fitted by the

model
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