Example of the written math test

Tasks

1) In the set of all real numbers solve the equation
$\sqrt{3 x+10}-\sqrt{x+4}=2$
and find the conditions of solvability.
2) In the set of all real numbers solve the equation
$\log (x+13)-\log (x-3)=\log (x+4)$
and find the conditions of solvability.
3) In the set of all real numbers solve the inequality $\frac{3 x+1}{4 x-3} \leq 1$.
4) In the set of all real numbers solve the equation
$2 \cdot \sin ^{2} x+\sqrt{3} \cdot \sin x=0$.
5) Find the point P which is the intersection of lines $x+3 y+2=0$ and
$2 x-3 y-5=0$. Write the equation of the line that passes through this point P and is orthogonal to the line $5 x-3 y+1=0$.

Each task is evaluated by 0-6 points according to the degree of completion.

Solution

1)

$$
\begin{array}{rlr}
\sqrt{3 x+10}-\sqrt{x+4} & =2 & 3 x+10 \\
\geq 0 \\
\sqrt{3 x+10} & =2+\sqrt{x+4} & x+4 \geq 0 \\
3 x+10 & =4+4 \sqrt{x+4}+x+4 & \\
2 x+2 & =4 \sqrt{x+4} & \\
x+1 & =2 \sqrt{x+4} & \\
x^{2}+2 x+1 & =4(x+4) \\
x^{2}-2 x-15 & =0 \\
(x-5)(x+3) & =0 \\
x_{1}=5, & x_{2}=-3
\end{array}
$$

Proof:

$$
\begin{array}{ll}
x_{1}=5 & x_{2}=-3 \\
L_{1}=\sqrt{15+10}-\sqrt{5+4}=2 & L_{2}=\sqrt{-9+10}-\sqrt{-3+4}=0 \\
P_{1}=2 & P_{2}=2 \\
L_{1}=P_{1} & \mathrm{~L}_{2} \neq P_{2}
\end{array}
$$

Result: $x=5$
2)

$$
\begin{aligned}
\log (x+13)-\log (x-3) & =\log (x+4) \\
\log \frac{x+13}{x-3} & =\log (x+4) \\
x+13 & =(x+4)(x-3) \\
x+13 & =x^{2}+x-12 \\
x^{2}-25 & =0 \\
x_{1,2} & = \pm 5
\end{aligned}
$$

$$
x+13>0
$$

$$
x-3>0
$$

$$
x+4>0
$$

i.e.

$$
x>3
$$

Result: $x=5$
3)

$$
\begin{aligned}
\frac{3 x+1}{4 x-3} & \leq 1 \\
\frac{3 x+1-4 x+3}{4 x-3} & \leq 0 \\
\frac{4-x}{4 x-3} & \leq 0
\end{aligned}
$$

Result: $x \in\left(-\infty, \frac{3}{4}\right) \cup\langle 4, \infty)$
4)

$$
\begin{array}{rl}
2 \cdot \sin ^{2} x+\sqrt{3} \cdot \sin x=0 \\
\sin x(2 \sin x+\sqrt{3})=0 & \\
\sin x=0 & 2 \sin x+\sqrt{3}
\end{array}=0 \begin{aligned}
& 2 \\
& x_{1}=k \pi \\
& \sin x=-\frac{\sqrt{3}}{2} \\
& x_{2}=\frac{4}{3} \pi+2 k \pi \\
& x_{3}=\frac{5}{3} \pi+2 k \pi
\end{aligned}
$$

Result: $x_{1}=k \pi, x_{2}=\frac{4}{3} \pi+2 k \pi, x_{3}=\frac{5}{3} \pi+2 k \pi, k \in Z$.
5)

$$
\begin{aligned}
x+3 y+2 & =0 \\
2 x-3 y-5 & =0 \\
\hline 3 x & =3 \\
x & =1 \\
3 y+3 & =0 \\
y & =-1
\end{aligned}
$$

$$
5 x-3 y+1=0
$$

$$
\begin{aligned}
3 x+5 y+c & =0 \\
3-5 & =-c \\
c & =2
\end{aligned}
$$

Result: $P=[1,-1], 3 x+5 y+2=0$.

