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Explaining why fluctuations in abundances of spatially disjunct populations

often are correlated through time is a major goal of population ecologists.

We address two hypotheses receiving little to no testing in wild populations:

(i) that population cycling facilitates synchronization given weak coupling

among populations, and (ii) that the ability of periodic external forces to syn-

chronize oscillating populations is a function of the mismatch in timescales

(detuning) between the force and the population. Here, we apply new

analytical methods to field survey data on gypsy moth outbreaks. We

report that at timescales associated with gypsy moth outbreaks, spatial syn-

chrony increased with population periodicity via phase locking. The extent

to which synchrony in temperature and precipitation influenced population

synchrony was associated with the degree of mismatch in dominant time-

scales of oscillation. Our study provides new empirical methods and rare

empirical evidence that population cycling and low detuning can promote

population spatial synchrony.
1. Introduction
Correlation through time in the fluctuating abundances of a given species among

populations separated by space, known as ‘population spatial synchrony’, is per-

vasive [1] and has important implications for species conservation [2] and the

impacts and management of pest species [3]. The most striking examples of

this phenomenon tend to involve species that exhibit locally cyclical fluctuations

in abundance (e.g. Canada lynx [4] and Finnish tetraonids [5]), suggesting that

population cycles may facilitate population spatial synchrony [6]. Bjørnstad [7,

p. 872] compared patterns of spatial synchrony in several different systems

and concluded ‘cyclic populations yearn to align themselves’.

Theory indicates the degree to which spatially disjunct populations are

prone to synchronization can depend on whether local populations exhibit

stable, cyclic or chaotic dynamics [7,8]. Cyclic dynamics, in particular, are pre-

dicted to promote the synchronization of weakly coupled populations, owing in

part to the occurrence of phase locking. Phase locking (otherwise known as

phase synchronization) is an important stage in the process of synchronization

in which the phases of populations become entrained [9,10]. The prediction that

cyclic dynamics are easily synchronized has held true when the coupling

between populations was modelled as low rates of dispersal [6–8,11] as well

as locally synchronous environmental variation [8,12]. Laboratory experiments

using in vitro populations of protists confirmed that population cycles, which

were induced by predator–prey interactions, allowed dispersal to bring popu-

lations into synchrony [6]. In chaotic populations, dispersal [9] or exogenous

environmental forces (e.g. weather) [13] can lead to partial synchronization in

which the populations become phase locked, but their abundances remain
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largely uncorrelated. Although in ecology considerable atten-

tion has been given to the role of local dispersal as the source

of weak coupling underlying phase locking, phase locking is

a more general phenomenon that may also be driven by

shared impacts from exogenous forces [10,12].

Theoretical predictions that address how the synchrony of

oscillators is affected by the nature of exogenous forces—their

strengths, periodicities and frequencies—have been central to

several advances in fields such as physiology and electrical

and radio engineering [10,14], but predictions that appear

highly relevant to the study of population synchronization

have received less attention in ecological studies. For

example, in systems of periodic oscillators (e.g. local cyclical

populations) and periodic external forcing, the degree to

which the external force synchronizes the oscillators should

depend, in large part, on the difference between the fre-

quency of the external force and the frequency of

population oscillations. For weak to moderate forces, the

larger the difference between the frequency of the external

force and the frequency of the oscillators (a quantity termed

‘detuning’), the stronger the force must be to synchronize

the oscillators [10,14]. In the context of cyclical populations,

therefore, a weather variable that displays periodicity in its

fluctuations at a frequency that closely matches that of the

populations (low detuning) might be a stronger agent of

population synchronization than a weather variable that is

periodic but at a timescale that does not closely match the

timescale of population fluctuations.

Despite theoretical predictions and experimental evi-

dence, the extent to which cyclic dynamics in field

populations promote population spatial synchrony is largely

unknown. As reviewed by Bjørnstad [7], the main empirical

evidence used to address this question stems from ‘historical

experiments’, such as past vaccination or predator-extermination

programmes, in which human intervention altered the

periodicity of population dynamics and changes in spatial

synchrony followed [15,16]. Perhaps the most convincing

evidence from field populations that periodic population

dynamics promote population spatial synchrony is Henden

et al.’s [17] study of fox bounty data in Norway. They

found that cyclical populations displayed greater spatial

synchrony than non-cyclical populations. However, no meth-

odology has been developed to isolate cycle-induced

population spatial synchrony from generic population

time-series data.

Here, we harness extensive data on gypsy moth outbreaks

across deciduous forests in eastern North America over a

26-year period to test whether the spatial synchrony of out-

breaks increases with their periodicity within local

neighbourhoods. Gypsy moth populations can be character-

ized as cyclic, nonlinear oscillators in that they exhibit

periodic abundance fluctuations which are thought to arise

primarily from host–pathogen dynamics [18,19]; there is no

evidence that periodicity in meteorological factors are signifi-

cant drivers of periodicity of gypsy moth populations.

However, previous work showed that synchrony in precipi-

tation is a likely driver of synchrony in gypsy moth

outbreaks [20,21]. Therefore, in this study we examined the

combined effects of synchrony in weather and population

cycling on the synchrony of gypsy moth outbreaks.

Synchrony at a given timescale (period length) may not

be indicative of synchrony at other timescales [22]. Conse-

quently, simple correlation-based measures of synchrony
may be inadequate [22]. Given that gypsy moth populations

in the northeastern United States have been shown to exhibit

harmonic oscillations at multiple period lengths [23], we

examined the drivers of gypsy moth population spatial syn-

chrony at the dominant timescales of gypsy moth cycles.

We tested the predictions that the phase synchrony and syn-

chrony in the abundance of a focal population with

neighbouring populations would increase with the period-

icity of the neighbouring populations, while accounting for

known synchronizing effects of weather on gypsy moth out-

breaks. Using novel statistical methods for quantifying local

heterogeneity in synchrony at various timescales, we demon-

strate in field populations the existence of relationships

between population periodicity, phase locking, and syn-

chrony and investigate the potential for detuning to

determine the synchronizing effects of environmental forces.
2. Material and methods
(a) Study system
The gypsy moth is a highly polyphagous foliage-feeding forest

insect native to Eurasia. In eastern deciduous forests of North

America, where it is non-native and invasive, it periodically

reaches epidemic levels resulting in extensive forest defoliation

[24] that is partially synchronous over several hundred kilo-

metres [25,26]. While exact causes of population cycles are not

known, a probable mechanism is density-dependent mortality

from the gypsy moth nucleopolyhedrosis virus (LdNPV)

[19,27]. Since ca 1989, the fungal pathogen Entomphaga maimaiga
has become the dominant cause of gypsy moth mortality [28],

but given that most evidence suggests this mortality is density

independent [29,30], E. maimaiga may not be a driver of gypsy

moth population cycles.

(b) Defoliation and weather data
We used digitized data from annual aerial surveys of gypsy moth

defoliation from 1990 to 2015 (electronic supplementary material,

figure S1) to examine relationships between the periodicity and

synchrony of outbreaks. (See a flowchart describing the work-

flow we followed in our analyses in electronic supplementary

material, figure S2.) Given the low dispersal ability of gypsy

moths—adult females are flightless and ballooning 1st instar

larvae typically disperse only tens of metres [31]—we examined

this aerial survey data at a finer spatial scale (8 � 8 km grid cells)

than previous studies of synchrony in gypsy moth dynamics

[20,21,25,26]. Based on previous research showing a positive cor-

relation between the area of forest defoliated and gypsy moth

egg masses [32,33], we used the proportion of defoliated area

(km2) in a given year as a proxy of gypsy moth abundance

within each cell.

We only used defoliation data from areas that had been

invaded by the gypsy moth prior to 1990 as defined by the

United States (US) Department of Agriculture quarantine

declarations (US Code of Federal Regulations, Title 7, Chapter

III, §01.45). Because our motivation was to test whether spatial

synchrony of outbreaks increases with their periodicity within

local neighbourhoods (which we defined as a focal grid cell

and its 1–8 adjacent neighbour grid cells), and it is not possible

to quantify periodicity from time series in which gypsy moth

defoliation levels are almost entirely zero, we limited all of our

analyses to 1327 of 10 569 focal grid cells (electronic supplemen-

tary material, figure S1) in which defoliation was detected in 4 or

more years both in the focal grid cell and at least 1 of the 8 adja-

cent neighbour grid cells. The excluded grid cells probably had

low densities of the gypsy moth’s preferred host tree species;
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Liebhold et al. [34] found a positive correlation between the

annual frequency of defoliation and the density of preferred

hosts.

Weather data for each of the 1327 grid cells were gathered

from the PRISM Climate Group, Oregon State University

(http://prism.oregonstate.edu). Monthly weather variables

were obtained at a spatial resolution of 4 � 4 km and averaged

across each 8 � 8 km grid cell. For each month (January–

December) from 1990 to 2015, we obtained total precipitation

and the means of daily minimum and maximum temperatures

for each grid cell. Because the weather data were comprised 36

potentially collinear weather variables (three weather variables

across 12 different months), we used principal components

analysis (PCA) to reduce its dimensionality, selecting the first

two principal components (PC1 and PC2) for analysis. The

PCA was conducted using the ‘stats’ package for R [35].

(c) Spectral analysis of defoliation time series
Wavelet analysis was carried out to characterize the periodicity

and timescales of fluctuations in both defoliation and weather

(PC1 and PC2) in each grid cell. Wavelet analyses of gypsy

moth defoliation data have been published previously, showing

complex cyclical behaviour with harmonic oscillations with time-

scales (period lengths) of 4–5 and 8–10 years [23], but the prior

analyses examined defoliation data that were both less recent and

from a smaller geographical area (i.e. areas invaded before 1974)

than we analysed in the current study (here, we limited our

analysis to areas invaded before 1990). Wavelet power at a

given timescale quantifies the matching between a time series

and a wavelet function exhibiting oscillations at the same time-

scale. The wavelet function we used was the continuous Morlet

wavelet [36]. Following Liu et al. [37], we corrected the power

spectra (by dividing power values by the wavelet scale) to elim-

inate a bias in traditional wavelet analysis that imbues greater

wavelet power to signals with longer timescales. Prior to con-

ducting the wavelet analyses, we normalized the distributions

of the defoliation time series [38] using the power transformation

f (x) ¼ xt, with t ¼ 0.2. In addition, to account for differences in

the amount or variability of defoliation among grid cells, each

grid cell’s defoliation time series was detrended and standar-

dized to a standard deviation of 1 and mean of 0. To

determine the dominant timescales of gypsy moth cycles, we

tested the significance of the wavelet power values across the

range of timescales considered (2–13 yr) for each grid cell’s

time series. The wavelet analyses were carried out using Cazelles

et al.’s [39] package for MATLAB, with significance testing carried

out using hidden Markov model simulations [40].

(d) Timescale-specific spatial synchrony
We examined local heterogeneity in timescale-specific spatial syn-

chrony of gypsy moth defoliation by applying two metrics that

quantify synchrony in distinct, complementary ways. First, we

developed a cross-wavelet-based extension of non-centred local

indicators of spatial association (ncLISA; [41]). This approach is

similar to the timescale-specific decomposition of synchrony in

spatial moving windows employed by Defriez & Reuman [22].

Like ncLISA, our approach examines geographies of synchrony

[42] by quantifying, for each focal cell, the mean synchrony of a

variable (e.g. abundance) between the focal cell and all other

cells within its local neighbourhood, revealing areas of relatively

high and low synchrony. We specified that a local neighbourhood

consisted of a focal cell and its (1–8) adjacent cells. Our cross-

wavelet version (cross-wavelet ncLISA) replaces a conventional

correlational measure of synchrony with the power-normalized

real part of the cross-wavelet transform (ReXWT; see for math-

ematical detail [42]). This metric takes into account both

whether the amplitudes of fluctuations are correlated through
time and whether the fluctuations are in phase with one another,

yielding a timescale-specific measure of synchrony with similar

properties to correlation: values of ReXWT span 21 to 1, with per-

fect negative (antiphase) relationships taking the value -1 and

perfect positive (in-phase) relationships taking 1. We hereafter

refer to this metric as ‘cross-wavelet synchrony’ to distinguish

between synchrony metrics.

Second, we quantified phase synchrony in the same local

neighbourhoods using a second ncLISA analogue. Phase syn-

chrony takes into account only the tendency of oscillations to

be in-phase, ignoring oscillation amplitudes. For each local

neighbourhood (focal cell and its adjacent neighbour cells), we

quantified the mean pairwise phase synchrony between the

focal grid cell and each adjacent neighbour over timescale

bands of interest. We used wavelet analysis to determine the

time-localized and timescale-specific phase of fluctuations in

gypsy moth defoliation time series across the entire 26-year

length of the time series. Pairwise phase synchrony was given

by the expression
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where �R (fi,t,s,f j,t,s) is the mean resultant vector length [43] from

vectors of length 1 and phase angles f at focal cell i and neigh-

bouring location j at time t and timescale s from s, the set of

timescales of interest. S is the number of wavelet scales in s, T is

the length of the time series (26 years) and N is the number of

cells adjacent to the focal cell. Equation (2.1) is a reliable index

of phase synchrony at timescale s because if the vectors from all

or most cells within a neighbourhood tend to have phase angles

similar to the vector from the focal cell for each year t, the resulting

index value will be relatively large, but the value will be small if

the phases tend to be uncorrelated through time [44].

We measured cross-wavelet synchrony and phase synchrony

of gypsy moth defoliation in local neighbourhoods across the

study area at two timescale ranges, 2–4 years and 7–11 years,

because wavelet analysis revealed a high prevalence of statisti-

cally significant periodicity in defoliation at these period

lengths (see Results). As above, we used the continuous complex

Morlet wavelet transform [36]. Analyses were carried out in R

version 3.5.1 [35] using the ‘wsyn’ [45] and ‘circular’ [46]

packages and code modified from the ‘ncf’ library [47].
(e) Factors affecting timescale-specific spatial synchrony
of outbreaks

We tested whether local cross-wavelet synchrony in defoliation

increased with the periodicity (mean wavelet power) of defolia-

tion in the 1–8 adjacent neighbour cells with weighted

generalized-least-squares (WGLS) regressions using the ‘nlme’

package [48] for R. We used a separate WGLS model for each time-

scale range (2–4 years and 7–11 years) to evaluate the drivers of

synchrony of defoliation at each timescale range. We also assessed

if cross-wavelet synchrony in defoliation was influenced by

synchronous environmental fluctuations by including local

cross-wavelet synchrony (at the corresponding timescale range)

in the scores of the two dominant principal components of

weather as predictor variables in the two WGLS models. For

each timescale range (2–4 years and 7–11 years), we also tested

if phase synchrony in defoliation increased with the periodicity

of defoliation in the adjacent neighbour cells, or phase synchrony

of the two dominant components of weather, using a WGLS

model. To account for spatial autocorrelation among cells, we

directly modelled the spatial patterns in the residuals of the

WGLS regression models. We evaluated WGLS models using

different functions for describing the pattern of spatial decay in

the autocorrelation of the residuals (Gaussian, exponential or no

http://prism.oregonstate.edu
http://prism.oregonstate.edu
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Figure 1. Summary of wavelet analyses on 1327 time series of gypsy moth defoliation and the scores of the first (PC1) and second (PC2) principal components of
monthly temperature and precipitation variables, with each time series corresponding to an 8 � 8 km grid cell. (a) Mean wavelet power (solid line) and 95%
confidence interval (dashed line) are shown. (b) The percentage of time series in which the wavelet power was statistically significant at a ¼ 0.05 across timescales
( period lengths) of 2 – 13 years. (Online version in colour.)
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spatial structure) and selected, for each model (response variable),

the function that provided the lowest Akaike’s information cri-

terion corrected for small sample size (AICc). The weight for

each focal grid cell was the number of grid cells present within

its neighbourhood. To normalize the model residuals, mean 2–4

year and 7–11 year cross-wavelet synchronies were Box-Cox

transformed (after adding constants of 1.0 and 0.6, respectively,

to make all values positive) using exponents (l) of 1.6 and 4.8

for the respective timescales. Mean 2–4 year and 7–11 year

phase synchronies were Box-Cox transformed using l-values of

1.7 (2–4 year timescale) and 10.7 (7–11 year timescale). Multicol-

linearity in each model was checked by inspecting variance

inflation factors (VIFs). Finally, we assessed whether the WGLS

models above, each with three predictor variables (timescale-

specific periodicity of defoliation and timescale-specific (cross-

wavelet or phase) synchrony in the scores of the two dominant

components of weather) provided a better fit to the data than

null models (comprised an intercept term and the same error auto-

correlation structures as the full models, but no predictor

variables) using likelihood ratio tests.
3. Results
(a) Periodicity of gypsy moth outbreaks and weather
The mean wavelet power spectrum of the 1327 defoliation

time series was bimodal, with the strongest cycling (period-

icity) at period lengths of roughly 2.4 years and 7.8 years

(figure 1). Similarly, peaks in the percentage of time series

with significant periodicity occurred at period lengths of

approximately 3.0 years and 7.8 years. The short timescale

peak was confined to a rather narrow timescale bandwidth,
but the long timescale peak was broader and featured a dis-

tinct ‘shoulder-shaped’ relationship between the period

length and the percentage of time series with significant

periodicity at period lengths greater than 9 years. The percen-

tage of time series with significant periodicity was

consistently approximately 23% for period lengths of

approximately 9.0–10.4 years, but the prevalence of signifi-

cant periodicity declined rapidly with period length

increasing beyond 10.4 years.

In the PCA of weather data, we found the first component

(PC1) largely represented temperature, whereas the second

component (PC2) primarily explained precipitation (see

appendix S1 in the electronic supplementary material).

Respectively, PC1 and PC2 explained 41.2% and 7.5% of

the total variation in the weather variables.

The mean wavelet power spectrum of PC1 scores exhib-

ited a dominant peak at a period length of approximately

3.8 years, a slightly weaker peak at period lengths of approxi-

mately 5.5 years, and a considerably weaker peak at

approximately 10 years (figure 1). The time series of PC1

scores exhibited statistically significant periodicity most fre-

quently at a period length of approximately 3.8 years, but

there were also minor peaks in the incidence of significant

periodicity at approximately 5.5 and 11.2 years (figure 1).

For the time series of PC2 scores, mean wavelet power exhib-

ited a dominant peak at approximately 2.2 years and two

substantially weaker peaks at approximately 3.5 and approxi-

mately 5.5 years (figure 1). However, significant power in the

scores of PC2 was found most frequently at longer timescales

ranging roughly from 5–6 and 7–9 years (figure 1).



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20182828

5
(b) Factors affecting timescale-specific spatial synchrony
of outbreaks

Cross-wavelet synchrony was weaker at 2–4 year timescales

(0.48, 0.29–0.65; median, 1st quartile–3rd quartile) than

7–11 year timescales (0.88, 0.72–0.94). Phase synchrony

was also weaker at 2–4 year timescales (0.82, 0.76–0.88)

than 7–11 year timescales (0.97, 0.91–0.99).

Based on AICc values, the exponential spatial decay func-

tion was selected as the best function for modelling the

spatial autocorrelation in the residuals of the WGLS models

for all response variables (cross-wavelet synchrony and

phase synchrony at the 2–4 year and 7–11 year timescales),

with the exception of 7–11 year cross-wavelet synchrony,

for which the Gaussian spatial decay function was selected.

Likelihood ratio tests showed that for all four response vari-

ables, the fit of the full WGLS model was significantly

better ( p , 0.001) than the fit of the null WGLS model;

each null model comprised an intercept term and the same

error autocorrelation structures described above, but no

predictor variables. There was little evidence of multicolli-

nearity in the full WGLS models, as the highest VIF across

all models was 1.04.

The 2–4 year periodicity of defoliation (mean 2–4 year

wavelet power) in grid cells surrounding a focal cell was

not a significant predictor of the mean cross-wavelet syn-

chrony of defoliation (at 2–4 year timescales) between the

focal grid cell and its neighbouring cells (table 1). The only

variable that was a significant predictor of the (mean) cross-

wavelet synchrony of defoliation at the 2–4 year timescales

was 2–4 year cross-wavelet synchrony in the scores of PC1

(table 1). The relationship between these two variables was

negative. For the phase synchrony of defoliation at the 2–4

year timescales, none of the predictor variables were

statistically significant (table 2).

Contrasting with the 2–4 year timescales, the 7–11 year

cross-wavelet synchrony of defoliation increased significantly

with the 7–11 year periodicity of defoliation (table 1) in

neighbouring grid cells. The 7–11 year cross-wavelet syn-

chrony of defoliation also increased significantly with the

7–11 year cross-wavelet synchrony in the scores of PC2. Simi-

lar to the results for cross-wavelet synchrony at the 7–11 year

timescales, the 7–11 year phase synchrony of defoliation

increased significantly with the 7–11 year periodicity of defo-

liation (table 2). However, there was no significant

relationship between the 7 and 11 year phase synchrony of

PC2 and the 7–11 year phase synchrony of defoliation.

The geographies of periodicity, cross-wavelet synchrony

and phase synchrony (figures 2 and 3) reflect the statistical

evidence (table 1) of a stronger linkage between periodicity

and synchrony at the 7–11 year than at the 2–4 year time-

scale. Neighbourhoods with strong 2–4 year periodicity

(mean wavelet power) in defoliation were strongly concen-

trated in a portion of central Michigan (figure 2a), but

diffuse elsewhere. Two-to-four year periodicity was some-

what spatially cohesive with 2–4 year cross-wavelet

synchrony within Michigan, but 2–4 year periodicity did

not correspond closely with 2–4 year cross-wavelet syn-

chrony or 2–4 year phase synchrony across the rest of the

study area (figure 2b,c). By contrast, neighbourhoods of

strong 7–11 year periodicity in defoliation were most

strongly concentrated in various areas of central Pennsylva-

nia, West Virginia and New Jersey (figure 3a). These areas
also tended to have high cross-wavelet synchrony in defo-

liation at the 7–11 year timescale (figure 3b). Seven-to-

eleven year periodicity was also fairly spatially cohesive

with 7–11 year cross-wavelet synchrony within Michigan

(figure 3a–c), with both variables tending to increase

from north to south. Similarly, 7–11 year periodicity was

largely spatially cohesive with both 7–11 year cross-wave-

let synchrony in the northeastern states of Maine,

Massachusetts and Connecticut (figure 3a–c). Finally,

areas with strong 7–11 year periodicity in defoliation

(figure 3a) also tended to have strong 7–11 year phase

synchrony in defoliation (figure 3c).
4. Discussion
Consistent with the theoretical prediction that population

cycles can bring the fluctuations of local populations

weakly linked by dispersal or shared environmental variation

into synchrony [6,8,11,12,49], we found a positive relation-

ship (at 7–11 year timescales) across space between the

synchrony of gypsy moth defoliation in a focal location

(grid cell) with neighbouring gypsy moth populations and

the periodicity of defoliation in the neighbouring populations

(table 1). Consistent with previous studies [20,21,42], the local

synchrony of gypsy moth populations also increased with the

synchrony of precipitation, though here we found this associ-

ation was timescale-specific (i.e. occurring at the 7–11 year

timescales but not the 2–4 year timescales; table 1). The

association between precipitation synchrony and gypsy

moth population synchrony does not necessarily indicate

that precipitation is a dominant factor driving gypsy

moth dynamics. To the contrary, nonlinearities in density

dependence, or the combined effects of dispersal and

environmental synchrony, can cause population synchrony

to either exceed or fall below environmental synchrony

[7,8,12,49,50]. Thus, it is possible that precipitation has a rela-

tively minor effect on gypsy moth dynamics yet a strong

synchronizing effect. Nevertheless, there are reports in the lit-

erature of precipitation impacting important processes in

gypsy moth dynamics. Specifically, precipitation is known

to influence transmission and growth of gypsy moth

pathogens [51,52].

We also found a positive association across space between

the phase synchrony and periodicity of gypsy moth defolia-

tion at the 7–11 year timescales, providing empirical

support that gypsy moth population cycles facilitate synchro-

nization via phase locking. Prior studies have reported

instances of phase locking, such as when the phases of Cana-

dian lynx population cycles in different provinces

synchronize after temporarily slipping out of phase [4,9];

however, this type of observation represents relatively weak

evidence of a link between the tendency of populations to

cycle (periodicity) and phase locking. With the exception of

rare ‘historical experiments’ [7,15,16], this is, to our knowl-

edge, the first study to yield quantitative evidence that

population cycling promotes phase locking in nature.

Unlike historical experiments, which rely on a fortuitous dis-

ruption in the past to cyclical population dynamics (e.g.

through a vaccination programme that altered patterns of epi-

demics), the approach developed here only requires spatially

replicated population time-series data.



Table 2. Results of generalized-least-squares regressions testing whether the timescale-specific local phase synchrony of gypsy moth defoliation between a focal
location and neighbouring locations increases with the periodicity of defoliation in the neighbouring locations, while accounting for the effects of the local phase
synchrony of weather (scores of two principal components) in neighbouring locations (n ¼ 1327). (Significant p-values are highlighted with an asterisk (*).)

dependent variables independent variables coef. s.e. t p-value

2 – 4 yr phase synchrony of defoliation

mean 2 – 4 yr power of neighbours 20.056 0.056 21.000 0.317

2 – 4 yr phase synchrony of PC1 20.444 0.296 21.496 0.135

2 – 4 yr phase synchrony of PC2 20.102 0.620 20.165 0.869

7 – 11 yr phase synchrony of defoliation

mean 7 – 11 yr power of neighbours 0.079 0.050 4.468 ,0.001*

7 – 11 yr phase synchrony of PC1 20.002 0.037 20.065 0.948

7 – 11 yr phase synchrony of PC2 0.028 0.034 0.814 0.416

Table 1. Results of generalized-least-squares regressions testing whether the timescale-specific local cross-wavelet synchrony of gypsy moth defoliation between
a focal location and neighbouring locations increases with the periodicity of defoliation in the neighbouring locations, while accounting for the effects of the local
synchrony of weather (scores of two principal components) in neighbouring locations (n ¼ 1327). (Significant p-values are highlighted with an asterisk (*).)

dependent variables independent variables coef. s.e. t p-value

2 – 4 yr synchrony of defoliation

mean 2 – 4 yr power of neighbours .20.001 0.222 20.002 0.998

2 – 4 yr synchrony of PC1 23.913 1.756 22.229 0.026*

2 – 4 yr synchrony of PC2 3.460 1.902 1.819 0.069

7 – 11 yr synchrony of defoliation

mean 7 – 11 yr power of neighbours 1.768 0.337 5.241 ,0.001*

7 – 11 yr synchrony of PC1 0.080 0.549 0.145 0.885

7 – 11 yr synchrony of PC2 1.061 0.311 3.415 0.001*
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The significant positive effects of both population

periodicity and weather spatial synchrony on population

spatial synchrony at the 7–11 year timescales, and the posi-

tive effect of population periodicity on population phase

synchrony at the same timescales, indicates that periodicity

enhanced synchrony above and beyond the effect of environ-

mental synchrony alone. Dispersal is the most commonly

invoked mechanism of phase locking of population dynamics

[6–8,11,53]. However, the spatial scale of our data relative to

gypsy moth dispersal suggests that dispersal rates among

neighbouring grid cells are insufficient to drive the phase-

locking observed here. Adult females are flightless and

larvae typically disperse only tens of metres [31]. Longer-

range movements via human activities or entrainment in

storms are possible [54–56], but are sporadic and rare. It is

possible that movement of gypsy moth pathogens [57] or

parasitoids could contribute to synchronization across this

scale.

Consistent with previous research [22,44,58], our findings

suggest the drivers of synchrony at one timescale can be

different from the drivers of synchrony at other timescales.

In our study system, the apparent effect of 7–11 year, but

not 2–4 year, periodicity on the synchrony of gypsy moth
outbreaks (table 1) may be explained by the fact that period-

icity in defoliation was more prevalent at the 7–11 timescales

than at the 2–4 year timescales (figure 1), given the theoreti-

cal prediction that local population cycling promotes

population spatial synchrony [8,11,12]. Previous studies of

gypsy moth temporal population dynamics have found con-

siderable geographical variation in the strength of periodicity

associated with heterogeneity in forest type [59], the density

of preferred host trees [23] and elevation [60]. In the present

study, we found that statistically significant periodicity in

defoliation was detected at a sizeable proportion (greater

than one-quarter) of locations (8 � 8 km grid cells) at the

timescale of approximately 7.8 years (figure 1) and that the

extent of geographical variation in the strength of periodicity

was sufficient to reveal highly significant ( p , 0.001) relation-

ships between the strength of 7–11 year periodicity in

defoliation and the synchrony and phase synchrony of defo-

liation (tables 1 and 2).

The stronger 7–11 year periodicity compared to 2–4 year

periodicity could also explain why gypsy moth outbreaks

displayed considerably stronger cross-wavelet synchrony at

longer (0.88, 0.72–0.94; ; median, 1st quartile–3rd quartile)

than shorter (0.48, 0.29–0.65) timescale ranges, but this
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Figure 2. Spatial variation in the (a) periodicity (wavelet power), (b) synchrony and (c) phase synchrony of gypsy moth defoliation at the 2 – 4 year timescales. The
value (colour category) displayed for each location (focal cell) is the mean value of the respective variable ( power and synchrony) across the local neighbourhood of
1 – 8 cells adjacent to the focal cell. The cut off points dividing the colour categories shown in the legends were determined with quantile classification (i.e. all
colour categories contain equal numbers of data values). State abbreviations: CT, Connecticut; ME, Maine, MA, Massachusetts; MI, MIchigan; NJ, New Jersey; PA,
Pennsylvania; WV, West Virginia. (Online version in colour.)
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difference in the strength of synchrony across timescales

could also be a result of how well the dominant timescales

of fluctuations in gypsy moth defoliation match those of the

exogenous abiotic drivers, temperature and precipitation (lar-

gely represented by PC1 and PC2, respectively). There was
little detuning (frequency mismatch) between the dominant

timescales of fluctuations in defoliation (approx. 7–11

years) and that of precipitation (approx. 7–9 years,

figure 1). In comparison, the detuning between the dominant

timescales of gypsy moth outbreaks (approx. 7–11 years) and
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Figure 3. Spatial variation in the (a) periodicity (wavelet power), (b) synchrony and (c) phase synchrony of gypsy moth defoliation at the 7 – 11 year timescales. The
value (colour category) displayed for each location (focal cell) is the mean value of the respective variable ( power and synchrony) across the local neighbourhood of
1 – 8 cells adjacent to the focal cell. The cut off points dividing the colour categories shown in the legends were determined with quantile classification (i.e. all
colour categories contain equal numbers of data values). For state abbreviations, see figure caption 2. (Online version in colour.)
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temperature fluctuations (approx. 3.9 years) is considerably

larger. The concept of detuning is clearly applicable to the

study of how periodic macro-scale environmental forces

(e.g. weather and the influences of teleconnection patterns

such as the El Niño-Southern Oscillation) influence the syn-

chrony of population dynamics, but further study in both
experimental model systems and field populations is

needed to evaluate its importance.

Partially synchronized fluctuations in precipitation at the

7–11 year timescales appears to be the main abiotic driver of

population synchrony in our study, but we also found that

the 2–4 year synchrony of gypsy moth outbreaks was
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inversely related to the 2–4 year synchrony of temperature.

No previous studies have reported effects of temperature

on the synchrony of gypsy moth outbreaks [20,21,42], we

found no evidence that temperature affects the phase syn-

chrony of defoliation (table 2), and we are unaware of any

processes whereby synchrony in the fluctuations of an abiotic

factor at a given timescale would reduce the synchrony of

population fluctuations at the same timescale. For these

reasons, we suspect the negative relationship between the

synchronies of temperature and defoliation that we detected

was spurious.

The approaches and concepts used here represent new

avenues to understand the role of cyclic population

dynamics, and other timescale-specific drivers, in population

synchrony. As the distances over which nonlinear phase lock-

ing can operate are unclear—theory suggests these distances

are infinite but local heterogeneity in population dynamics

and increasing asynchrony in environmental perturbations

with increasing distance suggest the phase locking may

occur only over short distances [11,53]—future work should

explore how the drivers of timescale-specific synchrony

vary across different spatial scales. More broadly, such an

approach would allow exploration of the changes in the
relative importance of different drivers of synchrony (e.g.

environmental forcing and dispersal) across local to regional

spatial scales.
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