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Abstract / Abstrakt

Abstract

Termites are shaping the tropical and subtropical terrestrial ecosystems
in many ways and on many levels, but their main contribution lies in their
feeding strategy. They feed on dead plant tissues in various stages of
decomposition, which is a very recalcitrant matter hard to digest. This is the
reason why termites had established a broad range of associations with
symbiotic microbes in their guts. Some termite species are also associated with
microbes that grow in their nests, but the prevalence of these associations
remains largely unknown. All these relationships underwent a long and delicate
co-evolution, which is of intense scientific concern over a century, but the
knowledge of their evolutionary ecology is still insufficient.

Here, | present the latest scientific progress in both, termite phylogeny
and termite microbial associations. Thanks to the recent studies, the cladistic
relationships between the termite families are solved for a sole exception of
Rhinotermitidae + Serritermitidae, although the B-taxonomy sometimes
doesn’t reflect the clades and should be updated. | present here my
contribution to the research in the field of termite molecular phylogeny of family
Kalotermitidae and subfamily Apicotermitinae (Termitidae), and in the field of
internal and external termite associated microbial community evolutionary

ecology.
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Abstrakt

Termiti ovliviiuji suchozemské tropické a subtropické ekosystémy mnoha
zpUsoby a na mnoha drovnich. Jejich hlavni pfinos vsak spociva v jejich potravni
strategii. Zivi se odumrelymi rostlinnymi pletivy v rizném stddiu rozkladu, coz
je velice tézko stravitelny materidl. Z toho dlvodu si termiti vytvofili vzdjemné
prospésné vztahy s mnoha mikroskopickymi organismy obyvajicimijejich stfevo.
Neéktefi termiti si dokonce vytvofili symbiotické vztahy i s mikroby obyvajicimi
jejich hnizda, avsak rozsiteni téchto vztaht zlOstava velikou nezndmou. PFestoze
jsou termiti a jejich mikroskopicti symbiotiCti spolecnici objektem zajmu védy po
vice nez stoleti, nase znalosti jsou v jejich spolecné evolucni ekologii stale
nedostatecCné.

Ve své disertacni praci tak pfiblizuji nejnovéjsi védecky pokrok v oblasti
termiti evolucni historie s ohledem na jejich symbiotické mikrobiélni komunity.
Diky nejnovéjsim kladistickym studiim jiz zndme pfibuzenské vztahy mezi viemi
Celedémi termitd s vyjimkou vzajemného vztahu mezi ¢eledémi Rhinotermitidae
a Serritermitidae, avsak taxonomii Celedi Kalotermitidae a Termitidae bude
tfeba revidovat. Proto zde predkldddm vysledky soucasného vyzkumu
molekuldrni fylogeneze Celedi Kalotermitidae a podceledi Apicotermitinae, na
kterém jsem meél tu cCest se podilet. Zarovei jsou tyto nové poznatky
z fylogeneze termitd uvddény v souvislosti s evolucni ekologif vnitfnich i vnéjsich

termitich symbiotickych spole¢enstev.
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Introduction to the topic:

Termites (Blattodea: Termitoidea) are one of the most important ecological factors on the Earth among the
animals, and are referred to as ecosystem engineers for their importance (Jouquet et al. 2006). Through
their activities, they affect the surrounding environment in a very complex way - they recycle dead plant
tissues, aerate the soil, transport huge volumes of matter, thus fundamentally increasing the heterogeneity
of the environment, etc. and due to their ability to degrade up to 100% of the local production of complex
biopolymers, cellulose and lignin, they are probably responsible for the cessation of coal seam formation
in the Tertiary (Engel et al. 2009).

Termites show a breathtaking complexity of eusocial arrangement (Howard and Thorne 2011) comparable
to bees or ants, however, many partial problems are solved in different ways. They are an internal group
of cockroaches, and the sister clade are cockroaches of the genus Cryptocercus (Lo et al. 2000; Inward et
al. 2007). Cryptocercus is a social roach living in small families with parental care in rotten wood, which
is at the same time their food source. These facts predestined termites most interesting properties, the
eusociality and xylophagy, which combined resulted in effective occupation of a huge niche. They are able
to feed on the most abundant biomaterial on Earth — cellulose and lignin.

However, the lignocellulose is not digested by termite gut enzymes directly. Termites use a broad range of
gut symbionts to extract the nutrients from the organic matter (Breznak and Brune 1994; Brune 2014). Al-
though the communities of gut symbionts (bacteria and protists) are quite well studied, the evolution of the
relationship is not sufficiently explained, like the brisk switch from protists in “lower termies” to bacteria
in “higher termites”. Moreover, although it is known that termites can grow ecto-symbiotic fungi Termito-
myces, the phenomenon of environmental external symbionts of termites is not studied at all. Except the
Macrotermitinae fungal gardens, there are anecdotal mentions about bacterial gardens in Sphaerotermiti-
nae (Garnier-Sillam et al. 1989; Mueller et al. 2005; Genise et al. 2010). Tight collaboration of termites with
external microbes might be completely overlooked phenomenon across all termite families, but it can be
fully understood only from the evolutionary perspective based on solid phylogenetic hypotheses.

Goals of the thesis:
1. Bring new insights in the evolution of termites with unresolved phylogeny.
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2. Search for patterns in co-evolution of termites with gut microbes.
3. Test whether there are environmental microbes associated to termite activities and digestion.
4, Describe the externally associated microbial communities.

Methodology

Although the phylogeny of termites might seem resolved thanks to work of Thomas Bourguignon, there
are several uncertain points in the evolution. | will focus my efforts to disentangle irregularities in the
phylogeny of the “lower termites” Kalotermitidae and the soil-feeding “higher termites” of the sub-family
Apicotermitinae. These data can be later used for mapping and investigation of various evolutionary phe-
nomenons.

More importantly, | will focus my investigation on relationships of termites with various environmental
microbes, especially to test the hypothesis of ecto-symbiotic environmental microbial communities of ter-
mites.

To test this hypothesis, | will use already collected material of termites, their food-source and non ter-
mite environment control. It is actually termite workers bodies, wood pieces infested by termites and the
pieces of the same wood, but not infested by termites yet. Isolation of total DNA and amplification of
specific DNA locuses (bacterial 16S and fungal 1TS2) will result in sequencing library for Next-Generation
Sequencing. Sequenced reads will be identified and processed through Phyloseq analysis to discover any
patterns accompanying the sample types. This way, | will identify microbial communities connected to ter-
mite activities, especially the ones occurring very often in the infested wood, but little in termite bodies
and very little in the not infested wood.

Additional samples will be collected during expeditions with Dr. Sobotnik, who plans unique field experi-
ments for his GACR project. Experimental sterile baits of wood and organic rich soil substrate will be placed
in the tropical forests across the world to collect unprecedented dataset of organic substrate infested and
not infested by termites during half-year exposure. Hals of the baits will be covered by fine mesh, disallow-
ing termites to encounter the food source, but still allowing the microbes to get in. This way the random
environmental decomposing bacteria and fungi will be separated from the ones associated to termites.
The communitiy analyses will be done in the lab the same way mentioned above

Time schedule of the research:
1st semester — Data and knowledge acquisition from the literature. Preparation for the fieldwork.
2nd semester — DNA isolation, laboratory workflow setting. Field expeditions.

Gabon/Cameroon - Field expedition for experimental samples as a team member of an ongoing GACR
project.

Peru/Ecuador—Field experiments on termite associations with environmental microbial communities within
the framework of tropical agriculture and agroforestry.

3rd semester — Laboratory analyses of termite associations with environmental microbial communities.
Additional field works.

4th semester — In silico analyses of termite associations with environmental microbial communities. Com-
position of first scientific article manuscripts.

S5th semester — Analyses of termite associations with environmental microbial communities within the
framework of tropical agriculture and agroforestry.

6th semester - Final analyses and composition of scientific article manuscripts.
7th semester — Composition of scientific article manuscripts and of the dissertation thesis

8th semester — Dissertation thesis compositing
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Foreword

“I look at the geological record as a history of the world imperfectly kept and
written in a changing dialect. Of this history we possess the last volume
alone, relating only to two or three countries. Of this volume, only here and
there a short chapter has been preserved, and of each page, only here and
there a few lines.”

Charles R. Darwin (1859)

Since the primeval attempts to record all life forms on Earth, after
Aristoteles, Carl Linnaeus was probably the first taking this goal seriously and
systematically in his 10t edition of Systema Naturae (1758). However,
nowadays his effort might look romantically naive, it was the cornerstone in a
way of thinking about the biological species and diversity. Later on, influenced
by Charles Lyell and his Principles of Geology (1830), Charles Darwin realised,
that the biodiversity known from geological record surely is just a tiny fragment
of all life forms ever existed on the Earth. Thanks to his book On the Origin of
Species (1859), the concept of biological species as stable, changeless and
given units, finally fell apart. Moreover, Darwin debated on factors limiting
otherwise indefinite number of existing life forms and he comes with the theory
that the environmental factors played probably minor role in biodiversity
compare to mutual relationships between the species. This | see as an
important point, as no life form, the less the Eukaryotes, is a self-standing
island, and with growing species or individual number, the complexity of the
system grows even more rapidly.

Though, the number of species is truly not indefinite, it is much greater
than we have recorded so far. Moreover, the total number estimates of global
biodiversity still range widely from a few millions up to tens of millions (Erwin
1982; May 1988; Chapman 2009; Mora et a/. 2011, Costello et a/. 2013; Locey
& Lennon 2016; Stork 2018). It brings me back to Carl Linnaeus, who might
think, that his work will be completed by his follower in maybe few decades,
but instead, he opened Pandora’s box, still employing thousands of scientists
around the world, even after almost 300 years of Linnaeus first attempts.

12
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Actually, the only outcome common for all above mentioned studies is, that,
thanks to insects, arthropods comprise majority of all eukaryotic diversity. In
respect to great number of species still not discovered, Robert May (1988)
pointed out, that the economic progress of 20t century horribly limits the time
available for global biodiversity research and for the nature conservation.

Luckily, in 1993 international effort for saving global biodiversity was
incarnated during ratification of Convention on Biological Diversity. Currently,
most of the States became parties of the convention, except for Holy See and
USA (www.cbd.int). This convention commits the parties to protect the natural
heritage and prevent unnecessary destruction of natural ecosystems. Of
course, such effort must be supported with scientific research. Although it was
shown that investing in natural conservation pays back (Balmford et a/. 2002;
Sumaila et al. 2017), we still do not invest enough.

During the present massive efforts to describe all life forms on the Earth
using the latest molecular technology and approaches, we have to ask
ourselves, whether the goal is only to satisfy our curiosity, or if it might provide
us more important knowledge. According to some (Vermeij & Leighton 2003),
global diversity actually does not mean anything without knowledge of complex
systems the living things create on the local scale. And truly, just the plain
record of existing species, newly discovered or already extinct, would be
incredibly boring without the knowledge of their function in the ecosystem.
Honestly, does anyone think, that the public would invest trillions of US dollars
into biological research simply to get a really thick book with complete record
of species existing in our epoch?

Thus, the biological research focuses mainly on interactions, from
metabolic pathways, over the symbiosis between host and microbiota, to the
whole species populations and pest invasions. In many experiments or
incidents we can clearly show, how exclusion of sole biological element
influences the whole ecosystem in unpredictable ways ( e.g. Ripple & Beschta
2003; Mao et al. 2005). In my opinion, such research must be delivered to the
public in understandable narratives, although the benefits to public, well-hidden

in the complexity of the ecosystems, may be sometimes hard to explain.

In 2015, | got the opportunity to see things | was only taught about in

school, but | was not able to imagine, at all. Exploitation of natural resources

13
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in irreparable way, uneducated approach to the environment and nature,
agriculture that does not respect climatic and pedological conditions, terrible
wasting of resources intended for nature conservation and sustainable
agriculture, poverty deepened by greed of corporations using greed of the
leaders of the developing countries, that all together and even more
collaborating in concert on the doom of the richest ecosystems on our planet.
Not only in my opinion, the only way out of this machinery consuming our
natural heritage is better education of the population and the new
technologies. Partially, the education of the population in developing countries
can be delivered by inclusion of the local communities into research projects
taking place close to their homes. Perfect example is Binatang Research Centre
established by prof. Vojtéch Novotny in Papua New Guinea, which | had the

honour to collaborate with.

Finally, | participated on research of termites (Blattodea: Termitoidea) for
last six years. My work brought me around the world to investigate not only
termite diversity, but mainly their different ecological strategies and
relationships with their outer and inner environments. Research of termites
gave me the rare opportunity to work on extremely interesting organisms under
complicated conditions together with my friends. On the following pages, |
would like to present part of the knowledge | gathered during my doctoral

studies.
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Introduction

“If humanity depends so completely on these little creatures that run the
Earth, they also provide us with an endless source of scientific exploration

and naturalistic wonder.”
Edward O. Wilson (1987)

1. Global biomass and its cycle

While the humankind is currently trying to invent technologies for
sustainable circular economy, the nature is based on this mechanism since ever.
Almost all organic matter on the Earth is directly or indirectly derived from
plants tissues thanks to their ability to incorporate the atmospheric carbon
during photosynthesis (Witt et a/. 1961). Most of the carbon incorporated in
complex organic polymers of plant tissues is latter available as a food source
for decomposers, mostly soil-dwelling organisms or microbes (Condron et al.
2010). Majority of these organisms, in both measures, biomass and
biodiversity, are bacteria and fungi. They interact with micro-fauna, meso-fauna
and macro-fauna in highly complex food-web systems that determine the
turnover of organic matter and associated nutrients in the environment
(Coleman & Wall 2007; Wardle 2002). While majority of above-ground organic
matter is consumed by animals, decomposition of organic matter in the soil is
driven primarily by the activities of bacteria and fungi and only 10-15% can be
directly attributed to the actions of soil fauna (Hopkins & Gregorich 2005).
However, the importance of fauna should not be underestimated (Evans et al.
2011; Schowalter 2017).

Even the soil nutrient cycle is significantly promoted by the macrofauna
(Bignell & Eggleton 2000; Condron et al 2010; Dahlsjo et al 2014).
Invertebrate decomposers of plant organic matter comprise of Annelida
(Dahlsjo et al. 2014), Mollusca (Suzuki et al. 2003; Xu et al. 2001), Nematoda
(Smant et al. 1998), Coleoptera (Kukor et a/ 1988), and Blattodea (Lo et al/.
2000) including termites (Dahlsjo et a/. 2014; Watanabe et al. 1998).

Thanks to wood-feeding strategy, termites are mainly known as pests of
timber causing damages over $70 billion USD worldwide every year (Bradshaw
et al. 2016; Su 2002, 2019). However, termites should be rather known as

15
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significant drivers of nutrient cycle in the tropics as they consume over 50% of
global terrestrial cellulose production and 100% in some ecosystems (Engel et
al. 2009). Without intensive work of their mandibles, the plant tissues would
not be grinded into small particles and the decomposition by microbes would
take much longer. Termites can feed on sound wood, grass, leaf-litter, decayed
organic matter and even soil. On the other hand, even termites would not be
able to digest the organic matter without complex symbiosis with microbial
community. The digestion of plant tissues in termites is aid by microbes in
concert with innate cellulases (Lo et a/ 2003; Ohkuma & Brune 2011). This
example reveals that the fundament of nutrient cycle on Earth is based on tight

and complex collaboration between vast number of different organisms.

It is often said that tropical rain forests host majority of animal and plant
species on the Earth, however this information is mainly based on the breath-
taking life diversity in Amazon rainforest (Haffer 1969; Smith et a/. 2014), which
were quite well-studied in last decades compared to, for scientists still
impermeable and dangerous, locations of central Africa due the unstable
geopolitical situation from the turn of the millennium (Reyntjens 2011). Who
knows, what biological treasures might be still hidden there? And will we be
able to discover them before we will make them extinct?

The massive efforts for description of all living forms on the Earth started
in 1758 thanks to Carl Linnaeus, who published the first overview of known
species in hierarchically organized system which we are using till today.
However, Linnaeus himself estimated the final number to a few hundreds of
thousands and believed the job will be finished in next generation of his
followers. But his followers lost this belief very soon and the estimates of
species in all taxonomy kingdoms started to grow quickly.

Since the iconic research of Terry L. Erwin, there is no doubt that the
planet Earth is the world of insects (Erwin 1982; Wilson 1987), especially in
terms of biodiversity and ecosystem services. Although Erwin’s estimation of
insects species richness was probably by far overestimated, it still easily exceed
any other macroscopic organism on Earth (Fig.1) (May 1988; Stork 2018).

16
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Predicted % Number of Number of Number of
of world’s vascular arthropod insect Number of

Region plant species plants species species beetle species
\ustralasia 13.10 52,728 890,799 720,521 196,515
Afrotropical 17.73 71,363 1,205,639 975,179 265,971
Central 11.18 45,000 760,240 614,918 167713

America

indn-.\lnlayan 7 13.36 7 57.*,774 7 ‘)()S:E‘) 734,822 | 200,416
North America | 2.10 8,453 142,800 115,503 | 31,502
Neotropics 29.46 118,577 2,003,279 1,620,348 441,935
Oceanic 3.54 14,249 240,720 194,706 | 53,104
Palearctic 9.53 38,358 648,040 524,165 142,961
Total 100 402,500 6,799,996 5,500,163 | 1,500,118

Fig.1 Plant and arthropod species distribution on Earth (Stork 2018)

For a long time, the colossal diversity of insects is put in context to
functional coevolution with angiosperm plants, and vice versa, the angiosperm
plants success since Mesozoic is put in context to insect activity, although it is
probably not the only reason for their dominance (Engel 2015; Grimaldi & Engel
2005; Hu et al 2008; Labandeira et al/. 1994). Undoubtedly, thanks to
photosynthesis plants make up by far the majority of biomass on Earth and the
ecosystem production depends on them (Fig.2). About 80% of global biomass
is estimated to plants, 10% to bacteria and the remaining 10% to all other life-
forms, including animals (Bar-On et a/. 2018). Arthropods make up about 50%
of the total animal biomass (=1Gt C of =2Gt C) and the organisms consuming
over 50% of cellulose production (and 100% in some ecosystems (Engel et a/.
2009)), the termites, are estimated to (*0.05Gt C) which is equal to 0.007% of
total global biomass (Sanderson 1996).

The terrestrial ecosystems are responsible for production of over 75% of
global biomass (Bar-On et al. 2018), but not all of these ecosystems are equally
productive. Although the results of existing studies usually varies a lot (Clark et
al. 2001), the primary net production of tropical forests is estimated up to 35%
of global terrestrial primary production (Melillo et a/. 1993). It can be compared
only to savannas and both reach far beyond other terrestrial ecosystems (Field
et al. 1998). Such high production of tropical forests is based on rapid nutrient
cycle thanks to high decomposition rates in stable warm and humid conditions
(Nye 1960; Vitousek & Sanford 1986).
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The decomposition rates in tropical forests are significantly promoted by
termites whose abundance easily exceed 1000 individuals /m?2 (Bignell &
Eggleton 2000; Eggleton et a/. 1996) and on the global scale is comparable to
that of ants or humankind (Bar-On et a/ 2018; Holldobler & Wilson 1990;
Sanderson 1996). Termite activity in tropics is so eminent, that they are called
ecosystem engineers (Bignell & Eggleton 2000; Freymann et a/. 2008; Holt &
Lepage 2000; Jouquet et al. 2006, 2011; Sugimoto et al. 2000).

archaea molluscs nematodes
A 7GtC B . 0.2GtC 0.02GtC

| = annelids
0.2GtC

wild birds
0.002GtC

viruses
0.2GtC

S
.1" fish
/ 0.7GtC
/ arthropods
bacteria /s 1GtC
70 Gt C wild
mammals
0.007 Gt C

; | 3
protists fur! i animals cnidarians livestock  humans
4GtC 12 Gt C 2GtC 0.1GtC 0.1GtC 0.06GtC

Fig.2 The biomass distribution on earth (Bar-On et al. 2018)

2. Who are termites?

Termites are eusocial insects inhabiting in enormous abundances tropical
and sub-tropical terrestrial ecosystems. Although the adult imagoes possess
wings and compound eyes, majority of termite individuals are in fact blind
unsclerotised juveniles. They feed on dead organic matter of all types, from
sound-wood, grass, lichens or leaf-litter, over decayed wood and humus to
organic patches in soil or nest material of other termites. Adaptation of termite
intestines to digest the most abundant organic matter on Earth, the
lignocellulose, allowed them to occupy a huge niche. However, termites are also
soft-bodied individuals vulnerable to desiccation and cold, therefore their
geographical distribution is limited (Eggleton 2000; Roisin 2000; Engel et al.
2009).

Termites used to be considered as independent order Isoptera (Iso - the
same, pteron - wing), but the progress in molecular phylogeny confirmed, what
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has been intensively debated for last hundred years (Cleveland 1924, 1925,
1934; Donovan et al. 2000; Kambhampati 1995, 1996; Kambhampati et a/.
1996; Kambhampati & Eggleton 2000). From the evolutionary point of view,
termites are eusocial cockroaches, as they evolved within the insect order
Blattodea in Jurassic at least 150Mya ago during the Pangea brekup. The
closest extant relatives of termites are social wood-feeding cockroaches of
genus Cryptocercus (Blattodea: Cryptocercidae) (Bourguignon et al. 2015;
Inward et al/. 2007). The common ancestor of termites (currently classified as
epifamily Termitoidea) and Cryptocercus was probably wood-feeding cockroach
living in small families inside dead logs in the warm and humid forests (Lo et a/.
2007). The ancestor harboured plentiful microorganisms including flagellates in
its gut, being over evolutionary times able to perform better in concert with
their hosts, leading to the community switches (Bourguignon et a/. 2015, 2018;
Brune 2014; Ohkuma 2008). Contrary to termites, Cryptocercus never achieved
the ecological dominance

Termites are often labelled as “lower” or “higher”, which is a practical
distinction of two different termite groups based on microbial gut communities,
life-style and food. “Lower” termites comprise all termite families except for the
phylogenetic crown group, Termitidae - the “higher” termites. “Lower” termites
are wood-feeders or grass-feeders hosting symbiotic flagellates in their
hindgut. Most of the “lower” termite species live in rather small colonies (except
Mastotermitidae and some Rhinotermitidae) and often feed on sound wood,
which makes them pests, known as dry-wood termites (Kalotermitidae) or
subterranean termites (Rhinotermitiade). In contrast, the “higher” termites lack
any flagellates in the hindgut and they mostly feed on more decayed organic
matter, soil, sometimes also fungi or lichens. The variability in the food source
is reflected in the species diversity, as “higher” termites comprise about 85%
of termite generic diversity (Kambhampati & Eggleton 2000; Krishna et al.
2013). Their colonies can be much larger than those of “lower” termites in both,
size and number of colony members.

As hemimetabolous insects, termites and Cryptocercus exhibit a classical
developmental pathway leading from the egg to the winged imago (alate)
through a number of successive immature instars, characterized by the
progressive growth of wing rudiments (called wing, buds, or pads). While
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Cryptocercus lives in small families, where the couple nurtures its offspring,
termites are eusocial, and the offspring tends their parents. The eusociality is
usually defined as a colony life-style, where the tasks are distributed between
castes and moreover, the reproduction is reserved for one of these castes
(Wilson 1971).

In termites, the royal pair establishes their colony and raises the first
cohort of workers and one or even more soldiers. Since then, the workers are
taking care about the colony tasks as foraging, cleaning, nest construction,
brood care, and other castes care, while the royal pair reproduces only. The
specialised defensive caste, the soldier, deals with threats of various nature,
and often act also as food scouts. Together with the feeding specialization, the
colony defence strategies probably led to fast diversification of various species

in termites.

3. Termite colony organization

As termites prefer to stay unobserved, their presence in the environment
is usually recognized thanks to constructions they build or destroy. The majority
of the colony life takes place in enclosed system of galleries forming more or
less centralized nest. It can be several meters of thin tunnels inside a dead
branch sheltering lower hundreds of individuals, as well as a house-sized
complex structure visible from long distances and inhabited by millions of
termites. Such huge nests astonish scientists for decades, as the construction
precision and the functionality are unprecedent for such tiny blind creatures.

Some termites simply construct their nest as tunnels in their food source,
e.g. dry-wood termites of family Kalotermitidae. The nest later grows into
complex system of bigger chambers for tens of individuals connected with
short narrow tunnels used as bottlenecks for effective defence of the colony.
In “dry-wood” termites, the faeces accumulate as pellets somewhere, and are
often released from the timber, and such sign should alert the house owner to

take a vigorous action.

However, many termites are dwelling in the ground substrate. Ground
dwelling is an effective strategy how to reach new food sources or construct

invisible but huge underground nests, from which the termites can forage
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through the gallery system to remote food source. Such nests are hard to
study, but they can have decentralised structure and host millions of
individuals, like the ones of the significant pest genus Reticulitermes

(Rhinotermitidae).

g,

Fig.3 Termite nests - overview of incredible structures

1- Macrotermes jeanneli nest is the pile of ground under the chimney, which can be up to 8m high
2- Nasutitermes triodiae cathedral nest inhabited by millions of individuals

3- Amitermes meridionalis known as compass termite for constructing nests in north-south direction
4- Typical arboreal nest of South American Nasutitermes

Presented with permission of ©Jan Sobotnik

Except for dwelling, termites can also construct novel structures from
debris or their saliva and faeces. These are well known in fungus-growing
termites like  Macrotermes  jeanneli  (Grassé, 1937) (Termitidae:
Macrotermitinae), in cathedral termite Nasutitermes triodiae (Froggatt, 1898)
(Termitidae: Nasutitermitinae), in magnetic/compass termite Amitermes
meridionalis (Froggatt, 1898) (Termitidae: Termitinae) or in South American
Nasutitermes with their huge arboreal spherical nests (Fig.3). The structure is
so complex that it may even have ventilation system, specialised chambers for
particular tasks, like egg deposit, brood care, food storage and many
bottlenecks for effective nest protection against intruders (Korb 2011). All
these nests are inhabited by millions of individuals and also by the queen, which
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is strongly physogastric to be able of producing over hundred billion eggs a year
(Nutting 1969). Therefore, the queen is not able to move and so she is fully
dependent on others care and spends her life in so-called royal chamber, well

defended structure inside the nest.

The ontogeny of a termite individual is based on species-specific
ontogenetic pathways regulated by genetic, colonial and environmental factors

to maximise the colony gains. There are two basic ontogenetic pathways:

e /inear, where workers (or pseudergates) are temporarily-specialised
labour caste and usually later continue development into nymphs or
soldiers;

e bifurcated, where many individuals lose the ability to from wings as
they decide to become true workers in the early phases of their
development. These mostly stay sterile.

The linear ontogeny allows for progressive (egg-to-imago direction),
stationary (no change), and regressive (reduction of wing pads) moults (Roisin
1990). The workers can grow and moult in bigger workers or they can undergo
stationary or even regressive moults in some cases. Under certain
circumstances, workers can even moult into reproductive individuals, so-called
ergatoids. For “lower” termites you may often find the term “pseudergate” or
“false worker”, which are usually workers possessing wing pads and not

excluded from reproduction (Roisin & Korb 2011).

Interestingly, compared to the best-known eusocial insects, the
holometabolous ants and bees, all termite colony members but kings and
queens are immature individuals, and all of them but soldiers can moult into the
next instar according to the species-specific ontogenetic pattern. This brings
termites the unprecedent plasticity in colony organization and responsivity to
sudden changes in their environment. For example, termite colony which
consumed all available food in the dead branch on the living tree, or got
threatened by bigger and more aggressive rival termite colony, can switch
majority of the colony members into adult alates and escape to many other
places, where the alates can start new colonies (Evans et a/ 2009). Such
strategy does not exist in eusocial Hymenoptera, as the workers are largely
sterile all females (Holldobler & Wilson 1990; Wilson 1971).
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On the other hand, termites can also have the bifurcated ontogeny, is
more rigid, especially in the “higher” termites (Roisin & Korb 2011). Linear and
bifurcated ontogenetic pathway differ in existence of “true” workers in the
apterous ontogenetic line (Roisin & Korb 2011). In linear ontogenetic pathway,
only the soldiers and functional reproductives cannot fly off the maternal nest,
while pseudergates/workers are still in the general attempt to moult into alate
imagoes and swarm (Fig.4). However, their nestmates often prevent them from
that by biting off the growing wings (Roisin 1994).

Bifurcated ontogenetic pathway, on the other hand, implies the presence
of true workers, characterized by early and irreversible deviation from the egg-
to-imago pathway (Fig.5) (Watson et al/ 1977). The bifurcated ontogenetic
pathway occurs in Mastotermes, Hodotermitidae, some Rhinotermitidae (all
Rhinotermitinae, Coptotermes, Heterotermes and Reticulitermes) and all
Termitidae (Roisin & Korb 2011)

The linear ontogeny seems to be ancestral based on similarity to
cockroach ontogeny and the bifurcated ontogeny evolved in several basal
groups including Mastotermes, the sister group to all remaining termites. In
spite of controversial opinions on the evolution of termite castes, all we can
confirm are repeated switches between both systems (Legendre et a/. 2008;
Miller 1969; Noirot & Pasteels 1987; Shellman-Reeve 1997).
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Fig.4 Linear ontogenetic pathway of Prorinhotermes (Roisin 1988)
The "false" workers are expressed as larvae instars. Each arrow means moulting

E-egg; L-larvae instar; PS-pre-soldier; S-soldier; N-nymph; A-alate;

RN-individual after regression moulting
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Fig.5 Bifurcated ontogenetic pathway of Mastotermes darwiniensis
(Watson et al. 1977)
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For purposes of this thesis, workers are functional caste irrespectively of
their ontogenetic origin. They consume the organic matter and process it in
their guts, so their bodies are darker than those of larvae. We could compare
workers to the guts of the whole colony, as workers process the food and share
either the regurgitate from both ends of digestive tube (proctodaeal or
stomodaeal trophallaxis), or larvae and reproductives (rarely soldiers) by high
(Noirot & Noirot- Timothée 1969; Sillam-Dusseés et al. 2012; Scheffrahn et al.
2017). Apart of the crucial nutrition function, workers are also responsible for
nest constructing, nest cleaning, brood care and sometimes even for active

defence.

The workers can also moult into pre-soldiers and subsequently into
soldiers. Soldiers are specialised individuals devoted to colony protection,
possessing sclerotized cuticle and mandibles adapted to fight against the
colony enemies. The diversity of soldier caste is the most diversified of all, and
the usual source of characters for the species determination. Except for
apparent enlarged mandibles (but reduced in Nasutitermitinae) and sclerotized
head, soldiers also often possess defensive glands secreting repellent,
poisonous or anti-healing liquids to poison or repeal the opponents. Soldier is
a juvenile but terminal instar (Roisin & Korb 2011), which can’t moult again and
can reproduce in Archotermopsidae only (Thorne 1997; Thorne et al. 2003).

Nymphs are individuals with distinct wing pads progressing on the way to
the alate imagoes. They are nutritionally independent in linear systems, while
fully dependent in bifurcated, surviving on cannibalism when isolated from

workers (Grassé 1984).
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4. Termites as tropical ecosystem engineers

Termites move vast amounts of matter and run the solil bioturbation. They
maintain the environment heterogeneity, bring the dead plant material back
into the cycle, and locally are able to consume up to 100% of organic matter
production (Bignell & Eggleton 2000; Dahlsj6 et al. 2014; Evans et al. 2011;
Fox-Dobbs et al. 2010; Freymann et al. 2008; Holt & Lepage 2000; Rouland-
Lefevre 2000). The termite-related decomposition of lignocellulose prevents
since the rise of the “higher” termites some 60Mya ago formation of coal
deposits, as the woody materials disappear before it could fossilise (Bucek et
al. 2019; Engel et al. 2009). Termites are also important CO, and methane
producers (Sugimoto et al/ 2000), virtually warming up the Global
temperatures. Termites have also been shown to mitigate the droughts of the
tropical forests due the ongoing climate change (Ashton et a/. 2019).

As termites feed usually on dead plant tissues, they should not be referred
as herbivores, but rather as saprophages (Bignell 2016; Cornaby 1977;
Franzluebbers 2014; Siebers et al 2015), however, they might act like
herbivores when collecting leaf-litter, grass or feeding on lichens (Krishna et al.
2013). Termites are able to dissimilate a major proportion of the cellulose (74-
99%) and hemicellulose (65-87%) components of lignocellulose they ingest
(Ohkuma 2003). Such effectivity attracted attention of applied research, but no
applicable outcome reached the broader usage, so far (Auer et a/. 2017; Fujita
& Watanabe 2010), in spite of ambitious current efforts (Marynowska et a/.
2020). There is no evidence of termite feeding specializing on to particular plant
taxa, as termites focus rather on the stage of decomposition, which is mirrored
in their digestive system (Donovan et a/. 2001a; Noirot 1995, 2001; Sands
1998). Based on food particles, mandible and gut anatomy, Donovan (2001)
classified termites into following ecological feeding groups.

e Group | - termites feeding on sound or slightly rotten wood or grass,
which is reflected in relatively simple digestive tract and wood-feeding

type of mandibles. All “lower” termites belong into this category.
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e Group Il - termites feeding on wood, grass, microepiphytes or leaf-litter,
having more complex digestive tract and wood-feeding type of mandibles.
All wood-feeding “higher” termites belong into this category.
Sometimes a special feeding Group lla for fungus-growing

Macrotermitinae may be considered.

e Group Il - termites feeding on highly decayed wood, humus and other
more or less decomposed organic matter, having soil-feeding type of
mandibles and more complex digestive tract.

e Group IV - termites feeding on soil with relatively high inorganic content,
having soil-feeding type of mandibles and extremely long and intricate

digestive tract.

Although Donovan'’s classification allows for quick identification of feeding
group, measurements of stable isotopes in termite body content distinguished
only between two feeding groups of termites, merging Group | with Group Il
into wood-feeders and Group Il with Group IV into soil-feeders (Bourguignon
et al 2011). While wood-feeding strategy is widespread across termite
phylogeny, soil-feeders occur in family Termitidae, only. On the other hand, as
family Termitidae make up over 75% of termite species diversity (Krishna et al.
2013) and soil feeding is their major strategy, it is estimated that over 60% of
all termite species are actually soil-feeders (Brauman et a/. 2000; Kambhampati
& Eggleton 2000; Krishna et al. 2013).

Termites thrive on the organic matter in tropical forests and other tropical
and subtropical terrestrial ecosystems, and play dominant role in the
decomposing cascade returning the nutrients from dead plant matter into soill,
making them available to the new plant growth (Fig.6) (Bourguignon et al.
2011; Coventry et al. 1988; Liu et al. 2015; Swift 1977). These ecosystem
services are of prime importance at the natural sites, but also at crop-fields
(Black & Okwakol 1997; Evans et al. 2011; Jouquet et al. 2011; Kaiser et al.
2017). Although lignocellulose is truly abundant matter, its decomposition is a
difficult task. The biopolymer structure made of sugars (cellulose,
hemicelluloses) embedded into an amorphous lignin matrix made the plant

matter resistant and recalcitrant to the digestion (Cragg et al 2015;
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Fig.6 Nutrient flow through termite activity (Coventry et al. 1988)

Zimmermann & Brown 1971). There are, of course, many other organisms
ingesting similar material as termites do (e.g. free-living fungi and bacteria,
earthworms, many beetles, some moths or some cockroaches), but termites
surely digest more of organic matter than all others combined (Hérault et al/.
2010). This efficiency probably led to termination of coal production since
Tertiary (Engel et a/ 2009) as only a little of organic matter is left for

carbonization.

Termites dominate the macrofauna diversity of tropical soils and play a
role equivalent to earthworms (Eggleton et a/ 1995). They search for patches
of decayed organic matter in soil and use the remaining nutritional value to
prosper. Contrary to earthworms, termites are more effective thanks to their
mass activities, and so occupy most of the niche. Often, soil-feeding termites
feed on nests of other termites or ants, because the faeces of wood-feeding
termites used for nest construction are still more nutritionally valuable food
compared to the bare soil (Bourguignon et a/. 2013).

Except for the involvement in organic matter decomposition, termites
serve to the ecosystems also other ways. Termites alter both the chemical and
physical structures of the habitat not only through decomposition of organic
matter (Bignell & Eggleton 2000; Donovan et al/. 2001b), but also through
bioturbation (Jouquet et a/. 2011), soil-atmosphere gas exchange (Galbally et

al. 2010) and formation of soil bio-structures (Decaéns et al 2002).
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Bioturbation is done by massive movement of soil counted in tons per hectare
and year (Whitford & Eldridge 2013) from place to another and the tunnels
termites leave behind allow both, water and air, to efficiently penetrate the soil.
Moreover, as termites are vulnerable to desiccation, they fully depend on
constant moisture in their environment. Therefore, they also transport a
massive amount of water, often from very deep sources (over 30m), like the
desert termite Psammotermes hybostoma Desneux, 1902 (Rhinotermitidae)
(Grassé 1984). Worth to mention again, many termites construct huge epigeal
nests, which may be of a small house size, and are common especially in
tropical grasslands. Especially in arid areas, these mounds are sought-after
habitat for plants (Fig.7) as the mounds concentrate organic nutrients and
moisture (Bonachela et a/. 2015). This way, termites are creating oasis for many
plant and animal species during the dry seasons. In a global scale termites help
to mitigate the impacts of global climate change on their ecosystems (Ashton
et al. 2019; Bonachela et al. 2015).

Fig.7 Plants spatial distribution on termite mounds in savanah (Bonachela et al. 2015)
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Termite digestion and symbioses

“The obvious efficiency in degrading lignocellulosic or humic matter,
together with the high level of biodiversity within the guts and among the
termites, may serve to provide new strains of microorganisms and alternative
concepts for a technical treatment of recalcitrant xenobiotics bound to

organic soil matter.”

Andreas Brune (1998)

1. Digestive tract

Termite digestion is one of the main reasons of their evolutionary success
as it allowed them to dominate the niche of dead plant matter decomposers.
As termites are eusocial insects, the tasks in the colony are divided between
specialised individuals. Compared to soldiers, in which the defensive gland may
occupy more than 1/3 of body weight (Waller & La Face 1987), the majority of
worker bodies is filled by gut. This fact intuitively leads to suggestion that
digestion is a task of workers, but it is only partially true. Although termite
soldiers cannot chew the feeding substrate due to the defensive modifications
of mandibles, they often participate at the colony stomach, digesting the
particular food provided by workers. The full dependence of soldier upon the
worker nutrition evolved repeatedly in the so-called “white-gutted” soldiers that
evolved repeatedly in several soil-feeding taxa (Scheffrahn et a/. 2017).

Termite gut consists, similarly to all other insects, of three main parts:
foregut (stomodeum), midgut (mesenteron) and hindgut (proctodeum), differing
in embryologic origins (Chapman et a/. 2013). The least derived intestines of
wood-feeding termites are similar to that of cockroaches of genus Cryptocercus
which is closely related to them and also feed on dead wood (Bourguignon et
al. 2015; BucCek et al. 2019; Inward et al. 2007), but the new feeding niches of
family Termitidae caused adaption of whole digestive system to new
substrates. The food is chewed and processed by the mandibles, masticated
with the digestive enzymes from the labial gland and swallowed. The worker
mandibles are more robust, with richer dentition and large molar plate in wood-

feeders, while having fewer long teeth and barely some molar plate in soil
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feeders (Donovan et a/ 2000; Ahmad 1950). The food goes to a simple crop
and proventriculus, where it is further grinded into micro particles (20-100 pm;
Brune & Ohkuma 2011). While the armature of proventriculus is well sclerotized
in “lower” termites, it is reduced in “higher” termites (Donovan et al/. 2000),
which may be due to softer and breakable food properties. The proventriculus
enters the midgut by the esophageal valva.

The midgut is the primary source of digestive enzymes in insects
(Chapman et al. 2013), however, in termites it is usually a simple tube, but still
able to produce series of digestive enzymes including cellulases in the “higher”
termites, while the same enzymes come from labial glands in “lower” termites
(Tokuda et al. 1997, 2002, 2009). Otherwise, the midgut is rather constant
across termites with the exception of caeca, which is noticeably present in
some “lower” termites (Noirot & Noirot-Timothée 1969).

Some group-defining characters originate from /n situ configuration and
coiling of the gut as noted by Sands (1995, 1998). The midgut ends by the
proctodeal valve with no special modification among “lower” termites and basal
Termitidae. However, this gut part, the mixed segment, is of complicated
structure in advanced Termitidae, in which it is formed by groups-specific way
of midgut / hindgut overlaps, at the place of Malpighian tubules junction.
(Bignell 2011; Donovan et al. 2000; Noirot & Noirot-Timothée 1969). The close
proximity of posterior hindgut to mixed segment is associated with extremely
high pH in P1 in subfamily Termitinae and the coiling of the whole gut is cause
of extremely various pH values (Bignell 2011; Brune & Kihl 1996). Moreover,
the Malpighian tubules attached at the junction of midgut with hindgut reduced
their number from 8 or more in “lower” termites to 4 or fewer in Termitidae
(Donovan et al. 2000).
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The hindgut has 5 segments labelled as P1-P5 (Fig.8). The P1 is short and
narrow in “lower” termites and Macrotermitinae, but is variable in length and
dilatations among other “higher” termites. The P2 is of great size variation in
termites and is known as enteric valve (Donovan et al. 2000; Noirot & Noirot-
Timothée 1969). The enteric valve is highly variable across the Termitidae and
its function is somewhat obscure. In soil-feeders it is especially complicated and
taxon-specific (Bourguignon et a/. 2013) and probably helps to separate clay
particles, which have abundant soil organic matter associated with them, from
silica (sand) particles, which are inert. The enteric valve may ensure that clay
particles bounded to organic matter stay in the hindgut longer than silica
particles (Bignell 2011; Donovan 2002). The structure of enteric valve is of
special importance in soil-feeding soldierless species taxonomy (Bourguignon

et al. 2013) or feeding group identification (Donovan et al. 2001a).

The P3 (paunch) part is always dilated as the fermentation takes place
there and, moreover, it is inhabited by the richest community of bacteria and
also flagellates in the case of “lower” termites. Sometimes the P3 segment
bears diverticulum distinctly different from those of enteric valve. The P4 (colon)
segment is always of considerable length as it coils in the loop of midgut and
continues to P5 (rectum). In “lower” termites and Macrotermitinae the P4
makes only a single coil, but in remaining Termitidae the colon may be extended
and forming extra loops. P5 is the rectum which is of general organization and
constant in all termites. However, important variations occur, which seem
related both to the phylogenetic position and the biology of the species (Noirot
& Noirot-Timothée 1977).

In general, advanced Termitidae exhibit more complex gut morphology
compared to “lower” termites (Fig.8). All the changes in concert with the
acquisition of new symbiotic partners led to more effective digestion of the
new feeding substrates (Brune & Ohkuma 2011; Eggleton 2011; Ohkuma &
Brune 2011).

33



Evolutionary Ecology of Termites Termite digestion and symbioses

A
FG_—
" S
- s O
3 Cr
Pr
MG B
— Me —
/ ,3’: JMTs (o
7= P1 X
SP2EV)  p—Z |
|l £\
f P2 ¥
HG .' ) N
P3 ; f
P3
——Re

Fig.8 Digestive tract of different termites feeding groups (Sands 1998).

A: Hodotermes (group I grass-feeder); B: Coptotermes (group I wood-feeder);

C: Cubitermes (group 1V soil-feeder); D: Ophiotermes (group IV - soil-feeder);

Cr, crop; EV, enteric valve; FG, foregut; HG, hindgut; MG, midgut; Me, mesenteron;
MS, mixed segment; MTs, Malpighian tubules; P1, P2, P3, proctodaeal segments;
P3d, diverticulum; Re, rectum
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2. Symbioses

Termites are not able to digest organic matter by themselves. Although
their activity significantly promotes the organic matter turnover, the main part
of digestion and matter breakdown must be actually done by symbiotic
organisms - protists, bacteria and fungi (Breznak 2000; Brune 2014; Brune &
Ohkuma 2011; Inoue et al. 2000; Rouland-Lefévre 2000; Schuurman 2005).
Microbial communities inhabiting the hindgut of termites are reaching densities
up to 10 cells/mL (Ohkuma & Brune 2011). So-called “lower” termites uniting
all families except Termitidae established symbiotic relationship with cellulolytic
flagellates (Watanabe & Tokuda 2009). This symbiosis is so tight that removal
of flagellates from the intestines of termite leads to its death (Cleveland 1924).
The relationship established roughly 180Mya ago (Bourguignon et al. 2015;
Brune 2014; Ohkuma 2008) and the flagellates are transferred vertically
among the nestmates by the proctodeal trophallaxis, coprophagy or by
consuming dead nestmates, which are the main drivers shaping the flagellates
community structure (Abdul Rahman et a/. 2015; Noda et al. 2007). Worth to
mention that during the ecdysis of termite individual, which happen several
times in its lifetime, the individual loose the whole symbiotic community, as the
hindgut with Malpighian tubules are of ectoderm origin, so it is removed during
ecdysis completely (Chapman et a/. 2013). Therefore, the vertical transfer of

the symbiotic communities via proctodeal trophallaxis is crucial for the survival.

2.1. Flagellates

The species richness of flagellates in termite gut is much richer than
thought a decade ago (Gile et a/. 2011, 2013; Ohkuma & Brune 2011; Radek
et al. 2014, 2018; Tai et al 2015). Majority of termite flagellates belong to
phylum Parabasalia (Hypermastigida and Trichomonadida) and the rest to
phylum Preaxostyla (Oxymonadida), seemed to be represented by 3 orders so
far (Brune & Dietrich 2015; Noda et a/ 2012). Interestingly, the number of
flagellate species inhabiting gut of single termite species is decreasing in from
basal to more lately diverged species of “lower” termites. In relation to
horizontal transfer of symbiotic flagellates we might hypothesize, that better
specialised flagellates of termite gut outcompeted the less successful ones
(Noda et al. 2012; Radek et al. 2018).
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Although the function of the symbiotic flagellates is described as
cellulolytic (Watanabe & Tokuda 2009), the flagellates also harbour their own
symbionts of not well studied contribution to the digestive processes - bacteria
and archaea (Noda et a/ 2003, 2005). These prokaryotes may be extra- or intra-
cellular, but always in tight connection and specific to flagellate host (Dolan
2001; Hongoh 2011; Waidele et a/ 2017). Among described functions of these
prokaryotes belongs motion (Dolan 2001; Wenzel et a/. 2003), hydrogen
utilization (Inoue et al. 2007) and nitrogen fixation (Hongoh et a/. 2008). In spite
of our limited knowledge of this complex nutritional network between termites,
symbiotic flagellates and their symbiotic prokaryotes, | may only hypothesize
about the evolutionary drivers and functionality of such relationship.
Interestingly, this complex system of “lower” termites guts was substitute in
“higher” termites (family Termitidae) by bacteria and fungi approximately
60Mya ago, when Termitidae evolved (Bourguignon et a/. 2015, 2017).

2.2. Bacteria

The composition of bacterial community in “lower” and “higher” termites
vary, but the evolution of bacterial communities in the gut of termite ancestor
of family Termitidae led to their crucial digestive function (Brune & Dietrich
2015; Brune & Ohkuma 2011). Prokaryotes participate on the carbon, nitrogen
and energy requirements of termites. Acetogenesis by hindgut prokaryotes
supports up to 1/3 of the respiratory requirement and N2-fixing and uric acid-
degrading microbes can have a significant impact on termite N economy
(Breznak 2000).

Although the bacterial communities in termite gut were of scientific
concern for a long time, only minor fraction could be cultivated and further
studied. The major progress into the studies was brought in the beginning of
our millennium by methods of next-generation sequencing (NGS), allowing
parallel sequencing of the whole bacterial community (Ohkuma & Brune 2011).
Particularly the gene for 16S rRNA of the prokaryotic small ribosomal subunit
is used for the description of the community.

Interestingly, some bacterial clades inhabiting intestines of Termitidae are
not inhabiting any other environment on Earth and evolved together with the
family Termitidae and its feeding strategies, where they reached outstanding
prosperity and diversity (Ohkuma & Brune 2011). Moreover, thanks to NGS it
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is possible not only to compare bacterial communities between Termitidae
species (Otani et al. 2014) or populations of the species (Reid et al. 2014), but
also easily compare the bacterial communities between different parts of single
gut (Kohler et al. 2012; Tokuda et al/ 2000) or between castes of a single
species (Otani et al. 2014) and so observe the different importance for
digestion of organic substrate in workers or for the digestion of nutrient rich

substrate delivered by workers to other castes.

In total, phyla Spirochaetes, Bacteroidetes, Firmicutes, Elusimicrobia and
Candidate phylum Termite Group 3 (TG3) represent together 80% of the
bacterial community in the guts (Hongoh 2011; Hongoh et al/. 2005) and its
exact proportion mirror the feeding habits and gut anatomy of the host
(Mikaelyan et al. 2017).

Spirochaetes are the most typical and most abundant inhabitants of
termite hindgut, present in all termite species (Hongoh 2011). Their proportion
in bacterial community may reach easily over 50% in wood-feeding termites,
while their abundance decrease with other feeding substrates (Brune 2014,
Dietrich et al. 2014, Hongoh et al. 2006; Kohler et al. 2012; Makonde et al.
2013; Paster et al. 1996). They play a role in symbiosis with flagellates of
“lower” termites (Inoue et al/ 2007), but can be found attached to wooden
particles (Mikaelyan et al/. 2014) or gut wall (Tokuda et a/. 2001). Spirochaetes
participate on fermentation, hydrogen production and reductive acetogenesis.

Another highly abundant bacterial phylum of termite hindgut are
Bacteroidetes, prospering mainly in fungus growing and soil-feeding “higher”
termites, but also as symbionts of protists in the gut of “lower” termites
(Dietrich et al. 2014; Noda et al. 2005, 2009; Otani et a/. 2014). Together with
Firmicutes make up major share of bacterial community of fungus-growing
termites (Otani et al. 2016).

Former TG1 group, currently Elusimicrobia, are phylum prospering in the
“lower” termites hindgut mostly from the association with flagellates, and in
contrast to previous phyla are less abundant and diverse among Termitidae
(Abdul Rahman et a/. 2015). Some of them are termite specific, but in general
may be found in other insect intestines (Colman et a/. 2012) and elsewhere

(Herlemann et a/ 2007). Fibrobacteres and TG3 are probably the substantial
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part of the hindgut microbiota in wood-feeding Termitidae, often found in
association with wooden particles (Mikaelyan et al. 2014).
2.3. Archaea

Even though brief, the overview of termite intestinal digestive symbionts
would not be complete without mentioning Archaea. Surprisingly, these
prokaryotes were not classified as independent kingdom till the 1977, although
they are very different from bacteria (Woese & Fox 1977). In termite guts they
represent rarely up to 10% of prokaryotes and they are responsible mainly for
methanogenesis, living attached to the hindgut wall or to other members of
the gut community (He et a/. 2013; Tholen & Brune 2000).

2.4. External symbioses

Although all termites benefit from the crucial symbiosis with gut
microbiota, some adopted also digestive symbionts from outer environment -
ectosymbionts. This phenomenon is known in termites of sub-families
Macrotermitinae and Sphaerotermitinae, the first one well known, the later
waiting to be explored. Sphaerotermitinae are known to create bacterial
gardens in their underground nest, where they grow bacteria on imported
organic matter, which is probably later consumed by the workers (Garnier-Sillam
et al. 1989), but further investigation is needed.

In contrast to Sphaerotermitinae, the relationship of Macrotermitinae, the
fungus growing termites, with the fungi of Basidiomycota genus 7ermitomyces
(Agaricomycetes: Lyophyllaceae) is quite well studied (Aanen et a/ 2002, 2009;
Aanen & Eggleton 2005; Otani et a/ 2014; Rouland et al 1992; Rouland-
Lefevre 2000). The termites are constructing complex epigeal or underground
nests with intricate ventilation system, to maintain the inner conditions
favourable and stable for their fungal gardens (Korb 2011). They are moving
enormous amounts of organic matter into their nests as a feeding substrate
for their fungus. This system is similar to that of Atffta (Hymenoptera:
Formicidae), but the ants developed their “agriculture system” by approximately
20Mya latter than termites (Bucek et al/ 2019; Hoélldobler & Wilson 2010).
Termite workers are foraging for dead plant matter which they immediately
consume and fully overeat return to the nest, where they defecate the pre-
digested matter into the fungal garden combs. This product is inoculated by

the fungus, which later profits on the continuous supply of lignocellulose in very
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stable and protected environment of the nest. Once the fungi grow enough, it
produces the sexual reproductive fruiting body of mushroom (basidiocarp)
above the nest, which is still connected to the fungal gardens by its pseudorhiza
(Fig.9).

Termites, in return, consume the asexual spores (nodules) of the fungus
produced in the nest and also the matter in the fungal garden after
Termitomyces degraded it enough, so they can digest the leftovers of
lignocellulose degraded by the fungus (Poulsen et al 2014; Poulsen 2015;
Rouland-Lefévre 2000; Um et a/. 2013). Worth to mention, Macrotermes
(Termitidae: Macrotermitinae) nutrient income originate mainly from the
degraded organic matter in fungal gardens, but the other genera of
Macrotermitinae feed rather on the nodules of the fungus (Hyodo et a/. 2003).

In more detail, the service provided by the fungus can be summarized as:”

e Termitomyces is an additional protein-rich food source (mainly the
fungal nodules);

e Termitomyces has a role in lignin degradation, which facilitates
the access to cellulose;

e Termitomyces decreases the C/N ratio of foraged products by
metabolising carbohydrates;

e Termitomyces provisions cellulases and xylanases to work
synergistically and/or complementarily with endogenous termite
enzymes”

(Bignell 2000).
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Fig.9 Termitomyces fungus connected to Pseudacanthotermes fungal garden
Basidiocarp of Termitomyces connected to fungal garden by its pseudorhiza.
Presented with permission of ©Ales Bucek
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Interestingly, genus 7ermitomyces comprise of more than 30 species (Kirk
et al. 2001; Mossebo et al. 2017), but Macrotermitinae comprise of
approximately 370 species (Krishna et al/ 2013). Therefore, after logical
consideration, one species of Termitomyces is used by more species of
Macrotermitinae. On the other hand, the termites are not always using the
same species of 7ermitomyces either (Nobre et al. 2011), but the colony is
always maintaining only one fungal strain for its life-time (Aanen et a/. 2009).
In contrast to alates of Atfta ants, which are taking the inoculum of the
symbiotic fungus from their original nest along with them for the nuptial fight
(vertical transmission) (Chapela et a/ 1994; Mikheyev et al. 2010), termites
must usually acquire new fungus for each colony from the environment
(horizontal transmission) (Nobre et al 2011). It explains the partial
synchronization between the basidiocarps of Termitomyces growth and the
swarms of Macrotermitinae (Johnson et a/. 1981). The first worker of the fresh
royal pair must collect not only organic matter, but also the inoculum of fungal
symbiont in its gut, to bring it into initial fungal garden. Nevertheless, there are
two known cases of vertical transmission of the symbiotic fungus among
termites. The male alates of Macrotermes bellicosus Smeathman, 1781 and
the female alates of all Microtermes (Termitidae: Macrotermitinae) are taking
the inoculum of T7ermitomyces along with them from the original nest.
Surprisingly, it didn’t lead to symbiotic specificity of termite species to fungal
strain, as the switches are quite common even for vertically transmitting
species (Korb & Aanen 2003).
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Termite Evolution and Taxonomy

Formerly, self-standing insect order Isoptera (Hexapoda: Insecta) included
all termites which are traditionally categorized as “lower” or “higher” termites.
However, termites evolved as an inner group of cockroaches (order Blattodea)
from a social wood-feeding roach approximately 170Mya ago and since that
time they reached of double species diversity than the remaining cockroaches
(Bell et al. 2016; Bourguignon et al. 2015; Bucek et al. 2019; Krishna et al.
2013). Therefore, currently living termites are included in epifamily Termitoidea
(Blattodea) which is categorized into nine families (Krishna et a/. 2013; Lo et al.
2000; Xiao et al. 2012) (the order follows evolutionary divergence in time
according to Bourguignon et a/. (2015) and Bucek et al. (2019):

Mastotermitidae, Stolotermitidae, Archotermopsidae, Hodotermitidae,
Kalotermitidae, Stylotermitidae, Rhinotermitidae, Serritermitidae, and

Termitidae.

The species of all the families except for Termitidae are categorized as “lower”
termites and the remaining species of family Termitidae are called “higher”

termites.

Thanks to the latest progress in molecular phylogeny, the evolutionary
history of termites and cockroaches was reconstructed in formerly
unimaginable precision (Bourguignon et al. 2015, 2016a, 2017; Bucek et al.
2019). The sister clade of all termites comprises of cockroaches of genus
Cryptocercus Scudder, 1862 (Blattodea: Cryptocercidae), which live in small
families and feed on the dead wood (Inward et a/. 2007). Except for feeding on
recalcitrant wood matter, Cryptocercus species share with “lower” termites
also (i) an obligate, rich and unique hypermastigid and oxymonadid fauna in the
hindgut, (i) horizontal transfer of these symbiotic flagellates through
proctodeal trophallaxis, (iii) the long lasting biparental care of offspring or (iv)
vibroacoustic alarm communication (Cleveland 1934; Klass et a/. 2008; Stiblik
et al. unpublished; Thorne 1990). Therefore, there is truly no doubt about
existence of a common ancestor of Cryptocercus (Fig.10) and termites in their

evolutionary history.
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In contrast to “higher” termites, phylogenetic analyses revealed that
“lower” termites are not a monophyletic group as the families evolved
gradually. The taxonomy also uses the terms Euisoptera, which is a
monophyletic clade within Termitoidea (formerly Isoptera) comprising all
families except for Mastotermitidae, or term Neoisoptera, which is a
monophyletic clade sister to Kalotermitidae comprised of Stylotermitidae +
Rhinotermitidae+Serritermitidae+Termitidae (Fig.11) (Bourguignon et al. 2015).

Euisoptera are characterized by absence of some cockroach characters
still present in Mastotermitidae, like absence of symbiotic Blattabacterium
(Flavobacteriia: Flavobacteriales: Blattabacteriaceae), absence of ootheca and
loss of ovipositor and anal lobe on the hindwing (Engel et a/. 2009; Krishna et
al. 2013). Neoisoptera are defined as termites with fontanelle on their heads.
The fontanelle is an important structure in termite systematics and biology and
it serve as the opening to the frontal gland, which produces defensive
secretions and is therefore highly developed in soldiers. Its function in imagoes
is unknown. The fontanelle occurs on the frons with its position varying from

above, between, and below the eyes (Krishna et a/. 2013).

For further introduction into living termite families and their cladistic
relationships, | will rely on the recent phylogenetical studies using
full-mitochondrial genomes and transcriptomes presented by Thomas
Bourguignon and his collaborators (Bourguignon et a/ 2015, 2016a, 2017,
BuCek et al 2019). The extinct families known only from the fossil record are

off the topic in this thesis. For relevant information check Krishna et a/. (2013).

Fig.10 Cryptocercus garciai Burnside, Smith and Kambhampati, 1998
Cockroaches of genus Cryptocercus living in biparental families are the closest living relatives
of termites (epifamily Termitoidea). Presented with permission of ©Troy Bartlett
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Fig.11 Phylogenetic tree of termites (Bourguignon et al. 2015)
Phylogenetic topography based on 66 full-mitochondrial genomes and reconstructed
using Bayesian method. Family Termitidae is illustrated with its subfamilies
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1. Mastotermitidae

Family Mastotermitidae is a sister clade to all other living termite families
as it diverged approximately 150Mya ago (Bourguignon et a/. 2015). Recently,
this family is represented only by one species Mastotermes darwiniensis
Froggatt, 1897, inhabiting Australian region of the Earth (Krishna et a/. 2013),
where they feed on sound wood and became a significant pest (Howick et al.

1975).

The main features differing Mastotermitidae from other termites are
presence of anal lobe in the hind wing, rudiment of female ovipositor, and laying
eggs Iin ootheca, which is exceptional among termites. Moreover,
M. dawrwiniensis is the only termite species having Blattabacterium in the gut,
which is characteristic common with cockroaches (Krishna et a/ 2013; Lo &
Eggleton 2011). Abdomen of workers is brightly white as there are deposits of
fat. The number of antennomeres is often over 20, which is a primitive feature

compared to most of the termites with lower number of antennae fragments.

Mastotermes are relatively large termites with size over 1cm in all castes
(except from young larvae, of course) and over 3cm in alate imagoes. The
colonies usually comprise of several thousands of individuals and several
reproductives (Howick et al. 1975). Moreover, they create complex nest, use
chemical alarm communication, and their ontogeny is of bifurcated type, which
is usually considered as advanced feature (Delattre et a/ 2015; Goodisman &
Crozier 2002, 2003; Howick et al. 1975). Interestingly, M. dawrwiniensis has
very special sperm possessing over 100 flagella, a feature exceptional among
all animals (Baccetti & Dallai 1978). Fig.12 presents a sole soldier, while the
Fig.13 shows the soldier compared to workers.
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Fig.12 Mastotermes darwiniensis Froggat, 1897, soldier
© Jan Sobotnik
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Fig.13 Mastotermes darwiniensis Froggat, 1897, soldier and workers
© Jan Sobotnik

46



Evolutionary Ecology of Termites Termite Evolution and Taxonomy

2. Stolotermitidae

Together with Archotermopsidae and Hodotermitidae, Stolotermitidae
make up a monophyletic clade within Euisoptera sister to all other Euisoptera
families (Fig.11) (Bourguignon et al. 2015; Bulek et al 2019). The clade
Stolotermitidae + Archotermopsidae + Hodotermitidae diverged approximately
130Mya ago and the recent findings suggest sister position of Stolotermitidae
to Archotermopsidae + Hodotermtiidae. Moreover, the Archotermopsidae are

probably paraphyletic with Hodotermitidae nested in.

Stolotermitidae is a small family comprised of ten living species of two
genera, Porotermes and Stolotermes inhabiting southern hemisphere in Africa,
Australia, and South America. They can be recognized thanks to dorsoventrally
flattened heads of soldiers with (coloured or not) rudimental eyes, well-
developed teeth and prolonged labrum. Although Porotermes adamsoni
(Froggat, 1897) (Fig.14) attacks also living trees, the remaining species of
Stolotermitidae rather feed on damp wood in which they establish small
colonies of a few hundred individuals. Their ontogeny framework is of linear
type. Species of Stolotermitidae are currently rather endemic to specific
biotopes of southern hemisphere, which is actually unique among all termites,
as they are the only family with a distribution that is of a classic austral
disjunction (Grimaldi & Engel 2005).

3. Archotermopsidae

Compared to Stolotermitidae, Archotermopsidae inhabit rather northern
hemisphere of the Earth, as their distribution is Nearcit, Palearctic and oriental.
We recognize six species in three genera: Archotermopsis, Hodotermopsis, and
Zootermopsis. Their colonies are very small reaching up to lower hundreds of
individuals. Their ontogeny is linear which they share with Stolotermitidae, but
is in contrast to Hodotermitidae (Roisin & Korb 2011).

Typically, the soldiers have two marginal teeth on right mandible and three
marginal teeth on the left one. Not flattened head of soldiers bear two visible
rudimental eyes and the labrum is diminished compare to Stolotermitidae
(Fig.15) (Krishna et al. 2013).
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Fig.14 Porotermes adamsoni (Froggatt, 1897), soldier and workers
© Jan Sobotnik
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Fig.15 Hodotermopsis sjostedti Holmgren, 1911, soldier
© Jan Sobotnik
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4. Hodotermitidae

Hodotermitidae position in termite phylogeny is surely very close to
Archotermopsidae (Bourguignon et a/. 2015; Engel et al. 2009), however recent
study explaining in detail relationships among termite families not belonging to
Neoisoptera is waiting to be published. Nevertheless, according to
Bourguignon et al (2015) Hodotermitidae are sister to genus Zootermopsis

and nested within Arcotermopsidae making it paraphyletic taxon (Fig.11).

Hodotermitidae comprise of 21 living species in three genera:
Anacanthotermes, Hodotermes, and Microhodotermes, which inhabit
Ethiopian, Oriental, and Palearctic region. They prefer arid biotopes and feed
on grass. Their underground nests are complex and huge structures dwelled in
soft sandy ground inhabited by several tens of thousands of individuals, which
is in sharp contrast to their closest living relatives. Hodotermitidae caste
system include true workers and soldiers in apterous lineage of ontogeny
starting after 2" moult and therefore their ontogenetic framework fits the
bifurcated type, what is also in contrast to their closest relatives. Interestingly,
there is sexual dimorphism among workers and of Hodotermes, while all

workers and soldiers are males in Anacanthotermes (Roisin & Korb 2011).

Moreover, Hodotermitidae feed on grass which they collect from the open
space during massive irregular raids. Such strategy is unique among “lower”
termites and termites are well-adapted to it. The workers have bit sclerotized
cuticle, which is visible in their dark colouration. This is surely to protect their
soft bodies against desiccation while moving in open space. Moreover, workers
and soldiers possess eyes for better orientation in open space (Fig.16).

Their ecology also influenced their defensive strategies. Beside workers
foraging irregularly, soldiers are guarding the entrances to the underground
nest ready to fight the intruder. Interestingly, Hodotermitidae lack any
vibroacoustic or chemical alarm communication, feature present in all other
termites. Most probably, the vibroacoustic signals would not spread in soft
ground anyway and the chemical alarm is useless in open space of savannahs
(Stiblik et al. unpublished).
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Fig.16 Hodotermes mossambicus (Hagen, 1853), soldier and worker
© Jan Sobotnik

5. Kalotermitidae

Kalotermitidae are recognized as monophyletic taxon for a long time
(Krishna 1961) and novel analyses confirmed their position a sister group to
Neoisoptera (Fig.11) (Bourguignon et al. 2015; Bucek et al. 2019; Inward et al.
2007). They comprise of approximately 450 species in 21genera which makes
them to most diverse termite Family, except from Neisoptera. The most diverse
genera are Cryptotermes, Glyptotermes and Neotermes together comprising
majority of Kalotermitidae species.

Although Kalotermitidae phylogeny seemed to be of genera forming
monophyletic clades (Thompson et a/. 2000), this has been recently put in
question (Cintulovd 2018). Therefore, the efforts for new reliable

Kalotermitidae phylogeny are currently running (Stiblik et al/. in press).

Kalotermitidae are well-known as dry-wood termites causing considerable

economic damages to wooden structures and goods. On the other hand, only
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handful of Kalotermitidae species are pests, but thanks to their biology are
usually widespread and invasive, like Cryptotermes brevis (Walker, 1853) (Su &
Scheffrahn 2000). Compared to other termites, Kalotermitidae lives and feed
exclusively in the dead wood and try to avoid soil, as they are specialist on dead
branches on living trees. They perfectly fit into definition of so-called one-piece
nesters (Abe 1987), thus termites feeding and living in a sole piece of wood.
This strategy led to their diversification and spread across the Globe. Among
other termites, Kalotermitidae alate imagoes are good fliers able to overcome
long distances and find the suitable and solitary food source in the canopy.
Moreover, their colonies established in a single branch allowed them to travel
for much longer distances drifting over the ocean.

They are slowly dwelling in the sound wood creating system of galleries
with bigger chambers connected by short narrow tunnels, perfect for colony
protection. The sound wood they consume ensure them sufficient protection,
but in case of intrusion the soldiers guard the bottlenecks in the gallery system
with their massive mandibles and sclerotized heads. Some termites, like
Eucryptotermes (Fig.17) or Cryptotermes possess phragmotic head with only
short mandibles, so they can effectively plug the bottleneck site and prevent
any intruder to pass by. Moreover, it has been shown, that Kalotermitidae are
able to actively avoid a clash with other insects dwelling in the wood, like

subterranean termites or ants (Evans et al. 2009).

Kalotermitidae  exhibit  typical linear  ontogeny, as their
workers/preudergates are totipotent individuals able to moult into soldiers or
became neotenics or alate imagoes (Legendre et al 2008). Workers and
soldiers are usually quite uniform with few exceptions like Neotermes cubanus
(Snyder, 1922), where two different soldier castes may be found (Fig.18). The
colonies usually comprise of few hundreds of individuals, but it strongly
depends on the size of the food source. Once the food source is consumed,
the pseudergates moult into alates and leave the nest to search for a new food

source.

51



Evolutionary Ecology of Termites Termite Evolution and Taxonomy

pes

. ( 3 .
' a-*
. v s S A HE

-
|

Fig.17 Eucryptotermes breviceps Constantino, 1997, soldier and worker
Example of phragmotic head with short mandibles to plug a hole
© Jan Sobotnik

Fig.18 Neotermes cubanus (Snyder, 1922), soldiers and workers
© Jan Sobotnik
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6. Stylotermitidae

Two minor termite families remain to be introduced and for both the
cladistic position is debated for longer time. At first, | focus on Stylotermitidae,
which is an understudied family with a single living genus Stylotermes
comprising about 45 species (Krishna et a/. 2013). However, most of these
species were described in China in seventies and eighties of past century and
revision of the material seems more than complicated and therefore, there are
strong concerns about validity of these specie descriptions. Moreover, not
more than 10 different species of Stylotermitidae were significantly collected
in past decade, although there were candid efforts by me and my colleagues to

do so.

Family Stylotermitidae belongs to Neoisoptera thanks to the presence of
Neoisoptera synapomorphy, the fontanelle on the head of soldiers and
imagoes. Even for experienced termitologist is quite easy to misidentify
Stylotermes with members of Kalotermitidae, as the workers and soldiers look
very similar. But, Stylotermes soldiers have smooth narrow mandibles with
sharp inner edge and no teeth, which is not common in Kalotermitidae, plus
there is the fontanelle on the head of Stylotermes (Fig.19).

In recent studies, Stylotermitidae seems to be a sister clade to all other
Neoisoptera (Bucek et al 2019; Engel et a/. 2009) and the appearence and
biology similar to Kalotermitidae support this position. However,
Stylotermitidae are recently included in only one cladistic study using molecular
phylogenetic methods (Bucek et a/ 2019) and future studies with more
material of Stylotermitidae could move with their current position.

Biology of Stylotermitidae is similar to that of Kalotermitidae, as both
creates rather small colonies on living trees. The specialization of Stylotermes
focused on the border line between dead and fresh wood. Therefore, it may be
found inside the thin range between the living tissues of the tree and the dead
parts, like the places where the dead branch breaks off from the rest of the

tree, in particular.
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7. Serritermitidae

Family Serritermitidae is the second species poorest family among
termites living only in South America. It comprises of only three species in two
genera: Glossotermes and Serritermes (Krishna et al/ 2013). The family
Serritermitidae is remarkable for its soldier defense through frontal gland
dehiscence (Cancello & DeSouza 2005; Sobotnik et al 2010). The known
species share an unusual linear ontogeny resulting in all-male pseudergates
(Barbosa & Constantino 2017; Bourguignon et al/. 2009). While Glossotermes
is feeding on rotten red wood and making colonies of thousands of individuals,
Serritermes is a minute termite of few hundreds individuals per colony with
unique strategy among “lower” termites (Fig.20). Serritermes serrifer (Hagen
and Bates, 1858) is a specialised nest inquiline of genera Cornitermes
(Termitidae: Syntermitinae) living there in shaded part of hard nest wall, feeding
on grass leftovers, dwelling its own galleries completely separated from

Cornitermes host species (Sillam-Dusses et al. 2020).

In molecular phylogenetic studies Serritermes + Glossotermes always
make up a monophyletic clade (Bourguignon et a/. 2015; Bucek et al. 2019; Lo
et al. 2004). While traditional cladistic study suggested Serritermitidae as sister
clade to Termitidae (Engel et al. 2009) and molecular phylogenetic methods
based on few selected genes as a sister clade to Rhinotermitidae + Termitidae
(Legendre et al 2008), the most recent studies based on termite
full-mitochondrial genomes and transcriptomes nested Serritermitidae among
paraphyletic Rhinotermitidae (Bourguignon et a/. 2015; Bucek et al 2019)
(Fig.11 & Fig.21). According to analysis of whole mitochondrial genomes
Serritermitidae would be a sister clade to genus Termitogeton (Fig.11)
(Bourguignon et al. 2015; Lo et al. 2004), but transcriptome based phylogeny
placed Serritermitidae as sister group of subfamily Rhinotermitinae (Bucek et
al 2019) (Fig.21), however, the relationships between Rhinotermitidae
subfamilies also differ in these molecular studies and therefore we will focus

on Rhinotermitidae phylogeny next.
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Fig.19 Stylotermes sp., soldier and worker
© Jan Sobotnik

Fig.20 Serritermes serrifer (Hagen and Bates, 1858), soldier and workers
Notice the frontal gland in soldier (yellow) and the serrate mandibles
© Jan Sobotnik
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using Bayesian method.

56



Evolutionary Ecology of Termites Termite Evolution and Taxonomy

8. Rhinotermitidae

Family Rhinotermitidae was surely the most tangled riddle in termite
phylogeny investigated intensively in last several decades (Donovan et al.
2000; Eggleton 2001; Kambhampati et a/ 1996; Kambhampati & Eggleton
2000; Lo et al. 2004; Thorne & Carpenter 1992). It comprises of over 300
species in 12 genera. Their position was uncertain and their monophyly started
to be questioned, as they actually lack any solid synapomorphy (Kambhampati
& Eggleton 2000). However, thanks to modern molecular and computing
techniques, we can be pretty sure, that Rhinotermitidae are paraphyletic group
comprised of several monophyletic clades and with Serritermitidae nested
within (Bourguignon et al. 2016a; BucCek et al. 2019; Wang et al. 2019).

A monophyletic clade among Rhinotermitidae are forming: Reticulitermes
+ Heterotermes + Coptotermes. This clade diverged approximately 70Mya ago
(Bourguignon et al. 2015; BucCek et al. 2019; Legendre et al. 2008; Lo et al.
2004; Ohkuma et al. 2004) and recently was doubted rarely (Legendre et al.
2008). It is usually considered as a more advanced clade of Rhinotermitidae
and also as a sister clade to family Termitidae (Bucek et al. 2019; Engel et al.
2009; Lo et al. 2004; Ohkuma et al. 2004). While Reticulitermes forms a
monophyletic clade sister to Heterotermes + Coptotermes as it was suggested
many times, Heterotermes is probably paraphyletic with Coptotermes nested
inside (Bourguignon et al. 2016a; BuCek et al. 2019) (Fig.21), which is a novel
finding compared to previous studies (Engel et a/ 2009; Lo et al. 2004). The
position of remaining genera of Rhinotermitidae is of continuous discussion.
Although, the subfamily Rhinotermitinae was suggested as a monophyletic
clade comprising of Schedorhinotermes + Dolichorhinotermes + Rhinotermes +
Parrhinotermes (Wang et al. 2019), there is still debated exact position of
Psammotermes, Prorhinotermes, Termitogeton and the inner Serritermitidae
inside Rhinotermitidae. The need of Rhinotermitidae taxonomical status
reconsideration is obvious.

In general, Rhinotermitidae are called subterranean termites, as they
usually construct nests in the ground and forage for food elsewhere, however,
e.g. Prorhinotemes focus on wood-pieces in separated sites, like mangroves.
Otherwise, many species of this family focus on sound wood and are causing

considerable damages on wooden structures across the world as they also
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tend to be invasive and spread by humans (Chouvenc et a/. 2011; Evans et al.
2019; Su 2002; Su & Scheffrahn 2000; Vargo & Husseneder 2009). They bet
on huge numbers and often synchronize their swarms, which is an incredible
spectacle of millions alate imagoes covering the sky. Their ontogeny is linear in
Prorhinotermes and Termitogeton (Hanus et al. 2006; Parmentier & Roisin
2003), but other genera exhibit bifurcated ontogeny often with polymorphic
soldier castes. The soldiers always possess fontanelle, which is connected to
frontal gland, the reservoir of defensive secretion. In Coptotermes, this
reservoir occupy over 1/3 of whole body weight (Waller & La Face 1987). There
are also many modifications in soldier morphology in Rhinotermitidae. While
some species bet on extremely big fontanelle and sharp cutting mandibles
(Fig.22), others try to deliver the toxic frontal gland secretion via specialised
prolonged labrum or attach to the opponent by piercing mandibles and extend
the time-span for toxins delivery (Fig.23).

The colonies are well hidden underground, often with decentralized
structure and several reproductives. These systems may be inhabited by many
millions of individuals (Lee et a/ 2019; Patel et al 2020). Often, they can
survive in very arid conditions as they can effectively reach the water sources
from underground. In particular, desert termite Psammotermes hybostoma
Desneux, 1902 can dwell in depths over 30m to ensure water supply to its
colony (Grassé 1984).

As in all “lower” termites, workers feed on more or less decayed wood
matter and the digestion is aid by symbiotic flagellates, however, the
biodiversity of flagellates Rhinotermitidae gut is the lowest observed among
“lower” termites (Noda et al. 2012; Radek et al. 2018).
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Fig.22 Coptotermes testaceus (Linnaeus, 1758),soldier and worker
Note the relatively huge opening of frontal fland - the fontanelle on soldier
head. © Jan Sobotnik

Fig.23 Dolichorhinotermes sp., two soldier castes
© Jan Sobotnik
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9. Termitidae

Family Termitidae comprise more than 75% of all termite species diversity
and about 85% of all termite genera (Kambhampati & Eggleton 2000; Krishna
et al. 2013), so the numbers are over 2000 of species in about 240 genera.
Their raise to ecological dominance started approximately 60-50Mya ago in
Africa (Bourguignon et al. 2015, 2017; Bucek et al. 2019).

Except for the species diversity, family Termitidae reveals the highest
ecological diversity occupying many new niches compared to “lower” termites.
It may be thanks to the novelty of constructing nests from organic matter, soll,
feces and saliva, which opened to “higher” termites the new feeding niches, as
the nest material usually go first through the gut (Eggleton & Tayasu 2001)
and so Termitidae adopted to thrive on plant and fungal material in any
decomposition stage, including degraded detritus in soil or fungal nodules.
While all other families of “lower” termites belong into feeding Group I.,
Termitidae represent the other 3 feeding groups (Donovan et al/. 2001a).
Moreover, their gut is no more inhabited by flagellates, but they adopted new
bacterial communities to aid their digestion.

The ontogenetical pathway is always bifurcated, rigid and uniform. The
caste system and sexual polymorphism is the most advanced in this family
(Noirot & Pasteels 1987; Roisin 2000). The workers are strictly apterous and
different from the larvae and nymphs. Neotenic reproductives are very rare and
the death of king or queen usually inevitably leads to colony extinction. The
distribution of Termitidae is more dependent on warm and humid climate of
tropical regions, as they usually do not prosper in colder climates (Eggleton
2000).

Last but not least, the variability of defensive strategies mirrored in the
morphology of soldier caste, including its complete loss, also helped termites

to dominate new niches.

Nowadays, species of Termitidae are categorized into 8 subfamiles:
Sphaerotermitinae, Macrotermitinae, Foraminitermitinae, Apicotermitinae,

Termitinae, Cubitermitinae, Syntermtinae and Nasutitermitinae.
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9.1. Sphaerotermitinae and Macrotermitinae

Although the full mitochondrial genomes-based phylogeny suggested
Macrotermitinae as sister clade to all remaining Termitidae (Fig.11)
(Bourguignon et al. 2015, 2017), the latest transcriptome based phylogeny put
them as sister to Sphaerotermitinae in separate clade (Fig.21) (Bucek et al.
2019). This is actually in agreement with a known fact that both of these
subfamilies are gardeners and wood-feeders. As Macrotermitinae are the
notoriously known fungus-growers, Sphaerotermitinae grow bacterial
communities in their gardens (Garnier-Sillam et a/. 1989). Both of these cases
are a nice example how termites dealt with the loss of symbiotic flagellates
from their gut and the comparison reveals which strategy was more successful.
While Sphaerotermitinae comprise of sole species Sphaerotermes
sphaerothorax (Sjostedt, 1911) endemic to central Africa, Macrotermitinae
includes over 350 species in 12 genera (Krishna et al. 2013) and spread over
Africa and Asia.

Sphaerotermes sphaerothorax lives in Congo basin and creates unique
underground nests. It is a spherical bald structure placed in bigger underground
chamber with only 2 exits located opposite each other. Moreover, the centre
of nest is hollow and serves as colony toilet. The whole underground nest is
literally hanging underground on the tree roots sourcing nutrients from the
colony toilet (Fig.24).

Macrotermitinae are the only subfamily having both, multiple soldier and
worker castes, although not always all present. They forage over long distances
to collect material into their nests and the workers are usually accompanied by
minor soldiers, while major soldiers are guarding the nest. Some even forage in
open space, like Macrotermes carbonarius (Hagen, 1858). They may be of small
size (Microtermes or Ancistrotermes) , but some of the biggest termites also

belong into the subfamily (Acanthotermes or Macrotermes).

The nest may be inhabited by millions of individuals what places high
demand on the queen, which is extremely physogastric any laying tens of eggs
per minute (Fig.25).
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Fig.24 Sphaerotermes sphaerothorax (Sjostedt, 1911), nest
© Jan Sobotnik

Fig.25 Macrotermes michealseni (Sjostedt, 1914), inhabitants of the royal
chamber
© Jan Sobotnik
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9.2. Foraminitermitinae
The position of subfamily Foraminitermitinae is uncertain in every
phylogenetical study conducted so far (Bourguignon et a/. 2015, 2017; Bucek
et al. 2019; Engel et al. 2009; Inward et al. 2007), however, nowadays it seems
that this surely monophyletic clade comprised of 3 genera with 10 species is a
sister clade to all other Termitidae except from the Macrotermitinae +
Sphaerotermitinae clade. Foraminitermitinae inhabit central Africa and

south-east Asia

Interestingly, they are true soil-feeders, which makes them the first
termites inventing this feeding strategy among living termite species
approximately 50Mya ago (Bucek et al 2019). Little is known about their
biology, as the species are of minute size and hard to find and observe.
Although the soldiers (Fig.26) may superficially resembles that of Apicotermes,
the close relationship was excluded thanks to position of fontanelle (Krishna
1963).

Fig.26 Foraminitermes valens (Silvestri, 1914),soldier and workers
© Jan Sobotnik
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9.3. Apicotermitinae

The Apicotermitinae are a subfamily of soil-feeding termites that play an
important role in soil processes like bioturbation and organic matter cycling in
tropical rainforests and savannas (Bourguignon et al/. 2013, 2016b; Jones &
Eggleton 2011). Several lineages of Apicotermitinae are characterized by the
absence of the soldier caste. These are the members of monophyletic
Astalotermes-group and paraphyletic Adajphrotermes-group in Africa and the
Anoplotermes-group in the Neotropics (Sands 1972), all very abundant and
locally making up more than 30% of the termite species diversity (Dahlsj6 et al.
2015, 2020; Eggleton et al. 1995, 2002). Soldiered species comprise of the
African Apicotermes-group and the Oriental Speculitermes-group however, the
species of Speculitermes-group are tending to lose soldiers as /ndotermes
(Fig.27) reveals extremely low proportion of soldiers (roughly 1 to 1000

workers) and to find soldier of Euhamitermes (Fig.28) is almost impossible.

The Apicotermitinae are one of the most diverse subfamilies of
Termitidae, and probably the most understudied, because they include many
soldierless species that can only be distinguished morphologically by tedious
dissections of the worker digestive tract (Bourguignon et al/ 2013; Noirot
2001; Sands 1972) or, in the close future, using molecular bar-coding.

Over 200 species in 52 genera of Apicotermitinae have been described,
with diversity hotspots located in Africa and South America (Bourguignon et al.
2016b; Constantini et a/. 2020; Krishna et a/. 2013), but many species are still
awaiting formal description. Therefore, also the phylogeny and historical
biogeography remained unclear and the results of the latest progress are

presented later in this thesis.
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F

Flg.27vIndotermes sp., soldiers and workers
© Jan Sobotnik

Fig.28 Euhamitermes sp., two very rare soldier and workers
© Jan Sobotnik
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9.4. Syntermitinae

The subfamily Syntermitinae is exclusively neotropical group of wood or
soil-feeding termites. It comprise of about 100 species in 15 genera and they
are easily recognisable thanks to functional biting mandibles and conspicuous
frontal pore (Krishna et a/. 2013) (Fig.29). Moreover, they are one of the rare
cases of neotenic reproductives production in “higher” termites (Fougeyrollas
et al. 2015; Myles 1999). They may be of a considerable size and their presence
is often obvious thanks to epigeal mounds, but many dwell complex
underground nests as well. During the nest construction, they move enormous
amounts of soil and organic matter and creates oasis in arid South-American
Cerrado (Fig.7). In this respect, Syntermitinae are of similar ecological
importance as Macrotermitinae, which never reached Neotropics.

The phylogenetic position is still questioned, although it seems , that
subfamily Syntermitinae is a monophyletic clade surely nested within
paraphyletic Termitinae and probably sister to cosmotropical wood-feeding
Microcerotermes-group (Bourguignon et al. 2015, 2017; Bucek et al. 2019).
Therefore, Syntermitinae are either independent case of soil-feeding strategy

evolution, or the wood-feeding strategy was reacquired (BuCek et a/. 2019).

Fig.29 Embiratermes neotenicus (Holmgren, 1906)
Soldier, workers and neotenic reprodictives (with eyes and wingpads)
© Jan Sobotnik
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9.5. Nasutitermitinae

This subfamily, although very various in morphology and nesting or
feeding habits, is very easily recognized by soldiers greatly reduced mandibles
and distinctly prolonged head into narrow nasus (Fig.30). Thank to this
adaptation, the soldiers are able to spray toxic and repellent product of frontal
gland over a long distance. The workers are quite uniform with age-dependent
size, but the soldiers may be di- or even tri-morphic (Krishna et a/. 2013). It is
also quite common that the soldiers are considerably smaller than workers.
Despite to reduced mandibles, the labial gland is sometimes well-developed

and its function is debated (Constantino & Costa-Leonardo 1997).

The subfamily Nasutitermitinae is cosmotropical, very abundant and
super-species-rich encompassing about 600 living species in 77 genera (Krishna
et al. 2013). The species feed on full range of organic matter from wood to soil
and some even on lichens and micro-epiphytes (Fig.31). They nest in the
underground, in typical spherical or variously shaped arboreal nests (Fig.3), or
as inquilines of other termites. Some species are foraging in open space, and
thus their coloration is unusually black. Also in this case the original feeding
strategy at the time of clade divergence was probably soil-feeding, and the
wood-feeding was reacquired (Bucek et al. 2019).

Nasutitermitinae probably originated in Africa about 30Mya ago, but is
still uncertain (Bourguignon et al 2017). Despite its huge diversity,
Nasutitermitinae monophyly is widely agreed (Bourguignon et a/. 2015, 2017,
BucCek et al. 2019; Engel et al. 2009; Inward et al. 2007; Legendre et al. 2008;
Miura et al/. 2000) and the recent studies agree on quite close kinship with
Termitinae genera Cephalotermes and Neocapritermes. Otherwise, the position

among paraphyletic Termitinae is highly uncertain.
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Fig.30 Anhangatermes sp., soldiers and worker
The narrow duct of the fontanelle is visible in the head
© Jan Sobotnik

Fig.31 Hospitalitermes sp., foraging in open-space
© Jan Sobotnik
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9.6. Cubitermitinae

Cubitermitinae are exclusively true soil-feeders endemic to Sub-Saharan
Africa and encompassing over 150 species categorized into 26 genera (Krishna
et al. 2013). They form a monophyletic clade within Termitinae and diverged
approximately 25-30Mya ago (Bourguignon et al/ 2017; BucCek et al. 2019).
They may be recognized according to “cubic” head of soldiers with “V” shaped
labrum and typical workers with distinct diverticulum on P3 hindgut segment
(Fig.32). They prosper in both, arid savannahs and rain forest, and their
presence is distinctly marked by “fungi-shaped” nest (Fig.33).

They dominate the soils of Congo basin with surprisingly high population
and species of genus Cubitermes are some of the most studied soil-feeding
Termitidae. The focus on this group may be due to their high abundance and
conspicuous mounds, compared to the belowground nests of soldierless
soil-feeders. The ecological effects of Cubitermitinae are mainly seen in the
old-growth lowland forests of Africa where their abundance and biomass reach
maximum. They have been shown to increase pH in acidic soils, as well as the

content of organic carbon and water. (Sobotnik & Dahlsjo 2017).

Fig.32 Cubitermes sp., soldier and workers
Notice the transparent cuticule and the visible intestines
© Jan Sobotnik
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Fig.33 Cubitermes nest
The architecture perfectly protects against heavy rains, foods or direct sun
© Jan Sobotnik
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9.7. Termitinae

Phylogeny of subfamily Termitinae is one of the most debated topics
among termitologists. The group is surely paraphyletic as the monophyletic
subfamilies Syntermitinae, Nasutitermitinae and Cubitermitinae are nested
within, so the taxonomy definitely deserves revision. But first, reliable cladistic
analyses based on multi-omics approach must be conducted, as the latest
results still differ considerably (Bourguignon et a/. 2015, 2017; Bucek et al.
2019). However, the subfamily comprise of more than 630 species in 61genera
and the morphological variability of soldiers is the greatest among termites, so
there is no wonder they were found paraphyletic (Deligne et a/. 1981, Krishna
et al. 2013).

Although the common ancestor of Termitinae was probably soil-feeder,
the swap to wood-feeding is quite common within the subfamily. As a perfect
example may serve Microcerotermes or Amitermes, which are clearly unrelated
genera feeding on sound wood and having cosmotropical distribution
(Bourguignon et al. 2017; Bucek et al. 2019; Krishna et al. 2013).

Interestingly, it may be due to soldier caste morphological diversity and
incredible variability of defensive strategies that all the 61 genera were put in
one paraphyletic group. It is a strange coincidence that the soldiers of
Termitinae usually have long and slender mandibles, which tend to evolution of
snapping mandibles. Snapping mandibles allow to accumulate elastic energy,
that can be release when triggered in. Moreover, compared to other types of
mandibles, the snapping can be done repeatedly in seconds. It may be so
powerful, that the opponent is smashed or thrown away. Snapping mandibles
may be either symmetrical or asymmetrical with slightly different defensive
capabilities (Sobotnik & Dahlsjo 2017). While the snapping of symmetrical
mandibles provides a hit by both to the sides, asymmetrical snapping mandibles
deliver a forward blow from the left mandible only, but it is the fastest
movement in animal kingdom (unpublished data).

The evolution of Termitinae defensive strategies reached obscure
mechanisms, where e.g. termite soldier can snap and cut within a single
movement (Fig.34), or the defenders use explosive backpacks on the basis of
fusion exothermic reaction (Fig.35) (Sobotnik et al. 2012, 2014).
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Fig.34 Orthognathotermes sp., soldiers and workers

The long elbowed slender mandibles can cut a head in a single snap
My favourite termite :-)

© Jan Sobotnik
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Fig.35 Neocapritermes taracua Krishna and Araujo, 1968, bomber termite
Workers have bacpacks with blue protein, which can rapidly react with saliva, if needed
Older soldiers may have the protein as well, but they are better in close combat

© Jan Sobotnik
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Aims of the thesis

e Bring new insights in the evolution of termites with unresolved phylogeny.

e Search for patterns in co-evolution of termites with gut microbes.

e Test whether there are environmental microbes associated to termite
activities and digestion.

e Describe the externally associated microbial communities.
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Publications

The following pages introduce my research in already accepted and
published scientific publications - research articles. The first publication of the
list brings the annotated full mitochondrial genome of Cryptotermes havilandi
Sjostedt, 1900 (Kalotermitidae) and so it contribute to resolving phylogeny of
Kalotermitidae, as recently this family showed up as unexpectedly tangled
riddle in termite taxonomy (Cintulova 2018). Although in general the phylogeny
of termites might seemed resolved (Bourguignon et al 2015; Bucek et al.
2019) the detailed look into the termite families discover several unresolved
nodes and taxonomical questions. Thus, my article bringing the whole
annotated mitochondrial genome is an important shard for reliable
Kalotermitidae phylogeny.

Apart of the increased pressure for highly accurate phylogenetic topology
of Kalotermitidae, also the evolutionary history of subfamily Apicotermitinae
provides hidden knowledge to be investigated. Therefore, | joined research
activities searching for the relevant dated phylogeny of these interesting soil-
feeding termites, as it is presented in the second article.

The third publication focus on metagenome-assembled genomes (MAG) of
termite gut. Detailed analysis led to great dataset of MAG’'s and identified
bacterial clades specific to termites. The evolution of termite gut symbionts is
extremely thrilling due to brisk switch from broad range of protists in “lower
termites” to endless range of bacteria in “higher termites”. This paper is an

important contribution to future analyses of termite or others insect gut

The fourth and fifth articles focus on non-random relationships of termites
with environmental microbes, fungi and bacteria, respectively. Symbiosis of
termites with external microbes is known for a long time as termites of
subfamily Macrotermitinae create fungi gardens inside their nests and they
actively grow fungus 7ermitomyces which is specific to termite nests (Krishna
et al. 2013; Mossebo et al. 2017; Rouland-Lefevre 2000). For a long time, other
termite relationship with environmental microbes was not known except for
anecdotal mention of Sphaerotermes sphaerothorax creating bacterial gardens
inside their nests (Garnier-Sillam et a/. 1989). Therefore, it was motivating to

search for more symbiotic relationships between termites and microbes from
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the environment. The search was successful as for three species of neotropic
termites Coptotermes testaceus, Heterotermes tenuis and Nasutitermes

octopilis were discovered tight relationships with both, fungi and bacteria.
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ABSTRACT

We report the first complete mitochondrial genome of an important pest of timber,
the drywood termite Cryptotermes havilandi. The gene content and synteny of the
mitochondrial genome of C. havilandi is identical to that of other termite species
reported to date. It is composed 13 protein-coding genes, two ribosomal RNA genes,
and 22 transfer RNA genes. Our phylogenetic tree, that includes the mitochondrial
genomes of 14 species of Kalotermitidae, including C. havilandi, resolves the
phylogenetic position of C. havilandi within Kalotermitidae.

Main text

Cryptotermes havilandi Sjdstedt, 1900 (lsoptera: Kalotermitidae) is an important pest
of structural lumber and sheltered wood (Su and Scheffrahn 2000). Although it is now
distributed across the tropical and subtropical regions, C. havilandi originated from
Africa, and has been introduced outside its native range largely by the intermediary of
human transportation (Evans 2011, Evans et al. 2013). It is now invasive in various
Caribbean islands, Guiana, Surinam, Brazil, Madagascar, the Comores, and India
(Evans et al, 2013). Despite its economic importance, the mitochondrial genome of C,
havilandi has not been sequenced yet. Here, we provide the first complete
mitochondrial genome sequence of a C. havilandi extracted from the sample CAM101
collected on 7% of April 2015 in an abandoned wooden house in northern Cameroon,
Africa (NDO4°42'25" E0DD9"43'08"), by the authors. The sample CAM101 is available in
Petr Stiblik (stiblik@fld.czu.cz) collection at Czech University of Life Sciences, Prague,
Czech Republic in both states, as an 80% ethanol voucher sample and in RNAlater
preservative.

We sequenced C. haovilandi (Genbank: MW208858) mitochondrial genome using
lumina HiSeq2000. The genome was assembled using the clc suite of programs as
described by Bourguignon et al. (2015). The total length of the complete mitochondrial
genome of C. havilandi is 15,559bp. As in other mitochondrial genomes of termites
previously sequenced (Cameron and Whiting 2007, Cameron et al. 2012, Bourguignon
et al. 2015, 2016, 2017, Wu et al. 2018, Wang et al. 2019), the mitochondrial genome
of C. havilandi is composed of 13 protein-coding genes (following the order: nad2,
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coxl, cox2, atp8, atpb, cox3, nad3, nads, nadd, naddl, nadé, cyth, and nadl), two
ribosomal RMA genes (rnl and rns) and 22 transfer RNA genes (following the order: lle,
Gin, Met, Trp, Cys, Tyr, Leu™WURl Lys, Asp, Gly, Ala, Arg, Asn, Ser“V! Glu, Phe, His, Thr,
Pra, SerY™ 1 eu™™ and Val). The GC-content is 34%. Our results confirm that termite
mitochondrial genomes are stable in gene content and preserved their synteny.

To shed light on the phylogenetic position of C. havilandi within the Kalotermitidae,
we reconstructed a phylogenetic tree that included all mitochondrial genomes of
Kalotermitidae sequenced to date, including the mitochondrial genome of C. havilandi,
and three outgroups: Zootermopsis angusticolis (lsoptera: Archotermopsidae),
Porotermes odomsoni (lsoptera: Termopsidae) and Coptotermes sepangensis
(Isoptera: Rhinotermitidae) (Figure 1). All genes were aligned separately using MAFFT
v. 7.3 (Katoh and Standley 2013), concatenated, and the phylogenetic tree was
reconstructed using MrBayes v. 3.2.1 (Ronguist et al. 2012). The parameters of the
phylogenetic analysis were set as described by Bourguignon et al. (2017). Overall, our
phylogenetic tree confirms the monophyly of Cryptotermes, within which C. havilandi
is nested.

The genus Cryptotermes includes several invasive species that cause major economic
losses in the world (Evans et al. 2013). Surprisingly, very few studies have used
molecular markers to study the population genetics of Cryptotermes species. In this
paper, we provide the mitochondrial genome of one of the most important termite
pest, The new mitochondrial genome presented here will help to understand how the
major termite pests have been introduced around the world.
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Abstract

Soil-feeding termites are abundant in tropical regions and play an important role in soil bioturbation and
in the organic matter cycle, The Apicotermitinae are arguably the most diverse lineage of soil-feeding
termites, but they are also the most understudied., probably because many species are soldierless, which
makes identification difficult, and because their cryptic lifestyle prevenis easy sampling. Although the
backbone of the termite phylogenetic tree is now well-resolved, the relationships among representatives
of Apicotermitinae are stll largely unknown, Here, we present phylogenetic trees inferred from 113
mitochondrial genomes of Apicotermitinae representative of the group diversity. Our analyses confirm
the monophyly of the Apicotermitinae and the basal position of soldiered taxa, within which two lineages
of soldierless species are nested. We resolved, with high support, the position of Asian genera as sister
group of a clade comprising the monophyletic neotropical Anoplofermes-group and a small African clade
including Adaiphrarermes and an undescribed genus. Our trees cast light on the intergeneric and
inferspecific relationships within Apicotermitinae and reveal the polvphyly of several genera, including
Rupitermes, Astalotermes and Anoplotermes. Biogeographic reconstructions revealed two dispersal
events out of Africa, one to the Oriental realm and one to the Neotropical realm, Owverall, the timing of
Apicotermitinae diversification and dispersal, following the Eocene-Oligocene boundary, matches that

found for other groups of Meoisoplera.

Keywords: Humivorous, lsoptera, mitochondrial genome, systematics, molecular clock

81



36

37
38
39
40
41
42
43
44
45

46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

Evolutionary Ecology of Termites Publications

1. Introduction

The Apicotermitinae are a subfamily of soil-feeding termites that play important roles in soil bioturbation
and organic matter cyeling in tropical rainforests and savannas (Jones and Eggleton, 2011, Bourguignon
et al., 2016). Several lineages of Apicotermitinae are characterized by the absence of the soldier caste.
Soldiered species encompass the African Apicotermes-group and the Oriental Speculitermes-group
{Grassé and Noirot, 1954; Sands, 1972). Soldiers are, however, rare and often unknown in species of the
Speculitermes-group. Soldierless species comprise the Asialotermes-group in Africa and the
Anoplotermes-group in the Neotropics (Sands, 1972), both of which are very abundant and can locally
make up more than 30% of the termite species diversity (Eggleton et al., 1995, 2002: Bourguignon et al.,
2011, 2016; Dahlsjé et al., 2015, 2020; Nduwarugira et al., 2017).

The Apicotermitinae are one of the most diverse subfamilies of Termitidae, and the most understudied,
probably because they include many soldierless species that can only be distinguished morphologically by
tedious dissections of the worker digestive tract (Grassé and Noirot, 1934, Sands, 1972, 1998; Noirot,
2001; Bourguwignon et al., 2016). To date, 224 species and 52 genera of Apicotermitinae have been
described, with diversity hotspots located in Africa and South America (Krishna et al., 2013;
Bourguignon et al., 2016; Constantino, 2020; Roisin, 2020). However, the actual diversity of the group is
much larger, and many species, still awaiting formal description, have been informally labelled as
morphospecies in ecological surveys (e.g., Eggleton et al. 1995, 2002; Davies, 2002; Bourguignon et al.,
200 1; Ndwwarugira et al,, 2017),

The first comprehensive phylogenetic study of termites was based on a combination of morphological
characters and genetic markers, including two mitochondrial genes (COIl and 125) and one nuclear gene
(288) (Inward et al., 2007). This study supported the monophyly of Apicotermitinae, which were
retrieved as the sister group of a clade composed of all other Termitidae except the fungus-growers
(Macrotermitinae) and the two small subfamilies Sphacrotermitinae and Foraminitermitinae (Inward et
al., 2007}, This phylogenetic position was later confirmed by molecular phylogenies inferred from
complete mitochondnal genomes and transeriptomes (Bourguignon et al., 2015, 2017, Bucek et al.,
201%). In addition, the phylogenetic tree of Inward et al. (2007) suggested that (1) the African soldiered
taxa arc paraphyletic to a clade composed of the soldierless lincages and the Asian (soldiered)
Apicotermitinag; (2) the Oriental Speculitermes-group is monophyletic; (3) the Neotropical
Anoplotermes-group is monophyletic; and (4) the Oriental Speculitermes-group, the Neotropical
Anoplotermes-group and the African soldierless Adaiphrotermes form a monophyletic group sister to all
other African soldierless taxa. This tree topology implies two independent losses of soldiers in
Apicotermitinae, and two independent dispersal events between continents, with unclear directionality,
Complete mitochondrial genome phylogenies confirmed that Asian and Neotropical taxa are closer to
each other than to most African soldierless genera (Bourguignon et al., 2017}, but, because of their

insufficient sampling, poor characterization of some described genera (e.g., Astalotermes,
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72 Anentectermes), and uncertain identifications, the history of Apicotermitinae remains unclear. In addition,
73 most relationships among African and Neotropical soldierless taxa were unresolved by Inward et al.
74 (2007), and several genera (e.g.. Aderitotermes, Astalotermes or Anoplotermes) appeared as polyphyletic

75 in the phylogenetic trees of Bourguignon et al. (2017).

76 In this study, we used 113 mitochondrial genomes of Apicotermitinae species o reconstruet robust

77 phylogenetic trees imcluding most deseribed genera, well-charactenized by anatomical features. Using

78 these trees, we tested previous phylogenetic hypotheses regarding the relationships among major

79 Apicotermitinae clades and provided a timetrame for their evolution. We also investigated the historical
80  biogeography of Apicotermitinae and determined the number of independent losses of soldiers. Our

81  analyses clarify the taxonomy of Apicotermitinae and pave the path to future taxonomic revisions of non-
82  monophyletic genera, such as Astalotermes or Anoplotermes, and provide a framework to study the

83  anatomical evolution of the subfamily.

84 2. Material and methods
85 2.1 Sampling

86  Termite sampling was conducted in Burundi (n = 7), Cameroon (n = 28), Ivory Coast (n = 18), Kenya (n
87 = 1) and French Guiana (n= 13) (Table 51). For each sample, we collected specimens in RNA-later® or
B8  in 100% ethanol for genetic analyses, and in 80% cthanol for morphological analyses. Samples collected
89  in RNA-later® and 100% ethanol were temporarily stored at a temperature ranging from -20°C to 4°C,
90  and shipped to the Czech University of Life Sciences or to the Okinawa Institute of Science and

91  Technology, where they were stored at -80°C until DNA extraction. Samples collected in 80% ethanol are
92  stored at the Université Libre de Bruxelles and the Czech University of Life Sciences. In addition to the
93 67 samples collected in this study, we also obtained the full mitochondrial genome sequences of 43

94  samples of Apicotermitinae from GenBank (Bourguignon et al. 2015, 2017) and reconstructed

95  mitochondrial genomes from transcriptome sequences of three species (Bucek et al., 20019) (Table S1).

96  Species identifications were based on morphological and anatomical characters, which included the

97  worker digestive tube configuration, the shape of the gizzard and enteric valve armature, as described in

98  Romero Arias et al. (2020). We also re-examined the voucher material of samples sequenced in previous

99  studies and whose phylogenetic position appeared inconsistent. In a few cases, we found that the voucher
100 samples contained a mixture of two species. We labelled these samples with both species names. Revised

101 species identifications are detailed in Supplementary Appendix A (see also Table 51).

102 2.2 DNA extraction and segquencing

103 Whole genomic DINA was extracted from head and thorax of three to five workers using the DNeasy

104  Blood & Tissue extraction kits (Qiagen). Because DNA extracts were sequenced at different periods of
105  time, two different approaches were used. For the first approach, the complete mitochondrial genome was
106  amplified in two long-PCR reactions with the TaKaRa LA Taq polymerase, using primers previously

107 designed for termites { Bourguignon et al., 2015). The concentration of both long PCR fragments was
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108  determined using a Qubit 3.0 fluorometer, and the two fragments were mixed in equimolar concentration.
109  Librarics were preparcd with the NEBNext Ultra [T DNA Library Prep Kit (Mew England Biolabs) and
110 sequenced with lllumina MiSeq. For the second approach, whole genomic DNA libraries were directly

111 prepared with the aforementioned NEB kit and sequenced using Hlumina HiSeg4000.

112 2.3, Assembly and annotation of mitochondrial genomes

113 Paired-end reads were quality-assessed using FastQC v0.11.7 {http://www bioinformatics.

114 babraham.ac.uk/projects/fastqe’) and adapter sequences were removed with Trim Galore v0.4.5

115 (hitpzwww . bioinformatics. babraham.ac. uk/projects/tnm_galore/) using default settings. Mitochondrial
116 reads were identified using the mitogenome of Astalotermes murcus (accession no. KY224676) as a

117 reference and assembled using GetOrganelle v1.5.1 (Jin et al., 2019). Each resulting assembly graph was
118  inspected with Bandage v0.8.1 (Wick et al. 2015) and mitochondrial genome sequences were manually
119  emrcularized when necessary. Control regions were discarded from the final assemblies as they provide
120 limited phylogenetic information and are difficult to accurately assemble with short reads. We used the
121 MITOS2 Webserver with the invertebrate genetic code and the protein prediction method of Donath et al.
122 (2019) to annotate the two rRNA genes, 22 tRNA genes, and 13 protein-coding genes, Other parameters
123 were set on default settings. Annotated genomes are deposited in GenBank (accession numbers (o come).
124 In total, we generated 67 new mitochondrial genome sequences, mostly from African species (54). Forty-
125  eight mitochondrial genomes were complete, and 19 mitochondrial genomes were nearly complete

126 because of ambiguous circularization, The mitochondrial genomes from Bourguignon et al, (20135), that
127 included 60 non-Apicotermitinae termites and eight non-termite polyneopteran insects, were used as

128  outgroups (Table 520, Therefore, the final data set comprised 181 mitochondrial genomes, including 113

129  genomes of Apicotermitinae,

130 2.4, Sequence alignment

131 We aligned separately each of the two rRNA genes, 22 (RNA genes, and 13 protein-coding genes using
132 MAFFT v7.300b (Katoh et al. 2002, 2013) with default settings. Protein-coding genes were aligned as
133 protem sequences and back-translated imto nucleotide sequences using PALINAL (Suyama et al. 2006).
134 rBNAs and tRNAs were aligned as DNA sequences. The 37 aligned genes were concatenated and

135  partitioned into five partitions: one for each codon position of the combined protein-coding genes; one for
136 the combined 128 and the 168 rRNA genes; and one for the combined tRNA genes. We found no clear
137 evidence of mutational saturation for the third codon positions of the protein-coding genes (lss=0.572,
138 lsscSym=0.809) using the Xia's method implemented in DAMBE (Xia et al. 2003; Xia and Lemey 2009)

139 and therefore retained the third codon positions in our phylogenetic analyses.

140 2.5, Phylogenetic inference
141 We used RAXML version £.2.4 (Stamatakis, 2014) to reconstruct a maximum=likelihood phylogenetic

142 tree. We used the GTR+G model for each partition. Bootstrap values were estimated from 1000

143 replicates. We used MrBayes version 3.2 (Ronquist et al. 2012) to reconstruct a Bayesian phylogenetic
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tree. The analysis was run with four chains (three hot and one cold), and we estimated posterior
distributions using Markov chain Monte Carlo (MCMC) sampling drawn every 5000 steps. The chain
was run for a total of 10 million steps, with the first 1 million steps discarded as bumin, as suggested by
inspection of the trace files using Tracer v1.5 (Rambaut and Drummond 2009). We used a GTR model
with gamma-distributed rate variation across sites (GTR+G) for each partition. The analysis was run in
triplicate to msure convergence of the chains and check for consistency. Node support was estimated

using Bayesian posterior probabilities.
2.6, Molecular dating

We estimated time-calibrated irees using BEAST2 version 2.4.4 (Bouckaert et al. 2014). We performed
the analyses with and without third codon positions to assess the influence of third codon positions on
time estimates. The trees were reconstructed using an uncorrelated lognormal relaxed clock to model rate
variation among branches, with single model for each partition, allowing different relative rates. A Yule
speciation model was used as tree prior. We used a GTRHG model of nucleotide substitution for each
partition. The chains were run for 500 million steps and were sampled every 10,000 generations to
estimate the posterior distribution. We discarded the first 50 million steps as burn-in, as suggested by
inspection of the trace files using Tracer v1.5 (Rambaut and Drummond 2009). A total of 13 fossils were
used as minimum age constraints (see Table 53). We determined soft upper bounds using phylogenetic
bracketing (Ho and Phillips 2009). Each calibration was implemented as exponential priors of node time.

The analyses were run in triplicate to insure convergence of the chains and check for consistency.

2.7, Reconstruction of ancestral distribution

The ancestral distribution of Apicotermitinae was reconstructed using the ace function of the R package
APE version 5.0 (Paradis and Schliep 2018). We used the Maximum Likelihood model deseribed by
Pagel (1994) and an equal-rates of transition. Sampling locations were used to assign each tip to one
biogeographic realm. Apicotermitinae are distributed across three biogeographic realms, as described by
Holt et al. (2013). Afrotropical, Neotropical, and Oriental. We reconstructed ancestral distribution on the

maximum-likelihood tree, the Bayesian tree, and the two time-calibrated trees.

3. Results
3.1, Molecular phylogeny

Our phylogenetic trees fully supported the monophyly of Apicotermitinae (Figs 1 and 51-53). African
soldiered taxa (the Apicotermes-group) formed a paraphyletic assemblage, composed of two or three
lineages, within which a clade composed of Asian genera and African and Neotropical soldierless taxa
was nested (Figs | and $2-83), This latter clade was divided into four lineages, fully supported in all
analyses: (1) the African soldierless species, with the exclusion of Adaiphrofermes and Genus F, was
retrieved as sister to the other three lineages, (11) the Asian Speculitermes-group was sister to the last two
lineages, (111} the African genera Adaiphrotermes and Genus F, and their sister group, (IV) the

Meotropical soldierless Anoplotermes-group,
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180  Discrepancies among analyses were found for the position of soldiered lineages. More precisely, the
181  position of the clade including Genus C + (Hoplognathotermes + Labidotermes) was variable among
182  analyses (Figs 1 and S1-53). Similarly, the position of species within the Astalotermes-group and the
183 Awnoplotermes-group was variable. The relationships among taxa of Astalotermes-group were often
184  weakly supported, and several genera were retrieved as polyphyletic, i.e. Astalorermes, Anenteotermes
185  and Astratofermes. Within the neotropical Aroplofermes-group (clade IV), the relationships among
186  genera were weakly supported, and many species, referred to as Anaplofermes-group sp., lie on long
187  branches and belong to undescribed genera (Fig. | and $1-53). The genus Ruptiternies appears

188  polyphyletic, the arboreal R. arboreus being broadly separated from the other species of the genus.

185 3.2 Divergence time estimation

190 The time-tree reconstructed with third codon positions included yielded older age estimates (Fig. S1),
191  up to 10.9 million vears (My) older than the analysis with third codon positions excluded (Fig_ 1). The
192  ranges given hereafter encompass the results of both analyses, with and without third codon positions. We
193  estimated that the most recent common ancestor of Apicotermitinae lived 39.5-48.6 million years ago
194  (hercafter Ma) (95% HPD: 34.7-53.2 Ma), during the middle Eocene. The most recent cormmon ancestor
195  of the soldierless Apicotermitinae + Speculitermes-group was estimated at 34.9-44.2 Ma (93% HPD:

196  30.8-48.5 Ma). The split between the Speculitermes-group and their sister group was dated at 31.7-41.6
197 Ma (95% HPD: 27.7-45.9 Ma), during the early Oligocene. The Neotropical Anroplotermes-group

198  diverged from its African sister lineage (Adaiphrotermes + Genus F) 28.0-38.0 Ma (95% HPD: 24.4-42.0

199  Ma). The age estimates of cladogenesis for the current taxonomic groups are summarized in Table 1.

200 1.3, Ancestral distribution

201 We reconstructed the ancestral distribution of Apicotermitinae on the four phylogenetic trees generated in
202 this study and found entirely congruent results (Figs 54-57). We found that the Apicotermitinae

203 originated in the African realm, and dispersed from there twice: once to the Oriental realm, where they
204 gave rise to the Speculitermes-group, and once to the Neotropical realm, where they gave rise to the

205  Anoplotermes-group.

206 4. Discussion
207 4.1 Phylogenetic relationships and systemarics

208 Owr findings are in partial agreement with those of Inward et al. (2007) and Bourguignon et al. (2017).
209  For instance, we confirm the paraphyly of the Apicatermes-group, which is composed of several basal
210 lineages. closely matching the subgroups proposed by Noirot (2001) on the basis of digestive anatomy:
211 the Labidotermes subgroup, comprising also Hoplognathotermes (+ Acutidentitermes, not sequenced), is
212 characterized by a simple enteric valve armature wholly enclosed within the P2 section of the hindgut,
213 which probably represents an ancestral condition; the Apicotermes subgroup, including also

214 Allognathotermes + Duplideniitermes and Cavotermes + Heimitermes, possesses very sophisticated

215 enteric valve armatures protruding into the paunch; and the Trichotermes subgroup, including
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Jugositermes and Phoxorermes (+ Rostrotermes, not sequenced), displays an enteric valve with six
sclerotized plates bearing numerous, variously developed spines, which also penetrate into the paunch,
Moirot (2001) made a fourth subgroup for Eburnitermes and Machadotermes, which were not sequenced,
These two genera possibly constitute another basal lineage. Finally, some new taxa are known from the
worker only, although their anatomy places them in the Apicotermes-group: this is the case of the new
Genus C, whose mi-DNA confirmed distant affinities with Labidotermes and Hoplognathorermes,
Another such taxon is the new genus labelled " Kaktotermes" (nomen nudim) by Donovan (2002), which

still awaits sequencing,

The phylogeny of Inward et al. (2007) featured a large clade comprising, on the one hand, the
Astalotermes-group (including all African soldierless taxa except Adaiphrotermes, without deeper
resolution). and on the other hand, an unresolved clade including Adaiphrotermes, which appeared
paraphyletic, the Asian taxa (with soldiers known in all genera, but often very rare) and the neotropical
taxa (all soldierless, not further resolved). Here, we confirm the Astalotermes-group as monophyletic and
resolve its sister clade with a strong support: Asian genera { fndotermes + Enhamitermes) now branch out
first, as sister group to a soldierless clade including the neotropical taxa, confirmed as monophyletic (=
the Anaplotermes-group clade), and an African branch composed of Adaiphrotermes plus a distinctive

new African genus here called Genus F (Adaiphrotermes-group clade).

Inward et al. (2007) suggested that the loss of the soldier caste occurred only once in the evolution of the
Apicotermitinae. but in view of the best supported phylogeny, this hypothesis cannot account for the
presence of soldiers in Asian taxa, Unless soldiers have been reacquired in Asian taxa, which seems
unlikely, their loss must have occurred at least twice: once at the origin of the Astalotermes-group (clade 1
on Fig. 1), and onee at the origin of the clade composed of the Adaiphrotermes-group and the
Anoplotermes-group (clades 1I+IV on Fig. ). Note that missing taxa might in the future cast additional
light on soldier loss events, when their phylogenetic position is ascertained: according to Noirot (2001),
the soldiered genus Firmitermes possesses a digestive anatomy reminiscent of soldierless species,
whereas the soldierless genus Skatirermes anatomically matches the Apicotermes-group. In addition,
soldiers are very rare or even unknown in some Asian species (especially in the genus Speculitermes),

which suggests that they may have rarefied to the point of disappearing completely several times.

Thus far, most generic descriptions of Apicotermitinae have been written in the absence of a solid
phylogenetic background. Some genera are characterized by conspicuous apomorphies, such as the
hypertrophied sclerotization of cushion | of the enteric valve in Ateuchotermes (Sands, 1972), whereas
others mostly accommodate species that do not display particular diagnostic features. For instance, as
Sands (1972: 51) himself admitted, Astalotermes was difficult to define because this genus "occupies a
transitional position between others with more primitive and more specialized characters", Not
surprisingly, this genus came out of our study as polyphyletic. Likewise, Astratofermes —basically,

Astalotermes with enterie valve scales ending in tiny points— was defined on characters of poor
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phylogenetic significance and ended up polyphyletic as well. The situation is even more caricatural in the
Meotropics, where the genus Anoplotermes lumps all soldierless species that have so far not been
considered eccentric enough to deserve a transfer to another genus. All those genera are now in need of an
in=depth revision. The present phylogeny will constitute a useful framework to revise the whole subfamily

and identify characters of phylogenetic interest.

This work also vielded less intuitive results. For instance, the tiny Anenfeotermes nanus now appears
distant from the equally tiny An. polyscelus and other species with a bilateral enteric valve armature

An. enaphorus, An.sp. A (CIVT1200, and probably An. cherubimi, recently described (Scheffrahn and
Roisin, 2018) and awaiting sequencing. In the Neotropics, the arboreal open-air forager Rupritermes
arborens was known to be slightly different, on anatomical grounds, from other species of the genus
which are ground-dwelling litter feeders { Acioli and Constantino 2015). Our results now show that K.
arborews has been wrongly assigned to this genus, being closer to Fetimatermes than to other Ruptitermes

species,

4.2, Time frame of Apicotermitinae evolution

As suggested by Inward et al, (2007) and Bourguignon et al. (2017), our results support the African origin
of Apicotermitinae. The molecular dating analyses with and without third codon positions yield age
estimates diverging by up to 10.9 My. Likely, this difference is caused by the high base compositional
heterogeneity at third codon positions which can influence the estimation of divergence times (Shong et
al.. 2010; Zheng et al., 2011). However, time estimates of our tree with the third codon position excluded
are similar to those of other phylogenetic trees (Bourguignon et al., 2005, 2017; Bucek et al., 2019). For
instance, our estimation of the most recent ancestor of Apicotermitinae diverged by less than 5 My from
those time-trees ( Bourguignon et al., 2015, 2017; Bucek et al., 2019). According to both molecular
clocks, Apicotermitinae cladogenesis was initiated during the Eocene 39.5—48.6 Ma (95% HPD: 34.7-
53.2 Ma) when rainforests were more extended than nowadays. Nevertheless, most clades originated after
the Eocene-Oligocene transition (about 34 Ma). This event may be compatible with a timeframe in which
the atmospheric concentration of carbon dioxide dropped (Pagani et al., 2005), global temperatures
decreased, and the megathermal rainforests retracted to low latitudes (Morley, 2011). Thus, this climate
change led to some species extinctions and created refuges in relicts of equatorial forests that could have
driven speciation events. The age estimates of our molecular clock analysis without the third codon
positions match with past climatic transitions and forest distributions that may have led to the
diversification of the Apicotermitinae lineage. According to our resulis, migratory movements of the
ancestors of the Speculitermes and Anoplotermes groups occurred in two separate occasions out of the
Afrotropical realm. The first dispersal event ocourred 21.0-31.7 Ma (95% HPD: 16.2-35.9 Ma, without
3 codon position) or 29.6-41.6 (95% HPD: 23.6-45.9 Ma, with 3" codon position) and gave rise to the
Oriental soldiered species while the sister lineage remained in the Afrotropical realm. Following the
second dispersal event, 24.0-28.1 Ma (95% HPD: 200.58-31.9 Ma, without 3" codon position) or 34.2-
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Table 1. Estimation dates for the major and basal Apicotermitinae clades (Ma) with all sites included and without third codon

positions. The differcnces (6) of node ages are included,

without Third codon positions with Third codoen positions

-'::T::: description node ages 5% HPFD node ages B3% HIFD

1 Astalatermes-group 307 270348 4.5 68448

| Speculilermes-group 2.0 16.2-25.6 0.6 23.6-34.8

1] Adaiphrosermes + penus F 230 18.4-27.7 322 27.5-37.3

w Anaploternes-group 24.0 20,8-27.2 34,2 30.8-37.9
Figure caption

Fig. 1. Bavesian phylogenetic chronogram of Apicotermitinae inferred from mitochondrial genomes, with
third codon positions excluded. The scale bar is given in millions of years. Node bars represent the 95%
HPLY intervals for the ages. Modes are labelled with symbaols representing posterior probabilities and
bootstrap support for all analyses { 1/100% = black; <17100%= gray) and with red squares when the
topology differ among analyses. Pie charts close to the nodes show the inferred relevant ancestral shifts of
biogeographic distributions on the map; Afrotropical, Oriental and Neotropical realms, Wide bars indicate
current distribution of species. Dotted boxes with roman numbers indicate the crown clades: |
Astalotermes-group, 11 Speculitermes-group, I Adaiphrotermes + genus F and [V Aroplotermes-group,
Tip circles represent soldiered (dark brown), soldierless (light brown} species and unknown soldier caste

presence (vellow). Names of species include colony code and scientific name, respectively.
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ABSTRACT

“Higher” termites have been able to colonize all tropical and subtropical regions
because of their ability to digest lignocellulose with the aid of their prokaryotic gut
microbiota. Over the last decade, numerous studies based on 16S rRNA gene
amplicon libraries have largely described both the taxonomy and structure of

the prokaryotic communities associated with termite guts. Host diet and
microenvironmental conditions have emerged as the main factors structuring the
microbial assemblages in the different gut compartments. Additionally, these
molecular inventories have revealed the existence of termite-specific clusters that
indicate coevolutionary processes in numerous prokaryotic lineages. However, for
lack of representative isolates, the functional role of most lineages remains unclear.
We reconstructed 589 metagenome-assembled genomes (MAGs) from the different
gut compartments of eight higher termite species that encompass 17 prokaryotic
phyla. By iteratively building genome trees for each clade, we significantly improved
the initial automated assignment, frequently up to the genus level. We recovered
MAGs from most of the termite-specific clusters in the radiation of, for example,
Planctomycetes, Fibrobacteres, Bacteroidetes, Euryarchaeota, Bathyarchaeota,
Spirochaetes, Saccharibacteria, and Firmicutes, which to date contained only few or
no representative genomes. Moreover, the MAGs included abundant members of the
termite gut microbiota. This dataset represents the largest genomic resource for
arthropod-associated microorganisms available to date and contributes substantially
to populating the tree of life. More importantly, it provides a backbone for studying
the metabolic potential of the termite gut microbiota, including the key members
involved in carbon and nitrogen biogeochemical cycles, and important clues that
may help cultivating representatives of these understudied clades.
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Keywords Metagenome-assembled genomes, Gut microbiology, Higher termites, Bacteria,
Archaea, Phylogenomics, Metagenomics, Spirochaetes, Fibrobacteres, Bathyarchacota

How to cite this article Hervé V, Lia P, Dietrich C, Sillam-Dussés D, Stiblik P, Sobotnik |, Brune A. 2020. Phylogenomic analysis of 589
metagenome- bled ge encomg g all major prokaryotic lineages from the gut of higher termites. Peer] Scei6l14
DOI 107717 /peerj.8614

95



Evolutionary Ecology of Termites Publications

INTRODUCTION

Termites (Blattodea: Termitoidae) are eusocial insects that have predominantly and
successfully colonized tropical and subtropical areas across the world. One of the keys
to this success is their rare ability to degrade lignocellulose, a very abundant but
recalcitrant complex carbon substrate (Cragg ef al, 2015). As major decomposers, termites
play an important role in carbon cycling (Yamada et al, 2005; Dahlsjo et al., 2014; Liu
et al., 2015; Griffiths et al., 2019). Lignocellulose digestion by termites is attributed to the
presence of a specific microbiota colonizing the different gut compartments of the host
(Brune, 2014). Even though termites produce endogenous cellulases in the labial glands
and/or midgut (Tokuda et al, 2004; Fujita, Miura & Matsumoto, 2008), the digestive
processes in the hindgut are the result of microbial activities.

“Lower” termites feed almost exclusively on wood, whereas “higher” termites
(Termitidae family) diversified their diet and extended it from wood to plant litter, humus,
and soil (Donovan, Eggleton & Bignell, 2001). Higher termites represent the most diverse
and taxon-rich clade and form about 85% of the termite generic diversity (Krishna et al,
2013). Their gut morphology is more complex than that of the basal clades, and is
characterized by the presence of a mixed-segment and an enlarged proctodeal segment P1.
Moreover, the gut displays strong variations in pH and oxygen partial pressure along the
anterior-posterior axis, which creates microenvironments within the gut (Brune, 2014).

Termites harbor a specific and complex gut microbiota (Brune & Dietrich, 2015;
Bourguignon et al., 2018). Over the last decade, numerous studies targeting the 16S
rRNA gene have cataloged the prokaryotic diversity of the termite gut microbiota.

By analyzing the structure and composition of these microbial communities, the roles
of host taxonomy (Dietrich, Kohler & Brune, 2014; Abdul Rahman et al., 2015), host
diet (Mikaelyan et al, 2015a), and microenvironments found in the different gut
compartments (Mikaelyan, Meuser & Brune, 2017) have emerged as the main factors
shaping the termite gut microbiota. These studies have also highlighted patterns of
dominant taxa associated with specific diet and/or gut compartment (Mikaelyan,
Meuser & Brune, 2017). For instance, Spirochaetes tend to be the dominant phylum in the
gut of wood/grass feeders, whereas their abundance is lower in litter, humus, and soil
feeders, in which Firmicutes are much more abundant. The accumulated 16S rRNA gene
reads have revealed the existence of termite-specific clusters among both bacterial and
archaeal phyla (e.g., among Fibrobacteres, Clostridia, Spirochaetes, and Euryarchaeota).

All these studies focusing on the 16S rRNA gene have helped microbiologists in
answering the question “who is there?,” but the following questions “what are they doing?”
and “who is doing what?” remain open. Attempts to answer the latter questions have been
made, for example, by analyzing different fractions of the gut content of Nasutitermes spp.,
which led to the identification of fiber-associated cellulolytic bacterial taxa (Mikaelyan
et al, 2014), or by focusing on the diversity of individual functional marker genes, such as
nifH (Ohkuma, Noda & Kudo, 1999) or formyl-tetrahydrofolate synthetase (Ottesen ¢~
Leadbetter, 2011). The latter approach, however, is problematic because the organismal
origin of the respective genes is often obfuscated by frequent horizontal gene transfers
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Table | Recovery of metagenome-assembled genomes (MAGs) from the 30 termite gut
metagenomes analyzed in this study. The host termite, its mitochondrial genome accession number,
dietary preference, and the originating gut compartments are indicated. C crop (foregut), M midgut,
PI-P5 proctodeal compartments (hindgut). The sample codes used for the metagenomes are the com-
bination of host ID and gut compartment.

Termite species ID Mitogenome Diet Number of MAGs
C M P1 P3 P4 P5 Total
Microcerotermes parvus ~ Mpl193  KP091690 Wood - - 1 1 4 - 6
Nasutitermes cormiger Ncl50 KP091691 Wood 0 1 3 6 9 1 20
Cornitermes sp. Col91 KP091688 Litter - - 32 2 7 - 6l
Neocapritermes taracua  Nt197 KP091692 Huomus - - 6 70 11 - 8§
Termes hospes Thi%6 KP0921693 Humus - - 6 64 27 - 97
Embiratermes neotenicus Emb289  KY436202 Humus - - 45 52 21 - 118
Labiotermes labralis Lab288  KY436201 Soil - - 6 72 31 - 169
Cubitermes ugandensis Cul22 KP091689 Soil 0 0 5 5 3 18 31
Note
* Not sequenced.

between prokaryotes. Thus, it has been suggested that genome-centric instead of
gene-centric approaches are much more relevant for elucidation of soil or gut microbiotas
(Prosser, 2015). Unfortunately, the number of available isolates of termite gut microbiota
and their genomes (Zheng & Brune, 2015; Yuki et al., 2018) are low compared to those
from other environments. However, modern culture-independent methods, namely
metagenomics and single-cell genomics have recently allowed the generation of numerous
metagenome-assembled genomes (MAGs) and single-amplified genomes (SAGs),
respectively, from uncultivated or difficult to cultivate organisms (Albertsen et al., 2013;
Woyke, Doud & Schulz, 2017). MAGs are becoming increasingly more prominent in

the literature (Bowers et al, 2017) and populate the tree of life (Parks et al., 2017).
Additionally, MAGs offer the opportunity to explore the metabolic potential of these
organisms and to link it with their ecology.

To date, only a limited number of MAGs and SAGs of uncultured bacteria have been
recovered from the guts of higher termites; these represent termite-specific lineages of
Fibrobacteres (Abdul Rahman et al., 2016) and Cyanobacteria (Utami et al,, 2018). Here,
we applied a binning algorithm to 30 metagenomes from different gut compartments
of eight higher termite species encompassing different feeding groups to massively recover
hundreds of prokaryotic MAGs from these samples. After quality filtering, all these
MAGs were taxonomically identified within a phylogenomic framework and are discussed
in the context of insect gut microbiology and symbiosis.

MATERIALS AND METHODS
Metagenomic datasets
To cover a wide range of microbial diversity, we used 30 metagenomic datasets

representing the main gut compartments (crop, midgut, P1-P5 proctodeal compartments
of the hindgut) and main feeding groups present in higher-termites (see Table 1).
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Eight species of higher termites, identified by both morphological criteria and analysis of
the mitogenome, were considered: Cornitermes sp., Cubitermes ugandensis,
Microcerotermes parvus, Nasutitermes corniger, Neocapritermes taracua, Termes hospes
(Dietrich ¢ Brune, 2016), Labiotermes labralis, and Embiratermes neotenicus (Hervé &
Brune, 2017). Field experiments were approved by the French Ministry for the Ecological
and Solidarity Transition (UID: ABSCH-CNA-FR-240495-2; permit TREL19028175/118).
Processing of the termite samples and DNA extraction and purification were

described previously (Rossmassler et al,, 2015). Metagenomic libraries were prepared,
sequenced, quality controlled, and assembled at the Joint Genome Institute (Walnut Creek,
CA, USA). DNA was sequenced using Illumina HiSeq 2000 or Illumina HiSeq 2500
(IMlumina Inc., San Diego, CA, USA). Quality-controlled reads were assembled and
uploaded to the Integrated Microbial Genomes (IMG/M ER) database (Markowitz et al.,
2014). Accession numbers and information about these 30 metagenomes can be found
in Table SI.

Genome reconstruction
For each metagenomic dataset, both quality-controlled (QC) and assembled (contigs)
reads were downloaded from IMG/M ER in August 2017. To obtain coverage profile of
contigs from each metagenomic assembly, the QC reads were mapped to contigs
using BWA v0.7.15 with the bwa-mem algorithm (Li ¢ Durbin, 2009). This generated
SAM files that were subsequently converted into BAM files using SAMtools v1.3 (Li et al,
2009). Combining coverage profile and tetranucleotide frequency information, genomes
were reconstructed from each metagenome with MetaBAT version 2.10.2 with default
parameters (Kang et al, 2019). Quality of the reconstructed genomes was estimated
with CheckM v1.0.8 (Parks et al, 2015). Only MAGs that were at least 50% complete and
with less than 10% contamination, were retained for subsequent analyses. These MAGs
have been deposited at the Sequence Read Archive (SRA) under the BioProject accession
number PRINA560329; genomes are available with accession numbers SRR9983610-
SRR9984198 (Table 52). Additionally, the MAGs have been deposited at the NCBI's
Assembly Database under the accessions WQRH00000000-WRNX00000000 (Table S2).
For each MAG, CheckM was also used to extract 16S rRNA gene sequences as well as a
set of 43 phylogenetically informative marker genes consisting primarily of 29
ribosomal proteins (PF00466, PF03946, PF00298, PF00572, PF00238, PF00252, PF00861,
PF00687, PF00237, PF00276, PF00831, PF00297, PF00573, PF00281, PF00673, PF00411,
PF00164, PF00312, PF00366, PF00203, PF00318, PF00189, PF03719, PF00333, PF00177,
PF00410, PF00380, PF03947, PF00181), nine RNA polymerase domains (PF04563,
PF04997, PF00623, PF05000, PF04561, PF04565, PF00562, PF04560, PF01192), two
tRNA ligases (TIGR00344 and TIGR00422), a signal peptide binding domain (PF02978),
a translation-initiation factor 2 (PF11987) and a TruB family pseudouridylate
synthase (PF01509). Finally, CheckM was also used for a preliminary taxonomic
classification of the MAGs by phylogenetic placement of the MAGs into the CheckM
reference genome tree.
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Phylogenomic analysis

In order to improve the initial CheckM classification, genome trees were built for

each clade of interest (from kingdom to family level). Using this initial CheckM
classification and when available, the 16S rRNA gene classification, genomes of closely
related organisms and relevant outgroups were manually selected and downloaded from
NCBI and IMG/M ER. These genomes were subjected to a similar CheckM analysis to
extract a set of 43 single-copy marker genes, to translate them into amino acid sequences,
and to create a concatenated fasta file (6,988 positions). For each clade of interest, the
amino acid sequences from the MAGs, their relatives, and outgroups were aligned

with MAFFT v7.305b and the FFT-NS-2 method (Katoh & Standley, 2013), and the
resulting alignment was filtered using trimAl v1.2rev59 with the gappyout method
(Capella-Gutierrez et al., 2009). Smart Model Selection (Lefort, Longueville & Gascuel,
2017) was used to determine the best model of amino acid evolution of the filtered
alignment based on Akaike Information Criterion. Subsequently, a maximum-likelihood
phylogenetic tree was built with PhyML 3.0 (Guindon et al.,, 2010). Branch supports were
calculated using a Chi2-based parametric approximate likelihood-ratio test (aLRT)
(Anisimova & Gascuel, 2006). Finally, each tree was visualized and edited with iTOL
(Letunic & Bork, 2019). Following the procedure described above, a genome tree
containing only the MAGs generated in the present study was also built and visualized
with GraPhlAn version 0.9.7 (Asnicar et al., 2015).

Placement of MAGs in a 16S rRNA-based phylogenetic framework

All 16S rRNA gene sequences recovered from the respective bins were classified using
the phylogenetic framework of the current SILVA reference database (SSURef NR 99
release 132) (Quast et al, 2013). The database was manually curated to extend the
taxonomic outline of all relevant lineages to genus level by linking the taxonomy to the
termite-specific groups to that of the DictDb v3 database (Mikaelyan et al., 2015b). 16S
rRNA gene sequences contained in the MAGs were aligned with SINA version 1.2.11
(Pruesse, Peplies & Glockner, 2012) and imported into the reference database. Sequences
longer than >100 bp were added to the reference trees using the parsimony tool of

ARB version 6.0.6 (Ludwig et al,, 2004). If none of the MAGs in a cluster contained a 16S
rRNA gene longer than 100 bp, or if the placement of the 16S rRNA genes in the bin
conflicted with the results of the phylogenomic analysis (indicating a contamination), the
phylogenomic classification was used.

Estimation of the relative abundance of the MAGs in each metagenome
For each metagenome, raw reads were mapped against MAGs using BWA (Li & Durbin,
2009) with default parameters. Unmapped reads and reads mapped to more than one
location were removed by using SAMtools (L et al., 2009) with parameters: F 0x904. Reads
mapped to each MAGs were summarized using the “pileup.sh” script (BBmap 38.26)
(Bushnell, 2014). The relative abundance of each MAG was calculated as the total number
of reads mapped to a MAG divided by the total number of reads in the corresponding
metagenome sample, as described in Hua et al. (2019). Similarly, the MAG coverage was

DOI 10.7717/peer|.8614 (= 5/27

99



Evolutionary Ecology of Termites Publications

estimated by multiplying the mapped reads by the read length and dividing it by the MAG
length.

Statistical analyses

Statistical analyses were performed with R version 3.4.4 (R Development Core Team, 2019),
and data were visualized with the ggplot2 (Wickham, 2016) package. Correlations between
quantitative variables were investigated with Pearson’s product moment correlation
coefficient.

RESULTS AND DISCUSSION

Metagenomes and MAGs overview

Metagenomic reads were generated from the P1, P3, and P4 proctodeal compartments of
the gut of the two termite species E. neotenicus and L. labralis. These six metagenomes
were combined with 24 previously published metagenomes from the gut of higher termites
(Rossmassler et al., 2015) in order to obtain data encompassing different gut compartments
from eight species of higher termites feeding on different lignocellulosic substrates
ranging from wood to soil (Table 1). Metagenomic binning of these 30 termite gut
metagenomes yielded 1,732 bins in total (Table S1). For further analysis, we selected
only those bins that represented high-quality (135 bins, >90% complete, and <5%
contamination) and medium-quality (454 bins, >50% complete, and <10% contamination)
MAGs (Table 1; Table S1). The present study focused on these 589 MAGs, which showed
on average a 38.6-fold coverage (Table S2).

The number of MAGs recovered from the different metagenomes did not show a
Gaussian distribution. Instead, we found a significant and positive relationship between
the number of metagenome-assembled reads and the number of MAGs recovered
(r = 0.85, p < 0.0001), indicating that assembly success and sequencing depth were
important predictors of genome reconstruction success (Fig. 1). This is in agreement
with benchmarking reports on metagenomic datasets (Sczyrba et al, 2017) and underscore
that a good quality assembly is a prerequisite for high binning recovery, which is
important to consider when designing a metagenomic project for the purpose of binning.
A significantly higher number of assembled reads and of MAGs recovered was observed in
the current dataset compared to the Rossmassler et al. (2015) dataset (Wilcoxon test,

p < 0.005), highlighting the importance of this new dataset (Fig. 1).

MAGs taxonomy and abundance

We investigated the phylogenomic context of the 589 MAGs. An initial automated
classification of the MAGs using CheckM and when available, the taxonomic assignment
of the 16S rRNA gene, identified representatives of 15 prokaryotic phyla (Table S3).
Initially, 142 MAGs (24% of the dataset) remained unclassified at the phylum level, and
key taxa of the termite microbiota, such as Fibrobacteres and Treponema, were absent
or only poorly represented. This is partly explained by the lack of representative
genomes for certain taxa in the reference genome tree provided in the current version of
CheckM (e.g., only one Fibrobacteres genome and one Elusimicrobia genome, and an
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absence of Bathyarchaeota and Kiritimatiellaeota genomes). New tools incorporating
larger databases, such as GTDB-Tk (Parks et al., 2018; Chaumeil et al., 2019), will probably
resolve such issues.

We improved the taxonomic resolution of the classification by iteratively constructing
genome trees for each clade of interest that included all recently published reference
genomes. This approach allowed the successful classification of all 589 MAGs, in some
cases down to the genus level (Table S2). Thirty-eight MAGs were from the archaeal
domain, and 551 MAGs were from the bacterial domain, which together represented a
total of 17 prokaryotic phyla (Fig. 2). The taxonomic diversity of MAGs recovered is
broadly representative of that observed in previously published 16S rRNA surveys,
suggesting good taxonomic coverage of termite-associated prokaryotes from the different
gut compartments and host diets (Figs. S1 and 52).

The MAG taxonomy was further refined by placing all 16S rRNA genes recovered
from the bins into the phylogenetic framework of the current SILVA reference database,
which allowed classifying most of the MAGs down to genus level (Table S2). When we
compared the taxa represented by the MAGs to the distribution of the corresponding taxa
in amplicon libraries of the bacterial gut microbiota of a representative selection of higher
termites that were classified using the same framework (Lampert, Mikaelyan & Brune,
2019), we found a high level of congruence between the datasets. The MAGs represented
15 of the 19 bacterial phyla in the amplicon libraries that comprised >0.1% of all reads,
including all core phyla (represented in >80% of all host species) with the exception of
Verrucomicrobia (Fig. 3). A high representation in the amplicon libraries of the taxa
represented by MAGs was confirmed at all taxonomic ranks down to the genus level
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Figure 2 Distribution of the 589 MAGs among bacterial and archacal phyla. This maximum-likeli-
hood tree was inferred from a concatenated alignment (amino acids) of 43 protein-coding genes (6,801
positions) using the LG+G+I model of evolution. Full-size Bl DOL 10.7717/peerj 8614/fig-2

(Table S4), underscoring that the present dataset covers the majority of lineages that
colonize the higher-termite gut.

We computed the relative abundance of each MAG. These abundances ranged from
0.005% to 4.03% (Table S2), with a mean value of 0.19%. These values indicated that
the present dataset includes major taxonomic groups of the termite gut microbiota,
which was confirmed when we looked at the taxonomic distribution of the MAGs.
Considering the MAG relative abundance and not only their presence within samples,
we could observe an effect of the host diet on the taxonomic distribution (Fig. 4). Indeed,
similarities were observed when we compared taxonomic patterns of the MAG relative
abundance with previously published 16S rRNA gene amplicon-based surveys
(Abdul Rahman et al., 2015; Mikaelyan, Meuser ¢ Brune, 2017). For instance, Spirochaetes
were the most abundant phylum within the wood-feeding termite N. corniger, and
their proportion decreases along the humification gradient, being less abundant in the gut
of humus feeders and litter feeders and even less abundant in soil feeders, in the favor of
other phyla such as Firmicutes. Fibrobacteres were preferentially abundant within wood-
and litter-feeder samples (Fig. 4). Interestingly, a significant and negative relationship
between the number of metagenome-assembled reads in a sample and the MAG relative
abundances within this sample (r = —0.33, p < 0.0001) was observed across all the
samples. This could be partly explained by the fact that increasing sequencing depth
would increase the number of metagenome-assembled reads and thus allow the
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Figure 5 Phylum-level representation of MAGs among the bacterial gut microbiota of higher
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binning of sequences from less abundant organisms. However, since quantity of
metagenome-assembled reads and relative abundance are not independent variables, it
also implies that MAG relative abundances can not be directly quantitatively compared
between samples but only within a single sample. Thus, proportions of taxa within a
sample using relative abundance can be used to describe such sample.

Archaea

The archaeal domain was represented by members of the phyla Euryarchaeota and
Bathyarchaeota (Fig. 5; Fig. S3). Euryarchaeota were represented by 23 MAGs that were
classified as members of the genera Methanobrevibacter (family Methanobacteriaceae;
three MAGs) and, Methanimicrococcus (family Methanosarcinaceae; three MAGs), and
members of the family Methanomethylophilaceae (16 MAGs), nine of them in the genus
Candidatus Methanoplasma. MAGs assigned as Euryarchaeota encompassed three
(Methanobacteriales, Methanosarcinales, and Methanomassiliicoccales) of the four orders
of methanogens found in termite guts (Brune, 2019); Methanomicrobiales were absent
from the present dataset. This genomic resource will be extremely valuable for a better
understanding of the genomic basis of methanogenesis in the termite gut and more
generally for investigating the functional role of archaea in arthropod guts. Indeed,
Euryarchaota have been found to be present in virtually all termite species investigated
(Brune, 2019), and a global 16S rRNA gene survey has revealed that this phylum is the
most abundant archaeal clade in arthropod-associated microbiota (Schloss et al., 2016).
Bathyarchaeota were represented by 15 MAGs, which formed a termite-specific cluster,
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Figure 4 Relative abundance of the MAGs from different phyla among the respective metagenomes.
Circle size indicates the refative abundance of the MAGs among the respective metagenome sample; color
indicates host diet. To estimate the relative abundance of each MAG, the total number of reads mapped to
a MAG was divided by the total number of reads in the metagenome sample.
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with Bathyarchaeota reconstructed from sediments of the White Oak River (WOR) estuary
(NC, USA) as next relatives (Lazar et al., 2016) (Fig. 5). Bathyarchaeota is a lineage
formerly known as Miscellaneous Crenarchaeota Group (MCG), which has been reported
to occur in the gut of soil-feeding termites (Friedrich et al, 2001). To date, MAGs of
Bathyarchaeota have been mostly derived from aquatic environments (Zhou et al., 2018).
Here, we identify the members of the termite gut lineage as Bathyarchaeota and provide
the first genomes from this environment. Interestingly, Bathyarchaeota MAGs were
particularly abundant in humus-, litter-, and soil-feeding termites (Fig. 4); a genomic
characterization, combined with analyses of their abundance and localization, should shed
light on the metabolic potential of these organisms and their functional role in termite

guts.

Firmicutes

Firmicutes was by far the phylum with the highest number of MAGs, but also the phylum
with the highest average relative abundance (33.5%) in 16S rRNA gene-based surveys
(Fig. 3). The 237 MAGs (40% of the total dataset) represented three classes (Bacilli,
Clostridia, and Erysipelotrichia) and ten families, including four members of
Streptococcaceae (Bacilli) and three members of Turicibacteraceae (Erysipelotrichia).
Clostridia was the most diverse and rich class (229 MAGs), in which Ruminococcaceae
(95 MAGs), Defluviitaleaceae (67 MAGs), Lachnospiraceae (four MAGs), Peptococcaceae
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Figure 5 Phylogenomic tree of the archacal domain. This maximum-likelihood tree was inferred from
a concatenated alignment of 43 proteins (6,682 positions) using the LG+G+1+F modd of amino-acid
evolution. Branch supports were calculated using a Chi2-based parametric approximate likelihood-ratio
test. Names in bold included MAGs recovered in the present study. Clusters shaded in brown consist
exclusively of MAGs from termite guts and dlusters shaded in gray contain genomes from termite guts.
The Asgard group was used as outgroup. Full-size Bl DOL 10.7717/peerj 8614/1g-5

(16 MAGs), Christensenellaceae (nine MAGs), Eubacteriaceae (two MAGs), Family XIII
incertae sedis (six MAGs), and Clostridiales vadinBB60 group (22 MAGs) families were
identified. These high numbers of Ruminococcaceae and Defluviitaleaceae MAGs were
reflected by high relative abundances of these two families in 16S rRNA gene-based surveys
(15.9% and 3.1% for the Ruminococcaceae and Defluviitaleaceae, respectively; Table S4).
Interestingly, among the Defluviitaleaceae, the genomes were mainly recovered

from the P1 compartment (53 MAGs, i.e., 79% of the family members) whereas
Ruminococcaceae were predominantly recovered from the P3 compartment (59 MAGs,
i.e., 62% of the family members). Further studies should investigate the potential metabolic
specialization of these two families in relation to the gut physicochemical properties.

A fourth class-level lineage could not be further classified for lack of reference genomes.
In a recent global 16S rRNA gene-based survey, it has been suggested that many novel
lineages of Firmicutes in insect-associated metagenomes are hidden (Schulz ef al,, 2017).
Our present study confirms this idea but our genome trees also provide evidence of new
lineages. Here, we report the first genomes of uncultured termite-specific lineages
(Table S4) that were already detected in previous 16S rRNA gene-based surveys
(Bourguignion et al., 2018). For example, the phylogenomic tree of the most abundant
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family Ruminococcaceae (Fig. S4) showed various termite-specific clusters, including a
cluster of 18 MAGs closely related to Sporobacter termitidis isolated from Nasutitermes
lujae (Grech-Mora et al., 1996). Lachnospiraceae, Ruminococcaceae, Turicibacteraceae
(previously classified as Erysipelotrichaceae), and Defluviitaleaceae (previously classified as
Lachnospiraceae) have been reported among the dominant taxa in termite guts
(Mikaelyan, Meuser & Brune, 2017), but most of them remain uncultivated and/or with
few representative genomes. As such, many questions regarding their ecology and
metabolism remain open. With 237 Firmicutes MAGs recovered from different gut
compartments and from hosts with different diets, the present study provides the material
for further genomic exploration of the role of these bacteria in plant polysaccharide
degradation, based for instance on CAZyme distribution (Lombard er al., 2014). Since diet
has been shown to be the main factor shaping gut community composition in higher
termites (Mikaelyan et al., 2015a), one might hypothesize the existence of different
arsenals of lignocellulolytic enzymes, potentially reflecting the host diet specificity (balance
between cellulose, lignin, and hemicelluloses). More generally, Firmicutes and especially
Ruminococcaceae are also abundant and metabolically important in rumen systems
(Svartstrom et al., 2017; Sollinger et al., 2018; Stewart et al., 2018). At a broader scale, our
dataset will allow comparative studies between intestinal tract microbiota of ruminants
and phytophagous or xylophagous invertebrates, which would allow a better
understanding of plant polysaccharide degradation across the tree of life.

Actinobacteria

Actinobacteria was the second most abundant phylum with 71 MAGs, including
members of the classes Acidimicrobiia, Actinobacteriia, Coriobacteriia, and
Thermoleophilia (Fig. S5). Eleven families were represented, namely Propionibacteriaceae
(12 MAGs), Promicromonosporaceae (three MAGs), Clostridiales incertae sedis (16 MAGs),
OPB41 (16 MAGs) Cellulomonadaceae (seven MAGs), Frankiaceae (one MAG),
Sanguibacteraceae (four MAGs), Microbacteriaceae (two MAGs), Nocardioidaceae (two
MAGs), Acidimicrobiaceae (one MAG), Nocardiaceae (one MAG), and Conexibacteraceae
(one MAG). Among these 71 MAGs, 36 were recovered from humus feeders, 33 from
soil feeders but only two from wood feeders, which suggests a higher prevalence in termites
with a more humified diet. This phylum is known to be present and of significant
abundance in both the nest (Sujada, Sungthong & Lumyong, 2014) and gut of

termites (Le Roes-Hill, Rohland & Burton, 2011), but to be more abundant in the nest
(Moreira et al, 2018). This was for instance the case for the families Acidimicrobiaceae,
Nocardiaceae, Promicromonosporaceae, Microbacteriaceae, Nocardioidaceae, and
Propionibacteriaceae, which were more abundant in the nest than in the gut of workers or
soldiers of Procornitermes araujoi (Moreira et al., 2018). Therefore, one of the key
questions regarding this phylum concerns their effective role in lignocellulose degradation
in the termite guts. Are they just present in the surrounding environment of the

termite and thus sometimes transit from the gut or are they actively involved in food
digestion? The MAGs obtained in the present study will allow to address such questions by
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evaluating gene expression of these organisms using metatranscriptomic data from higher
termites (He et al., 2013; Marynowska et al., 2017).

Spirochaetes

The phylum Spirochaetes was represented by 68 MAGs from wood-, soil-, litter-, and
humus-feeding termites. It has long been known that Spirochaetes are a diverse and
important lineage in termite gut (Paster et al., 1996; Lilburn, Schmidt & Breznak, 1999),
especially because of their involvement in reductive acetogenesis (Leadbetter et al., 1999;
Ohkuma et al, 2015) and in hemicellulose degradation (Tokuda et al., 2018). In terms
of abundance, Spirochaetes are among the dominant phyla in termite guts (Fig. 3) and may
represent more than half of the bacterial relative abundance in some species (Diouf ef al,
2018a). Three Spirochaetes orders, namely Brevinematales (one MAG), Leptospirales
(four MAGs) and Spirochaetales (59 MAGs), were identified (Fig. 6; Fig. 56). In the latter
order, 54 MAGs recovered from the P1, P3, and P4 compartments of wood-, litter-,
humus-, and soil-feeding hosts were assigned to the termite-specific cluster Treponema 1
(Ohkuma, lida & Kudo, 1999; Lilburn, Schmidt & Breznak, 1999) and represent the first
genomes of this cluster from higher termites. Indeed, to date only two Treponema 1
genomes are available, and both were recovered from isolates, namely Treponema
azotonutricium and Treponema primitia, from the hindgut of the lower termite
Zootermopsis angusticollis (Graber, Leadbetter & Breznak, 2004). Thus, our dataset
significantly expands the genomic resources for this taxonomic group. Subclusters of this
clade have been identified on a dedicated genome tree (Fig. 6). The genome tree topology is
in agreement with a previous phylogenomic Spirochaetes study (Gupta, Mahmood &
Adeolu, 2013). Regarding Spirochaetes classification, our tree topology suggests that the
genus Treponema could be elevated at least to the family rank due to the presence of
distinct Treponema clusters (Fig. 6). This observation is also in agreement with the recent
Genome Taxonomy Database, which now proposes a Treponemataceae family and a
Treponematales order (Parks et al., 2018; Chaumeil et al., 2019).

Fibrobacteres

Members of the phylum Fibrobacteres are abundant in the hindgut of wood-feeding
higher termites (Fig. 3) (Hongoh et al., 2006), where they have been identified as
fiber-associated cellulolytic bacteria (Mikaelyan et al.. 2014). Here, 13 members of the
Fibrobacteres phylum were recovered from the P1, P3, and P4 compartments of wood-,
litter-, humus-, and soil-feeding termites. These genomes encompass the three orders,
namely Chitinispirillales (Sorokin et al., 2016), previously known as TG3 subphylum 1
(Hongoh et al., 2006, five MAGs), Chitinivibrionales (previously known as TG3
subphylum 2; two MAGs), and Fibrobacterales (six MAGs). While a previous study of
termites guts had already provided MAGs of Chitinivibrionaceae and Fibrobacteraceae
and documented their fiber-degrading capacities (Abdul Rahman et al., 2016), the
present study provides the five first genomes of the termite-associated members of
Chitinispirillaceae (Fig. 7).
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Figure 6 Phylogenomic tree of the Spirochactes phylum. This maximum-likelihood tree was inferred
from a concatenated alignment of 43 proteins (6,741 positions) using the LG+G+I+F model of ami-
no-acid evolution. Branch supports were calculated using a Chi2-based parametric approximate like-
lihood-ratio test. Names in bold included MAGs recovered in the present study. Clusters shaded in
brown consist exclusively of genomes from termite guts and clusters shaded in gray contain genomes
from termite guts. Elusimicrobia and Cyanobacteria were used as outgroup.
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Phylogenomic analysis indicates that the MAGs classified as Fibrobacterales represent a
termite-specific cluster among Fibrobacteraceae that comprises Candidatus Fibromonas
termitidis and forms a sister group to the genus Fibrobacter (Fig. 7; Fig. 57). This is in
agreement with a previous study that identified the same lineage (but classified as
family Fibromonadaceae) by 16S rRNA gene-based and phylogenomic analyses (Abdul
Rahman et al., 2016). None of the MAGs fell into the genus Fibrobacter, which was absent
also in all 16S rRNA gene-based surveys of termite gut microbiota (Hongoh et al., 2006;
Mikaelyan et al., 2015b; Bourguignon et al., 2018). Members of this genus have been
isolated from the gastrointestinal tracts of mammals and bird herbivores (Neumann,
McCormick & Suen, 2017), where they are potentially involved in cellulose and
hemicellulose degradation (Neumann & Suen, 2018). This suggests co-evolutionary
patterns among different Fibrobacteres clades within animal hosts with a
lignocellulose-based diet.
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Proteobacteria and Bacteroidetes

Sixty-seven MAGs of Proteobacteria belonging to Alphaproteobacteria (23 MAGs),
Gammaproteobacteria (20 MAGs), and Deltaproteobacteria (24 MAGs) were recovered
from all hindgut compartments of litter-, humus-, and soil-feeding termites. Among the
Deltaproteobacteria, seven orders were identified, namely Desulfobacterales (four MAGs,
all assigned to Desulfobulbus), Desulfovibrionales (five MAGs, all Desulfovibrionaceae),
Desulfuromonadales (one MAG), Myxococcales (five Myxococcaceae and four
Polyangiaceae), Adiutricales (one MAG), Syntrophobacterales (one MAG), and MBNT15
group (two MAGs). Desulfovibrionaceae (Desulfovibrionales) members of gut and
termite-gut clusters have been found to be highly prevalent in termite guts (Bourguignon
et al, 2018). Similarly, we identified three Desulfovibrionaceae MAGs that form a
monophyletic clade and two Desulfovibrionaceae MAGs that fall into a cluster of
gut-associated genomes (Fig. S8). This family, among others, is composed of various
sulfate-reducing bacteria; this functional group has already been identified in different
termite species (Kuhnigk et al, 1996). Thus, these MAGs could provide new genomic
resources to further investigate this metabolism in the termite gut.

Our dataset comprises 33 MAGs of Bacteroidetes (Fig. 59), including members of
the families Cluster V (four MAGs), RC9 gut group (six MAGs), Paludibacteraceae
(two MAGs, both assigned to the Paludibacter genus), Rikenellaceae (nine MAGs),
Marinilabiliaceae (one MAG), and Prolixibacteraceae (one MAG). These Bacteroidetes
were found in the P1, P3, and P4 compartments and in wood-, litter-, humus-, and
soil-feeding termites. In Blattodea guts, different clusters of Alistipes (Bacteroidetes) have
been found in a 16S rRNA gene survey (Mikaelyan et al, 2015b). Two MAGs from
L. labralis belonging to the Rikenellaceae family and closely related to Alistipes have been
identified. Additionally, among Bacteroidetes, four MAGs, all originating from P4
compartments, fall into the Cluster V family that contains symbionts of flagellates from
guts of lower termites (Hongoh et al., 2008b; Yuki et al,, 2015). We also recovered two
MAG:s assigned to Paludibacter; Paludibacter propionicigenes and Paludibacter jiangxiensis
are both strictly anaerobic, propionate-producing bacteria isolated from rice paddy field
(Ueki et al., 2006; Qiu et al., 2014). Propionate is produced by fermenting bacteria in the
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gut of termites (Odelson & Breznak, 1983); these bacteria utilize glucose generated by
cellulose degradation to form succinate and propionate (Tokuda et al, 2014).

P. propionicigenes might be involved in nitrogen fixation, as nifH transcripts assigned to
this species are the most abundant in the gut of the wood-feeding beetle Odontotaenius
disjunctus (Ceja-Navarro et al., 2014).

Saccharibacteria, Synergistetes and Planctomycetes

Fifteen MAGs of Candidatus Saccharibacteria (also known as candidate division TM7)
were reconstructed from the P1, P3, and P4 compartments of wood-, litter-, humus-, and
soil-feeding termites (Fig. S10). Most of them originated from humus feeders (11 MAGs),
especially from the P3 compartment (eight out of these 11 MAGs). Similarly, six

MAGs of Synergistetes, all belonging to the Synergistaceae family that contains a
termite/cockroach cluster (Mikaelyan et al., 2015b), were recovered from the P3 and P4
compartments of humus- and soil-feeding termites (Fig. S11). Both Saccharibacteria and
Synergistetes were recently highlighted as numerically important clades of the termite
gut microbiota, with some OTUs being present in the gut of the majority of 94 termite
species collected across four continents (Bourguignon et al, 2018). They were also
contributing to the core microbiota of higher termites (Fig. 3). Genomic analysis of these
MAGs should help in understanding the roles of these bacteria in termite gut and also
provide clues for designing successful isolation media to study their physiology.

Twelve MAGs were assigned to the phylum Planctomycetes, including four to the
class Phycisphaerae (and among them two classified as Tepidisphaerales CPla-3 termite
group), one to class vadinHA49 and seven to the class Planctomycetia (all classified
as Pirellulaceae) (Fig. S12). These MAGs were recovered from the P3, P4, and P5
compartments and were restricted to humus- and soil-feeding termites. The recovery of
Planctomycetes was expected, especially from the Pirellulaceae family, which also contains
termite/cockroach clusters (Mikaelyan et al, 2015b). Interestingly, we found three
MAGs from the P4 and P5 compartments of C. ugandensis, with one 16S rRNA gene
sequence assigned to the Rs-B01 termite group, described in a previous study investigating
the gut microbiota of the same termite species (Kohler e al, 2008). When such 16S rRNA
gene information is available, it will allow the direct linkage between prokaryotic
taxonomy and potential metabolisms.

Other phyla

Nine members of the phylum Elusimicrobia were identified, including members of the
class Endomicrobia (eight members) and Elusimicrobia (one member) (Fig. S13). These
were found in all hindgut compartments and were restricted to humus- and soil-feeding
termites. Currently, only three complete genomes of Elusimicrobia from insect guts are
available: Elusimicrobium minutum from the gut of a humivorous scarab beetle larva
(Herlemann et al., 2009), and Endomicrobium proavitum (Zheng & Brune, 2015) and
Candidatus Endomicrobium trichonymphae (Hongoh et al., 2008a) from the termite gut.
Here, we provided nine additional genomes from the guts of humus- and soil-feeding
termites.
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The Chloroflexi phylum was represented by eight MAGs (all Dehalococcoidia),
including seven belonging to the family Dehalococcoidaceae and one to the family
Dehalobiaceae, found exclusively in the P3 and P4 compartments of humus- and
soil-feeding termites (Fig. S10). Their function in termite gut remains unclear, but
Chloroflexi, including Dehalococcoidia, were found to be enriched in lignin-amended
tropical forest soil (DeAngelis et al, 2011), where oxygen concentration and redox
potential are highly variable, as in the termite gut (Brune, 2014). Therefore, their ability to
use oxygen as final electron acceptor and their potential involvement in lignin degradation
could be investigated by comparative genomics.

Minor phyla were also present in our dataset. Two MAGs assigned as Cloacimonetes
(Fig. S14) and five MAGs assigned as Kiritimatiellaeota were recovered from the P3
compartment of the two humus-feeding termites N. taracua and T. hospes (Fig. S15).
Kiritimatiellaeota have been reported to be present in the digestive tract of various animals
(Spring et al., 2016). The few clones obtained from termite guts, which had been tentatively
classified as uncultured Verrucomicrobia, were mostly obtained with
planctomycete-specific primers (Kohler et al., 2008), underscoring the potential biases in
amplicon-based studies toward certain taxa. Similarly, one MAG of Microgenomates
(also known as candidate division OP11), which probably represents a lineage of
Pacebacteria that was discovered only in a recent amplicon-based analysis but occurs in the
majority of termites investigated (Bowurguignon et al., 2018), was reconstructed from the P3
compartment of T. hospes (Fig. S10).

Finally, four MAGs classified as Acidobacteria were reconstructed from either the P3
or P4 compartments of humus- and soil-feeding termites (Fig. S16), which show a
moderately alkaline or circumneutral pH in comparison to the highly alkaline P1. Of these
four genomes, two were assigned to the M1PL1-36 termite group within the family
Holophagaceae and one to the Acidobacteriaceae family. Acidobacteria can represent a
significant fraction of the termite gut microbiota, especially in wood-feeding termites
(Hongoh et al., 2005; Wang et al., 2016; Bourguignon et al, 2018). In the gut of higher
termites, this phylum is present in the core microbiota (Fig. 3). Moreover, Holophagaceae
and Acidobacteriaceae have been reported to be present in moderately acidic
lignocellulosic substrates, such as peatland soil (Schmids et al, 2015) and decaying wood
(Hervé et al., 2014). Genomic analysis should help us in identifying the metabolic potential
of these MAGs for lignocellulose degradation.

Phyla not represented by MAGs

Several bacterial phyla and one archaeal phylum containing prominent taxa that have
been identified in previous 16S rRNA gene surveys of termite guts were not represented
among the MAGs recovered in the present study. They include Cyanobacteria (class
Melainabacteria; Utami et al., 2018), Lentisphaerae (Kohler et al., 2012; Sabree & Moran,
2014), Verrucomicrobia (Wertz et al,, 2012), and Thaumarchaeota (Friedrich et al, 2001;
Shi et al., 2015). Also intracellular symbionts of termite tissues, such as Wolbachia
(Proteobacteria) (Diouf et al., 2018b) were not recovered. Possible reasons are a low
relative abundance and/or a high phylogenetic diversity of the respective lineages.
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Although larger metagenomes should improve the chances of their recovery in the
medium- and high-quality bins, targeted single-cell based approaches have proven to be
quite effective in recovering these genomes (Ohkuma et al., 2015; Yuki et al, 2015; Utami
et al,, 2019).

CONCLUSIONS

The 589 MAGs reported here represent the largest genomic resource for
arthropod-associated microorganisms available to date. We recovered representatives of
almost all major prokaryotic lineages previously identified in 16S rRNA gene
amplicon-based surveys of the gut of higher termites from the metagenomes. This provides
the foundations for studying the metabolism of the prokaryotic gut microbiota of higher
termites, including the key members involved in carbon and nitrogen biogeochemical
cycles, and important clues that may help in cultivating representatives of these
understudied clades.
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ABSTRACT

Termites are important plant biomass decomposers. Their digestive activity typically relies on pro-
karyotes and protozoa present in their guts. In some cases, such as in fungus-growing termites, digestion
also relies on ectosymbiosis with specific fungal taxa. To date, the mycobiome of termites has yet to be
investigated in detail. We evaluated the specificity of whole-termite associated fungal communities in
three wood-feeding termite species. We showed that the whole-termite fungal community spectra are
stable over diverse environments, regardless of the host species, and differ markedly from the wood in
which they nest. The core mycobiome is similar to that found in other ecologically related insects and
consists of a narrow spectrum of common filamentous fungi and yeasts, known for their stress tolerance
and their ability to decompose plant biomass. The observed patterns suggest that a number of fungal
strains may have a symbiotic relationship with termites, and our results set the stage for future in-
vestigations into the interactions between fungi, termites, and their other gut microbiota,

© 2020 Elsevier Ltd and British Mycological Society. All rights reserved.

1. Introduction

decomposition (Watanabe and Tokuda, 2010; Brune and Dietrich,
2015). Termites process this cellulose far more efficiently than

Dead plant materials are mostly made of lignocellulose, the
most common polymer on Earth, which relatively few metazoan
taxa are able to significantly decompose (Lo et al., 2003). All key
taxa consuming dead plant tissues, such as ruminants, earthworms
and insects, largely rely upon a rich microbial consortium, which
possess the necessary metabolic pathways for lignocellulose
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other decomposers (Brune, 2014) and their dominance in tropical
ecosystems makes them key players at a global scale (Bignell and
Eggleton, 2000; Bar-On et al., 2018; Griffiths et al.,, 2019). While
early branching termite lineages (“lower” termites) feed exclusively
on wood or grasses, the “higher" termites (i.e. the crown family
Termitidae) consume a variety of plant materials irrespective of
decomposition status, and a majority of these taxa are soil-feeders
(Jouquet et al., 2006; Krishna et al., 2013). To digest cellulose, ter-
mites rely on their own endogenous cellulases (Watanabe et al,
1998), in combination with microbial cellulases in their guts.
Lower termites depend primarily on flagellate protozoa, with some
contribution by prokaryotes, while “higher” termites lack cellulo-
Iytic flagellates completely and depend on bacteria and archaea for
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cellulose decomposition (Brune and Ohkuma, 2011; Hongoh, 2011;
Brune and Deitrich, 2015).

In herbivorous or detritovorous insects, both prokaryotes and
fungi are generally thought to form core taxa of the gut micro-
biome, despite the fact that most studies have considered pro-
karyotes only (Gurung et al., 2019; Ravenscraft et al., 2019). Both
types of microorganism can act as nutritional symbionts assisting
with digestion, detoxification and essential nutrients synthesis, or
as protective symbionts (Dilion and Dillon, 2004; Gurung et al,
2019). Other roles, such as the effect on the host cells physiology
and interactions with other microbes can be expected, as is known
in mammals (Lai et al., 2018). The core gut mycobiome of wood
feeding insects covers a relatively narrow set of ubiquitous yeasts
and filamentous fungi such as Candida, Mucor, Aspergillus, Penicil-
lium, Alternaria or Trichoderma (Pérez et al, 2003; Rojas-Jiménez
and Herndndez, 2015; Ziganshina et al., 2018) and the same taxon
spectrum is reported not only in other insects (Moraes et al., 2001;
Fredensborg et al,, 2020), but also in mammals (Lai et al,, 2018),

Associations between termites and fungi have so far been
considered in two categories: firstly, interactions that affect the
discovery and consumption of foed or its nutrient value, but which
fall short of mutualism; secondly, the cultivation of fungus-combs
(Termitomyces spp.) by fungus farming Macrotermitinae (Lenz
et al, 1991; Rouland-Lefevre, 2000). However, apart from a few
studies reporting common yeasts and filamentous fungi found in
termite guts (Prillinger et al., 1996; Prillinger and Konig, 2006), the
fungi associated with termites are yet to be systematically inves-
tigated. The only studies which have compared the microbiota of
termite guts and termite ambient environments showed that
fungal assemblages of guts differ markedly from nest walls or food
nodules in litter and humus feeding termites (Menezes et al,, 2018;
Moreira et al., 2018), Based on the current knowledge of insect
microbiomes, we hypothesized that fungi, which are a neglected
part of the termite gut microbiome, form predictable communities
and have stable interactions with their hosts,

We compared the specificity of body associated fungal com-
munities (i.e. fungi in gut and on exoskeleton) in three ecologically
similar species, Heterotermes tenuis, Coptotermes testaceus (both
lower termites, Rhinotermitidae) and Nasutitermes octopilis (higher
termites, Termitidae: Nasutitermitinae), which can be simulta-
neously collected from the same large wood item. We examined the
mycobiomes of whole termite bodies as a proxy for termite gut
mycobiomes, which enabled us to analyse large sample sizes,
necessary for statistical testing. We hypothesized that fungal
communities are similar in termites with a similar diet, and more
alike in the genera Heterotermes and Coptotermes compared to
Nasutitermes, as Coptotermes is nested within the genus Hetero-
termes (Bourguignon et al., 2016; Bucek et al., 2019). We examined
fungal communities using high-throughput sequencing of ITS2
metabarcodes of termite bodies, their food source (narrow termite
galleries), and intact control wood near to areas where termites
were feeding. The patterns described below are based on repeated
samples from the same log, usually of multiple species from the
same trunk, which allowed us to test for termite species and
colony-level specificity of the associations.

2. Material and methods
2.1. Study site and sampling

The samples were collected in November 2014 in Nouragues
Nature reserve (French Guiana; N 04°05', W 52°41"). Large wood
items were inspected for the presence of two “lower" termite
species, Coprotermes testaceus (Rhinotermitidae) with a preference
for sound white wood, Heterotermes tenuis (Rhinotermitidae)

Fig. 1. Sampling scheme. Termites were collected in foraging gallerses, and workers
and soldiers were used for voucher sample in 80% ethanol (_A), while 10 workers for
RNAlLater sample (_R). Samples of foraging galleries (_WF) and control wood (_WC;
roughly 10 cm from the closest termite gallery) were also stored in RNAlater. Up to
three sample sets were collected from the same log, with a distance at keast 1 m from
each other. If more than a single focal termite [T1 and T2) was found in the same log,
both were treated independently.

preferring red-rot wood, and one “higher” termite species, Nasu-
titermes octopilis (Termitidae: Nasutitermitinae), having no clear
specialisation for the wood-decomposition degree.

A single sample set comprised of three samples: (1) 10 workers
from a single foraging party (2) their feeding substrate (approx.
1 cm” piece of wood containing gallery), and (3) the control sample
(approx. 1 cm’® of wood roughly 10 cm away from the closest
termite gallery) (Fig. 1). Two or three sample sets, collected 1 m
away from each other, were taken from the single wood log.
Visually healthy workers were collected and narrow termite gal-
leries with minimal amounts of frass were selected. Samples were
firstly stored in RNAlateri solution at —20 “C within 12 h following
collection, and shipped to Prague where they were stored at - 80 °C
until DNA extraction. In total, 82 samples sets (Coptotermes: n — 28,
Heterotermes: n = 31, Nasutitermes: n = 23) originated from 23
trunks were studied, Storage in RNA lateri solution caused hard-
ening of termite bodies preventing gut dissection. Thus, as extrac-
tion of the intact intestine was impossible, we used whole termite
bodies as a proxy for the study of intestinal microbiota.

2.2. DNA extraction and PCR amplification

Total DNA was extracted using Macherey-Nagel NucleoSpin®
Soil kit with following modifications. Each termite sample was
homogenized together in 500 ul of SL1 Lysis buffer, 100 pL of SX
enhancer buffer and two sterilized steel beads (3 mm diameter)
using a Mixer Mill MM 400 for 2 min, set on 30 Hz. Sample lysis by
using a vortex was shortened to 2 min. The wood samples were
mechanically crushed to small pieces, placed in a 2 mL tube with
five steel beads, frozen in liquid nitrogen for 1 min and ground in a
Mixer Mill Retsch MM 400 for 10 min at 30 Hz; 550 pL of SL2
extraction buffer was added to the homogenized material and the
grinding was repeated once more. Sample lysis was extended to
10 min.

PCR amplification of the fungal ITS2 region from DNA was per-
formed using gITS7 (5'-GTGARTCATCGARTCTTTG-3') and ITS4 (5'-
TCCTCCGCTTATTGATATGC-3") (thrmark et al, 2012; Tedersoo
et al, 2015), each of them was barcoded in three PCR reactions
per sample. The PCR reactions contained 2.5 pL of 10 x buffer for
DyNAzyme Il DNA Polymerase, 0.75 L of bovine serum albumin
(20 mg/mL), 1 pLof each primer (0.01 mM), 0.5 pL of PCR Nucleotide
Mix (10 mM each), 0.75 pL of polymerase (2 U/uL DyNAzyme || DNA
polymerase), and 1 uL of template DNA.
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PCR was performed by using an Eppendorf Mastercycler®
(Eppendorf AG, Hamburg, Germany) nexus cycler. The PCR cycling
parameters were 94 °C—5 min (1 cycle), 94 "C-45 5, 56 "C-35 s,
72 °C—30 s (40 cycles), final extension at 72 “C—10 min. PCR trip-
licates were combined and purified using MinElute PCR Purification
Kit (Qiagen GmbH, Hilden, Germany) according to the manual
provided and eluted in 20 plL. Paired-ends amplicon reads were
sequenced on lllumina MiSeq sequencer ([llumina Inc., USA) using
V2 chemistry producing 2 = 250 bp output.

2.3. Data processing

Raw fungal ITS paired-end sequences were joined using fastq-
join software (Aronesty, 2011) and demultiplexed, filtered and
trimmed using the pipeline SEED 2 (version 2.1.05) (Vetrovsky
et al, 2018). Low-quality sequences (mean Phred quality
score < 30) and all sequences with mismatches in barcodes were
removed from the dataset. After the quality filtering, all fungal
sequences were extracted from the joined sequences using ITSx (v
1.0.11) (Bengtsson-Palme et al, 2013) to acquire complete ITS2 re-
gion, All ITS2 sequences shorter than 40 bp were discarded,
yielding a dataset of 3 967 992 fungal ITS2 sequences (length dis-
tribution 40-395 bp, avg. 175 bp). The dataset was clustered into
operational taxonomic units (OTUs) using UPARSE implementation
in USEARCH version 8.1.1861 (Edgar, 2013) with 97% similarity
threshold (109 476 fungal chimeric sequences were excluded dur-
ing this step). A total of 10 742 fungal OTUs (without singletons)
were obtained during the clustering step. To reduce the influence of
contaminations and minimize the effects of barcode hopping all
OTUs with up to 4 reads were discarded, which resulted in 2857
OTUs used for further analysis.

The most abundant sequence from each cluster was used as a
representative sequence for taxonomic classification. Fungal se-
quences were classified based on BLAST best hit against the UNITE
database, version 7.2 (Koljalg et al., 2013). The functional guild of
each fungal OTU was assigned based on the FUNGuild database
(Nguyen et al, 2016). For alpha diversity estimation, all fungal
samples were resampled to 909 sequences, Diversity indices were
estimated using SEED 2 version 2,1,05. The abundances of sequence
reads were plotted on the phylogenetic tree constructed using NCBI
molecular data via phyloT (Letunic, 2015) and the iTOL visualisation
tool (Letunic and Bork, 2019). Data were deposited in the MG-RAST
database under accession number mgp91984 and in NCBI Sequence
Read Archive (SRA) under BioProject accession number
PRJNA639228. Processed data (extracted ITS2 reads) were depos-
ited in the ClobalFungi Database (https://globalfungi.com,
Vetrovsky et al., 2020).

2.4. Statistical analysis

To test the null hypothesis of no difference between termite
body, gallery and wood (control) fungal community composition,
PERMANOVA analysis (Anderson, 2001) was performed with
adonis() function of vegan package (Oksanen et al, 2018) in R (R
Core Team, 2018). Euclidean distance on Hellinger-transformed
fungal composition (i.e. Hellinger distance matrix) (Legendre and
Gallagher, 2001) was used as response matrix, and sample type
(body, gallery or wood) was used as fixed explanatory variable.
Since observations were paired within triplets (the three sample
types were sampled in each triplet), which, in turn, were nested in
logs, the permutations were constrained to occur within triplets,
using the variable triplet as blocking factor (or strata). To visualize
the results, non-metric multidimensional scaling (NMDS) was
performed in two different ways. In the first way, raw community
data was ordinated by their fungal composition. This NMDS plot

shows all the variability in the dataset. In the second way, com-
munity data was first regressed against triplet and log effects (i.e.
the effect of spatial variability due to the experimental design was
removed from the data) and, then, the residualized distance matrix
was ordinated using NMDS as suggested by Anderson et al, (2017),
This plot shows the variability in the dataset, once the effect of
triplet and log has been taken into account.

To test the null hypothesis of no effect of sample type and
termite species on fungal diversity (measured with Chao 1 index,
Shannon-Wiener diversity index, and Pielou’s evenness), linear
mixed effect models were fitted using the function Ime() from the R
package nlme (Pinheiro et al., 2018). The interaction between
termite species and sample type was fitted as the fixed part of the
model, and, a random structure of the form ~1|triplet/log was
included in each model to account for the fact that measurements
were grouped in triplets, which, in turn, were nested in logs. Tukey
post-hoc tests were performed using the function Ismeans () of the R
package Ismeans (Lenth, 2016).

To identify the fungal OTUs contributing to the separation be-
tween termite bodies, galleries and wood, partial redundancy
analysis (partial RDA) was used (Legendre and Legendre, 2012) for
each termite species separately. Separating the communities by
termite species allowed checking whether similar OTUs contribute
to the separation between sample types in the three termite spe-
cies. In each RDA, Hellinger-transformed fungal OTU composition
was used as response matrix, sample type was used as fixed
explanatory factor, and the analysis was conditioned with the effect
of the log and triplet. 1% of the OTUs with highest loadings to the
ordination axes RDA1 and RDA2 in the three partial RDAs were
depicted in triplots (Legendre and Legendre, 2012).

Lastly, to test and quantify the effect of termite species and log
identity on fungal mycobiome composition, variation partitioning
was performed based on RDA (Legendre and Legendre, 2012).
Variation in Hellinger-transformed fungal OTU composition of
termite bodies and galleries was partitioned in the effect of termite
species and log identity. Since the number of body and gallery
samples per species was not equal, Coptotermes and Heterotermes
were randomly subsampled to balance the design, which makes the
hypothesis testing more robust to the presence of heterogeneous
group dispersions (Anderson and Walsh, 2013), The partial effect of
each fraction (i.e. the effect of a fraction —e.g. species— once the
effect of the other fraction —e.g. log identity— has been taken into
account) was tested using a permutation test in partial RDA results.

3. Results
3.1. Fungal diversity

The diversity of fungal OTUs was significantly higher in termite
bodies of all three species than in their galleries and intact wood,
and was also significantly different between termite species. The
estimated number of OTUs (Chao-1 estimate) in termite body
samples, counted from the resampled dataset, ranged from 26 to
221 with an average 92101 per species. Estimated OTU numbers
and diversity indices were at least two times lower in termite
galleries and in control wood. The fungal communities from
termite bodies were significantly more even than termite galleries
and control wood samples (Fig. 2).

3.2. Fungal community composition

The wood control and galleries were dominated by Basidiomy-
cota followed by Ascomycota while there was an obvious shift to
the dominance of Ascomycota over Basidiomycota in the termite
bodies, with the addition of Mucoromycotina and Chytridiomycota
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Fig. 2. Alpha diversity indices: Chao-1 index (A), Shannon-Wiener index (B) and evenness (C) calculated from the fungal OTUS found in termite bodies, their galleries and insect-
free wood controls. Data from Coptotermes testaceus, Heterotermes tenuis, Nasutitermes octopdlis are shown. Groups sharing a letter are not significantly different (Tukey HSD post-hoc

tests, p < 0.05).

members (Fig. 3A). A significant diversity of fungal taxa unidenti-
fied at the phylum level was recovered for all three treatments. At
the finer taxonomic scale, 25 fungal orders were most abundant
(Figs. 3B and 4). Among the most abundant orders, Mucor-
omycotina GS23 (artificial group, see Fig. 3 for definition), Euro-
tiales, Hypocreales, Ophiostomatales and Saccharomycetales were
typically associated with termite bodies, whereas Chaetosphaer-
iales, Auriculariales and partially also Corticiales were associated
with wood and galleries. Wood was also marked by the high
abundance of Polyporales (Figs. 3 and 4, Supplementary Table 1).
Finally, the members of the order Hymenochaetales were abundant
in all variants. The majority of the fungal taxa identified to the
ecological guild were predicted to be saprotrophs, a combination of
mixed trophic modes (mostly saprotrophs and pathotrophs) and
pathotrophs. Saprotrophs and pathotrophs were more abundant in
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termite bodies (frequency of reads in saprotrophs - 39-23%; path-
otrophs - 5-11%) than in galleries and wood (22-11%; 0.1-3%).
Those taxa belonged mostly to plant pathogens, with the small
fraction of insect pathogenic fungi (0.05-0.25%) dominated by
Metarhizium spp. and Lecanicillium spp. (Supplementary Table 2).
Multivariate analysis of the raw OTU dataset did not clearly
separate samples by their types, but showed that the intestinal
mycobiota of all three termite species is rather homogeneous and
similar, in comparison to the very heterogeneous communities
colonizing their galleries and wood controls (k = 3 dimensions,
final stress = 0.24, Fig. 5A). By contrast, once the spatial variability
due to the experimental design (i.e. the effect of log and triplet
identity) is removed (k = 3 dimensions, final stress = 0.25, Fig. 5B),
body samples clearly separate from galleries and controls. The
NMDS revealed a high stress value indicating that 2D graphical
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Flig. 3. Relative abundance of sequence reads classified at the phylum (A) and order (B) level. Only the orders with higher relative abundance ( >1% of reads in at least one sample
type) are shown in Fig. 38, Data from the wood control (W0), bodies (T) and galleries (W) of the termites Coprotermes testaceus (C). Heterotermes tenuis (H), and Nasutitermes
octopilis (N) are shown. Artificial order Mucoromycotina GS23 was created for OTU285 (see Table 1) and OTUs withsimilarity >95%
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Heterotermes tenuis (H), and Nasutitermes octopilis (N) are shown. Abundant orders, which reached at least 1% abundance in one fungal community were selected for presentation,
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Fig. 5. Non-metric multidimensional scaling (NMDS) ordination of the sampling units by their fungal OTU (>97% identity ) compasition based on ITS2 rRNA gene metabarcoding. (A)
Ordination of raw fungal OTU composition (k = 3 dimensions, final stress = 0.24); (B) ordination of residualized fungal OTU composition (Le. the effect of log and triplet identity
removed: k - 3 dimensions, final stress — 0.25). Sample type significantly affects fungal community compasition (PERMANOVA: permatations - 999, Pvalue - 0,001, R ~ 0.044),

representation only roughly corresponds with the underlying data.
However, the observed patterns were confirmed by the PERMA-
NOVA analysis which showed that fungal communities from
termite bodies were significantly different from galleries and con-
trols (permutations = 999, P-value = 0.001).

Constrained RDA analysis with the removed effect of the sam-
pling design revealed a clear separation of samples based on their
type in all three termite species. The first axis of RDA (RDA1) sep-
arates termite bodies from galleries and controls, whereas the
second axis (RDA2) separates galleries from controls (Fig. 6). As
opposed to the unconstrained ordination (NMDS, Fig. 5), the con-
strained ordination (Fig. 6) distinguishes between the fungal
compositions of galleries and controls. OTU 12, 20 and 34 are
consistently positively associated with termite bodies in all three
species, A further 13 OTUs are associated with two termite species
(Table 1). The fungal genera linked with termite bodies (i.e. with
high negative RDA1 axis loadings, Fig. 6), in all three termite species
includes a narrow spectrum of filamentous ascomycetes (Tricho-
derma, Penicillium, Scytalidium, Hawksworthiomyces, Lasiodiplodia),
a few basidiomycete genera (Malassezia, Phlebia, Hyphodontia,
Corticium, Wrightoporia etc.), a single but abundant taxon from

A

Mucoromycotina and a chytrid species from the genus Spizello-
myces specifically associated with Coptotermes and Heterotermes
(Table 1, Supplementary Table 3). Fungal genera linked with gal-
leries include mostly wood saprobes from Basidiomycota (Resini-
cium, Hyphodontia, and unidentified genera), the very abundant
genus Chaetosphaeria, and other wood inhabiting ascomycetes
(Pseudolachnella, Orbilia, Calonectria, etc.). Genera linked with
wood were Auricularia, Porotheleum and numerous, mostly un-
identified, genera of Polyporales, Auriculariales and Agar-
icomycetes but also various wood roting ascomycota (Hypoxylon,
Kretzschmaria, Camarops, Cordana, Chaetosphaeria) (Fig. 6,
Supplementary Table 3).

The fungal community composition of termite bodies and gal-
leries was significantly affected by both termite species and log
identity. Total explained variation in gallery mycobiomes (0.118)
was more than the half (0.261) of the explained variation in body
mycobiomes. Accordingly, the variations explained by only termite
species, only log and the shared fraction (i.e. the fraction that
cannot be clearly attributed to either species or log) were more
than double in termite bodies compared with galleries (Fig. 7).

.

Fig. 6. Partial RDA triplots showing the partial effect (i.e. once the effect of log and triplet identity has been taken into account) of sample type on fungal OTU compasition for (A)
Coptotermes, (B) Heterotermes and (C) Nasutitermes. Sample type significantly affects fungal community for Coptotermes (Permutation test of RDA: permutations - 999, P-
value = 0,001), Heterotermes (permutations = 999, P-value = 0.001) and Nasutitermes (permutations = 999, P-value = 0.001). One percent of OTUs (labelled as X14 etc.) with the

highest fit to RDAT or RDA2 are depicted (see Table 1 for further details),
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Nasutitermes octopills
OTU  RDA axis

Heterotermes tenuis

OTU  RDA axis

Coptotermes testaceus

Table 1 (continued )
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4. Discussion
4.1, Termite associated mycobiome

Fungal communities of galleries and intact wood overlapped
and differed from termite communities, which also overlapped
with each other (Figs. 3-6). The termite mycobiota is likely to be a
mix of fungi present on insect cuticular tissues (mostly from the
mouthparts and pathogenic fungi present on the body surface),
fungi present in the gut, and possibly fungi present internally in
other organs or in the haemolymph. In our study, the fraction of
insect pathogenic fungi was higher in termites than in their gal-
leries, but their overall abundance was very low and did not
contribute to the separation of the studied sample types (Table 1,
Supplementary Table 2). Intestinal fungi appear to dominate the
termite mycobiome. Whether fungi occur in other internal organs
(i.e. haemolymph, gonad rudiments) is unclear. The presence of
fungi on termite exterior cuticles could potentially reduce the dif-
ferences between the termite and gallery communities, due to the
fact that termites are in close contact with their galleries. Despite
this limitation, we found statistically significant differences be-
tween both communities,

In our study, representatives of the Saccharomycetales, Malas-
seziales, Eurotiales, Hypocreales and Mucoromycota common in
whole termites, and much less frequent in galleries and wood
(Fig. 3, Supplementary Table 1), can be considered as typical
members of termite mycobiome. Two previous studies quantified
termite associated fungi using ITS metabarcoding. They found
Eurotiales, Trichosphaeriales and Pleosporales (Menezes et al,
2018) together with Hypocreales (Moreira et al., 2018) are associ-
ated with guts and much less abundant in surrounding environ-
ments. This is in line with our results, including the presence of
Trichosphaeriales and Pleosporales, which were rare in our study,
but typically present in termite bodies (Fig. 3, Supplementary
Table 1).

Yeasts, i.e. species from Saccharomycetales, Malasseziales and
Trichosporonales, are the best studied fungi in “lower” termites
(Prillinger et al., 1996; Prillinger and Konig, 2006) and the insect gut
in general (Blackwell, 2017; Stefanini, 2018). Genera frequently
found in our study, Candida, Debaryomyces, Pichia, Cryptococcus,
and Trichosporon, are known as typical termite gut inhabitants
(Prillinger et al,, 1996; Prillinger and Konig, 2006). At the species
level (i.e. OTUs with =99% similarity) we identified several taxa
already known as intestinal symbionts of various insects (e.g.
Candida haemulonis, Candida parapsilosis (Suh et al., 2007; Bozic
et al, 2017), Candida elateridarum (Suh and Blackwell, 2004),
Malassezia restricta (Zhang et al., 2003), Metschnikowia pulcherrima
(Woolfolk and Inglis, 2004) and Trichosporon insectorum (Fuentefiia
etal, 2008) (Supplementary Table 1). Surprisingly, yeasts (with the
exception of Malassezia) did not contribute to the statistical sepa-
ration of gut and gallery associated fungal communities, when the
effect of sampling design was removed (Fig, 6). This was partially
due to the high inter-sample variability of yeast communities, but
also because of their consistent occurrence (although in very low
abundances) in the galleries.

The statistical separation of the whole termite mycobiota in our
study was mostly due to the differences among representatives of
ubiquitous genera of plant endophytes and saprobes including
Mucoromycotina spp., Trichoderma, Hawksworthiomyces and Peni-
cillium (Table 1). Data on termite gut associated filamentous fungi
are scarce (for review see Konig et al,, 2006; Prillinger and Konig,
2006). The genera Trichoderma, Penicillium, Aspergillus and Alter-
naria (Hendee, 1935; Rajagopal et al., 1979,1981; Varma et al., 1994;
Jayasimha and Henderson, 2007), together with numerous
Mucoromycotina spp. (Zoberi and Grace, 1990), were already
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Fig. 7. Venn diagram of RDA variation partitioning of fungal OTU composition in (A) termite galleries and (B) whole termites. Numbers are adjusted R” values. *, p < 0.05; **,

p <001 ***, p <0001

reported from termite guts, which corresponds to our results
(Table 1), Interestingly, a similar spectrum of genera (i.e. Penicillium,
Trichoderma, Fusarium, Cladosporium, Aspergillus, Rhizopus, and
Mucor) is also present in the guts of other plant biomass feeders
such as isopods (Kayang et al., 1996), Tenebrio molitor (Fredensborg
et al., 2020), wood feeding beetles (Rojas-Jiménez and Herndndez,
2015; Mchammed et al., 2018; Ziganshina et al., 2018), cockroaches
(Salehzadeh et al., 2007), bark beetles (Pérez et al., 2003) and
grasshoppers (ldowu et al., 2009). It is also worth mentioning the
abundant presence of Spizellomyces sp., identified in more than 50%
of C. restaceus and H. tenuis samples, but absent in N. octopilis.
Spizellomyces is a genus of zoosporic fungi living in soil, or as plant
pollen, or fungal parasites (Wakefield et al., 2010), and its associa-
tion with termites calls for further studies.

Although previous works studied the presence of various fungi
in termites (Prillinger et al., 1996; Konig et al., 2006; Jayasimha and
Henderson, 2007; Santana et al, 2015; Menezes et al, 2018;
Moreira et al., 2018), our study is the first large and systematic
comparison targeting the fungal communities using a statistically
robust dataset of termites, their environments, and their feeding
substrates. In agreement with previous studies (Konig et al., 2006;
Prillinger and Konig, 2006), our results indicate that the termite
intestine is inhabited by ubiquitous environmental fungi. We
showed that the termite associated community is distinct and
relatively homogeneous and stable over diverse environments and
termite species, compared with termite galleries and control wood.
In addition, termite galleries represent a specific habitat which
significantly differs from wood in fungal community composition.
This is similar to results found in studies of humus and litter feeding
termites, where intestinal fungal communities differed substan-
tially from communities of feeding nodules and/or nest walls
(Menezes et al,, 2018; Moreira et al., 2018) suggesting that termites
possessed a host-defined intestinal mycobiome,

Strong environmental filtering appears to allow a relatively
small number of fungi to grow freely and persist inside termites,
across different species, after being taken up from the environment
(soil galleries used for foraging, or the wood upon which termites
feed). Vertical transmission of fungi by termites may also occur,
although our results do not provide a clear answer on this. Both
modes of symbiont acquisition, or their combination, can result in
the observed stability of the intestinal communities across various
collection dates, termite populations and species. In addition, the
galleries themselves host specific fungal communities, which are
more similar to intact wood and less affected by the termite species
that form the galleries (Figs. 6 and 7).

Interestingly, the effect of termite species on fungal community
composition in whole termites was very low (Fig. 7), which shows
that different termites shape their fungal communities in a similar
way. This is in contrast to patterns found with bacteria (Colman

et al, 2012; Bourguignon et al., 2018; Chouvenc et al, 2018;
Menezes et al, 2018; Moreira et al.,, 2018), which are more host
specific. This is partly explained by the fact that many termite-
associated bacteria are highly co-evolved vertically transmitted
obligate symbionts (of termites or associated protists), whereas
most identified fungi are presumably facultative associates,
frequently existing as environmental fungi. Higher OTU diversity in
whole termites in comparison to galleries and control wood is
another feature constantly shared among different termite species
(Fig. 2). This pattern is expected if we consider that the intestine
itself is highly compartmentalised, which results in an increase in
microbial diversity (Mikaelyan et al,, 2017).

The core mycobiome of the termite gut is composed of plant
biomass decomposers (see below), which are stress tolerant, fast
growing and sporulating. It is likely that they are pre-disposed to
live in the environment of the termite gut, which is characterized
by harsh microaerobic conditions, steep gradients of oxygen and
hydrogen, and activity of strong hydrolytic enzymes (Konig et al.,
2006). Furthermore, it is possible that such features allow these
fungi to live not only in termites, but also in taxonomically distant
insect plant biomass feeders. The apparent stability of the fungal
community between different termites could be considered evi-
dence for symbiosis. Although it appears likely that the fungi we
identified are able to live and grow in the termite gut, it is also
possible that the origin of some strains is from the digested ma-
terial, but were nevertheless detected using our methods.

4.2. Ecological role of gut associated fungi

Both the presence and the ecological role of fungi in the termite
gut have been poorly studied so far. However, fungi have generally
not been considered as an important part of the termite holobiont
(Slaytor, 1992; Brune and Dietrich, 2015; Peterson and Scharf, 2016)
and their presence is usually ignored. It has been shown that the
intestinal fungi were not essential for Nasutitermes exitiosus sur-
vival in the lab experiments (Eutick et al., 1978), but similar studies
in other termite species are needed to confirm their facultative
status. More insight into their ecological functions has been pro-
vided with the transcriptome data. The fungal contigs from nym-
phoid neotenic (i.e. the developmental stage fed mostly by
proteinaceous labial gland secretions) intestinomes in Retic-
ulitermes spp. represent 10.2% of the fraction of non-termite origin
(Dedeine et al, 2015). Another study showed that 18% of all
carbohydrate-active enzymes in Coptotermes formosanus tran-
scriptomes were of fungal origin, similar to bacteria (24%) but not to
protists (6% only) (Zhang et al., 2012). In Reticulitermes flavipes
symbiont libraries (gut content only), fungi represent 7% of the
non-animal fraction of the reads (protists 71%, prokaryotes 21%)
(Tartar et al., 2009). Little is known concerning fungal gut biomass.
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In the termites Zootermopsis angusticollis and Neotermes castaneus,
107-10" yeast cells per millilitre of gut content were found, which is
comparable to the number of flagellates, and similar, or two orders
of magnitude lower, than the numbers found in bacteria (Konig
et al., 2006; Prillinger and Konig, 2006). This suggests that fungi
may actively proliferate in termite guts and they might be an
important part of the lignocellulolytic machinery as proposed by
Zhang et al. {2012),

Ecologically, yeast are typical inhabitants of the insect gut,
including termites (Blackwell, 2017; Stefanini, 2018), and they can
extracellularly decompose cellulose, hemicellulose and xylans, thus
contributing to wood digestion (Schafer et al., 1996; Prillinger and
Konig, 2006). Interestingly, the dominant fungal strains identified
in our study, especially Trichoderma and Penicillium, are well known
for their ability to degrade cellulose, hemicellulose, and lignin, and
are often used in biotechnology (de Franga Passos et al, 2018).
Significant lignocellulosic activities have also been reported in
Phlebia, Hyphodontia, Scytalidium (Eriksson et al., 2012), Hawks-
worthiomyces (De Beer et al., 2016) and Lasiodiplodia (Felix et al,
2018). Such strong enzymatic activities were shown in vitro
directly in the strains from termites (Tarayre et al., 2015). This in-
formation, together with published transcriptomic data, reinforces
the idea that, in termites, fungi may contribute to the degradation
of lignocellulose and hemicellulose (Tartar et al,, 2009). In addition,
detoxification ability, which is well known in fungi, was also found
in the yeasts from termites (Molnar et al., 2004) and therefore toxin
degradation could be another important role of the intestinal
fungal symbionts. However, further characterisation of the real
contribution of fungi to food-processing in termites still remains to
be undertaken.
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ABSTRACT All termites have established a wide range of associations with symbi-
otic microbes in their guts. Some termite species are also associated with microbes
that grow in their nests, but the prevalence of these associations remains largely un-
known, Here, we studied the bacterial communities associated with the termites and
galleries of three wood-feeding termite species by using 165 rRNA gene amplicon
sequencing. We found that the compositions of bacterial communities among ter-
mite bodies, termite galleries, and control wood fragments devoid of termite activi-
ties differ in a species-specific manner. Termite galleries were enriched in bacterial
operational taxonomic units (OTUs) belonging to Rhizobiales and Actinobacteria,
which were often shared by several termite species, The abundance of several bac-
terial OTUs, such as Bacillus, Clostridium, Corynebacterium, and Staphylococcus, was
reduced in termite galleries. Our results demonstrate that both termite guts and ter-
mite galleries harbor unique bacterial communities.

IMPORTANCE As is the case for all ecosystem engineers, termites impact their habi-
tat by their activities, potentially affecting bacterial communities, Here, we studied
three wood-feeding termite species and found that they influence the compesition
of the bacterial communities in their surrounding environment. Termite activities
have positive effects on Rhizobiales and Actinobacteria abundance and negative ef-
fects on the abundance of several ubiquitous genera, such as Bacillus, Clostridium,
Corynebacterium, and Staphylococcus. Our results demonstrate that termite galleries
harbor unique bacterial communities.

KEYWORDS Coptotermes, ectosymbionts, Heterotermes, Nasutitermes, symbiosis

ermites harbor diverse communities of microbes in their hindguts that participate

in lignocellulose digestion, nitrogen metabolism, and other functions (1-4), Gut
microbes have been coevolving along with termites for tens of millions of years, and
many species are found nowhere else other than in the termite gut (3-5). Conse-
quently, termite gut microbial communities are unique in terms of composition,
differing substantially among species (6-8) and differing from the communities present
in soil, wood, and termite nest material (9, 10).

In addition to the microbes present in their guts, some termite species are known
to partner with mutualistic symbionts that grow outside of their bodies, which we
define here as “external symbionts.” All species of Macrotermitinae cultivate the
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macroscopic fungus Termitomyces within their nests (11-13). Termitomyces species are
only associated with fungus-growing termites {11-13) and, due to their prevailing
horizontal transmission, have undergone a number of switches between species in this
group (14, 15). Another putative example of nutritional external symbiosis is that
between Sphaerotermes sphaerothorax, the only known species of Sphaerotermitinae,
and bacteria of unknown taxonomic composition that are found inside specialized
combs forming the core of Sphaerotermes sphaerothorax nests (16). No other nutritional
external symbionts are known to be associated with termites.

Termites are known to host externally associated symbiotic microbes that exhibit
antifungal properties. Termites primarily feed on wood, sometimes in an advanced
stage of decomposition, or on soil (17, 18), both of which are inhabited by a large
number of microbes. In addition, termites are social insects that live in densely
populated nests, potentially facilitating the transmission of diseases (19). Some termites
harbor in their nests Streptomyces bacteria that display antifungal properties (20-22).
External symbiotic Streptomyces are not specific to termites but are recruited from the
soil surrounding the fecal nest and become abundant in termite-managed environ-
ments (22).

The diversity of microbes externally associated with termites is unlikely to be limited
to a handful of external symbionts with nutritional and defensive functions. Termite
activities are expected to have a significant effect on the composition of surrounding
microbial communities. For example, termites produce antifungal and antimicrobial
compounds that they release from their salivary glands and fecal pellets (23-27). Saliva
and fecal fluids are used as building material (28), and their biocide properties prevent
microbial colonization of the nest and galleries, which remain free of visible fungal
overgrowths (21, 29). Termites also tunnel into wood and move vast amounts of soil
(30-32), facilitating the spread of microbes and fungi (33). Lastly, termites maintain
microclimatic conditions within their nests and galleries (28), potentially favoring the
growth of certain microbes while suppressing that of others. In consequence, the
microbial communities colonizing termite nests and galleries are expected to differ
from those of termite-free environments.

Several studies have shown that the bacterial communities thriving on termite-
modified materials differ from those of soil or wood (34-38). However, these studies
provided only limited insight into the composition of bacterial communities and no
insight into the specificity of termite-bacterium associations. The few studies based on
high-throughput sequencing approaches, which allow taxonomic identification of
bacteria, provided conflicting results, either suggesting that microbial communities of
termite nests are similar to those of the surrounding soil (9) or showing that the fungal
combs of each Macrotermitinae species host unique bacterial communities (39).

In this study, we used high-throughput sequencing of 165 rRNA gene fragments to
compare the bacterial communities of termite bodies, termite galleries, and control
wood samples devoid of termite activities. We worked on the following three wood-
feeding termite species abundant in French Guiana lowland tropical rainforests: Cop-
totermes testaceus (Linnaeus, 1758), Heterotermes tenuis (Hagen, 1858) (both Rhinoter-
mitidae), and Nasutitermes octopilis Banks, 1918 (Termitidae: Nasutitermitinae). Using
this data set, we determined the influence of termites on the surrounding bacterial
communities and also identified both bacterial lineages with reduced abundance in the
presence of termites and bacterial lineages externally associated with termites.

RESULTS

Bacterial diversity. We analyzed a total of 258 samples of termite bodies, galleries,
and wood controls in foraging areas of 10 colonies of C. testaceus and N. octopilis and
11 colonies of H. tenuis. After quality filtering and removal of chimeras, we obtained an
average of 20,685 sequences of the V4 region of the bacterial 165 rRNA gene for each
of the 258 samples. 165 rRNA gene sequences were clustered into 4,864 operational
taxonomic units (OTUs) (3% sequence dissimilarity) represented by at least five se-
quences (see Table S1 in the supplemental material). The three diversity indices, Chao1,
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Evenness, and Shannon-Wiener, were significantly higher for samples of termite gal-
leries than for wood controls and termite bodies (Fig. 1). Chaol indicated that termite
bodies hosted the poorest bacterial communities (P < 0.05), with no significant differ-
ences among termite species (Fig. 1). Evenness and Shannon-Wiener diversity indices
were the smallest for H. tenuis bodies, followed by C. testaceus bodies, and N. octopilis
bodies (P < 0.05) (Fig. 1).

Comparison of bacterial communities in termite bodies, termite galleries, and
termite-free wood controls. We found no significant difference among wood controls
associated with C. testaceus, H. tenuis, and N. octopilis (Table 1) and, therefore, pooled
wood controls together to investigate phylum composition. The samples of termite
galleries and wood controls had similar bacterial community composition at the
phylum level (Fig. 2). The dominant phylum was Proteobacteria, which on average made
up over 40% of the bacterial reads of termite galleries and wood controls. Acidobacteria
and Actinobacteria were also abundant and made up, on average, a minimum of 10%
of the bacterial sequences of termite galleries and wood controls, In comparison to
termite galleries and wood controls, Proteobacteria, Acidobacteria, and Actinobacteria
were rare in termite bodies. Instead, the bacterial communities of C. testaceus and H.
tenuis bodies were heavily dominated by Bacteroidetes, which, on average, made up
more than 75% of the bacterial reads. BLAST searches assigned most reads of Bacte-
roidetes in C. testaceus bodies to “Candidatus Azobacteroides” and "Candidatus Arman-
tifilum,” while the Bacteroidetes reads of H. tenuis bodies mostly belonged to "Candi-
datus Azobacteroides." The bacterial communities of N. octopilis bodies were
dominated by Spirochaetes and Fibrobacteres, which, on average, made up 59.6% and
18.3% of the bacterial reads, respectively. BLAST searches showed that the 165 rRNA
gene sequences of Spirochaetes and Fibrobacteres in N. octopilis bodies were mostly
assigned to Treponema and putatively to Fibrobacter, respectively. The permutational
multivariate analysis of variance (PERMANOVA) yielded significant differences among
groups (F = 22.33; P < 10-9), including significant differences among termite species
(F=14.773; r? = 0,075; P < 10 %) and among sample types (body, gallery, and control
wood) (F = 34,636; r* = 0,175; P< 10 *), Figure 3 shows the nonmetric multidimen-
sional scaling (NMDS) plot calculated for all samples and presents the bacterial com-
munities of C. testaceus, H. tenuis, and N. octopilis bodies as three disjunct clusters.
Termite galleries, as well as wood controls, also clustered by termite species, although
these clusters were more diffuse and largely overlapped. Pairwise PERMANOVA indi-
cated that the bacterial communities associated with C. testaceus, H. tenuis, and N,
octopilis bodies significantly differed from each other (Table 1). Similarly, the bacterial
communities of termite galleries significantly differed among termite species and
significantly differed from the corresponding wood controls in the case of C. testaceus
and N. octopilis but not in the case of H. tenuis, for which a Bonferroni correction made
the comparison only marginally significant (Table 1). Bacterial communities from bodies
of C. testaceus, H. tenuis, and N. octopilis significantly differed from communities
colonizing termite galleries and wood controls in all cases (Table 1).

Identification of termite-associated bacteria. We carried out redundancy analysis
(RDA) and considered OTUs from the 0.25th and 99.75th percentiles (Fig. 4). With this
approach, we identified 97 bacterial OTUs associated with termites, or partly excluded
by termites, of which many were independently identified for two or three of the
studied termite species (see Table S2 in the supplemental material). Of the 47 bacterial
OTUs detected to have nonrandom associations with C. testaceus (Fig. 4A), 14 OTUs
were body-associated bacteria and made up 68.1% of the bacterial community of C.
testaceus bodies; 18 OTUs were enriched in termite galleries, making up 28.3% of the
bacterial 165 rRNA gene sequences in termite galleries and 14.2% of the bacterial 165
rRNA gene sequences in wood controls; and 15 OTUs were partly excluded by C
testaceus, making up 24.8% and 3.2% of the bacterial 165 rRNA gene sequences in
wood controls and termite galleries, respectively. H. tenuis and N. octopilis provided
similar results. Of the 48 bacterial OTUs considered for H. tenuis (Fig. 4B), 15 OTUs were
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TABLE 1 Results of the pairwise PERMANOVA analysis

Compared groups F value r? value P value Adjusted P value
C. testaceus bodies vs H. tenuis bodies 46411 0449 <10 <10
C. testaceus bodies vs N. octopilis bodies 88.668 0626 <103 <103
H. tenuis bodies vs N, octopilis bodies 50945 0476 <105 <1073

C. testaceus galleries vs M. tenuis galleries 2,256 0.038 <10 0,003
C. testaceus galleries vs N. octopilis galleries  2.425 0.044 <1075 <107
H. tenuis galleries vs N. octopilis galleries 1.901 0.033 <107 0.022
C. testaceus galleries vs C. testaceus controls 2929 0.052 <10 <10

H. tenuis galleries vs H. tenuwis controls 2.057 0.033 0.002 007

N. octopilis galleries vs N. octopilis controls 3.443 0.062 <101 <103
C. testaceus bodies vs C, testaceus galleries 34076 0387 <105 <103
H. tenuis bodies vs H. tenuis galleries 22625 0274 <1075 <10*

N. octopilis bodies vs N. octopilis galleries 25984 0333 <10°% <107
C. testaceus bodies vs C. testaceus controls 27.334 0336 <10* <10-*

H. tenuis bodies vs M. tenuis controls 19.262 0243 <103 <10-*
N. octopilis bodies vs N. octopilis controls 25762 0331 <105 <103
C. restaceus controls vs H. tenuis controls 1.036 0.018 0.365 1

C. testaceus controls vs N. octopilis controls 1,631 0.03 0.011 0.409

H. tenuis controls vs N. octopilis controls 1.537 0.027 0.025 0.891

body-associated bacteria and made up 80.8% of 165 rRNA gene sequences of H. tenuis
bodies; 17 OTUs were gallery-associated bacteria, making up 27.7% of the bacterial
community of termite galleries and 11.3% of the bacterial community of wood controls;
and 16 OTUs were partly excluded by H. tenuis, making up 24.7% and 6.7% of the 165
rRNA gene sequences of the control and gallery samples, respectively. Lastly, of the 45
bacterial OTUs considered for N. octopilis (Fig. 4C), 15 were body-associated bacteria
and made up 60.3% of the termite bacterial community, 15 OTUs were gallery-
associated bacteria and made up 25.6% of the bacterial community of N. octopilis
galleries and 9.2% of the bacterial community of wood controls, and 15 OTUs were
partly excluded by N. octopilis and made up 34.9% of the bacterial 165 rRNA gene
sequences of wood control samples and 1.4% of the bacterial 165 rRNA gene sequences
of N. octopilis galleries (see Table S2).

DISCUSSION

In this study, we sequenced the bacterial communities associated with three termite
species, C. testaceus, H. tenuis, and N. octopilis. We demonstrated that termite galleries
host the most species-diverse bacterial communities, while termite bodies compara-
tively host species-poor bacterial communities. We found that the composition of
bacterial communities differs among termite bodies, termite galleries, and wood con-
trols devoid of visible termite activities in a species-specific manner, We also identified
97 abundant bacterial OTUs that are predominantly associated with termite bodies
(referred to as body-associated bacteria), termite galleries (referred to as gallery-
associated bacteria), or control wood samples (referred to as gallery-depleted bacteria).
Consequently, our results show that termites not only shape the bacterial communities
inside their gut (6, 7, 40) but also those in their environment.

The bacterial diversity indices calculated for the baodies of C. testaceus and H. tenuis
closely match those previously calculated for the related species Coptotermes niger (6).
Similarly, the bacterial diversity indices of Nasutitermes octopilis bodies closely match
those of Nasutitermes corniger and Nasutitermes takasagoensis (6). These results indicate
that our estimations of bacterial diversity are robust and reproducible. In addition,
these results also suggest that the phylogenetic relationships among termites are
predictive of the diversity of their bacterial communities.

FIG 1 Legend (Continued)

Heterotermes tenwis, and Nasutitermes octopilis and with wood controls, Boxes indicate the first and third
quartiles. The horizontal lines crossing boxes are medians. Whiskers indicate the 5th and 95th percentiles,
and black dots are outhiers. Groups that do not share at least one capital letter are significantly different
{Tukey honestly significant difference [HSD] post hoc test, P < 0.05).
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FIG 2 Relative abundance of bacterial phyla associated with the bodies and galleries of the termites
Coptotermes testaceus, Heterotermes tenuis, and Nasutitermes octopilis and with wood controls.

The bacterial communities associated with termite galleries are more diverse than
those found in termite bodies. Most OTUs found in termite bodies correspond to gut
bacterial lineages identified in previous studies (5-7, 40), indicating that the majority of
bacterial OTUs associated with termite bodies are gut specialists. The termite gut is a
highly specialized habitat, with extreme physicochemical properties, in some species
having a pH of =12 (41), and is largely populated by bacteria found nowhere else (3-5).
Although termite gut hosts among the most diverse communities of microbes found in
insects (42), the presence of a strong environmental filtering, preventing the coloniza-
tion of most bacterial species, might explain the low bacterial diversity observed in
termite guts when compared with that of termite galleries and wood controls.

We independently identified the 14 to 15 dominant body-associated bacterial OTUs
for each of the three termite species (Fig. 4; see also Table S2 in the supplemental
material). These OTUs made up 60.3 to 80.8% of the total bacterial 165 rRNA gene
sequences and were, in most cases, known to be associated with termite guts. For
example, the dominant gut symbiotic OTUs in C. testaceus were classified as “Candi-
datus Azobacteroides” and “Candidatus Armantifilum,” two bacterial lineages known to
be associated with termite gut protists (43, 44), “Candidatus Azobacteroides” was also
the dominant gut symbiotic OTU in H. tenuis. In N. octopilis, which belongs to Termiti-
dae, the only termite lineage that lost their gut protists (4), the dominant gut symbiotic
OTUs were assigned to the Spirochaeta (Spirochaetes) and Fibrobacter (Fibrobacteres)
genera. BLAST searches showed that our 165 rRNA gene sequences from these two
genera corresponded to Treponema and the Fibrobacteres sequences previously found
in the gut of other species of Nasutitermes (45, 46), Therefore, while our taxonomic
identifications were imprecise in some cases, they matched bacterial taxa known to
occur in termite guts and highlight the overwhelming dominance of a few bacterial
groups.

We found that the bacterial communities associated with termite galleries are
specific to termite species and differ from those of termite bodies and wood controls,
These results concur with previous studies that found that bacterial communities
associated with nests differ from those of surrounding soil and wood samples (7, 34, 37,
38). Exclusion experiments have also shown that termites influence the bacterial
communities in wood pieces (33). Importantly, our results show that the differences
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FIG 3 Nonmetric multidimensional scaling of bacterial communities associated with the bodies and galleries of the termites

Coptotermes testaceus, Heterotermes tenuis, and Nasutitermes octopilis and with wood controls.

between galleries of different termite species and wood control samples are subtler
than those found for gut bacterial communities, suggesting that the gallery-associated
bacteria are loosely associated with termites. This raises the possibility that termites
established a symbiotic relationship with the bacterial communities associated with
their galleries in the absence of strict coevolution between the two partners as is
possibly common for many host-symbiont associations (47), including external symbi-
onts of termites (21, 22).

The identification of the main gallery-associated bacterial OTUs confirmed their
loose association with termites. We independently identified 15 to 18 bacterial OTUs
classified as gallery-associated bacteria for each of the three termite species (Fig. 4;
Table $2). These OTUs made up 256 to 28.3% of the 165 rRNA gene sequences of
termite galleries. However, in contrast to body-associated bacterial OTUs, many gallery-
associated bacterial OTUs were shared among termite species, and out of 28 OTUs
identified as gallery-associated bacteria, 8 were shared by all three termite species, and
6 were shared by two termite species. In addition, gallery-associated bacterial OTUs
were also present in wood controls, albeit in significantly lower abundances (only 9.2
to 14.3% of the 165 rRNA gene sequences). These results suggest that termite gallery-
associated bacteria are recruited from the surrounding environment as has been shown
for Coptotermes formosanus and its externally associated symbiotic Streptomyces bac-
teria (22). Lastly, we also found body-associated bacterial OTUs in termite galleries that
probably originated from DNA of dead or inactive bacterial cells. One such OTU is
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FIG 4 Partial redundancy analysis of bacterial communities associated with termite bodies and galleries
and with wood controls, Coptotermes testaceus (A), Meterotermes tenwis (B), and Nasutitermes octopilis (C).
Taxonomic identification of OTUs is provided in Table S1 in the supplemental material,
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“Candidatus Azobacteroides,” a bacterium known to be the intracellular symbiont of
termite gut protists (43) and therefore clearly unable to live outside of the termite gut.

The gallery-associated bacterial OTUs identified in this study mostly belonged to
Proteobacteria and Actinobacteria, which are known to dominate the nest bacterial
communities of several Termitidae species (48). A total of 18 OTUs belonged to
Proteobacteria, including seven OTUs assigned to Rhizobiales, five of which were
identified as gallery-associated bacteria for each of the three termite species investi-
gated in this study. Many Rhizobiales are able to fix atmospheric nitrogen and have
developed symbiotic associations with plant roots {49). Whether they represent a
source of nitrogen for termites, supplementing the low levels of nitrogen found in the
wood they consume, remains to be determined. We also identified four gallery-
associated bacterial OTUs belonging to Actinobacteria, but none of them belonged to
Streptomyces. Therefore, unlike those previously found for C. formosanus (21, 22),
Streptomyces spp. do not appear to be important gallery-associated bacteria of C,
testaceus, H. tenuis, or N, octopilis, Several factors might be at the origin of the lower
prevalence of Streptomyces in our study compared to that found in C. formosanus (21,
22), including the differences among the studied ecosystems (i.e,, tropical rainforest of
French Guiana versus urban parks in Florida) and the sampling approach, based on
visually located wood items colonized by termites (French Guiana) and carton material
sampled in bucket traps (Florida). However, because the low prevalence of Streptomy-
ces was shared among the three studied termite species, it is unlikely for termite
phylogenetic relationships to be at the origin of this pattern. Further studies are
required to decipher the exact role of gallery-associated bacteria.

Several bacterial OTUs were partly excluded from termite galleries. The 15 or 16
gallery-depleted bacterial OTUs that we identified for each termite species made up
24.7 to 34.9% of the 165 rRNA gene sequences in control wood samples but only 1.4
to 6.7% of the 165 rRNA gene sequences in termite galleries. These results are indicative
of the ability of termites to reduce the growth of some microbes in their direct
environment, possibly through the production of antimicrobial and antifungal com-
pounds, as has been shown in several termite species (21, 29). External symbionts of
termites are also known to produce antimicrobial compounds (20, 21), and it is possible
that some of the gallery-associated bacteria that we identified have this function.
Finally, the microclimatic conditions of termite galleries might also play a role in
shaping bacterial communities and reduce the abundance of gallery-depleted bacteria.

As is the case for gallery-associated bacteria, a large fraction of the 27 gallery-
depleted bacterial OTUs were identified to have reduced abundance in the galleries of
more than one termite species, including five gallery-depleted bacterial OTUs with
reduced abundance in the galleries of the three studied termite species and nine
gallery-depleted bacterial OTUs with reduced abundance in the galleries of two of the
three studied termite species. Many of the gallery-depleted bacterial OTUs belong to
ubiquitous genera, often found in soil and wood, but that are also known to include
animal pathogens, at least on a facultative basis. This includes, among others, OTUs
belonging to the genera Bacillus, Clostridium, Corynebacterium, and Staphylococcus.
Whether they are excluded because they represent potential threats to termite colonies
remains to be determined. Fungus-growing termites actively exclude fungal Pseudoxy-
laria pathogens from their Termitomyces fungus garden (20, 50). Alternatively, modifi-
cation of the physical and chemical properties of the direct environment of termites,
including that of their galleries (28), potentially affects bacterial community composi-
tion by promoting the growth of some bacteria at the cost of others. Additional
investigations are required to determine how termites affect their neighboring bacterial
communities. Our results show that as termites host specific microbial communities
inside their guts, specific microbial communities grow in their galleries.

MATERIALS AND METHODS

Study site and sampling. The fieldwork took place in November 2014 in the Nouragues Nature
Reserve (French Guiana; 04°05'N; 52°41°'W). All samples were collected within 50 m of the network of
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paths of the Nouragues Research Station. The full sampling area was about 100 ha. We collected samples
of the following three species: Coptotermes testaceus, Heterotermes tenuis, and Nasutitermes octopilis.
Upon encountering one of these species, we collected one series of samples, all collected in the same
wood log, consisting of three termite samples {between 10 and 15 workers each), together with three
samples of their feeding substrates {approximately 1-<m? piece of wood containing thin galleries) and
three control samples (approximately 1cm® of wood at least 10cm away from the closest termite
galleries), Sterile vials and flame-sterilized forceps were used for the sampling, Sample replicates were
distant by more than 1 m, Occasionally, for small logs, only two samples of each type were collected, All
samples were preserved in RNAlater, stored at —20°C within 8 h following collection, and shipped to
Prague where they were stored at —80°C until DNA extraction. In total, we sampled wood with foraging
parties belonging to 10 colonies of C testaceus and N, octopilis and 11 colonies of M, tenuis,

DNA extraction and PCR amplification. Total DNA was extracted using the Macherey-Nagel
NucleoSpin soil kit. For each termite sample, we homogenized whole individuals, including guts
{hereafter termed “bodies”), of up 1o 10 workers using two sterile steel beads (3-mm diameter) and a
Mixer Mill MM 400 set on 30 swings per second for 2 min. We carried out extractions as per the
manufacturer's protocol, except for the lysis step that was shortened to 2 min of vortexing. Wood
samples were placed in a sterile 2-ml tube, frozen in liquid nitrogen, mechanically crushed with five
sterile steel beads for 1 min at 30 swings per second, and grinded with a Mixer Mill Retsch MM 400 for
10 min. Following the first grinding step, we added 550 ul of SL2 extraction buffer to the homogenized
material and repeated the grinding with the same settings. The lysis by vortexing was extended to
10 min, and precipitation of contaminants was carried out with 100 ul of SL3 buffer. Lysate was filtered
with 650 pl of supernatant. Silica membrane was dried for 3 min in a centrifuge. Finally, we added 50 .l
of SE buffer to the silica membrane and centrifuged for 45 s to elute the DNA. Each sample was handled
with flame-sterilized forceps.

PCRs were performed using the Thermo Scientific DyNAzyme || DNA polymerase kit. We used the
universal primers 515F and 806R targeting the V4 region of the 165 rRNA gene (51), combined with an
original combination of index reads. The PCRs contained 2.5 ul of 10x buffer for DyNAzyme I DNA
polymerase, 0.75 ul of bovine serum albumin (BSA) {20 mg/ml), 1 ul of each primer (0.01 mM), 0.5 ul of
PCR nucleotide mix (10 mM each), 0.75 ul of polymerase (2 U/ul DyNAzyme Il DNA polymerase), and 1 ul
of template DNA. DNA concentration ranged between 10.3 and 414 ng/ul. PCRs were performed using
an Eppendorf Mastercycler (Eppendorf AG, Hamburg, Germany) nexus cycler, with the following settings:
initial denaturation at 94°C for 3 min; 30 cycles of 94°C for 45 5, 50°C for 1 min, 72°C for 45 5; and a final
extension step at 72°C for 10 min, We carried out three independent PCR amplifications for each sample,
combined the three replicates, and cleaned them using the MinElute PCR purification kit (Qiagen GmbH,
Hilden, Germany). Pooled PCR products were mixed in equimolar concentration and paired-end se-
quenced with an lllumina MiSeq sequencer (lllumina Inc, USA) using the V2 chemistry to produce 250-bp
paired-end reads, Sequence data are available on MG-RAST.

Data filtering. Raw paired-end reads were joined using fastg-join (52) and demultiplexed, filtered,
and trimmed using SEED v2.1 (53). Sequences with a mean Phred quality score of <30, as well as
sequences with mismatches in barcodes or ambiguous bases, were discarded. We also discarded all
bacterial sequences shorter than 200 bp or longer than 350 bp. A total of 5,863,706 bacterial sequences
were obtained after initial quality filtering.

OTU clustering and classification. Sequences were clustered into operational taxonomic units
{OTUs) (3% sequence dissimilarity) using UPARSE implemented in USEARCH v8.1.1861 (54). Chimeric
sequences were identified during clustering to OTUs using the UPARSE algorithm, and a total of 526,949
sequences were excluded from downstream analyses. To reduce the influence of contamination and to
minimize the effect of barcode hopping (55), all OTUs with fewer than five reads were discarded. We also
used previous lllumina run data to estimate the number of reads that potentially hopped among samples
for all OTUs and removed those reads.

The most abundant sequence from each OTU was used as a representative sequence for taxonomic
classification. Representative sequences were classified with the RDP classifier from the RDPTools
software v2.0.2 using the 165 rRNA gene reference database (56). Classification was verified using RDP
release 11 update 5, accessed on 30 September 2016 (57), which provided the closest BLAST hit for each
OTU. We used rmDB v5.4 (58) to estimate the relative abundance of each OTU, considering the variable
number of 165 rRNA gene copies per bacterial genome as explained in Vétrovsky and Baldrian (59).

Diversity of bacterial communities in termite bodies, termite galleries, and wood controls. We
carried out all statistical analyses using a subsample of 3,000 sequences per sample, We used the Chaot
{60), Evenness (61), and Shannon-Wiener (62) indices to characterize the bacterial diversity of termite
bodies, termite galleries, and wood controls. The values of the three diversity indices were estimated
using SEED v2.1 (53) and visualized using the R package ggplot2 (63). To test the null hypothesis of no
effect of sample type and species on diversity indices, linear mixed effect models were fitted using the
function Ime{) implemented in the R package nime (64), A factor with seven levels, created by combining
termite species and sample types, was fitted as the fixed part of the model, and a random structure of
the form ~Ijtriplet/log was included in each model to account for the fact that measurements were
grouped in triplets, which, in turn, were nested in logs. Pairwise comparisons among groups were
performed with Tukey post hoc tests using the function Ismeans() of the R package lsmeans (65).

Comparison of bacterial communities in termite bodies, termite galleries, and wood controls.
We visualized the relative abundance of bacterial phyla for each sample type (body, gallery, and wood
contrel) using the R package ggplor2 (63). To test whether bacterial community composition differs
among termite bodies, termite galleries, and wood controls, we performed PERMANOVA (66) using the
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adonis function from the R package vegan (67). The response matrix was calculated using the Euclidian
distance on Hellinger-transformed bacterial composition, which resulted in a Hellinger distance matrix,
commonly used as a measure of resemblance (68). We used sample type (body, gallery, and wood
control) as the explanatory variable. Since samples were collected in series of dependent triplets (or
sometimes doublets) coming from a single log, with each triplet comprising three dependent samples
(one termite body sample, one gallery sample, and one wood control sample) collected near to each
other, the permutations were constrained to occur among samples of the same triplets, which were used
as a blocking factor. As such, we used the formula “termite-species*sample-type,” and the strata was set
to “dataStriplets.” We compared termite species and sample types (body, gallery, or wood control] using
pairwise PERMANOVA implemented in the pairwiseAdonis R package (69). We used Bonferroni correc-
tions to adjust P values. Significance was assessed using 99,999 permutations.

We visualized the data set using nonmetric multidimensional scaling (NMDS) implemented with the
metaMDS function of the R package vegan (67). NMDS analysis was carried out using community data
regressed against logs and triplets, This procedure removed the effect of spatial variability inherent to the
experimental design.

Identification of termite-associated bacteria. To identify the bacterial OTUs contributing to the
separation between termite bodies, termite galleries, and wood controls, we used partial redundancy
analysis {partial RDA) (61). Each termite species was considered separately. For each RDA, we used
Hellinger-transformed bacterial OTU composition as a response matrix and sample type as fixed
explanatory factor. The effects of triplets and wood logs were removed by using logs and triplets as
conditioning factors in the partial RDA (see reference 61). We focused our efforts on the identification of
the main bacterial OTUs and considered those belonging to the 0.25th and 99.75th percentiles. Identified
OTUs were classified in one of the following three categories: body-associated bacteria (OTUs predom-
inantly found in termite guts), gallery-associated bacteria (OTUs predominantly found in termite galler-
ies), and gallery-depleted bacteria (OTUs predominantly found in control wooed samples). Note that
generalist OTUs, showing a random distribution pattern, with no preference for termite bodies, termite
galleries, or control wood samples, are not considered further.

Data availability. The sequence data generated in this study are deposited in MG-RAST under
accession number mgm4904347.3.
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Discussion

1. Evolution of termites

The complete resolving of termite phylogeny with ultimate resolution and
dating would allow us to reconstruct the evolution of particular morphological,
ecological or behavioural traits. This would be very useful for identification of
particular evolutionary drivers, like historical climate changes, continents drift
or even human activity. Such knowledge would also help us to better foreseen
the impacts of ongoing climate and land-use changes. Therefore, two studies
presented within this thesis focused on termite phylogeny.

Sequencing of mitochondrial genomes is currently a very effective way
how to reconstruct termite evolutionary history (Bourguignon et al/. 2015,
2016a, 2017). As the fully resolved and detailed phylogeny and related
classification of dry-wood termites (Kalotermitidae) is still not available, here |
present the full mitochondrial genome of Cryptotermes havilandi (Sjostedt,
1900), native to Congo basin, which became one of the major invasive timber
pests across the globe (Evans et a/. 2013; Su & Scheffrahn 2000). Many timber
pests from family Kalotermitidae are actually imported invasive species in new
environments (Evans et al/. 2013), the misidentification with original dry-wood
termites could lead to inappropriate treatment of infested structures and
therefore to loss of money invested in wood protection. Deeper knowledge of
evolutionary history and exact taxonomy of Kalotermitidae is crucial to applied
research for its effort to invent effective methods of wood goods and
structures protection. The mitogenome of C. havilandiis an important part of
ongoing effort to resolve Kalotermitidae phylogeny and taxonomy, and at the
same time it extends the mitochondrial genome database for quick and precise
bar-code identification. In the future, the pest control will likely use simple
methods of molecular bar-coding to properly identify the exact pest species
and apply appropriate treatment against it.

Contrary to dry-wood termites, in which the proper identification is still
relatively quickly possible using the soldier caste characteristics, most of the
species of soil-feeding Apicotermitinae lack soldier caste and therefore the
identification is performed according to the structure of digestive tract, which

is by far more complicated and time consuming compared to molecular bar-
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coding (Donovan et al/. 2000; Noirot 2001; Sands 1972, 1998). The study of
molecular phylogeny and historical biogeography of Apicotermitinae used an
unprecedented set of mitochondrial genomes representing all the main clades,
but still not covering the whole undiscovered biodiversity of the group, not even
on the generic level.

In agreement with the previous phylogenetical studies of termites
(Bourguignon et al. 2015; Bucek et al. 2019; Inward et a/. 2007), we found the
Apicotermitinae as monophyletic clade within Termitidae, which originated in
Africa. We recognized 6 monophyletic clades among Apicotermitinae:

| - Apicotermes-group sensu stricto

Il - Jugositermes-group

lll - Astalotermes-group

IV — Speculitermes-group

V - Adalphrotermes-group

VI - Anoplotermes-group

Previously recognized Apicotermes-group comprising all soldiered species
(Apicotermes-group, Jugositermes-group, and Speculitermes-group) is
paraphyletic, as it was suggested already by others (Bourguignon et al. 2015;
Bucek et al. 2019), but the basal lineages are closely matching the description
made by Noirot (2001) based on anatomy of hindgut. Also, the
Anoplotermes-groups sensu /ato is paraphyletic and comprises the remaining
three groups. Interestingly, the Astalotermes-group comprising of all African
Apicotermitinae soldierless taxa (except Adajphrotermes-group) is truly a
monophyletic clade, although the cause of soldier caste loss is so far not
understood. We can anyway show the evolutionary trajectory on the Asian
Speculitermes-group. Genera /ndotermes and Euhamitermes are soldiered
termites and a sister group to the monophyletic Adajphrotermes-group +
Anoplotermes-group, which are completely soldierless. While /ndotermes
reveals extremely low proportion of soldiers (roughly 1 to 1000 workers), in
Euhamitermes, a soldier was collected by our team in 3 samples out of 40, and

several species of the genus are considered soldierless.

There are probably two main reasons for the loss of soldiers in soil feeding

termites: (i) soil is nutritionally poor source and therefore soil-feeding termites
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do not invest their energy into production of soldiers, moreover if (ii) soil is not
a limited and delineated source compared to wood piece (branch or trunk) and
therefore there is no need to protect it. This is probably a general pattern of
ecological impact on soil-feeding termites evolution, as it may be observed in
other termite groups, where wood-feeding and soil-feeding species occur
(Ahmad 1976; Deligne et al. 1981; Miller 1984; Sands 1972).

Apicotermitinae clearly evolved in Africa and we can recognize two
colonization events from there. The first was the Speculitermes-group
migrating to Asia via land bridges, the second was the Anoplotermes-group
colonizing South America probably by rafting, what is the sole case of oversea
migration among all soil-feeding termites, nevertheless very successful as they
dominate the soil fauna of Amazonian rain forest (Martius 1997). The absence
of soldiered termites in South America is a fact leading to the conclusion, that
the loss of soldier caste in Apicotermitinae took place in Africa, however, it still
does not answer the question, how many times it actually happened? Thanks
to the phylogenetic position of Speculitermes-group, we might come up with a
conclusion that the loss of soldier caste happened probably twice
independently.

2. Evolution of termite microbial associations

As explained in the introduction of my thesis, termites are fully dependent
on the symbiotic relationships with microbes and therefore their evolution is
tightly intertwined with evolution of these symbionts. Three out of five studies
presented in my thesis deals with termite relationships with microbes of both,

termite gut and termite outer environment.

Although the research on gut microbiome of termites has been going over
a century (Brauman et al 2000; Breznak 2000; Brune 1998; Buscalioni &
Comes 1910; Cleveland 1924, 1925; Comes 1910; Imms 1919; Koidzumi
1921; Slaytor 2000), the gained knowledge is still answering rather the
question “What is there?”, than the guestion “What is it doing?”. Thanks to
many studies (Brune & Dietrich 2015; Kohler et al. 2012; Mikaelyan et al. 2014;
Ohkuma & Brune 2011; Tokuda et a/ 2001) we can exactly say, what
microbiota is inhabiting particular part of the hindgut, but we are not fully able
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to assign the particular functions to a specific clade, as the majority of the
microbial community is not possible to cultivate and study separately. In
general, we know what is going on in termite gut thanks to microbial community
(Brune 2014; Brune & Ohkuma 2011; Ohkuma 2003; Slaytor 2000), but we

usually do not know, who is responsible for a given function, in particular.

However, modern culture-independent methods like metagenome-
assembled genomes (MAGSs) or single-amplified genomes (SAGs) allow us to
study even uncultivated organisms in detail (Albertsen et a/. 2013; Woyke et al.
2017). Thanks to reconstructed genomes of particular members of the
microbial community it can be suggested which metabolic pathways can
eventually be expressed by the given microbe. In a study of termite
metagenome-assembled genomes we focused mainly on reconstruction of

MAGs from different hindgut compartments of 8 termite hosts.

In total, 589 MAGs were successfully reconstructed. Although we succeed
to reconstruct majority of prokaryotic phyla known from 16S metabarcoding
studies (K6hler et a/ 2012; Utami et al. 2018; Wertz et al. 2012), some like
Cyanobacteria or Verrucomicrobia were not reconstructed. This might be due
the high cleaning threshold of reconstructed MAGs.

38 of reconstructed MAGSs belong to domain Archaea of which 15 belong
to phylum Bathyarchaeota, which are associated in termite-specific cluster
among the whole phylum. The remaining 23 MAGs belong to phylum
Euryarchaeota, which is known for methanogenesis in arthropod-associated
microbial communities (Brune 2019; Schloss et a/. 2016). Our MAGs of Archaea
from termite guts represent a novel and an important backbone knowledge for

further metabolic studies of microbial communities in termite gut.

The most of reconstructed MAGs belong to the bacterial phylum
Firmicutes, which also appeared to be relatively the most abundant one. We
confirmed, that the recent studies based on 16S sequencing probably did not
revealed the whole diversity of the phylum (Schulz et a/. 2017) and we brought
evidence of new Firmicutes lineages including the genomes of termite-specific
lineages previously detected by others (Bourguignon et al/. 2018). We also
confirmed, that Spirochaetes are major player in wood degradation of “higher”
termite gust, as it was the relatively most abundant phyla among wood-

feeders. In total, the presented set of 589 MAGs is currently the largest
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genomic resource for subsequent studies of functional importance of arthropod

gut microbiomes.

Apart of internal symbionts of termites, | focused also on possible
external symbionts, excluding fungus growing termites, as mentioned
previously (Bignell 2000; Garnier-Sillam et al. 1989; Rouland-Lefévre 2000).
There are several studies describing the effect of termites to environmental
microbial community (Chouvenc et a/. 2013, 2018; Fall et a/ 2004, 2007;
Jouquet et al 2005, 2011), but no study focused directly on external symbiotic
relationships, except for the notoriously-known fungus-growing termites
Macrotermitinae (Termitidae). Our studies on ectosymbiosis with
environmental bacteria and fungi are based on novel sampling method, where
we collected termites, their actual food source and a control from the same
food source, but devoid of signs of termite activity. Sequencing the microbial
communities from such samples resulted in ITS2 gene and 16S gene datasets
allowing us to compare the presence and relative abundances of particular

OTUs amongst the samples.

Historically, the case of Macrotermitinae - 7ermitomyces symbiosis is the
best-known and well-studied example of ectosymbiosis (relationship taking
place out from the body), however, there also are sparse mentions of termites
depending on fungi to aid partial decomposition of their food (Kirker et a/. 2012;
Rouland-Lefévre 2000), which clearly deserved a further investigation. During
their evolution, termites might have established facultative relationships with
many environmental microbes for two main reasons. (a) Termites may take the
advantage of partially decomposed wood; (b) Termites might avoid toxic
secondary metabolites of plant tissues leaving its degradation upon the
symbiotic partner. Such facultative relationship with environmental fungi
helping termites to digest and/or detoxify the wood may even explain the
question of termite global disproportional abundances across tropics
(Bourguignon et al. 2017). | therefore decided to explore this understudied field
and checked the pattern of co-occurrence between termites and environmental

fungi and bacteria.

The fungal OTUs from the termite galleries overlapped with those from
intact wood, but they were still significantly different. Moreover, both

communities significantly differed from those of termite bodies. Although we
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confirmed that the mycobiome of termite galleries differ from that of intact
wood, the results suggested that both are dependent rather on wood species
than on termite species, dwelling the galleries. However, the presence of
termites in the wood alters the fungal communities and further investigation is
needed as the phenomenon is documented also from our termite breeds, where
abandoned wood is quickly covered by unspecific moulds. Interestingly, our
experiments showed that there is higher fungal OTU diversity extracted from
termite bodies, than from their galleries or intact wood. However, the
mycobiota of termites in our experiments actually originated from two different
environments: from the intestines and from the cuticular surface including
mouthparts, which we were not able to recognize, as the termites were
homogenized as whole. Nevertheless, we recognized specific termite gut
mycobiome and debated the service provided by the gut yeasts, in particular.
As we found out, the termite mycobiome was rather stable across termite
species, which suggest rather free association dependency on environmental
fungal community. This is in contrast to bacterial communities of the gut which

are transferred vertically and thus species specific.

As | showed previously, although the bacterial community of the termite
hindgut was studied intensively over past few decades, the knowledge of
external bacterial community remains unexplored, including the case of
bacterial farmers Sphaerotermitinae (Termitidae). However, it doesn't mean
that there is a lack of any knowledge at all (Chouvenc et a/ 2013, 2018). We
know that termites live in a warm humid environment highly beneficial for
microbial pathogens, but termites do not -considerably suffer by
entomopathogenic fungi or bacteria, at all. Moreover, huge amounts of money
were spent in pest control research directed to use entomopathogens against
termites without any sign of success (Chouvenc et a/. 2011; Rosengaus et al.
2011). The reason is that termites keep stable bacterial community within their
nest and galleries, which probably help them to suppress pathogens, without
any known mechanism behind (Shinzato et a/ 2005; Visser et al. 2012). The
use of antimicrobial bacteria might help them considerably. At the same time,
the bacteria can also help them to decompose or detoxify the feeding

substrate.
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In our research for bacterial ectosymbionts, we used the same samples
as in the fungal study. We found out, that there are not only termite-specific
gut bacterial communities, but also termite-specific bacterial communities in
the galleries, both differing from those of intact wood. Interestingly, the
bacterial communities of termite galleries are more diverse, than those of
termite guts in both, the OTU diversity and the higher taxonomic level diversity.
Moreover, the differences between galleries of different termite species and
wood control samples are subtler than those found for gut bacterial
communities of different termite species, suggesting that the
gallery-associated bacteria are rather loosely associated with termites. This
raises the possibility that termites established a mutually beneficial
relationships with the bacterial communities already associated with their
galleries in the absence of strict coevolution between the two partners as is
possibly common for many host-symbiont associations (Moran & Sloan 2015),
including external symbionts of termites (Chouvenc et a/. 2013, 2018).

In both studies searching for ectosymbiotic relationships between
termites and microbes very important fact was confirmed. Termites are
specifically manipulating with the microbial communities of their galleries, as
we found out that particular members of the microbial communities were
actively suppressed while others were significantly supported by termite
activity. Although this is not a proof of symbiosis, it shows that termites
vigorously shape the bacterial community of their environment and therefore
the efforts for new entomopathogenic microbes in pest biocontrol research are
useless, as showed by Chouvenc et a/. (2011).
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Conclusions

My thesis focus on termite ecology and evolutionary history. The goals
are mainly to bring the up-to-date knowledge on the progress in termite
phylogeny and also the latest progress in termite ecology, which are two parts
of the same story. We already know enough, to be sure that there is still much
more to be discovered in the “World of Termites”. We need to learn how to
benefit from the knowledge how termites mitigate the impacts of the ongoing
climate change, but also how to use their extraordinary ability to efficiently
process any organic matter. Understanding their ecosystem services might help
us to develop sustainable agriculture practices in the tropical countries and
consequently protect the natural heritage, which is getting under unbearable

pressure as we all witness.

Obviously, termites can alter their environment in many ways and on many
levels. Thanks to molecular based phylogenetic studies we may estimate the
drivers of their evolutionary ecology and test our hypotheses experimentally,
as presented in this thesis. | showed how termites evolved and what
knowledge gaps we still need to fill in their phylogeny. More importantly, |
showed the ability of termites to modify the microbial communities in both,
their guts and outer environment. Although further studies are needed, we
might be pretty sure that termite external associations with microbial
communities are crucial not only to termites, but also to the whole ecosystems
and thus to the humankind as well.
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